• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * MPU3050 gyroscope driver
4  *
5  * Copyright (C) 2016 Linaro Ltd.
6  * Author: Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9  * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10  * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11  * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
12  *
13  * TODO: add support for setting up the low pass 3dB frequency.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/iio/buffer.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/sysfs.h>
22 #include <linux/iio/trigger.h>
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/triggered_buffer.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
30 
31 #include "mpu3050.h"
32 
33 #define MPU3050_CHIP_ID		0x68
34 #define MPU3050_CHIP_ID_MASK	0x7E
35 
36 /*
37  * Register map: anything suffixed *_H is a big-endian high byte and always
38  * followed by the corresponding low byte (*_L) even though these are not
39  * explicitly included in the register definitions.
40  */
41 #define MPU3050_CHIP_ID_REG	0x00
42 #define MPU3050_PRODUCT_ID_REG	0x01
43 #define MPU3050_XG_OFFS_TC	0x05
44 #define MPU3050_YG_OFFS_TC	0x08
45 #define MPU3050_ZG_OFFS_TC	0x0B
46 #define MPU3050_X_OFFS_USR_H	0x0C
47 #define MPU3050_Y_OFFS_USR_H	0x0E
48 #define MPU3050_Z_OFFS_USR_H	0x10
49 #define MPU3050_FIFO_EN		0x12
50 #define MPU3050_AUX_VDDIO	0x13
51 #define MPU3050_SLV_ADDR	0x14
52 #define MPU3050_SMPLRT_DIV	0x15
53 #define MPU3050_DLPF_FS_SYNC	0x16
54 #define MPU3050_INT_CFG		0x17
55 #define MPU3050_AUX_ADDR	0x18
56 #define MPU3050_INT_STATUS	0x1A
57 #define MPU3050_TEMP_H		0x1B
58 #define MPU3050_XOUT_H		0x1D
59 #define MPU3050_YOUT_H		0x1F
60 #define MPU3050_ZOUT_H		0x21
61 #define MPU3050_DMP_CFG1	0x35
62 #define MPU3050_DMP_CFG2	0x36
63 #define MPU3050_BANK_SEL	0x37
64 #define MPU3050_MEM_START_ADDR	0x38
65 #define MPU3050_MEM_R_W		0x39
66 #define MPU3050_FIFO_COUNT_H	0x3A
67 #define MPU3050_FIFO_R		0x3C
68 #define MPU3050_USR_CTRL	0x3D
69 #define MPU3050_PWR_MGM		0x3E
70 
71 /* MPU memory bank read options */
72 #define MPU3050_MEM_PRFTCH	BIT(5)
73 #define MPU3050_MEM_USER_BANK	BIT(4)
74 /* Bits 8-11 select memory bank */
75 #define MPU3050_MEM_RAM_BANK_0	0
76 #define MPU3050_MEM_RAM_BANK_1	1
77 #define MPU3050_MEM_RAM_BANK_2	2
78 #define MPU3050_MEM_RAM_BANK_3	3
79 #define MPU3050_MEM_OTP_BANK_0	4
80 
81 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
82 
83 /* Register bits */
84 
85 /* FIFO Enable */
86 #define MPU3050_FIFO_EN_FOOTER		BIT(0)
87 #define MPU3050_FIFO_EN_AUX_ZOUT	BIT(1)
88 #define MPU3050_FIFO_EN_AUX_YOUT	BIT(2)
89 #define MPU3050_FIFO_EN_AUX_XOUT	BIT(3)
90 #define MPU3050_FIFO_EN_GYRO_ZOUT	BIT(4)
91 #define MPU3050_FIFO_EN_GYRO_YOUT	BIT(5)
92 #define MPU3050_FIFO_EN_GYRO_XOUT	BIT(6)
93 #define MPU3050_FIFO_EN_TEMP_OUT	BIT(7)
94 
95 /*
96  * Digital Low Pass filter (DLPF)
97  * Full Scale (FS)
98  * and Synchronization
99  */
100 #define MPU3050_EXT_SYNC_NONE		0x00
101 #define MPU3050_EXT_SYNC_TEMP		0x20
102 #define MPU3050_EXT_SYNC_GYROX		0x40
103 #define MPU3050_EXT_SYNC_GYROY		0x60
104 #define MPU3050_EXT_SYNC_GYROZ		0x80
105 #define MPU3050_EXT_SYNC_ACCELX	0xA0
106 #define MPU3050_EXT_SYNC_ACCELY	0xC0
107 #define MPU3050_EXT_SYNC_ACCELZ	0xE0
108 #define MPU3050_EXT_SYNC_MASK		0xE0
109 #define MPU3050_EXT_SYNC_SHIFT		5
110 
111 #define MPU3050_FS_250DPS		0x00
112 #define MPU3050_FS_500DPS		0x08
113 #define MPU3050_FS_1000DPS		0x10
114 #define MPU3050_FS_2000DPS		0x18
115 #define MPU3050_FS_MASK			0x18
116 #define MPU3050_FS_SHIFT		3
117 
118 #define MPU3050_DLPF_CFG_256HZ_NOLPF2	0x00
119 #define MPU3050_DLPF_CFG_188HZ		0x01
120 #define MPU3050_DLPF_CFG_98HZ		0x02
121 #define MPU3050_DLPF_CFG_42HZ		0x03
122 #define MPU3050_DLPF_CFG_20HZ		0x04
123 #define MPU3050_DLPF_CFG_10HZ		0x05
124 #define MPU3050_DLPF_CFG_5HZ		0x06
125 #define MPU3050_DLPF_CFG_2100HZ_NOLPF	0x07
126 #define MPU3050_DLPF_CFG_MASK		0x07
127 #define MPU3050_DLPF_CFG_SHIFT		0
128 
129 /* Interrupt config */
130 #define MPU3050_INT_RAW_RDY_EN		BIT(0)
131 #define MPU3050_INT_DMP_DONE_EN		BIT(1)
132 #define MPU3050_INT_MPU_RDY_EN		BIT(2)
133 #define MPU3050_INT_ANYRD_2CLEAR	BIT(4)
134 #define MPU3050_INT_LATCH_EN		BIT(5)
135 #define MPU3050_INT_OPEN		BIT(6)
136 #define MPU3050_INT_ACTL		BIT(7)
137 /* Interrupt status */
138 #define MPU3050_INT_STATUS_RAW_RDY	BIT(0)
139 #define MPU3050_INT_STATUS_DMP_DONE	BIT(1)
140 #define MPU3050_INT_STATUS_MPU_RDY	BIT(2)
141 #define MPU3050_INT_STATUS_FIFO_OVFLW	BIT(7)
142 /* USR_CTRL */
143 #define MPU3050_USR_CTRL_FIFO_EN	BIT(6)
144 #define MPU3050_USR_CTRL_AUX_IF_EN	BIT(5)
145 #define MPU3050_USR_CTRL_AUX_IF_RST	BIT(3)
146 #define MPU3050_USR_CTRL_FIFO_RST	BIT(1)
147 #define MPU3050_USR_CTRL_GYRO_RST	BIT(0)
148 /* PWR_MGM */
149 #define MPU3050_PWR_MGM_PLL_X		0x01
150 #define MPU3050_PWR_MGM_PLL_Y		0x02
151 #define MPU3050_PWR_MGM_PLL_Z		0x03
152 #define MPU3050_PWR_MGM_CLKSEL_MASK	0x07
153 #define MPU3050_PWR_MGM_STBY_ZG		BIT(3)
154 #define MPU3050_PWR_MGM_STBY_YG		BIT(4)
155 #define MPU3050_PWR_MGM_STBY_XG		BIT(5)
156 #define MPU3050_PWR_MGM_SLEEP		BIT(6)
157 #define MPU3050_PWR_MGM_RESET		BIT(7)
158 #define MPU3050_PWR_MGM_MASK		0xff
159 
160 /*
161  * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
162  * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
163  * in two's complement.
164  */
165 static unsigned int mpu3050_fs_precision[] = {
166 	IIO_DEGREE_TO_RAD(250),
167 	IIO_DEGREE_TO_RAD(500),
168 	IIO_DEGREE_TO_RAD(1000),
169 	IIO_DEGREE_TO_RAD(2000)
170 };
171 
172 /*
173  * Regulator names
174  */
175 static const char mpu3050_reg_vdd[] = "vdd";
176 static const char mpu3050_reg_vlogic[] = "vlogic";
177 
mpu3050_get_freq(struct mpu3050 * mpu3050)178 static unsigned int mpu3050_get_freq(struct mpu3050 *mpu3050)
179 {
180 	unsigned int freq;
181 
182 	if (mpu3050->lpf == MPU3050_DLPF_CFG_256HZ_NOLPF2)
183 		freq = 8000;
184 	else
185 		freq = 1000;
186 	freq /= (mpu3050->divisor + 1);
187 
188 	return freq;
189 }
190 
mpu3050_start_sampling(struct mpu3050 * mpu3050)191 static int mpu3050_start_sampling(struct mpu3050 *mpu3050)
192 {
193 	__be16 raw_val[3];
194 	int ret;
195 	int i;
196 
197 	/* Reset */
198 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
199 				 MPU3050_PWR_MGM_RESET, MPU3050_PWR_MGM_RESET);
200 	if (ret)
201 		return ret;
202 
203 	/* Turn on the Z-axis PLL */
204 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
205 				 MPU3050_PWR_MGM_CLKSEL_MASK,
206 				 MPU3050_PWR_MGM_PLL_Z);
207 	if (ret)
208 		return ret;
209 
210 	/* Write calibration offset registers */
211 	for (i = 0; i < 3; i++)
212 		raw_val[i] = cpu_to_be16(mpu3050->calibration[i]);
213 
214 	ret = regmap_bulk_write(mpu3050->map, MPU3050_X_OFFS_USR_H, raw_val,
215 				sizeof(raw_val));
216 	if (ret)
217 		return ret;
218 
219 	/* Set low pass filter (sample rate), sync and full scale */
220 	ret = regmap_write(mpu3050->map, MPU3050_DLPF_FS_SYNC,
221 			   MPU3050_EXT_SYNC_NONE << MPU3050_EXT_SYNC_SHIFT |
222 			   mpu3050->fullscale << MPU3050_FS_SHIFT |
223 			   mpu3050->lpf << MPU3050_DLPF_CFG_SHIFT);
224 	if (ret)
225 		return ret;
226 
227 	/* Set up sampling frequency */
228 	ret = regmap_write(mpu3050->map, MPU3050_SMPLRT_DIV, mpu3050->divisor);
229 	if (ret)
230 		return ret;
231 
232 	/*
233 	 * Max 50 ms start-up time after setting DLPF_FS_SYNC
234 	 * according to the data sheet, then wait for the next sample
235 	 * at this frequency T = 1000/f ms.
236 	 */
237 	msleep(50 + 1000 / mpu3050_get_freq(mpu3050));
238 
239 	return 0;
240 }
241 
mpu3050_set_8khz_samplerate(struct mpu3050 * mpu3050)242 static int mpu3050_set_8khz_samplerate(struct mpu3050 *mpu3050)
243 {
244 	int ret;
245 	u8 divisor;
246 	enum mpu3050_lpf lpf;
247 
248 	lpf = mpu3050->lpf;
249 	divisor = mpu3050->divisor;
250 
251 	mpu3050->lpf = LPF_256_HZ_NOLPF; /* 8 kHz base frequency */
252 	mpu3050->divisor = 0; /* Divide by 1 */
253 	ret = mpu3050_start_sampling(mpu3050);
254 
255 	mpu3050->lpf = lpf;
256 	mpu3050->divisor = divisor;
257 
258 	return ret;
259 }
260 
mpu3050_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)261 static int mpu3050_read_raw(struct iio_dev *indio_dev,
262 			    struct iio_chan_spec const *chan,
263 			    int *val, int *val2,
264 			    long mask)
265 {
266 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
267 	int ret;
268 	__be16 raw_val;
269 
270 	switch (mask) {
271 	case IIO_CHAN_INFO_OFFSET:
272 		switch (chan->type) {
273 		case IIO_TEMP:
274 			/*
275 			 * The temperature scaling is (x+23000)/280 Celsius
276 			 * for the "best fit straight line" temperature range
277 			 * of -30C..85C.  The 23000 includes room temperature
278 			 * offset of +35C, 280 is the precision scale and x is
279 			 * the 16-bit signed integer reported by hardware.
280 			 *
281 			 * Temperature value itself represents temperature of
282 			 * the sensor die.
283 			 */
284 			*val = 23000;
285 			return IIO_VAL_INT;
286 		default:
287 			return -EINVAL;
288 		}
289 	case IIO_CHAN_INFO_CALIBBIAS:
290 		switch (chan->type) {
291 		case IIO_ANGL_VEL:
292 			*val = mpu3050->calibration[chan->scan_index-1];
293 			return IIO_VAL_INT;
294 		default:
295 			return -EINVAL;
296 		}
297 	case IIO_CHAN_INFO_SAMP_FREQ:
298 		*val = mpu3050_get_freq(mpu3050);
299 		return IIO_VAL_INT;
300 	case IIO_CHAN_INFO_SCALE:
301 		switch (chan->type) {
302 		case IIO_TEMP:
303 			/* Millidegrees, see about temperature scaling above */
304 			*val = 1000;
305 			*val2 = 280;
306 			return IIO_VAL_FRACTIONAL;
307 		case IIO_ANGL_VEL:
308 			/*
309 			 * Convert to the corresponding full scale in
310 			 * radians. All 16 bits are used with sign to
311 			 * span the available scale: to account for the one
312 			 * missing value if we multiply by 1/S16_MAX, instead
313 			 * multiply with 2/U16_MAX.
314 			 */
315 			*val = mpu3050_fs_precision[mpu3050->fullscale] * 2;
316 			*val2 = U16_MAX;
317 			return IIO_VAL_FRACTIONAL;
318 		default:
319 			return -EINVAL;
320 		}
321 	case IIO_CHAN_INFO_RAW:
322 		/* Resume device */
323 		pm_runtime_get_sync(mpu3050->dev);
324 		mutex_lock(&mpu3050->lock);
325 
326 		ret = mpu3050_set_8khz_samplerate(mpu3050);
327 		if (ret)
328 			goto out_read_raw_unlock;
329 
330 		switch (chan->type) {
331 		case IIO_TEMP:
332 			ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H,
333 					       &raw_val, sizeof(raw_val));
334 			if (ret) {
335 				dev_err(mpu3050->dev,
336 					"error reading temperature\n");
337 				goto out_read_raw_unlock;
338 			}
339 
340 			*val = (s16)be16_to_cpu(raw_val);
341 			ret = IIO_VAL_INT;
342 
343 			goto out_read_raw_unlock;
344 		case IIO_ANGL_VEL:
345 			ret = regmap_bulk_read(mpu3050->map,
346 				       MPU3050_AXIS_REGS(chan->scan_index-1),
347 				       &raw_val,
348 				       sizeof(raw_val));
349 			if (ret) {
350 				dev_err(mpu3050->dev,
351 					"error reading axis data\n");
352 				goto out_read_raw_unlock;
353 			}
354 
355 			*val = be16_to_cpu(raw_val);
356 			ret = IIO_VAL_INT;
357 
358 			goto out_read_raw_unlock;
359 		default:
360 			ret = -EINVAL;
361 			goto out_read_raw_unlock;
362 		}
363 	default:
364 		break;
365 	}
366 
367 	return -EINVAL;
368 
369 out_read_raw_unlock:
370 	mutex_unlock(&mpu3050->lock);
371 	pm_runtime_mark_last_busy(mpu3050->dev);
372 	pm_runtime_put_autosuspend(mpu3050->dev);
373 
374 	return ret;
375 }
376 
mpu3050_write_raw(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,int val,int val2,long mask)377 static int mpu3050_write_raw(struct iio_dev *indio_dev,
378 			     const struct iio_chan_spec *chan,
379 			     int val, int val2, long mask)
380 {
381 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
382 	/*
383 	 * Couldn't figure out a way to precalculate these at compile time.
384 	 */
385 	unsigned int fs250 =
386 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[0] * 1000000 * 2,
387 				  U16_MAX);
388 	unsigned int fs500 =
389 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[1] * 1000000 * 2,
390 				  U16_MAX);
391 	unsigned int fs1000 =
392 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[2] * 1000000 * 2,
393 				  U16_MAX);
394 	unsigned int fs2000 =
395 		DIV_ROUND_CLOSEST(mpu3050_fs_precision[3] * 1000000 * 2,
396 				  U16_MAX);
397 
398 	switch (mask) {
399 	case IIO_CHAN_INFO_CALIBBIAS:
400 		if (chan->type != IIO_ANGL_VEL)
401 			return -EINVAL;
402 		mpu3050->calibration[chan->scan_index-1] = val;
403 		return 0;
404 	case IIO_CHAN_INFO_SAMP_FREQ:
405 		/*
406 		 * The max samplerate is 8000 Hz, the minimum
407 		 * 1000 / 256 ~= 4 Hz
408 		 */
409 		if (val < 4 || val > 8000)
410 			return -EINVAL;
411 
412 		/*
413 		 * Above 1000 Hz we must turn off the digital low pass filter
414 		 * so we get a base frequency of 8kHz to the divider
415 		 */
416 		if (val > 1000) {
417 			mpu3050->lpf = LPF_256_HZ_NOLPF;
418 			mpu3050->divisor = DIV_ROUND_CLOSEST(8000, val) - 1;
419 			return 0;
420 		}
421 
422 		mpu3050->lpf = LPF_188_HZ;
423 		mpu3050->divisor = DIV_ROUND_CLOSEST(1000, val) - 1;
424 		return 0;
425 	case IIO_CHAN_INFO_SCALE:
426 		if (chan->type != IIO_ANGL_VEL)
427 			return -EINVAL;
428 		/*
429 		 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
430 		 * which means we need to round to the closest radians
431 		 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
432 		 * rad/s. The scale is then for the 16 bits used to cover
433 		 * it 2/(2^16) of that.
434 		 */
435 
436 		/* Just too large, set the max range */
437 		if (val != 0) {
438 			mpu3050->fullscale = FS_2000_DPS;
439 			return 0;
440 		}
441 
442 		/*
443 		 * Now we're dealing with fractions below zero in millirad/s
444 		 * do some integer interpolation and match with the closest
445 		 * fullscale in the table.
446 		 */
447 		if (val2 <= fs250 ||
448 		    val2 < ((fs500 + fs250) / 2))
449 			mpu3050->fullscale = FS_250_DPS;
450 		else if (val2 <= fs500 ||
451 			 val2 < ((fs1000 + fs500) / 2))
452 			mpu3050->fullscale = FS_500_DPS;
453 		else if (val2 <= fs1000 ||
454 			 val2 < ((fs2000 + fs1000) / 2))
455 			mpu3050->fullscale = FS_1000_DPS;
456 		else
457 			/* Catch-all */
458 			mpu3050->fullscale = FS_2000_DPS;
459 		return 0;
460 	default:
461 		break;
462 	}
463 
464 	return -EINVAL;
465 }
466 
mpu3050_trigger_handler(int irq,void * p)467 static irqreturn_t mpu3050_trigger_handler(int irq, void *p)
468 {
469 	const struct iio_poll_func *pf = p;
470 	struct iio_dev *indio_dev = pf->indio_dev;
471 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
472 	int ret;
473 	/*
474 	 * Temperature 1*16 bits
475 	 * Three axes 3*16 bits
476 	 * Timestamp 64 bits (4*16 bits)
477 	 * Sum total 8*16 bits
478 	 */
479 	__be16 hw_values[8];
480 	s64 timestamp;
481 	unsigned int datums_from_fifo = 0;
482 
483 	/*
484 	 * If we're using the hardware trigger, get the precise timestamp from
485 	 * the top half of the threaded IRQ handler. Otherwise get the
486 	 * timestamp here so it will be close in time to the actual values
487 	 * read from the registers.
488 	 */
489 	if (iio_trigger_using_own(indio_dev))
490 		timestamp = mpu3050->hw_timestamp;
491 	else
492 		timestamp = iio_get_time_ns(indio_dev);
493 
494 	mutex_lock(&mpu3050->lock);
495 
496 	/* Using the hardware IRQ trigger? Check the buffer then. */
497 	if (mpu3050->hw_irq_trigger) {
498 		__be16 raw_fifocnt;
499 		u16 fifocnt;
500 		/* X, Y, Z + temperature */
501 		unsigned int bytes_per_datum = 8;
502 		bool fifo_overflow = false;
503 
504 		ret = regmap_bulk_read(mpu3050->map,
505 				       MPU3050_FIFO_COUNT_H,
506 				       &raw_fifocnt,
507 				       sizeof(raw_fifocnt));
508 		if (ret)
509 			goto out_trigger_unlock;
510 		fifocnt = be16_to_cpu(raw_fifocnt);
511 
512 		if (fifocnt == 512) {
513 			dev_info(mpu3050->dev,
514 				 "FIFO overflow! Emptying and resetting FIFO\n");
515 			fifo_overflow = true;
516 			/* Reset and enable the FIFO */
517 			ret = regmap_update_bits(mpu3050->map,
518 						 MPU3050_USR_CTRL,
519 						 MPU3050_USR_CTRL_FIFO_EN |
520 						 MPU3050_USR_CTRL_FIFO_RST,
521 						 MPU3050_USR_CTRL_FIFO_EN |
522 						 MPU3050_USR_CTRL_FIFO_RST);
523 			if (ret) {
524 				dev_info(mpu3050->dev, "error resetting FIFO\n");
525 				goto out_trigger_unlock;
526 			}
527 			mpu3050->pending_fifo_footer = false;
528 		}
529 
530 		if (fifocnt)
531 			dev_dbg(mpu3050->dev,
532 				"%d bytes in the FIFO\n",
533 				fifocnt);
534 
535 		while (!fifo_overflow && fifocnt > bytes_per_datum) {
536 			unsigned int toread;
537 			unsigned int offset;
538 			__be16 fifo_values[5];
539 
540 			/*
541 			 * If there is a FIFO footer in the pipe, first clear
542 			 * that out. This follows the complex algorithm in the
543 			 * datasheet that states that you may never leave the
544 			 * FIFO empty after the first reading: you have to
545 			 * always leave two footer bytes in it. The footer is
546 			 * in practice just two zero bytes.
547 			 */
548 			if (mpu3050->pending_fifo_footer) {
549 				toread = bytes_per_datum + 2;
550 				offset = 0;
551 			} else {
552 				toread = bytes_per_datum;
553 				offset = 1;
554 				/* Put in some dummy value */
555 				fifo_values[0] = cpu_to_be16(0xAAAA);
556 			}
557 
558 			ret = regmap_bulk_read(mpu3050->map,
559 					       MPU3050_FIFO_R,
560 					       &fifo_values[offset],
561 					       toread);
562 			if (ret)
563 				goto out_trigger_unlock;
564 
565 			dev_dbg(mpu3050->dev,
566 				"%04x %04x %04x %04x %04x\n",
567 				fifo_values[0],
568 				fifo_values[1],
569 				fifo_values[2],
570 				fifo_values[3],
571 				fifo_values[4]);
572 
573 			/* Index past the footer (fifo_values[0]) and push */
574 			iio_push_to_buffers_with_timestamp(indio_dev,
575 							   &fifo_values[1],
576 							   timestamp);
577 
578 			fifocnt -= toread;
579 			datums_from_fifo++;
580 			mpu3050->pending_fifo_footer = true;
581 
582 			/*
583 			 * If we're emptying the FIFO, just make sure to
584 			 * check if something new appeared.
585 			 */
586 			if (fifocnt < bytes_per_datum) {
587 				ret = regmap_bulk_read(mpu3050->map,
588 						       MPU3050_FIFO_COUNT_H,
589 						       &raw_fifocnt,
590 						       sizeof(raw_fifocnt));
591 				if (ret)
592 					goto out_trigger_unlock;
593 				fifocnt = be16_to_cpu(raw_fifocnt);
594 			}
595 
596 			if (fifocnt < bytes_per_datum)
597 				dev_dbg(mpu3050->dev,
598 					"%d bytes left in the FIFO\n",
599 					fifocnt);
600 
601 			/*
602 			 * At this point, the timestamp that triggered the
603 			 * hardware interrupt is no longer valid for what
604 			 * we are reading (the interrupt likely fired for
605 			 * the value on the top of the FIFO), so set the
606 			 * timestamp to zero and let userspace deal with it.
607 			 */
608 			timestamp = 0;
609 		}
610 	}
611 
612 	/*
613 	 * If we picked some datums from the FIFO that's enough, else
614 	 * fall through and just read from the current value registers.
615 	 * This happens in two cases:
616 	 *
617 	 * - We are using some other trigger (external, like an HRTimer)
618 	 *   than the sensor's own sample generator. In this case the
619 	 *   sensor is just set to the max sampling frequency and we give
620 	 *   the trigger a copy of the latest value every time we get here.
621 	 *
622 	 * - The hardware trigger is active but unused and we actually use
623 	 *   another trigger which calls here with a frequency higher
624 	 *   than what the device provides data. We will then just read
625 	 *   duplicate values directly from the hardware registers.
626 	 */
627 	if (datums_from_fifo) {
628 		dev_dbg(mpu3050->dev,
629 			"read %d datums from the FIFO\n",
630 			datums_from_fifo);
631 		goto out_trigger_unlock;
632 	}
633 
634 	ret = regmap_bulk_read(mpu3050->map, MPU3050_TEMP_H, &hw_values,
635 			       sizeof(hw_values));
636 	if (ret) {
637 		dev_err(mpu3050->dev,
638 			"error reading axis data\n");
639 		goto out_trigger_unlock;
640 	}
641 
642 	iio_push_to_buffers_with_timestamp(indio_dev, hw_values, timestamp);
643 
644 out_trigger_unlock:
645 	mutex_unlock(&mpu3050->lock);
646 	iio_trigger_notify_done(indio_dev->trig);
647 
648 	return IRQ_HANDLED;
649 }
650 
mpu3050_buffer_preenable(struct iio_dev * indio_dev)651 static int mpu3050_buffer_preenable(struct iio_dev *indio_dev)
652 {
653 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
654 
655 	pm_runtime_get_sync(mpu3050->dev);
656 
657 	/* Unless we have OUR trigger active, run at full speed */
658 	if (!mpu3050->hw_irq_trigger)
659 		return mpu3050_set_8khz_samplerate(mpu3050);
660 
661 	return 0;
662 }
663 
mpu3050_buffer_postdisable(struct iio_dev * indio_dev)664 static int mpu3050_buffer_postdisable(struct iio_dev *indio_dev)
665 {
666 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
667 
668 	pm_runtime_mark_last_busy(mpu3050->dev);
669 	pm_runtime_put_autosuspend(mpu3050->dev);
670 
671 	return 0;
672 }
673 
674 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops = {
675 	.preenable = mpu3050_buffer_preenable,
676 	.postdisable = mpu3050_buffer_postdisable,
677 };
678 
679 static const struct iio_mount_matrix *
mpu3050_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)680 mpu3050_get_mount_matrix(const struct iio_dev *indio_dev,
681 			 const struct iio_chan_spec *chan)
682 {
683 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
684 
685 	return &mpu3050->orientation;
686 }
687 
688 static const struct iio_chan_spec_ext_info mpu3050_ext_info[] = {
689 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, mpu3050_get_mount_matrix),
690 	{ },
691 };
692 
693 #define MPU3050_AXIS_CHANNEL(axis, index)				\
694 	{								\
695 		.type = IIO_ANGL_VEL,					\
696 		.modified = 1,						\
697 		.channel2 = IIO_MOD_##axis,				\
698 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
699 			BIT(IIO_CHAN_INFO_CALIBBIAS),			\
700 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
701 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
702 		.ext_info = mpu3050_ext_info,				\
703 		.scan_index = index,					\
704 		.scan_type = {						\
705 			.sign = 's',					\
706 			.realbits = 16,					\
707 			.storagebits = 16,				\
708 			.endianness = IIO_BE,				\
709 		},							\
710 	}
711 
712 static const struct iio_chan_spec mpu3050_channels[] = {
713 	{
714 		.type = IIO_TEMP,
715 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
716 				      BIT(IIO_CHAN_INFO_SCALE) |
717 				      BIT(IIO_CHAN_INFO_OFFSET),
718 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
719 		.scan_index = 0,
720 		.scan_type = {
721 			.sign = 's',
722 			.realbits = 16,
723 			.storagebits = 16,
724 			.endianness = IIO_BE,
725 		},
726 	},
727 	MPU3050_AXIS_CHANNEL(X, 1),
728 	MPU3050_AXIS_CHANNEL(Y, 2),
729 	MPU3050_AXIS_CHANNEL(Z, 3),
730 	IIO_CHAN_SOFT_TIMESTAMP(4),
731 };
732 
733 /* Four channels apart from timestamp, scan mask = 0x0f */
734 static const unsigned long mpu3050_scan_masks[] = { 0xf, 0 };
735 
736 /*
737  * These are just the hardcoded factors resulting from the more elaborate
738  * calculations done with fractions in the scale raw get/set functions.
739  */
740 static IIO_CONST_ATTR(anglevel_scale_available,
741 		      "0.000122070 "
742 		      "0.000274658 "
743 		      "0.000518798 "
744 		      "0.001068115");
745 
746 static struct attribute *mpu3050_attributes[] = {
747 	&iio_const_attr_anglevel_scale_available.dev_attr.attr,
748 	NULL,
749 };
750 
751 static const struct attribute_group mpu3050_attribute_group = {
752 	.attrs = mpu3050_attributes,
753 };
754 
755 static const struct iio_info mpu3050_info = {
756 	.read_raw = mpu3050_read_raw,
757 	.write_raw = mpu3050_write_raw,
758 	.attrs = &mpu3050_attribute_group,
759 };
760 
761 /**
762  * mpu3050_read_mem() - read MPU-3050 internal memory
763  * @mpu3050: device to read from
764  * @bank: target bank
765  * @addr: target address
766  * @len: number of bytes
767  * @buf: the buffer to store the read bytes in
768  */
mpu3050_read_mem(struct mpu3050 * mpu3050,u8 bank,u8 addr,u8 len,u8 * buf)769 static int mpu3050_read_mem(struct mpu3050 *mpu3050,
770 			    u8 bank,
771 			    u8 addr,
772 			    u8 len,
773 			    u8 *buf)
774 {
775 	int ret;
776 
777 	ret = regmap_write(mpu3050->map,
778 			   MPU3050_BANK_SEL,
779 			   bank);
780 	if (ret)
781 		return ret;
782 
783 	ret = regmap_write(mpu3050->map,
784 			   MPU3050_MEM_START_ADDR,
785 			   addr);
786 	if (ret)
787 		return ret;
788 
789 	return regmap_bulk_read(mpu3050->map,
790 				MPU3050_MEM_R_W,
791 				buf,
792 				len);
793 }
794 
mpu3050_hw_init(struct mpu3050 * mpu3050)795 static int mpu3050_hw_init(struct mpu3050 *mpu3050)
796 {
797 	int ret;
798 	u8 otp[8];
799 
800 	/* Reset */
801 	ret = regmap_update_bits(mpu3050->map,
802 				 MPU3050_PWR_MGM,
803 				 MPU3050_PWR_MGM_RESET,
804 				 MPU3050_PWR_MGM_RESET);
805 	if (ret)
806 		return ret;
807 
808 	/* Turn on the PLL */
809 	ret = regmap_update_bits(mpu3050->map,
810 				 MPU3050_PWR_MGM,
811 				 MPU3050_PWR_MGM_CLKSEL_MASK,
812 				 MPU3050_PWR_MGM_PLL_Z);
813 	if (ret)
814 		return ret;
815 
816 	/* Disable IRQs */
817 	ret = regmap_write(mpu3050->map,
818 			   MPU3050_INT_CFG,
819 			   0);
820 	if (ret)
821 		return ret;
822 
823 	/* Read out the 8 bytes of OTP (one-time-programmable) memory */
824 	ret = mpu3050_read_mem(mpu3050,
825 			       (MPU3050_MEM_PRFTCH |
826 				MPU3050_MEM_USER_BANK |
827 				MPU3050_MEM_OTP_BANK_0),
828 			       0,
829 			       sizeof(otp),
830 			       otp);
831 	if (ret)
832 		return ret;
833 
834 	/* This is device-unique data so it goes into the entropy pool */
835 	add_device_randomness(otp, sizeof(otp));
836 
837 	dev_info(mpu3050->dev,
838 		 "die ID: %04X, wafer ID: %02X, A lot ID: %04X, "
839 		 "W lot ID: %03X, WP ID: %01X, rev ID: %02X\n",
840 		 /* Die ID, bits 0-12 */
841 		 (otp[1] << 8 | otp[0]) & 0x1fff,
842 		 /* Wafer ID, bits 13-17 */
843 		 ((otp[2] << 8 | otp[1]) & 0x03e0) >> 5,
844 		 /* A lot ID, bits 18-33 */
845 		 ((otp[4] << 16 | otp[3] << 8 | otp[2]) & 0x3fffc) >> 2,
846 		 /* W lot ID, bits 34-45 */
847 		 ((otp[5] << 8 | otp[4]) & 0x3ffc) >> 2,
848 		 /* WP ID, bits 47-49 */
849 		 ((otp[6] << 8 | otp[5]) & 0x0380) >> 7,
850 		 /* rev ID, bits 50-55 */
851 		 otp[6] >> 2);
852 
853 	return 0;
854 }
855 
mpu3050_power_up(struct mpu3050 * mpu3050)856 static int mpu3050_power_up(struct mpu3050 *mpu3050)
857 {
858 	int ret;
859 
860 	ret = regulator_bulk_enable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
861 	if (ret) {
862 		dev_err(mpu3050->dev, "cannot enable regulators\n");
863 		return ret;
864 	}
865 	/*
866 	 * 20-100 ms start-up time for register read/write according to
867 	 * the datasheet, be on the safe side and wait 200 ms.
868 	 */
869 	msleep(200);
870 
871 	/* Take device out of sleep mode */
872 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
873 				 MPU3050_PWR_MGM_SLEEP, 0);
874 	if (ret) {
875 		dev_err(mpu3050->dev, "error setting power mode\n");
876 		return ret;
877 	}
878 	usleep_range(10000, 20000);
879 
880 	return 0;
881 }
882 
mpu3050_power_down(struct mpu3050 * mpu3050)883 static int mpu3050_power_down(struct mpu3050 *mpu3050)
884 {
885 	int ret;
886 
887 	/*
888 	 * Put MPU-3050 into sleep mode before cutting regulators.
889 	 * This is important, because we may not be the sole user
890 	 * of the regulator so the power may stay on after this, and
891 	 * then we would be wasting power unless we go to sleep mode
892 	 * first.
893 	 */
894 	ret = regmap_update_bits(mpu3050->map, MPU3050_PWR_MGM,
895 				 MPU3050_PWR_MGM_SLEEP, MPU3050_PWR_MGM_SLEEP);
896 	if (ret)
897 		dev_err(mpu3050->dev, "error putting to sleep\n");
898 
899 	ret = regulator_bulk_disable(ARRAY_SIZE(mpu3050->regs), mpu3050->regs);
900 	if (ret)
901 		dev_err(mpu3050->dev, "error disabling regulators\n");
902 
903 	return 0;
904 }
905 
mpu3050_irq_handler(int irq,void * p)906 static irqreturn_t mpu3050_irq_handler(int irq, void *p)
907 {
908 	struct iio_trigger *trig = p;
909 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
910 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
911 
912 	if (!mpu3050->hw_irq_trigger)
913 		return IRQ_NONE;
914 
915 	/* Get the time stamp as close in time as possible */
916 	mpu3050->hw_timestamp = iio_get_time_ns(indio_dev);
917 
918 	return IRQ_WAKE_THREAD;
919 }
920 
mpu3050_irq_thread(int irq,void * p)921 static irqreturn_t mpu3050_irq_thread(int irq, void *p)
922 {
923 	struct iio_trigger *trig = p;
924 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
925 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
926 	unsigned int val;
927 	int ret;
928 
929 	/* ACK IRQ and check if it was from us */
930 	ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
931 	if (ret) {
932 		dev_err(mpu3050->dev, "error reading IRQ status\n");
933 		return IRQ_HANDLED;
934 	}
935 	if (!(val & MPU3050_INT_STATUS_RAW_RDY))
936 		return IRQ_NONE;
937 
938 	iio_trigger_poll_chained(p);
939 
940 	return IRQ_HANDLED;
941 }
942 
943 /**
944  * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
945  * @trig: trigger instance
946  * @enable: true if trigger should be enabled, false to disable
947  */
mpu3050_drdy_trigger_set_state(struct iio_trigger * trig,bool enable)948 static int mpu3050_drdy_trigger_set_state(struct iio_trigger *trig,
949 					  bool enable)
950 {
951 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
952 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
953 	unsigned int val;
954 	int ret;
955 
956 	/* Disabling trigger: disable interrupt and return */
957 	if (!enable) {
958 		/* Disable all interrupts */
959 		ret = regmap_write(mpu3050->map,
960 				   MPU3050_INT_CFG,
961 				   0);
962 		if (ret)
963 			dev_err(mpu3050->dev, "error disabling IRQ\n");
964 
965 		/* Clear IRQ flag */
966 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
967 		if (ret)
968 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
969 
970 		/* Disable all things in the FIFO and reset it */
971 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
972 		if (ret)
973 			dev_err(mpu3050->dev, "error disabling FIFO\n");
974 
975 		ret = regmap_write(mpu3050->map, MPU3050_USR_CTRL,
976 				   MPU3050_USR_CTRL_FIFO_RST);
977 		if (ret)
978 			dev_err(mpu3050->dev, "error resetting FIFO\n");
979 
980 		pm_runtime_mark_last_busy(mpu3050->dev);
981 		pm_runtime_put_autosuspend(mpu3050->dev);
982 		mpu3050->hw_irq_trigger = false;
983 
984 		return 0;
985 	} else {
986 		/* Else we're enabling the trigger from this point */
987 		pm_runtime_get_sync(mpu3050->dev);
988 		mpu3050->hw_irq_trigger = true;
989 
990 		/* Disable all things in the FIFO */
991 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN, 0);
992 		if (ret)
993 			return ret;
994 
995 		/* Reset and enable the FIFO */
996 		ret = regmap_update_bits(mpu3050->map, MPU3050_USR_CTRL,
997 					 MPU3050_USR_CTRL_FIFO_EN |
998 					 MPU3050_USR_CTRL_FIFO_RST,
999 					 MPU3050_USR_CTRL_FIFO_EN |
1000 					 MPU3050_USR_CTRL_FIFO_RST);
1001 		if (ret)
1002 			return ret;
1003 
1004 		mpu3050->pending_fifo_footer = false;
1005 
1006 		/* Turn on the FIFO for temp+X+Y+Z */
1007 		ret = regmap_write(mpu3050->map, MPU3050_FIFO_EN,
1008 				   MPU3050_FIFO_EN_TEMP_OUT |
1009 				   MPU3050_FIFO_EN_GYRO_XOUT |
1010 				   MPU3050_FIFO_EN_GYRO_YOUT |
1011 				   MPU3050_FIFO_EN_GYRO_ZOUT |
1012 				   MPU3050_FIFO_EN_FOOTER);
1013 		if (ret)
1014 			return ret;
1015 
1016 		/* Configure the sample engine */
1017 		ret = mpu3050_start_sampling(mpu3050);
1018 		if (ret)
1019 			return ret;
1020 
1021 		/* Clear IRQ flag */
1022 		ret = regmap_read(mpu3050->map, MPU3050_INT_STATUS, &val);
1023 		if (ret)
1024 			dev_err(mpu3050->dev, "error clearing IRQ status\n");
1025 
1026 		/* Give us interrupts whenever there is new data ready */
1027 		val = MPU3050_INT_RAW_RDY_EN;
1028 
1029 		if (mpu3050->irq_actl)
1030 			val |= MPU3050_INT_ACTL;
1031 		if (mpu3050->irq_latch)
1032 			val |= MPU3050_INT_LATCH_EN;
1033 		if (mpu3050->irq_opendrain)
1034 			val |= MPU3050_INT_OPEN;
1035 
1036 		ret = regmap_write(mpu3050->map, MPU3050_INT_CFG, val);
1037 		if (ret)
1038 			return ret;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 static const struct iio_trigger_ops mpu3050_trigger_ops = {
1045 	.set_trigger_state = mpu3050_drdy_trigger_set_state,
1046 };
1047 
mpu3050_trigger_probe(struct iio_dev * indio_dev,int irq)1048 static int mpu3050_trigger_probe(struct iio_dev *indio_dev, int irq)
1049 {
1050 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1051 	unsigned long irq_trig;
1052 	int ret;
1053 
1054 	mpu3050->trig = devm_iio_trigger_alloc(&indio_dev->dev,
1055 					       "%s-dev%d",
1056 					       indio_dev->name,
1057 					       indio_dev->id);
1058 	if (!mpu3050->trig)
1059 		return -ENOMEM;
1060 
1061 	/* Check if IRQ is open drain */
1062 	if (of_property_read_bool(mpu3050->dev->of_node, "drive-open-drain"))
1063 		mpu3050->irq_opendrain = true;
1064 
1065 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
1066 	/*
1067 	 * Configure the interrupt generator hardware to supply whatever
1068 	 * the interrupt is configured for, edges low/high level low/high,
1069 	 * we can provide it all.
1070 	 */
1071 	switch (irq_trig) {
1072 	case IRQF_TRIGGER_RISING:
1073 		dev_info(&indio_dev->dev,
1074 			 "pulse interrupts on the rising edge\n");
1075 		break;
1076 	case IRQF_TRIGGER_FALLING:
1077 		mpu3050->irq_actl = true;
1078 		dev_info(&indio_dev->dev,
1079 			 "pulse interrupts on the falling edge\n");
1080 		break;
1081 	case IRQF_TRIGGER_HIGH:
1082 		mpu3050->irq_latch = true;
1083 		dev_info(&indio_dev->dev,
1084 			 "interrupts active high level\n");
1085 		/*
1086 		 * With level IRQs, we mask the IRQ until it is processed,
1087 		 * but with edge IRQs (pulses) we can queue several interrupts
1088 		 * in the top half.
1089 		 */
1090 		irq_trig |= IRQF_ONESHOT;
1091 		break;
1092 	case IRQF_TRIGGER_LOW:
1093 		mpu3050->irq_latch = true;
1094 		mpu3050->irq_actl = true;
1095 		irq_trig |= IRQF_ONESHOT;
1096 		dev_info(&indio_dev->dev,
1097 			 "interrupts active low level\n");
1098 		break;
1099 	default:
1100 		/* This is the most preferred mode, if possible */
1101 		dev_err(&indio_dev->dev,
1102 			"unsupported IRQ trigger specified (%lx), enforce "
1103 			"rising edge\n", irq_trig);
1104 		irq_trig = IRQF_TRIGGER_RISING;
1105 		break;
1106 	}
1107 
1108 	/* An open drain line can be shared with several devices */
1109 	if (mpu3050->irq_opendrain)
1110 		irq_trig |= IRQF_SHARED;
1111 
1112 	ret = request_threaded_irq(irq,
1113 				   mpu3050_irq_handler,
1114 				   mpu3050_irq_thread,
1115 				   irq_trig,
1116 				   mpu3050->trig->name,
1117 				   mpu3050->trig);
1118 	if (ret) {
1119 		dev_err(mpu3050->dev,
1120 			"can't get IRQ %d, error %d\n", irq, ret);
1121 		return ret;
1122 	}
1123 
1124 	mpu3050->irq = irq;
1125 	mpu3050->trig->dev.parent = mpu3050->dev;
1126 	mpu3050->trig->ops = &mpu3050_trigger_ops;
1127 	iio_trigger_set_drvdata(mpu3050->trig, indio_dev);
1128 
1129 	ret = iio_trigger_register(mpu3050->trig);
1130 	if (ret)
1131 		return ret;
1132 
1133 	indio_dev->trig = iio_trigger_get(mpu3050->trig);
1134 
1135 	return 0;
1136 }
1137 
mpu3050_common_probe(struct device * dev,struct regmap * map,int irq,const char * name)1138 int mpu3050_common_probe(struct device *dev,
1139 			 struct regmap *map,
1140 			 int irq,
1141 			 const char *name)
1142 {
1143 	struct iio_dev *indio_dev;
1144 	struct mpu3050 *mpu3050;
1145 	unsigned int val;
1146 	int ret;
1147 
1148 	indio_dev = devm_iio_device_alloc(dev, sizeof(*mpu3050));
1149 	if (!indio_dev)
1150 		return -ENOMEM;
1151 	mpu3050 = iio_priv(indio_dev);
1152 
1153 	mpu3050->dev = dev;
1154 	mpu3050->map = map;
1155 	mutex_init(&mpu3050->lock);
1156 	/* Default fullscale: 2000 degrees per second */
1157 	mpu3050->fullscale = FS_2000_DPS;
1158 	/* 1 kHz, divide by 100, default frequency = 10 Hz */
1159 	mpu3050->lpf = MPU3050_DLPF_CFG_188HZ;
1160 	mpu3050->divisor = 99;
1161 
1162 	/* Read the mounting matrix, if present */
1163 	ret = iio_read_mount_matrix(dev, "mount-matrix", &mpu3050->orientation);
1164 	if (ret)
1165 		return ret;
1166 
1167 	/* Fetch and turn on regulators */
1168 	mpu3050->regs[0].supply = mpu3050_reg_vdd;
1169 	mpu3050->regs[1].supply = mpu3050_reg_vlogic;
1170 	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(mpu3050->regs),
1171 				      mpu3050->regs);
1172 	if (ret) {
1173 		dev_err(dev, "Cannot get regulators\n");
1174 		return ret;
1175 	}
1176 
1177 	ret = mpu3050_power_up(mpu3050);
1178 	if (ret)
1179 		return ret;
1180 
1181 	ret = regmap_read(map, MPU3050_CHIP_ID_REG, &val);
1182 	if (ret) {
1183 		dev_err(dev, "could not read device ID\n");
1184 		ret = -ENODEV;
1185 
1186 		goto err_power_down;
1187 	}
1188 
1189 	if ((val & MPU3050_CHIP_ID_MASK) != MPU3050_CHIP_ID) {
1190 		dev_err(dev, "unsupported chip id %02x\n",
1191 				(u8)(val & MPU3050_CHIP_ID_MASK));
1192 		ret = -ENODEV;
1193 		goto err_power_down;
1194 	}
1195 
1196 	ret = regmap_read(map, MPU3050_PRODUCT_ID_REG, &val);
1197 	if (ret) {
1198 		dev_err(dev, "could not read device ID\n");
1199 		ret = -ENODEV;
1200 
1201 		goto err_power_down;
1202 	}
1203 	dev_info(dev, "found MPU-3050 part no: %d, version: %d\n",
1204 		 ((val >> 4) & 0xf), (val & 0xf));
1205 
1206 	ret = mpu3050_hw_init(mpu3050);
1207 	if (ret)
1208 		goto err_power_down;
1209 
1210 	indio_dev->channels = mpu3050_channels;
1211 	indio_dev->num_channels = ARRAY_SIZE(mpu3050_channels);
1212 	indio_dev->info = &mpu3050_info;
1213 	indio_dev->available_scan_masks = mpu3050_scan_masks;
1214 	indio_dev->modes = INDIO_DIRECT_MODE;
1215 	indio_dev->name = name;
1216 
1217 	ret = iio_triggered_buffer_setup(indio_dev, iio_pollfunc_store_time,
1218 					 mpu3050_trigger_handler,
1219 					 &mpu3050_buffer_setup_ops);
1220 	if (ret) {
1221 		dev_err(dev, "triggered buffer setup failed\n");
1222 		goto err_power_down;
1223 	}
1224 
1225 	ret = iio_device_register(indio_dev);
1226 	if (ret) {
1227 		dev_err(dev, "device register failed\n");
1228 		goto err_cleanup_buffer;
1229 	}
1230 
1231 	dev_set_drvdata(dev, indio_dev);
1232 
1233 	/* Check if we have an assigned IRQ to use as trigger */
1234 	if (irq) {
1235 		ret = mpu3050_trigger_probe(indio_dev, irq);
1236 		if (ret)
1237 			dev_err(dev, "failed to register trigger\n");
1238 	}
1239 
1240 	/* Enable runtime PM */
1241 	pm_runtime_get_noresume(dev);
1242 	pm_runtime_set_active(dev);
1243 	pm_runtime_enable(dev);
1244 	/*
1245 	 * Set autosuspend to two orders of magnitude larger than the
1246 	 * start-up time. 100ms start-up time means 10000ms autosuspend,
1247 	 * i.e. 10 seconds.
1248 	 */
1249 	pm_runtime_set_autosuspend_delay(dev, 10000);
1250 	pm_runtime_use_autosuspend(dev);
1251 	pm_runtime_put(dev);
1252 
1253 	return 0;
1254 
1255 err_cleanup_buffer:
1256 	iio_triggered_buffer_cleanup(indio_dev);
1257 err_power_down:
1258 	mpu3050_power_down(mpu3050);
1259 
1260 	return ret;
1261 }
1262 EXPORT_SYMBOL(mpu3050_common_probe);
1263 
mpu3050_common_remove(struct device * dev)1264 int mpu3050_common_remove(struct device *dev)
1265 {
1266 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1267 	struct mpu3050 *mpu3050 = iio_priv(indio_dev);
1268 
1269 	pm_runtime_get_sync(dev);
1270 	pm_runtime_put_noidle(dev);
1271 	pm_runtime_disable(dev);
1272 	iio_triggered_buffer_cleanup(indio_dev);
1273 	if (mpu3050->irq)
1274 		free_irq(mpu3050->irq, mpu3050);
1275 	iio_device_unregister(indio_dev);
1276 	mpu3050_power_down(mpu3050);
1277 
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL(mpu3050_common_remove);
1281 
1282 #ifdef CONFIG_PM
mpu3050_runtime_suspend(struct device * dev)1283 static int mpu3050_runtime_suspend(struct device *dev)
1284 {
1285 	return mpu3050_power_down(iio_priv(dev_get_drvdata(dev)));
1286 }
1287 
mpu3050_runtime_resume(struct device * dev)1288 static int mpu3050_runtime_resume(struct device *dev)
1289 {
1290 	return mpu3050_power_up(iio_priv(dev_get_drvdata(dev)));
1291 }
1292 #endif /* CONFIG_PM */
1293 
1294 const struct dev_pm_ops mpu3050_dev_pm_ops = {
1295 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1296 				pm_runtime_force_resume)
1297 	SET_RUNTIME_PM_OPS(mpu3050_runtime_suspend,
1298 			   mpu3050_runtime_resume, NULL)
1299 };
1300 EXPORT_SYMBOL(mpu3050_dev_pm_ops);
1301 
1302 MODULE_AUTHOR("Linus Walleij");
1303 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1304 MODULE_LICENSE("GPL");
1305