• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu_amdkfd.h"
30 
31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
32  * GPU processor ID are expressed with Bit[31]=1.
33  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
34  * used in the CRAT.
35  */
36 static uint32_t gpu_processor_id_low = 0x80001000;
37 
38 /* Return the next available gpu_processor_id and increment it for next GPU
39  *	@total_cu_count - Total CUs present in the GPU including ones
40  *			  masked off
41  */
get_and_inc_gpu_processor_id(unsigned int total_cu_count)42 static inline unsigned int get_and_inc_gpu_processor_id(
43 				unsigned int total_cu_count)
44 {
45 	int current_id = gpu_processor_id_low;
46 
47 	gpu_processor_id_low += total_cu_count;
48 	return current_id;
49 }
50 
51 /* Static table to describe GPU Cache information */
52 struct kfd_gpu_cache_info {
53 	uint32_t	cache_size;
54 	uint32_t	cache_level;
55 	uint32_t	flags;
56 	/* Indicates how many Compute Units share this cache
57 	 * Value = 1 indicates the cache is not shared
58 	 */
59 	uint32_t	num_cu_shared;
60 };
61 
62 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
63 	{
64 		/* TCP L1 Cache per CU */
65 		.cache_size = 16,
66 		.cache_level = 1,
67 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
68 				CRAT_CACHE_FLAGS_DATA_CACHE |
69 				CRAT_CACHE_FLAGS_SIMD_CACHE),
70 		.num_cu_shared = 1,
71 
72 	},
73 	{
74 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
75 		.cache_size = 16,
76 		.cache_level = 1,
77 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
78 				CRAT_CACHE_FLAGS_INST_CACHE |
79 				CRAT_CACHE_FLAGS_SIMD_CACHE),
80 		.num_cu_shared = 2,
81 	},
82 	{
83 		/* Scalar L1 Data Cache (in SQC module) per bank */
84 		.cache_size = 8,
85 		.cache_level = 1,
86 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
87 				CRAT_CACHE_FLAGS_DATA_CACHE |
88 				CRAT_CACHE_FLAGS_SIMD_CACHE),
89 		.num_cu_shared = 2,
90 	},
91 
92 	/* TODO: Add L2 Cache information */
93 };
94 
95 
96 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
97 	{
98 		/* TCP L1 Cache per CU */
99 		.cache_size = 16,
100 		.cache_level = 1,
101 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
102 				CRAT_CACHE_FLAGS_DATA_CACHE |
103 				CRAT_CACHE_FLAGS_SIMD_CACHE),
104 		.num_cu_shared = 1,
105 	},
106 	{
107 		/* Scalar L1 Instruction Cache (in SQC module) per bank */
108 		.cache_size = 8,
109 		.cache_level = 1,
110 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
111 				CRAT_CACHE_FLAGS_INST_CACHE |
112 				CRAT_CACHE_FLAGS_SIMD_CACHE),
113 		.num_cu_shared = 4,
114 	},
115 	{
116 		/* Scalar L1 Data Cache (in SQC module) per bank. */
117 		.cache_size = 4,
118 		.cache_level = 1,
119 		.flags = (CRAT_CACHE_FLAGS_ENABLED |
120 				CRAT_CACHE_FLAGS_DATA_CACHE |
121 				CRAT_CACHE_FLAGS_SIMD_CACHE),
122 		.num_cu_shared = 4,
123 	},
124 
125 	/* TODO: Add L2 Cache information */
126 };
127 
128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
129  * the following ASICs may need a separate table.
130  */
131 #define hawaii_cache_info kaveri_cache_info
132 #define tonga_cache_info carrizo_cache_info
133 #define fiji_cache_info  carrizo_cache_info
134 #define polaris10_cache_info carrizo_cache_info
135 #define polaris11_cache_info carrizo_cache_info
136 #define polaris12_cache_info carrizo_cache_info
137 #define vegam_cache_info carrizo_cache_info
138 /* TODO - check & update Vega10 cache details */
139 #define vega10_cache_info carrizo_cache_info
140 #define raven_cache_info carrizo_cache_info
141 #define renoir_cache_info carrizo_cache_info
142 /* TODO - check & update Navi10 cache details */
143 #define navi10_cache_info carrizo_cache_info
144 
kfd_populated_cu_info_cpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)145 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
146 		struct crat_subtype_computeunit *cu)
147 {
148 	dev->node_props.cpu_cores_count = cu->num_cpu_cores;
149 	dev->node_props.cpu_core_id_base = cu->processor_id_low;
150 	if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
151 		dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
152 
153 	pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
154 			cu->processor_id_low);
155 }
156 
kfd_populated_cu_info_gpu(struct kfd_topology_device * dev,struct crat_subtype_computeunit * cu)157 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
158 		struct crat_subtype_computeunit *cu)
159 {
160 	dev->node_props.simd_id_base = cu->processor_id_low;
161 	dev->node_props.simd_count = cu->num_simd_cores;
162 	dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
163 	dev->node_props.max_waves_per_simd = cu->max_waves_simd;
164 	dev->node_props.wave_front_size = cu->wave_front_size;
165 	dev->node_props.array_count = cu->array_count;
166 	dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
167 	dev->node_props.simd_per_cu = cu->num_simd_per_cu;
168 	dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
169 	if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
170 		dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
171 	pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
172 }
173 
174 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
175  * topology device present in the device_list
176  */
kfd_parse_subtype_cu(struct crat_subtype_computeunit * cu,struct list_head * device_list)177 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
178 				struct list_head *device_list)
179 {
180 	struct kfd_topology_device *dev;
181 
182 	pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
183 			cu->proximity_domain, cu->hsa_capability);
184 	list_for_each_entry(dev, device_list, list) {
185 		if (cu->proximity_domain == dev->proximity_domain) {
186 			if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
187 				kfd_populated_cu_info_cpu(dev, cu);
188 
189 			if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
190 				kfd_populated_cu_info_gpu(dev, cu);
191 			break;
192 		}
193 	}
194 
195 	return 0;
196 }
197 
198 static struct kfd_mem_properties *
find_subtype_mem(uint32_t heap_type,uint32_t flags,uint32_t width,struct kfd_topology_device * dev)199 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
200 		struct kfd_topology_device *dev)
201 {
202 	struct kfd_mem_properties *props;
203 
204 	list_for_each_entry(props, &dev->mem_props, list) {
205 		if (props->heap_type == heap_type
206 				&& props->flags == flags
207 				&& props->width == width)
208 			return props;
209 	}
210 
211 	return NULL;
212 }
213 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
214  * topology device present in the device_list
215  */
kfd_parse_subtype_mem(struct crat_subtype_memory * mem,struct list_head * device_list)216 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
217 				struct list_head *device_list)
218 {
219 	struct kfd_mem_properties *props;
220 	struct kfd_topology_device *dev;
221 	uint32_t heap_type;
222 	uint64_t size_in_bytes;
223 	uint32_t flags = 0;
224 	uint32_t width;
225 
226 	pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
227 			mem->proximity_domain);
228 	list_for_each_entry(dev, device_list, list) {
229 		if (mem->proximity_domain == dev->proximity_domain) {
230 			/* We're on GPU node */
231 			if (dev->node_props.cpu_cores_count == 0) {
232 				/* APU */
233 				if (mem->visibility_type == 0)
234 					heap_type =
235 						HSA_MEM_HEAP_TYPE_FB_PRIVATE;
236 				/* dGPU */
237 				else
238 					heap_type = mem->visibility_type;
239 			} else
240 				heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
241 
242 			if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
243 				flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
244 			if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
245 				flags |= HSA_MEM_FLAGS_NON_VOLATILE;
246 
247 			size_in_bytes =
248 				((uint64_t)mem->length_high << 32) +
249 							mem->length_low;
250 			width = mem->width;
251 
252 			/* Multiple banks of the same type are aggregated into
253 			 * one. User mode doesn't care about multiple physical
254 			 * memory segments. It's managed as a single virtual
255 			 * heap for user mode.
256 			 */
257 			props = find_subtype_mem(heap_type, flags, width, dev);
258 			if (props) {
259 				props->size_in_bytes += size_in_bytes;
260 				break;
261 			}
262 
263 			props = kfd_alloc_struct(props);
264 			if (!props)
265 				return -ENOMEM;
266 
267 			props->heap_type = heap_type;
268 			props->flags = flags;
269 			props->size_in_bytes = size_in_bytes;
270 			props->width = width;
271 
272 			dev->node_props.mem_banks_count++;
273 			list_add_tail(&props->list, &dev->mem_props);
274 
275 			break;
276 		}
277 	}
278 
279 	return 0;
280 }
281 
282 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
283  * topology device present in the device_list
284  */
kfd_parse_subtype_cache(struct crat_subtype_cache * cache,struct list_head * device_list)285 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
286 			struct list_head *device_list)
287 {
288 	struct kfd_cache_properties *props;
289 	struct kfd_topology_device *dev;
290 	uint32_t id;
291 	uint32_t total_num_of_cu;
292 
293 	id = cache->processor_id_low;
294 
295 	pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
296 	list_for_each_entry(dev, device_list, list) {
297 		total_num_of_cu = (dev->node_props.array_count *
298 					dev->node_props.cu_per_simd_array);
299 
300 		/* Cache infomration in CRAT doesn't have proximity_domain
301 		 * information as it is associated with a CPU core or GPU
302 		 * Compute Unit. So map the cache using CPU core Id or SIMD
303 		 * (GPU) ID.
304 		 * TODO: This works because currently we can safely assume that
305 		 *  Compute Units are parsed before caches are parsed. In
306 		 *  future, remove this dependency
307 		 */
308 		if ((id >= dev->node_props.cpu_core_id_base &&
309 			id <= dev->node_props.cpu_core_id_base +
310 				dev->node_props.cpu_cores_count) ||
311 			(id >= dev->node_props.simd_id_base &&
312 			id < dev->node_props.simd_id_base +
313 				total_num_of_cu)) {
314 			props = kfd_alloc_struct(props);
315 			if (!props)
316 				return -ENOMEM;
317 
318 			props->processor_id_low = id;
319 			props->cache_level = cache->cache_level;
320 			props->cache_size = cache->cache_size;
321 			props->cacheline_size = cache->cache_line_size;
322 			props->cachelines_per_tag = cache->lines_per_tag;
323 			props->cache_assoc = cache->associativity;
324 			props->cache_latency = cache->cache_latency;
325 			memcpy(props->sibling_map, cache->sibling_map,
326 					sizeof(props->sibling_map));
327 
328 			if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
329 				props->cache_type |= HSA_CACHE_TYPE_DATA;
330 			if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
331 				props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
332 			if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
333 				props->cache_type |= HSA_CACHE_TYPE_CPU;
334 			if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
335 				props->cache_type |= HSA_CACHE_TYPE_HSACU;
336 
337 			dev->cache_count++;
338 			dev->node_props.caches_count++;
339 			list_add_tail(&props->list, &dev->cache_props);
340 
341 			break;
342 		}
343 	}
344 
345 	return 0;
346 }
347 
348 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
349  * topology device present in the device_list
350  */
kfd_parse_subtype_iolink(struct crat_subtype_iolink * iolink,struct list_head * device_list)351 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
352 					struct list_head *device_list)
353 {
354 	struct kfd_iolink_properties *props = NULL, *props2;
355 	struct kfd_topology_device *dev, *to_dev;
356 	uint32_t id_from;
357 	uint32_t id_to;
358 
359 	id_from = iolink->proximity_domain_from;
360 	id_to = iolink->proximity_domain_to;
361 
362 	pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
363 			id_from, id_to);
364 	list_for_each_entry(dev, device_list, list) {
365 		if (id_from == dev->proximity_domain) {
366 			props = kfd_alloc_struct(props);
367 			if (!props)
368 				return -ENOMEM;
369 
370 			props->node_from = id_from;
371 			props->node_to = id_to;
372 			props->ver_maj = iolink->version_major;
373 			props->ver_min = iolink->version_minor;
374 			props->iolink_type = iolink->io_interface_type;
375 
376 			if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
377 				props->weight = 20;
378 			else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
379 				props->weight = 15 * iolink->num_hops_xgmi;
380 			else
381 				props->weight = node_distance(id_from, id_to);
382 
383 			props->min_latency = iolink->minimum_latency;
384 			props->max_latency = iolink->maximum_latency;
385 			props->min_bandwidth = iolink->minimum_bandwidth_mbs;
386 			props->max_bandwidth = iolink->maximum_bandwidth_mbs;
387 			props->rec_transfer_size =
388 					iolink->recommended_transfer_size;
389 
390 			dev->io_link_count++;
391 			dev->node_props.io_links_count++;
392 			list_add_tail(&props->list, &dev->io_link_props);
393 			break;
394 		}
395 	}
396 
397 	/* CPU topology is created before GPUs are detected, so CPU->GPU
398 	 * links are not built at that time. If a PCIe type is discovered, it
399 	 * means a GPU is detected and we are adding GPU->CPU to the topology.
400 	 * At this time, also add the corresponded CPU->GPU link if GPU
401 	 * is large bar.
402 	 * For xGMI, we only added the link with one direction in the crat
403 	 * table, add corresponded reversed direction link now.
404 	 */
405 	if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
406 		to_dev = kfd_topology_device_by_proximity_domain(id_to);
407 		if (!to_dev)
408 			return -ENODEV;
409 		/* same everything but the other direction */
410 		props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
411 		if (!props2)
412 			return -ENOMEM;
413 
414 		props2->node_from = id_to;
415 		props2->node_to = id_from;
416 		props2->kobj = NULL;
417 		to_dev->io_link_count++;
418 		to_dev->node_props.io_links_count++;
419 		list_add_tail(&props2->list, &to_dev->io_link_props);
420 	}
421 
422 	return 0;
423 }
424 
425 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
426  * present in the device_list
427  *	@sub_type_hdr - subtype section of crat_image
428  *	@device_list - list of topology devices present in this crat_image
429  */
kfd_parse_subtype(struct crat_subtype_generic * sub_type_hdr,struct list_head * device_list)430 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
431 				struct list_head *device_list)
432 {
433 	struct crat_subtype_computeunit *cu;
434 	struct crat_subtype_memory *mem;
435 	struct crat_subtype_cache *cache;
436 	struct crat_subtype_iolink *iolink;
437 	int ret = 0;
438 
439 	switch (sub_type_hdr->type) {
440 	case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
441 		cu = (struct crat_subtype_computeunit *)sub_type_hdr;
442 		ret = kfd_parse_subtype_cu(cu, device_list);
443 		break;
444 	case CRAT_SUBTYPE_MEMORY_AFFINITY:
445 		mem = (struct crat_subtype_memory *)sub_type_hdr;
446 		ret = kfd_parse_subtype_mem(mem, device_list);
447 		break;
448 	case CRAT_SUBTYPE_CACHE_AFFINITY:
449 		cache = (struct crat_subtype_cache *)sub_type_hdr;
450 		ret = kfd_parse_subtype_cache(cache, device_list);
451 		break;
452 	case CRAT_SUBTYPE_TLB_AFFINITY:
453 		/*
454 		 * For now, nothing to do here
455 		 */
456 		pr_debug("Found TLB entry in CRAT table (not processing)\n");
457 		break;
458 	case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
459 		/*
460 		 * For now, nothing to do here
461 		 */
462 		pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
463 		break;
464 	case CRAT_SUBTYPE_IOLINK_AFFINITY:
465 		iolink = (struct crat_subtype_iolink *)sub_type_hdr;
466 		ret = kfd_parse_subtype_iolink(iolink, device_list);
467 		break;
468 	default:
469 		pr_warn("Unknown subtype %d in CRAT\n",
470 				sub_type_hdr->type);
471 	}
472 
473 	return ret;
474 }
475 
476 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
477  * create a kfd_topology_device and add in to device_list. Also parse
478  * CRAT subtypes and attach it to appropriate kfd_topology_device
479  *	@crat_image - input image containing CRAT
480  *	@device_list - [OUT] list of kfd_topology_device generated after
481  *		       parsing crat_image
482  *	@proximity_domain - Proximity domain of the first device in the table
483  *
484  *	Return - 0 if successful else -ve value
485  */
kfd_parse_crat_table(void * crat_image,struct list_head * device_list,uint32_t proximity_domain)486 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
487 			 uint32_t proximity_domain)
488 {
489 	struct kfd_topology_device *top_dev = NULL;
490 	struct crat_subtype_generic *sub_type_hdr;
491 	uint16_t node_id;
492 	int ret = 0;
493 	struct crat_header *crat_table = (struct crat_header *)crat_image;
494 	uint16_t num_nodes;
495 	uint32_t image_len;
496 
497 	if (!crat_image)
498 		return -EINVAL;
499 
500 	if (!list_empty(device_list)) {
501 		pr_warn("Error device list should be empty\n");
502 		return -EINVAL;
503 	}
504 
505 	num_nodes = crat_table->num_domains;
506 	image_len = crat_table->length;
507 
508 	pr_debug("Parsing CRAT table with %d nodes\n", num_nodes);
509 
510 	for (node_id = 0; node_id < num_nodes; node_id++) {
511 		top_dev = kfd_create_topology_device(device_list);
512 		if (!top_dev)
513 			break;
514 		top_dev->proximity_domain = proximity_domain++;
515 	}
516 
517 	if (!top_dev) {
518 		ret = -ENOMEM;
519 		goto err;
520 	}
521 
522 	memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
523 	memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
524 			CRAT_OEMTABLEID_LENGTH);
525 	top_dev->oem_revision = crat_table->oem_revision;
526 
527 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
528 	while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
529 			((char *)crat_image) + image_len) {
530 		if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
531 			ret = kfd_parse_subtype(sub_type_hdr, device_list);
532 			if (ret)
533 				break;
534 		}
535 
536 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
537 				sub_type_hdr->length);
538 	}
539 
540 err:
541 	if (ret)
542 		kfd_release_topology_device_list(device_list);
543 
544 	return ret;
545 }
546 
547 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
fill_in_pcache(struct crat_subtype_cache * pcache,struct kfd_gpu_cache_info * pcache_info,struct kfd_cu_info * cu_info,int mem_available,int cu_bitmask,int cache_type,unsigned int cu_processor_id,int cu_block)548 static int fill_in_pcache(struct crat_subtype_cache *pcache,
549 				struct kfd_gpu_cache_info *pcache_info,
550 				struct kfd_cu_info *cu_info,
551 				int mem_available,
552 				int cu_bitmask,
553 				int cache_type, unsigned int cu_processor_id,
554 				int cu_block)
555 {
556 	unsigned int cu_sibling_map_mask;
557 	int first_active_cu;
558 
559 	/* First check if enough memory is available */
560 	if (sizeof(struct crat_subtype_cache) > mem_available)
561 		return -ENOMEM;
562 
563 	cu_sibling_map_mask = cu_bitmask;
564 	cu_sibling_map_mask >>= cu_block;
565 	cu_sibling_map_mask &=
566 		((1 << pcache_info[cache_type].num_cu_shared) - 1);
567 	first_active_cu = ffs(cu_sibling_map_mask);
568 
569 	/* CU could be inactive. In case of shared cache find the first active
570 	 * CU. and incase of non-shared cache check if the CU is inactive. If
571 	 * inactive active skip it
572 	 */
573 	if (first_active_cu) {
574 		memset(pcache, 0, sizeof(struct crat_subtype_cache));
575 		pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
576 		pcache->length = sizeof(struct crat_subtype_cache);
577 		pcache->flags = pcache_info[cache_type].flags;
578 		pcache->processor_id_low = cu_processor_id
579 					 + (first_active_cu - 1);
580 		pcache->cache_level = pcache_info[cache_type].cache_level;
581 		pcache->cache_size = pcache_info[cache_type].cache_size;
582 
583 		/* Sibling map is w.r.t processor_id_low, so shift out
584 		 * inactive CU
585 		 */
586 		cu_sibling_map_mask =
587 			cu_sibling_map_mask >> (first_active_cu - 1);
588 
589 		pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
590 		pcache->sibling_map[1] =
591 				(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
592 		pcache->sibling_map[2] =
593 				(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
594 		pcache->sibling_map[3] =
595 				(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
596 		return 0;
597 	}
598 	return 1;
599 }
600 
601 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
602  * tables
603  *
604  *	@kdev - [IN] GPU device
605  *	@gpu_processor_id - [IN] GPU processor ID to which these caches
606  *			    associate
607  *	@available_size - [IN] Amount of memory available in pcache
608  *	@cu_info - [IN] Compute Unit info obtained from KGD
609  *	@pcache - [OUT] memory into which cache data is to be filled in.
610  *	@size_filled - [OUT] amount of data used up in pcache.
611  *	@num_of_entries - [OUT] number of caches added
612  */
kfd_fill_gpu_cache_info(struct kfd_dev * kdev,int gpu_processor_id,int available_size,struct kfd_cu_info * cu_info,struct crat_subtype_cache * pcache,int * size_filled,int * num_of_entries)613 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
614 			int gpu_processor_id,
615 			int available_size,
616 			struct kfd_cu_info *cu_info,
617 			struct crat_subtype_cache *pcache,
618 			int *size_filled,
619 			int *num_of_entries)
620 {
621 	struct kfd_gpu_cache_info *pcache_info;
622 	int num_of_cache_types = 0;
623 	int i, j, k;
624 	int ct = 0;
625 	int mem_available = available_size;
626 	unsigned int cu_processor_id;
627 	int ret;
628 
629 	switch (kdev->device_info->asic_family) {
630 	case CHIP_KAVERI:
631 		pcache_info = kaveri_cache_info;
632 		num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
633 		break;
634 	case CHIP_HAWAII:
635 		pcache_info = hawaii_cache_info;
636 		num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
637 		break;
638 	case CHIP_CARRIZO:
639 		pcache_info = carrizo_cache_info;
640 		num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
641 		break;
642 	case CHIP_TONGA:
643 		pcache_info = tonga_cache_info;
644 		num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
645 		break;
646 	case CHIP_FIJI:
647 		pcache_info = fiji_cache_info;
648 		num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
649 		break;
650 	case CHIP_POLARIS10:
651 		pcache_info = polaris10_cache_info;
652 		num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
653 		break;
654 	case CHIP_POLARIS11:
655 		pcache_info = polaris11_cache_info;
656 		num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
657 		break;
658 	case CHIP_POLARIS12:
659 		pcache_info = polaris12_cache_info;
660 		num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
661 		break;
662 	case CHIP_VEGAM:
663 		pcache_info = vegam_cache_info;
664 		num_of_cache_types = ARRAY_SIZE(vegam_cache_info);
665 		break;
666 	case CHIP_VEGA10:
667 	case CHIP_VEGA12:
668 	case CHIP_VEGA20:
669 	case CHIP_ARCTURUS:
670 		pcache_info = vega10_cache_info;
671 		num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
672 		break;
673 	case CHIP_RAVEN:
674 		pcache_info = raven_cache_info;
675 		num_of_cache_types = ARRAY_SIZE(raven_cache_info);
676 		break;
677 	case CHIP_RENOIR:
678 		pcache_info = renoir_cache_info;
679 		num_of_cache_types = ARRAY_SIZE(renoir_cache_info);
680 		break;
681 	case CHIP_NAVI10:
682 	case CHIP_NAVI12:
683 	case CHIP_NAVI14:
684 	case CHIP_SIENNA_CICHLID:
685 	case CHIP_NAVY_FLOUNDER:
686 		pcache_info = navi10_cache_info;
687 		num_of_cache_types = ARRAY_SIZE(navi10_cache_info);
688 		break;
689 	default:
690 		return -EINVAL;
691 	}
692 
693 	*size_filled = 0;
694 	*num_of_entries = 0;
695 
696 	/* For each type of cache listed in the kfd_gpu_cache_info table,
697 	 * go through all available Compute Units.
698 	 * The [i,j,k] loop will
699 	 *		if kfd_gpu_cache_info.num_cu_shared = 1
700 	 *			will parse through all available CU
701 	 *		If (kfd_gpu_cache_info.num_cu_shared != 1)
702 	 *			then it will consider only one CU from
703 	 *			the shared unit
704 	 */
705 
706 	for (ct = 0; ct < num_of_cache_types; ct++) {
707 		cu_processor_id = gpu_processor_id;
708 		for (i = 0; i < cu_info->num_shader_engines; i++) {
709 			for (j = 0; j < cu_info->num_shader_arrays_per_engine;
710 				j++) {
711 				for (k = 0; k < cu_info->num_cu_per_sh;
712 					k += pcache_info[ct].num_cu_shared) {
713 
714 					ret = fill_in_pcache(pcache,
715 						pcache_info,
716 						cu_info,
717 						mem_available,
718 						cu_info->cu_bitmap[i % 4][j + i / 4],
719 						ct,
720 						cu_processor_id,
721 						k);
722 
723 					if (ret < 0)
724 						break;
725 
726 					if (!ret) {
727 						pcache++;
728 						(*num_of_entries)++;
729 						mem_available -=
730 							sizeof(*pcache);
731 						(*size_filled) +=
732 							sizeof(*pcache);
733 					}
734 
735 					/* Move to next CU block */
736 					cu_processor_id +=
737 						pcache_info[ct].num_cu_shared;
738 				}
739 			}
740 		}
741 	}
742 
743 	pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
744 
745 	return 0;
746 }
747 
kfd_ignore_crat(void)748 static bool kfd_ignore_crat(void)
749 {
750 	bool ret;
751 
752 	if (ignore_crat)
753 		return true;
754 
755 #ifndef KFD_SUPPORT_IOMMU_V2
756 	ret = true;
757 #else
758 	ret = false;
759 #endif
760 
761 	return ret;
762 }
763 
764 /*
765  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
766  * copies CRAT from ACPI (if available).
767  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
768  *
769  *	@crat_image: CRAT read from ACPI. If no CRAT in ACPI then
770  *		     crat_image will be NULL
771  *	@size: [OUT] size of crat_image
772  *
773  *	Return 0 if successful else return error code
774  */
kfd_create_crat_image_acpi(void ** crat_image,size_t * size)775 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
776 {
777 	struct acpi_table_header *crat_table;
778 	acpi_status status;
779 	void *pcrat_image;
780 	int rc = 0;
781 
782 	if (!crat_image)
783 		return -EINVAL;
784 
785 	*crat_image = NULL;
786 
787 	/* Fetch the CRAT table from ACPI */
788 	status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
789 	if (status == AE_NOT_FOUND) {
790 		pr_warn("CRAT table not found\n");
791 		return -ENODATA;
792 	} else if (ACPI_FAILURE(status)) {
793 		const char *err = acpi_format_exception(status);
794 
795 		pr_err("CRAT table error: %s\n", err);
796 		return -EINVAL;
797 	}
798 
799 	if (kfd_ignore_crat()) {
800 		pr_info("CRAT table disabled by module option\n");
801 		return -ENODATA;
802 	}
803 
804 	pcrat_image = kvmalloc(crat_table->length, GFP_KERNEL);
805 	if (!pcrat_image) {
806 		rc = -ENOMEM;
807 		goto out;
808 	}
809 
810 	memcpy(pcrat_image, crat_table, crat_table->length);
811 	*crat_image = pcrat_image;
812 	*size = crat_table->length;
813 out:
814 	acpi_put_table(crat_table);
815 	return rc;
816 }
817 
818 /* Memory required to create Virtual CRAT.
819  * Since there is no easy way to predict the amount of memory required, the
820  * following amount is allocated for GPU Virtual CRAT. This is
821  * expected to cover all known conditions. But to be safe additional check
822  * is put in the code to ensure we don't overwrite.
823  */
824 #define VCRAT_SIZE_FOR_GPU	(4 * PAGE_SIZE)
825 
826 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
827  *
828  *	@numa_node_id: CPU NUMA node id
829  *	@avail_size: Available size in the memory
830  *	@sub_type_hdr: Memory into which compute info will be filled in
831  *
832  *	Return 0 if successful else return -ve value
833  */
kfd_fill_cu_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_computeunit * sub_type_hdr)834 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
835 				int proximity_domain,
836 				struct crat_subtype_computeunit *sub_type_hdr)
837 {
838 	const struct cpumask *cpumask;
839 
840 	*avail_size -= sizeof(struct crat_subtype_computeunit);
841 	if (*avail_size < 0)
842 		return -ENOMEM;
843 
844 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
845 
846 	/* Fill in subtype header data */
847 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
848 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
849 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
850 
851 	cpumask = cpumask_of_node(numa_node_id);
852 
853 	/* Fill in CU data */
854 	sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
855 	sub_type_hdr->proximity_domain = proximity_domain;
856 	sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
857 	if (sub_type_hdr->processor_id_low == -1)
858 		return -EINVAL;
859 
860 	sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
861 
862 	return 0;
863 }
864 
865 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
866  *
867  *	@numa_node_id: CPU NUMA node id
868  *	@avail_size: Available size in the memory
869  *	@sub_type_hdr: Memory into which compute info will be filled in
870  *
871  *	Return 0 if successful else return -ve value
872  */
kfd_fill_mem_info_for_cpu(int numa_node_id,int * avail_size,int proximity_domain,struct crat_subtype_memory * sub_type_hdr)873 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
874 			int proximity_domain,
875 			struct crat_subtype_memory *sub_type_hdr)
876 {
877 	uint64_t mem_in_bytes = 0;
878 	pg_data_t *pgdat;
879 	int zone_type;
880 
881 	*avail_size -= sizeof(struct crat_subtype_memory);
882 	if (*avail_size < 0)
883 		return -ENOMEM;
884 
885 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
886 
887 	/* Fill in subtype header data */
888 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
889 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
890 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
891 
892 	/* Fill in Memory Subunit data */
893 
894 	/* Unlike si_meminfo, si_meminfo_node is not exported. So
895 	 * the following lines are duplicated from si_meminfo_node
896 	 * function
897 	 */
898 	pgdat = NODE_DATA(numa_node_id);
899 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
900 		mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
901 	mem_in_bytes <<= PAGE_SHIFT;
902 
903 	sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
904 	sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
905 	sub_type_hdr->proximity_domain = proximity_domain;
906 
907 	return 0;
908 }
909 
910 #ifdef CONFIG_X86_64
kfd_fill_iolink_info_for_cpu(int numa_node_id,int * avail_size,uint32_t * num_entries,struct crat_subtype_iolink * sub_type_hdr)911 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
912 				uint32_t *num_entries,
913 				struct crat_subtype_iolink *sub_type_hdr)
914 {
915 	int nid;
916 	struct cpuinfo_x86 *c = &cpu_data(0);
917 	uint8_t link_type;
918 
919 	if (c->x86_vendor == X86_VENDOR_AMD)
920 		link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
921 	else
922 		link_type = CRAT_IOLINK_TYPE_QPI_1_1;
923 
924 	*num_entries = 0;
925 
926 	/* Create IO links from this node to other CPU nodes */
927 	for_each_online_node(nid) {
928 		if (nid == numa_node_id) /* node itself */
929 			continue;
930 
931 		*avail_size -= sizeof(struct crat_subtype_iolink);
932 		if (*avail_size < 0)
933 			return -ENOMEM;
934 
935 		memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
936 
937 		/* Fill in subtype header data */
938 		sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
939 		sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
940 		sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
941 
942 		/* Fill in IO link data */
943 		sub_type_hdr->proximity_domain_from = numa_node_id;
944 		sub_type_hdr->proximity_domain_to = nid;
945 		sub_type_hdr->io_interface_type = link_type;
946 
947 		(*num_entries)++;
948 		sub_type_hdr++;
949 	}
950 
951 	return 0;
952 }
953 #endif
954 
955 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
956  *
957  *	@pcrat_image: Fill in VCRAT for CPU
958  *	@size:	[IN] allocated size of crat_image.
959  *		[OUT] actual size of data filled in crat_image
960  */
kfd_create_vcrat_image_cpu(void * pcrat_image,size_t * size)961 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
962 {
963 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
964 	struct acpi_table_header *acpi_table;
965 	acpi_status status;
966 	struct crat_subtype_generic *sub_type_hdr;
967 	int avail_size = *size;
968 	int numa_node_id;
969 #ifdef CONFIG_X86_64
970 	uint32_t entries = 0;
971 #endif
972 	int ret = 0;
973 
974 	if (!pcrat_image)
975 		return -EINVAL;
976 
977 	/* Fill in CRAT Header.
978 	 * Modify length and total_entries as subunits are added.
979 	 */
980 	avail_size -= sizeof(struct crat_header);
981 	if (avail_size < 0)
982 		return -ENOMEM;
983 
984 	memset(crat_table, 0, sizeof(struct crat_header));
985 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
986 			sizeof(crat_table->signature));
987 	crat_table->length = sizeof(struct crat_header);
988 
989 	status = acpi_get_table("DSDT", 0, &acpi_table);
990 	if (status != AE_OK)
991 		pr_warn("DSDT table not found for OEM information\n");
992 	else {
993 		crat_table->oem_revision = acpi_table->revision;
994 		memcpy(crat_table->oem_id, acpi_table->oem_id,
995 				CRAT_OEMID_LENGTH);
996 		memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
997 				CRAT_OEMTABLEID_LENGTH);
998 		acpi_put_table(acpi_table);
999 	}
1000 	crat_table->total_entries = 0;
1001 	crat_table->num_domains = 0;
1002 
1003 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
1004 
1005 	for_each_online_node(numa_node_id) {
1006 		if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
1007 			continue;
1008 
1009 		/* Fill in Subtype: Compute Unit */
1010 		ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
1011 			crat_table->num_domains,
1012 			(struct crat_subtype_computeunit *)sub_type_hdr);
1013 		if (ret < 0)
1014 			return ret;
1015 		crat_table->length += sub_type_hdr->length;
1016 		crat_table->total_entries++;
1017 
1018 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1019 			sub_type_hdr->length);
1020 
1021 		/* Fill in Subtype: Memory */
1022 		ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
1023 			crat_table->num_domains,
1024 			(struct crat_subtype_memory *)sub_type_hdr);
1025 		if (ret < 0)
1026 			return ret;
1027 		crat_table->length += sub_type_hdr->length;
1028 		crat_table->total_entries++;
1029 
1030 		sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1031 			sub_type_hdr->length);
1032 
1033 		/* Fill in Subtype: IO Link */
1034 #ifdef CONFIG_X86_64
1035 		ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
1036 				&entries,
1037 				(struct crat_subtype_iolink *)sub_type_hdr);
1038 		if (ret < 0)
1039 			return ret;
1040 
1041 		if (entries) {
1042 			crat_table->length += (sub_type_hdr->length * entries);
1043 			crat_table->total_entries += entries;
1044 
1045 			sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1046 					sub_type_hdr->length * entries);
1047 		}
1048 #else
1049 		pr_info("IO link not available for non x86 platforms\n");
1050 #endif
1051 
1052 		crat_table->num_domains++;
1053 	}
1054 
1055 	/* TODO: Add cache Subtype for CPU.
1056 	 * Currently, CPU cache information is available in function
1057 	 * detect_cache_attributes(cpu) defined in the file
1058 	 * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1059 	 * exported and to get the same information the code needs to be
1060 	 * duplicated.
1061 	 */
1062 
1063 	*size = crat_table->length;
1064 	pr_info("Virtual CRAT table created for CPU\n");
1065 
1066 	return 0;
1067 }
1068 
kfd_fill_gpu_memory_affinity(int * avail_size,struct kfd_dev * kdev,uint8_t type,uint64_t size,struct crat_subtype_memory * sub_type_hdr,uint32_t proximity_domain,const struct kfd_local_mem_info * local_mem_info)1069 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1070 		struct kfd_dev *kdev, uint8_t type, uint64_t size,
1071 		struct crat_subtype_memory *sub_type_hdr,
1072 		uint32_t proximity_domain,
1073 		const struct kfd_local_mem_info *local_mem_info)
1074 {
1075 	*avail_size -= sizeof(struct crat_subtype_memory);
1076 	if (*avail_size < 0)
1077 		return -ENOMEM;
1078 
1079 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1080 	sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1081 	sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1082 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1083 
1084 	sub_type_hdr->proximity_domain = proximity_domain;
1085 
1086 	pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1087 			type, size);
1088 
1089 	sub_type_hdr->length_low = lower_32_bits(size);
1090 	sub_type_hdr->length_high = upper_32_bits(size);
1091 
1092 	sub_type_hdr->width = local_mem_info->vram_width;
1093 	sub_type_hdr->visibility_type = type;
1094 
1095 	return 0;
1096 }
1097 
1098 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1099  * to its NUMA node
1100  *	@avail_size: Available size in the memory
1101  *	@kdev - [IN] GPU device
1102  *	@sub_type_hdr: Memory into which io link info will be filled in
1103  *	@proximity_domain - proximity domain of the GPU node
1104  *
1105  *	Return 0 if successful else return -ve value
1106  */
kfd_fill_gpu_direct_io_link_to_cpu(int * avail_size,struct kfd_dev * kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain)1107 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1108 			struct kfd_dev *kdev,
1109 			struct crat_subtype_iolink *sub_type_hdr,
1110 			uint32_t proximity_domain)
1111 {
1112 	*avail_size -= sizeof(struct crat_subtype_iolink);
1113 	if (*avail_size < 0)
1114 		return -ENOMEM;
1115 
1116 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1117 
1118 	/* Fill in subtype header data */
1119 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1120 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1121 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1122 	if (kfd_dev_is_large_bar(kdev))
1123 		sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1124 
1125 	/* Fill in IOLINK subtype.
1126 	 * TODO: Fill-in other fields of iolink subtype
1127 	 */
1128 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1129 	sub_type_hdr->proximity_domain_from = proximity_domain;
1130 #ifdef CONFIG_NUMA
1131 	if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1132 		sub_type_hdr->proximity_domain_to = 0;
1133 	else
1134 		sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1135 #else
1136 	sub_type_hdr->proximity_domain_to = 0;
1137 #endif
1138 	return 0;
1139 }
1140 
kfd_fill_gpu_xgmi_link_to_gpu(int * avail_size,struct kfd_dev * kdev,struct kfd_dev * peer_kdev,struct crat_subtype_iolink * sub_type_hdr,uint32_t proximity_domain_from,uint32_t proximity_domain_to)1141 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1142 			struct kfd_dev *kdev,
1143 			struct kfd_dev *peer_kdev,
1144 			struct crat_subtype_iolink *sub_type_hdr,
1145 			uint32_t proximity_domain_from,
1146 			uint32_t proximity_domain_to)
1147 {
1148 	*avail_size -= sizeof(struct crat_subtype_iolink);
1149 	if (*avail_size < 0)
1150 		return -ENOMEM;
1151 
1152 	memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1153 
1154 	sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1155 	sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1156 	sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1157 			       CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1158 
1159 	sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1160 	sub_type_hdr->proximity_domain_from = proximity_domain_from;
1161 	sub_type_hdr->proximity_domain_to = proximity_domain_to;
1162 	sub_type_hdr->num_hops_xgmi =
1163 		amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd);
1164 	return 0;
1165 }
1166 
1167 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1168  *
1169  *	@pcrat_image: Fill in VCRAT for GPU
1170  *	@size:	[IN] allocated size of crat_image.
1171  *		[OUT] actual size of data filled in crat_image
1172  */
kfd_create_vcrat_image_gpu(void * pcrat_image,size_t * size,struct kfd_dev * kdev,uint32_t proximity_domain)1173 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1174 				      size_t *size, struct kfd_dev *kdev,
1175 				      uint32_t proximity_domain)
1176 {
1177 	struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1178 	struct crat_subtype_generic *sub_type_hdr;
1179 	struct kfd_local_mem_info local_mem_info;
1180 	struct kfd_topology_device *peer_dev;
1181 	struct crat_subtype_computeunit *cu;
1182 	struct kfd_cu_info cu_info;
1183 	int avail_size = *size;
1184 	uint32_t total_num_of_cu;
1185 	int num_of_cache_entries = 0;
1186 	int cache_mem_filled = 0;
1187 	uint32_t nid = 0;
1188 	int ret = 0;
1189 
1190 	if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1191 		return -EINVAL;
1192 
1193 	/* Fill the CRAT Header.
1194 	 * Modify length and total_entries as subunits are added.
1195 	 */
1196 	avail_size -= sizeof(struct crat_header);
1197 	if (avail_size < 0)
1198 		return -ENOMEM;
1199 
1200 	memset(crat_table, 0, sizeof(struct crat_header));
1201 
1202 	memcpy(&crat_table->signature, CRAT_SIGNATURE,
1203 			sizeof(crat_table->signature));
1204 	/* Change length as we add more subtypes*/
1205 	crat_table->length = sizeof(struct crat_header);
1206 	crat_table->num_domains = 1;
1207 	crat_table->total_entries = 0;
1208 
1209 	/* Fill in Subtype: Compute Unit
1210 	 * First fill in the sub type header and then sub type data
1211 	 */
1212 	avail_size -= sizeof(struct crat_subtype_computeunit);
1213 	if (avail_size < 0)
1214 		return -ENOMEM;
1215 
1216 	sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1217 	memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1218 
1219 	sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1220 	sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1221 	sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1222 
1223 	/* Fill CU subtype data */
1224 	cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1225 	cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1226 	cu->proximity_domain = proximity_domain;
1227 
1228 	amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1229 	cu->num_simd_per_cu = cu_info.simd_per_cu;
1230 	cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1231 	cu->max_waves_simd = cu_info.max_waves_per_simd;
1232 
1233 	cu->wave_front_size = cu_info.wave_front_size;
1234 	cu->array_count = cu_info.num_shader_arrays_per_engine *
1235 		cu_info.num_shader_engines;
1236 	total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1237 	cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1238 	cu->num_cu_per_array = cu_info.num_cu_per_sh;
1239 	cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1240 	cu->num_banks = cu_info.num_shader_engines;
1241 	cu->lds_size_in_kb = cu_info.lds_size;
1242 
1243 	cu->hsa_capability = 0;
1244 
1245 	/* Check if this node supports IOMMU. During parsing this flag will
1246 	 * translate to HSA_CAP_ATS_PRESENT
1247 	 */
1248 	if (!kfd_iommu_check_device(kdev))
1249 		cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1250 
1251 	crat_table->length += sub_type_hdr->length;
1252 	crat_table->total_entries++;
1253 
1254 	/* Fill in Subtype: Memory. Only on systems with large BAR (no
1255 	 * private FB), report memory as public. On other systems
1256 	 * report the total FB size (public+private) as a single
1257 	 * private heap.
1258 	 */
1259 	amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1260 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1261 			sub_type_hdr->length);
1262 
1263 	if (debug_largebar)
1264 		local_mem_info.local_mem_size_private = 0;
1265 
1266 	if (local_mem_info.local_mem_size_private == 0)
1267 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1268 				kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1269 				local_mem_info.local_mem_size_public,
1270 				(struct crat_subtype_memory *)sub_type_hdr,
1271 				proximity_domain,
1272 				&local_mem_info);
1273 	else
1274 		ret = kfd_fill_gpu_memory_affinity(&avail_size,
1275 				kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1276 				local_mem_info.local_mem_size_public +
1277 				local_mem_info.local_mem_size_private,
1278 				(struct crat_subtype_memory *)sub_type_hdr,
1279 				proximity_domain,
1280 				&local_mem_info);
1281 	if (ret < 0)
1282 		return ret;
1283 
1284 	crat_table->length += sizeof(struct crat_subtype_memory);
1285 	crat_table->total_entries++;
1286 
1287 	/* TODO: Fill in cache information. This information is NOT readily
1288 	 * available in KGD
1289 	 */
1290 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1291 		sub_type_hdr->length);
1292 	ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1293 				avail_size,
1294 				&cu_info,
1295 				(struct crat_subtype_cache *)sub_type_hdr,
1296 				&cache_mem_filled,
1297 				&num_of_cache_entries);
1298 
1299 	if (ret < 0)
1300 		return ret;
1301 
1302 	crat_table->length += cache_mem_filled;
1303 	crat_table->total_entries += num_of_cache_entries;
1304 	avail_size -= cache_mem_filled;
1305 
1306 	/* Fill in Subtype: IO_LINKS
1307 	 *  Only direct links are added here which is Link from GPU to
1308 	 *  to its NUMA node. Indirect links are added by userspace.
1309 	 */
1310 	sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1311 		cache_mem_filled);
1312 	ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1313 		(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1314 
1315 	if (ret < 0)
1316 		return ret;
1317 
1318 	crat_table->length += sub_type_hdr->length;
1319 	crat_table->total_entries++;
1320 
1321 
1322 	/* Fill in Subtype: IO_LINKS
1323 	 * Direct links from GPU to other GPUs through xGMI.
1324 	 * We will loop GPUs that already be processed (with lower value
1325 	 * of proximity_domain), add the link for the GPUs with same
1326 	 * hive id (from this GPU to other GPU) . The reversed iolink
1327 	 * (from other GPU to this GPU) will be added
1328 	 * in kfd_parse_subtype_iolink.
1329 	 */
1330 	if (kdev->hive_id) {
1331 		for (nid = 0; nid < proximity_domain; ++nid) {
1332 			peer_dev = kfd_topology_device_by_proximity_domain(nid);
1333 			if (!peer_dev->gpu)
1334 				continue;
1335 			if (peer_dev->gpu->hive_id != kdev->hive_id)
1336 				continue;
1337 			sub_type_hdr = (typeof(sub_type_hdr))(
1338 				(char *)sub_type_hdr +
1339 				sizeof(struct crat_subtype_iolink));
1340 			ret = kfd_fill_gpu_xgmi_link_to_gpu(
1341 				&avail_size, kdev, peer_dev->gpu,
1342 				(struct crat_subtype_iolink *)sub_type_hdr,
1343 				proximity_domain, nid);
1344 			if (ret < 0)
1345 				return ret;
1346 			crat_table->length += sub_type_hdr->length;
1347 			crat_table->total_entries++;
1348 		}
1349 	}
1350 	*size = crat_table->length;
1351 	pr_info("Virtual CRAT table created for GPU\n");
1352 
1353 	return ret;
1354 }
1355 
1356 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1357  *		creates a Virtual CRAT (VCRAT) image
1358  *
1359  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1360  *
1361  *	@crat_image: VCRAT image created because ACPI does not have a
1362  *		     CRAT for this device
1363  *	@size: [OUT] size of virtual crat_image
1364  *	@flags:	COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1365  *		COMPUTE_UNIT_GPU - Create VCRAT for GPU
1366  *		(COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1367  *			-- this option is not currently implemented.
1368  *			The assumption is that all AMD APUs will have CRAT
1369  *	@kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1370  *
1371  *	Return 0 if successful else return -ve value
1372  */
kfd_create_crat_image_virtual(void ** crat_image,size_t * size,int flags,struct kfd_dev * kdev,uint32_t proximity_domain)1373 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1374 				  int flags, struct kfd_dev *kdev,
1375 				  uint32_t proximity_domain)
1376 {
1377 	void *pcrat_image = NULL;
1378 	int ret = 0, num_nodes;
1379 	size_t dyn_size;
1380 
1381 	if (!crat_image)
1382 		return -EINVAL;
1383 
1384 	*crat_image = NULL;
1385 
1386 	/* Allocate the CPU Virtual CRAT size based on the number of online
1387 	 * nodes. Allocate VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image.
1388 	 * This should cover all the current conditions. A check is put not
1389 	 * to overwrite beyond allocated size for GPUs
1390 	 */
1391 	switch (flags) {
1392 	case COMPUTE_UNIT_CPU:
1393 		num_nodes = num_online_nodes();
1394 		dyn_size = sizeof(struct crat_header) +
1395 			num_nodes * (sizeof(struct crat_subtype_computeunit) +
1396 			sizeof(struct crat_subtype_memory) +
1397 			(num_nodes - 1) * sizeof(struct crat_subtype_iolink));
1398 		pcrat_image = kvmalloc(dyn_size, GFP_KERNEL);
1399 		if (!pcrat_image)
1400 			return -ENOMEM;
1401 		*size = dyn_size;
1402 		pr_debug("CRAT size is %ld", dyn_size);
1403 		ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1404 		break;
1405 	case COMPUTE_UNIT_GPU:
1406 		if (!kdev)
1407 			return -EINVAL;
1408 		pcrat_image = kvmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1409 		if (!pcrat_image)
1410 			return -ENOMEM;
1411 		*size = VCRAT_SIZE_FOR_GPU;
1412 		ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1413 						 proximity_domain);
1414 		break;
1415 	case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1416 		/* TODO: */
1417 		ret = -EINVAL;
1418 		pr_err("VCRAT not implemented for APU\n");
1419 		break;
1420 	default:
1421 		ret = -EINVAL;
1422 	}
1423 
1424 	if (!ret)
1425 		*crat_image = pcrat_image;
1426 	else
1427 		kvfree(pcrat_image);
1428 
1429 	return ret;
1430 }
1431 
1432 
1433 /* kfd_destroy_crat_image
1434  *
1435  *	@crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1436  *
1437  */
kfd_destroy_crat_image(void * crat_image)1438 void kfd_destroy_crat_image(void *crat_image)
1439 {
1440 	kvfree(crat_image);
1441 }
1442