• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION					\
73 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."	\
74 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
75 	__stringify(BCM_5710_FW_REVISION_VERSION) "."	\
76 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 
78 #define FW_FILE_VERSION_V15				\
79 	__stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
80 	__stringify(BCM_5710_FW_MINOR_VERSION) "."	\
81 	__stringify(BCM_5710_FW_REVISION_VERSION_V15) "."	\
82 	__stringify(BCM_5710_FW_ENGINEERING_VERSION)
83 
84 #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15	"bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15	"bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90 
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT		(5*HZ)
93 
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 		   "BCM57710/57711/57711E/"
97 		   "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 		   "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103 
104 int bnx2x_num_queues;
105 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
106 MODULE_PARM_DESC(num_queues,
107 		 " Set number of queues (default is as a number of CPUs)");
108 
109 static int disable_tpa;
110 module_param(disable_tpa, int, 0444);
111 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
112 
113 static int int_mode;
114 module_param(int_mode, int, 0444);
115 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
116 				"(1 INT#x; 2 MSI)");
117 
118 static int dropless_fc;
119 module_param(dropless_fc, int, 0444);
120 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
121 
122 static int mrrs = -1;
123 module_param(mrrs, int, 0444);
124 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
125 
126 static int debug;
127 module_param(debug, int, 0444);
128 MODULE_PARM_DESC(debug, " Default debug msglevel");
129 
130 static struct workqueue_struct *bnx2x_wq;
131 struct workqueue_struct *bnx2x_iov_wq;
132 
133 struct bnx2x_mac_vals {
134 	u32 xmac_addr;
135 	u32 xmac_val;
136 	u32 emac_addr;
137 	u32 emac_val;
138 	u32 umac_addr[2];
139 	u32 umac_val[2];
140 	u32 bmac_addr;
141 	u32 bmac_val[2];
142 };
143 
144 enum bnx2x_board_type {
145 	BCM57710 = 0,
146 	BCM57711,
147 	BCM57711E,
148 	BCM57712,
149 	BCM57712_MF,
150 	BCM57712_VF,
151 	BCM57800,
152 	BCM57800_MF,
153 	BCM57800_VF,
154 	BCM57810,
155 	BCM57810_MF,
156 	BCM57810_VF,
157 	BCM57840_4_10,
158 	BCM57840_2_20,
159 	BCM57840_MF,
160 	BCM57840_VF,
161 	BCM57811,
162 	BCM57811_MF,
163 	BCM57840_O,
164 	BCM57840_MFO,
165 	BCM57811_VF
166 };
167 
168 /* indexed by board_type, above */
169 static struct {
170 	char *name;
171 } board_info[] = {
172 	[BCM57710]	= { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
173 	[BCM57711]	= { "QLogic BCM57711 10 Gigabit PCIe" },
174 	[BCM57711E]	= { "QLogic BCM57711E 10 Gigabit PCIe" },
175 	[BCM57712]	= { "QLogic BCM57712 10 Gigabit Ethernet" },
176 	[BCM57712_MF]	= { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
177 	[BCM57712_VF]	= { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
178 	[BCM57800]	= { "QLogic BCM57800 10 Gigabit Ethernet" },
179 	[BCM57800_MF]	= { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
180 	[BCM57800_VF]	= { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
181 	[BCM57810]	= { "QLogic BCM57810 10 Gigabit Ethernet" },
182 	[BCM57810_MF]	= { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
183 	[BCM57810_VF]	= { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
184 	[BCM57840_4_10]	= { "QLogic BCM57840 10 Gigabit Ethernet" },
185 	[BCM57840_2_20]	= { "QLogic BCM57840 20 Gigabit Ethernet" },
186 	[BCM57840_MF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 	[BCM57840_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
188 	[BCM57811]	= { "QLogic BCM57811 10 Gigabit Ethernet" },
189 	[BCM57811_MF]	= { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
190 	[BCM57840_O]	= { "QLogic BCM57840 10/20 Gigabit Ethernet" },
191 	[BCM57840_MFO]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
192 	[BCM57811_VF]	= { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
193 };
194 
195 #ifndef PCI_DEVICE_ID_NX2_57710
196 #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57711
199 #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711E
202 #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57712
205 #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712_MF
208 #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_VF
211 #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57800
214 #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800_MF
217 #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_VF
220 #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810
223 #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810_MF
226 #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_O
229 #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57810_VF
232 #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
235 #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
238 #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
241 #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MF
244 #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_VF
247 #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57811
250 #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811_MF
253 #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_VF
256 #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF
257 #endif
258 
259 static const struct pci_device_id bnx2x_pci_tbl[] = {
260 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
261 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
262 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
263 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
264 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
265 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
266 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
267 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
268 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
269 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
270 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
271 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
272 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
273 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
274 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
275 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
276 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
277 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
278 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
279 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
280 	{ PCI_VDEVICE(QLOGIC,	PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
281 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
282 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
283 	{ PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
284 	{ 0 }
285 };
286 
287 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
288 
289 const u32 dmae_reg_go_c[] = {
290 	DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
291 	DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
292 	DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
293 	DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
294 };
295 
296 /* Global resources for unloading a previously loaded device */
297 #define BNX2X_PREV_WAIT_NEEDED 1
298 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
299 static LIST_HEAD(bnx2x_prev_list);
300 
301 /* Forward declaration */
302 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
303 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
304 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
305 
306 /****************************************************************************
307 * General service functions
308 ****************************************************************************/
309 
310 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
311 
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)312 static void __storm_memset_dma_mapping(struct bnx2x *bp,
313 				       u32 addr, dma_addr_t mapping)
314 {
315 	REG_WR(bp,  addr, U64_LO(mapping));
316 	REG_WR(bp,  addr + 4, U64_HI(mapping));
317 }
318 
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)319 static void storm_memset_spq_addr(struct bnx2x *bp,
320 				  dma_addr_t mapping, u16 abs_fid)
321 {
322 	u32 addr = XSEM_REG_FAST_MEMORY +
323 			XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
324 
325 	__storm_memset_dma_mapping(bp, addr, mapping);
326 }
327 
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)328 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
329 				  u16 pf_id)
330 {
331 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
332 		pf_id);
333 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
334 		pf_id);
335 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
336 		pf_id);
337 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
338 		pf_id);
339 }
340 
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)341 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
342 				 u8 enable)
343 {
344 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
345 		enable);
346 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
347 		enable);
348 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
349 		enable);
350 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
351 		enable);
352 }
353 
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)354 static void storm_memset_eq_data(struct bnx2x *bp,
355 				 struct event_ring_data *eq_data,
356 				u16 pfid)
357 {
358 	size_t size = sizeof(struct event_ring_data);
359 
360 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
361 
362 	__storm_memset_struct(bp, addr, size, (u32 *)eq_data);
363 }
364 
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)365 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
366 				 u16 pfid)
367 {
368 	u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
369 	REG_WR16(bp, addr, eq_prod);
370 }
371 
372 /* used only at init
373  * locking is done by mcp
374  */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)375 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
376 {
377 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378 	pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
379 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380 			       PCICFG_VENDOR_ID_OFFSET);
381 }
382 
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)383 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
384 {
385 	u32 val;
386 
387 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
388 	pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
389 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
390 			       PCICFG_VENDOR_ID_OFFSET);
391 
392 	return val;
393 }
394 
395 #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]"
396 #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]"
397 #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]"
398 #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]"
399 #define DMAE_DP_DST_NONE	"dst_addr [none]"
400 
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)401 static void bnx2x_dp_dmae(struct bnx2x *bp,
402 			  struct dmae_command *dmae, int msglvl)
403 {
404 	u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
405 	int i;
406 
407 	switch (dmae->opcode & DMAE_COMMAND_DST) {
408 	case DMAE_CMD_DST_PCI:
409 		if (src_type == DMAE_CMD_SRC_PCI)
410 			DP(msglvl, "DMAE: opcode 0x%08x\n"
411 			   "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
412 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
413 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
414 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
415 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
416 			   dmae->comp_val);
417 		else
418 			DP(msglvl, "DMAE: opcode 0x%08x\n"
419 			   "src [%08x], len [%d*4], dst [%x:%08x]\n"
420 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 			   dmae->opcode, dmae->src_addr_lo >> 2,
422 			   dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
423 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
424 			   dmae->comp_val);
425 		break;
426 	case DMAE_CMD_DST_GRC:
427 		if (src_type == DMAE_CMD_SRC_PCI)
428 			DP(msglvl, "DMAE: opcode 0x%08x\n"
429 			   "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
430 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
431 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
432 			   dmae->len, dmae->dst_addr_lo >> 2,
433 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
434 			   dmae->comp_val);
435 		else
436 			DP(msglvl, "DMAE: opcode 0x%08x\n"
437 			   "src [%08x], len [%d*4], dst [%08x]\n"
438 			   "comp_addr [%x:%08x], comp_val 0x%08x\n",
439 			   dmae->opcode, dmae->src_addr_lo >> 2,
440 			   dmae->len, dmae->dst_addr_lo >> 2,
441 			   dmae->comp_addr_hi, dmae->comp_addr_lo,
442 			   dmae->comp_val);
443 		break;
444 	default:
445 		if (src_type == DMAE_CMD_SRC_PCI)
446 			DP(msglvl, "DMAE: opcode 0x%08x\n"
447 			   "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
448 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
449 			   dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
450 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
451 			   dmae->comp_val);
452 		else
453 			DP(msglvl, "DMAE: opcode 0x%08x\n"
454 			   "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
455 			   "comp_addr [%x:%08x]  comp_val 0x%08x\n",
456 			   dmae->opcode, dmae->src_addr_lo >> 2,
457 			   dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
458 			   dmae->comp_val);
459 		break;
460 	}
461 
462 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
463 		DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
464 		   i, *(((u32 *)dmae) + i));
465 }
466 
467 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)468 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
469 {
470 	u32 cmd_offset;
471 	int i;
472 
473 	cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
474 	for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
475 		REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
476 	}
477 	REG_WR(bp, dmae_reg_go_c[idx], 1);
478 }
479 
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)480 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
481 {
482 	return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
483 			   DMAE_CMD_C_ENABLE);
484 }
485 
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)486 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
487 {
488 	return opcode & ~DMAE_CMD_SRC_RESET;
489 }
490 
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)491 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
492 			     bool with_comp, u8 comp_type)
493 {
494 	u32 opcode = 0;
495 
496 	opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
497 		   (dst_type << DMAE_COMMAND_DST_SHIFT));
498 
499 	opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
500 
501 	opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
502 	opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
503 		   (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
504 	opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
505 
506 #ifdef __BIG_ENDIAN
507 	opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
508 #else
509 	opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
510 #endif
511 	if (with_comp)
512 		opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
513 	return opcode;
514 }
515 
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)516 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
517 				      struct dmae_command *dmae,
518 				      u8 src_type, u8 dst_type)
519 {
520 	memset(dmae, 0, sizeof(struct dmae_command));
521 
522 	/* set the opcode */
523 	dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
524 					 true, DMAE_COMP_PCI);
525 
526 	/* fill in the completion parameters */
527 	dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
528 	dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
529 	dmae->comp_val = DMAE_COMP_VAL;
530 }
531 
532 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)533 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
534 			       u32 *comp)
535 {
536 	int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
537 	int rc = 0;
538 
539 	bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
540 
541 	/* Lock the dmae channel. Disable BHs to prevent a dead-lock
542 	 * as long as this code is called both from syscall context and
543 	 * from ndo_set_rx_mode() flow that may be called from BH.
544 	 */
545 
546 	spin_lock_bh(&bp->dmae_lock);
547 
548 	/* reset completion */
549 	*comp = 0;
550 
551 	/* post the command on the channel used for initializations */
552 	bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
553 
554 	/* wait for completion */
555 	udelay(5);
556 	while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
557 
558 		if (!cnt ||
559 		    (bp->recovery_state != BNX2X_RECOVERY_DONE &&
560 		     bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
561 			BNX2X_ERR("DMAE timeout!\n");
562 			rc = DMAE_TIMEOUT;
563 			goto unlock;
564 		}
565 		cnt--;
566 		udelay(50);
567 	}
568 	if (*comp & DMAE_PCI_ERR_FLAG) {
569 		BNX2X_ERR("DMAE PCI error!\n");
570 		rc = DMAE_PCI_ERROR;
571 	}
572 
573 unlock:
574 
575 	spin_unlock_bh(&bp->dmae_lock);
576 
577 	return rc;
578 }
579 
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)580 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
581 		      u32 len32)
582 {
583 	int rc;
584 	struct dmae_command dmae;
585 
586 	if (!bp->dmae_ready) {
587 		u32 *data = bnx2x_sp(bp, wb_data[0]);
588 
589 		if (CHIP_IS_E1(bp))
590 			bnx2x_init_ind_wr(bp, dst_addr, data, len32);
591 		else
592 			bnx2x_init_str_wr(bp, dst_addr, data, len32);
593 		return;
594 	}
595 
596 	/* set opcode and fixed command fields */
597 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
598 
599 	/* fill in addresses and len */
600 	dmae.src_addr_lo = U64_LO(dma_addr);
601 	dmae.src_addr_hi = U64_HI(dma_addr);
602 	dmae.dst_addr_lo = dst_addr >> 2;
603 	dmae.dst_addr_hi = 0;
604 	dmae.len = len32;
605 
606 	/* issue the command and wait for completion */
607 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
608 	if (rc) {
609 		BNX2X_ERR("DMAE returned failure %d\n", rc);
610 #ifdef BNX2X_STOP_ON_ERROR
611 		bnx2x_panic();
612 #endif
613 	}
614 }
615 
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)616 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
617 {
618 	int rc;
619 	struct dmae_command dmae;
620 
621 	if (!bp->dmae_ready) {
622 		u32 *data = bnx2x_sp(bp, wb_data[0]);
623 		int i;
624 
625 		if (CHIP_IS_E1(bp))
626 			for (i = 0; i < len32; i++)
627 				data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
628 		else
629 			for (i = 0; i < len32; i++)
630 				data[i] = REG_RD(bp, src_addr + i*4);
631 
632 		return;
633 	}
634 
635 	/* set opcode and fixed command fields */
636 	bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
637 
638 	/* fill in addresses and len */
639 	dmae.src_addr_lo = src_addr >> 2;
640 	dmae.src_addr_hi = 0;
641 	dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
642 	dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
643 	dmae.len = len32;
644 
645 	/* issue the command and wait for completion */
646 	rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
647 	if (rc) {
648 		BNX2X_ERR("DMAE returned failure %d\n", rc);
649 #ifdef BNX2X_STOP_ON_ERROR
650 		bnx2x_panic();
651 #endif
652 	}
653 }
654 
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)655 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
656 				      u32 addr, u32 len)
657 {
658 	int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
659 	int offset = 0;
660 
661 	while (len > dmae_wr_max) {
662 		bnx2x_write_dmae(bp, phys_addr + offset,
663 				 addr + offset, dmae_wr_max);
664 		offset += dmae_wr_max * 4;
665 		len -= dmae_wr_max;
666 	}
667 
668 	bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
669 }
670 
671 enum storms {
672 	   XSTORM,
673 	   TSTORM,
674 	   CSTORM,
675 	   USTORM,
676 	   MAX_STORMS
677 };
678 
679 #define STORMS_NUM 4
680 #define REGS_IN_ENTRY 4
681 
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)682 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
683 					      enum storms storm,
684 					      int entry)
685 {
686 	switch (storm) {
687 	case XSTORM:
688 		return XSTORM_ASSERT_LIST_OFFSET(entry);
689 	case TSTORM:
690 		return TSTORM_ASSERT_LIST_OFFSET(entry);
691 	case CSTORM:
692 		return CSTORM_ASSERT_LIST_OFFSET(entry);
693 	case USTORM:
694 		return USTORM_ASSERT_LIST_OFFSET(entry);
695 	case MAX_STORMS:
696 	default:
697 		BNX2X_ERR("unknown storm\n");
698 	}
699 	return -EINVAL;
700 }
701 
bnx2x_mc_assert(struct bnx2x * bp)702 static int bnx2x_mc_assert(struct bnx2x *bp)
703 {
704 	char last_idx;
705 	int i, j, rc = 0;
706 	enum storms storm;
707 	u32 regs[REGS_IN_ENTRY];
708 	u32 bar_storm_intmem[STORMS_NUM] = {
709 		BAR_XSTRORM_INTMEM,
710 		BAR_TSTRORM_INTMEM,
711 		BAR_CSTRORM_INTMEM,
712 		BAR_USTRORM_INTMEM
713 	};
714 	u32 storm_assert_list_index[STORMS_NUM] = {
715 		XSTORM_ASSERT_LIST_INDEX_OFFSET,
716 		TSTORM_ASSERT_LIST_INDEX_OFFSET,
717 		CSTORM_ASSERT_LIST_INDEX_OFFSET,
718 		USTORM_ASSERT_LIST_INDEX_OFFSET
719 	};
720 	char *storms_string[STORMS_NUM] = {
721 		"XSTORM",
722 		"TSTORM",
723 		"CSTORM",
724 		"USTORM"
725 	};
726 
727 	for (storm = XSTORM; storm < MAX_STORMS; storm++) {
728 		last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
729 				   storm_assert_list_index[storm]);
730 		if (last_idx)
731 			BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
732 				  storms_string[storm], last_idx);
733 
734 		/* print the asserts */
735 		for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736 			/* read a single assert entry */
737 			for (j = 0; j < REGS_IN_ENTRY; j++)
738 				regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
739 					  bnx2x_get_assert_list_entry(bp,
740 								      storm,
741 								      i) +
742 					  sizeof(u32) * j);
743 
744 			/* log entry if it contains a valid assert */
745 			if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
746 				BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
747 					  storms_string[storm], i, regs[3],
748 					  regs[2], regs[1], regs[0]);
749 				rc++;
750 			} else {
751 				break;
752 			}
753 		}
754 	}
755 
756 	BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
757 		  CHIP_IS_E1(bp) ? "everest1" :
758 		  CHIP_IS_E1H(bp) ? "everest1h" :
759 		  CHIP_IS_E2(bp) ? "everest2" : "everest3",
760 		  bp->fw_major, bp->fw_minor, bp->fw_rev);
761 
762 	return rc;
763 }
764 
765 #define MCPR_TRACE_BUFFER_SIZE	(0x800)
766 #define SCRATCH_BUFFER_SIZE(bp)	\
767 	(CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768 
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)769 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770 {
771 	u32 addr, val;
772 	u32 mark, offset;
773 	__be32 data[9];
774 	int word;
775 	u32 trace_shmem_base;
776 	if (BP_NOMCP(bp)) {
777 		BNX2X_ERR("NO MCP - can not dump\n");
778 		return;
779 	}
780 	netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781 		(bp->common.bc_ver & 0xff0000) >> 16,
782 		(bp->common.bc_ver & 0xff00) >> 8,
783 		(bp->common.bc_ver & 0xff));
784 
785 	if (pci_channel_offline(bp->pdev)) {
786 		BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
787 		return;
788 	}
789 
790 	val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
791 	if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
792 		BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
793 
794 	if (BP_PATH(bp) == 0)
795 		trace_shmem_base = bp->common.shmem_base;
796 	else
797 		trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
798 
799 	/* sanity */
800 	if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
801 	    trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
802 				SCRATCH_BUFFER_SIZE(bp)) {
803 		BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
804 			  trace_shmem_base);
805 		return;
806 	}
807 
808 	addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
809 
810 	/* validate TRCB signature */
811 	mark = REG_RD(bp, addr);
812 	if (mark != MFW_TRACE_SIGNATURE) {
813 		BNX2X_ERR("Trace buffer signature is missing.");
814 		return ;
815 	}
816 
817 	/* read cyclic buffer pointer */
818 	addr += 4;
819 	mark = REG_RD(bp, addr);
820 	mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
821 	if (mark >= trace_shmem_base || mark < addr + 4) {
822 		BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
823 		return;
824 	}
825 	printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
826 
827 	printk("%s", lvl);
828 
829 	/* dump buffer after the mark */
830 	for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
831 		for (word = 0; word < 8; word++)
832 			data[word] = htonl(REG_RD(bp, offset + 4*word));
833 		data[8] = 0x0;
834 		pr_cont("%s", (char *)data);
835 	}
836 
837 	/* dump buffer before the mark */
838 	for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
839 		for (word = 0; word < 8; word++)
840 			data[word] = htonl(REG_RD(bp, offset + 4*word));
841 		data[8] = 0x0;
842 		pr_cont("%s", (char *)data);
843 	}
844 	printk("%s" "end of fw dump\n", lvl);
845 }
846 
bnx2x_fw_dump(struct bnx2x * bp)847 static void bnx2x_fw_dump(struct bnx2x *bp)
848 {
849 	bnx2x_fw_dump_lvl(bp, KERN_ERR);
850 }
851 
bnx2x_hc_int_disable(struct bnx2x * bp)852 static void bnx2x_hc_int_disable(struct bnx2x *bp)
853 {
854 	int port = BP_PORT(bp);
855 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
856 	u32 val = REG_RD(bp, addr);
857 
858 	/* in E1 we must use only PCI configuration space to disable
859 	 * MSI/MSIX capability
860 	 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
861 	 */
862 	if (CHIP_IS_E1(bp)) {
863 		/* Since IGU_PF_CONF_MSI_MSIX_EN still always on
864 		 * Use mask register to prevent from HC sending interrupts
865 		 * after we exit the function
866 		 */
867 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
868 
869 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
871 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872 	} else
873 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
874 			 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
875 			 HC_CONFIG_0_REG_INT_LINE_EN_0 |
876 			 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
877 
878 	DP(NETIF_MSG_IFDOWN,
879 	   "write %x to HC %d (addr 0x%x)\n",
880 	   val, port, addr);
881 
882 	REG_WR(bp, addr, val);
883 	if (REG_RD(bp, addr) != val)
884 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
885 }
886 
bnx2x_igu_int_disable(struct bnx2x * bp)887 static void bnx2x_igu_int_disable(struct bnx2x *bp)
888 {
889 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
890 
891 	val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
892 		 IGU_PF_CONF_INT_LINE_EN |
893 		 IGU_PF_CONF_ATTN_BIT_EN);
894 
895 	DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
896 
897 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
898 	if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
899 		BNX2X_ERR("BUG! Proper val not read from IGU!\n");
900 }
901 
bnx2x_int_disable(struct bnx2x * bp)902 static void bnx2x_int_disable(struct bnx2x *bp)
903 {
904 	if (bp->common.int_block == INT_BLOCK_HC)
905 		bnx2x_hc_int_disable(bp);
906 	else
907 		bnx2x_igu_int_disable(bp);
908 }
909 
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)910 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
911 {
912 	int i;
913 	u16 j;
914 	struct hc_sp_status_block_data sp_sb_data;
915 	int func = BP_FUNC(bp);
916 #ifdef BNX2X_STOP_ON_ERROR
917 	u16 start = 0, end = 0;
918 	u8 cos;
919 #endif
920 	if (IS_PF(bp) && disable_int)
921 		bnx2x_int_disable(bp);
922 
923 	bp->stats_state = STATS_STATE_DISABLED;
924 	bp->eth_stats.unrecoverable_error++;
925 	DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
926 
927 	BNX2X_ERR("begin crash dump -----------------\n");
928 
929 	/* Indices */
930 	/* Common */
931 	if (IS_PF(bp)) {
932 		struct host_sp_status_block *def_sb = bp->def_status_blk;
933 		int data_size, cstorm_offset;
934 
935 		BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
936 			  bp->def_idx, bp->def_att_idx, bp->attn_state,
937 			  bp->spq_prod_idx, bp->stats_counter);
938 		BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
939 			  def_sb->atten_status_block.attn_bits,
940 			  def_sb->atten_status_block.attn_bits_ack,
941 			  def_sb->atten_status_block.status_block_id,
942 			  def_sb->atten_status_block.attn_bits_index);
943 		BNX2X_ERR("     def (");
944 		for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
945 			pr_cont("0x%x%s",
946 				def_sb->sp_sb.index_values[i],
947 				(i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
948 
949 		data_size = sizeof(struct hc_sp_status_block_data) /
950 			    sizeof(u32);
951 		cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
952 		for (i = 0; i < data_size; i++)
953 			*((u32 *)&sp_sb_data + i) =
954 				REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
955 					   i * sizeof(u32));
956 
957 		pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
958 			sp_sb_data.igu_sb_id,
959 			sp_sb_data.igu_seg_id,
960 			sp_sb_data.p_func.pf_id,
961 			sp_sb_data.p_func.vnic_id,
962 			sp_sb_data.p_func.vf_id,
963 			sp_sb_data.p_func.vf_valid,
964 			sp_sb_data.state);
965 	}
966 
967 	for_each_eth_queue(bp, i) {
968 		struct bnx2x_fastpath *fp = &bp->fp[i];
969 		int loop;
970 		struct hc_status_block_data_e2 sb_data_e2;
971 		struct hc_status_block_data_e1x sb_data_e1x;
972 		struct hc_status_block_sm  *hc_sm_p =
973 			CHIP_IS_E1x(bp) ?
974 			sb_data_e1x.common.state_machine :
975 			sb_data_e2.common.state_machine;
976 		struct hc_index_data *hc_index_p =
977 			CHIP_IS_E1x(bp) ?
978 			sb_data_e1x.index_data :
979 			sb_data_e2.index_data;
980 		u8 data_size, cos;
981 		u32 *sb_data_p;
982 		struct bnx2x_fp_txdata txdata;
983 
984 		if (!bp->fp)
985 			break;
986 
987 		if (!fp->rx_cons_sb)
988 			continue;
989 
990 		/* Rx */
991 		BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
992 			  i, fp->rx_bd_prod, fp->rx_bd_cons,
993 			  fp->rx_comp_prod,
994 			  fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
995 		BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
996 			  fp->rx_sge_prod, fp->last_max_sge,
997 			  le16_to_cpu(fp->fp_hc_idx));
998 
999 		/* Tx */
1000 		for_each_cos_in_tx_queue(fp, cos)
1001 		{
1002 			if (!fp->txdata_ptr[cos])
1003 				break;
1004 
1005 			txdata = *fp->txdata_ptr[cos];
1006 
1007 			if (!txdata.tx_cons_sb)
1008 				continue;
1009 
1010 			BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1011 				  i, txdata.tx_pkt_prod,
1012 				  txdata.tx_pkt_cons, txdata.tx_bd_prod,
1013 				  txdata.tx_bd_cons,
1014 				  le16_to_cpu(*txdata.tx_cons_sb));
1015 		}
1016 
1017 		loop = CHIP_IS_E1x(bp) ?
1018 			HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1019 
1020 		/* host sb data */
1021 
1022 		if (IS_FCOE_FP(fp))
1023 			continue;
1024 
1025 		BNX2X_ERR("     run indexes (");
1026 		for (j = 0; j < HC_SB_MAX_SM; j++)
1027 			pr_cont("0x%x%s",
1028 			       fp->sb_running_index[j],
1029 			       (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1030 
1031 		BNX2X_ERR("     indexes (");
1032 		for (j = 0; j < loop; j++)
1033 			pr_cont("0x%x%s",
1034 			       fp->sb_index_values[j],
1035 			       (j == loop - 1) ? ")" : " ");
1036 
1037 		/* VF cannot access FW refelection for status block */
1038 		if (IS_VF(bp))
1039 			continue;
1040 
1041 		/* fw sb data */
1042 		data_size = CHIP_IS_E1x(bp) ?
1043 			sizeof(struct hc_status_block_data_e1x) :
1044 			sizeof(struct hc_status_block_data_e2);
1045 		data_size /= sizeof(u32);
1046 		sb_data_p = CHIP_IS_E1x(bp) ?
1047 			(u32 *)&sb_data_e1x :
1048 			(u32 *)&sb_data_e2;
1049 		/* copy sb data in here */
1050 		for (j = 0; j < data_size; j++)
1051 			*(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1052 				CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1053 				j * sizeof(u32));
1054 
1055 		if (!CHIP_IS_E1x(bp)) {
1056 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 				sb_data_e2.common.p_func.pf_id,
1058 				sb_data_e2.common.p_func.vf_id,
1059 				sb_data_e2.common.p_func.vf_valid,
1060 				sb_data_e2.common.p_func.vnic_id,
1061 				sb_data_e2.common.same_igu_sb_1b,
1062 				sb_data_e2.common.state);
1063 		} else {
1064 			pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1065 				sb_data_e1x.common.p_func.pf_id,
1066 				sb_data_e1x.common.p_func.vf_id,
1067 				sb_data_e1x.common.p_func.vf_valid,
1068 				sb_data_e1x.common.p_func.vnic_id,
1069 				sb_data_e1x.common.same_igu_sb_1b,
1070 				sb_data_e1x.common.state);
1071 		}
1072 
1073 		/* SB_SMs data */
1074 		for (j = 0; j < HC_SB_MAX_SM; j++) {
1075 			pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1076 				j, hc_sm_p[j].__flags,
1077 				hc_sm_p[j].igu_sb_id,
1078 				hc_sm_p[j].igu_seg_id,
1079 				hc_sm_p[j].time_to_expire,
1080 				hc_sm_p[j].timer_value);
1081 		}
1082 
1083 		/* Indices data */
1084 		for (j = 0; j < loop; j++) {
1085 			pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1086 			       hc_index_p[j].flags,
1087 			       hc_index_p[j].timeout);
1088 		}
1089 	}
1090 
1091 #ifdef BNX2X_STOP_ON_ERROR
1092 	if (IS_PF(bp)) {
1093 		/* event queue */
1094 		BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1095 		for (i = 0; i < NUM_EQ_DESC; i++) {
1096 			u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1097 
1098 			BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1099 				  i, bp->eq_ring[i].message.opcode,
1100 				  bp->eq_ring[i].message.error);
1101 			BNX2X_ERR("data: %x %x %x\n",
1102 				  data[0], data[1], data[2]);
1103 		}
1104 	}
1105 
1106 	/* Rings */
1107 	/* Rx */
1108 	for_each_valid_rx_queue(bp, i) {
1109 		struct bnx2x_fastpath *fp = &bp->fp[i];
1110 
1111 		if (!bp->fp)
1112 			break;
1113 
1114 		if (!fp->rx_cons_sb)
1115 			continue;
1116 
1117 		start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1118 		end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1119 		for (j = start; j != end; j = RX_BD(j + 1)) {
1120 			u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1121 			struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1122 
1123 			BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1124 				  i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1125 		}
1126 
1127 		start = RX_SGE(fp->rx_sge_prod);
1128 		end = RX_SGE(fp->last_max_sge);
1129 		for (j = start; j != end; j = RX_SGE(j + 1)) {
1130 			u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1131 			struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1132 
1133 			BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1134 				  i, j, rx_sge[1], rx_sge[0], sw_page->page);
1135 		}
1136 
1137 		start = RCQ_BD(fp->rx_comp_cons - 10);
1138 		end = RCQ_BD(fp->rx_comp_cons + 503);
1139 		for (j = start; j != end; j = RCQ_BD(j + 1)) {
1140 			u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1141 
1142 			BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1143 				  i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1144 		}
1145 	}
1146 
1147 	/* Tx */
1148 	for_each_valid_tx_queue(bp, i) {
1149 		struct bnx2x_fastpath *fp = &bp->fp[i];
1150 
1151 		if (!bp->fp)
1152 			break;
1153 
1154 		for_each_cos_in_tx_queue(fp, cos) {
1155 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1156 
1157 			if (!fp->txdata_ptr[cos])
1158 				break;
1159 
1160 			if (!txdata->tx_cons_sb)
1161 				continue;
1162 
1163 			start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1164 			end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1165 			for (j = start; j != end; j = TX_BD(j + 1)) {
1166 				struct sw_tx_bd *sw_bd =
1167 					&txdata->tx_buf_ring[j];
1168 
1169 				BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1170 					  i, cos, j, sw_bd->skb,
1171 					  sw_bd->first_bd);
1172 			}
1173 
1174 			start = TX_BD(txdata->tx_bd_cons - 10);
1175 			end = TX_BD(txdata->tx_bd_cons + 254);
1176 			for (j = start; j != end; j = TX_BD(j + 1)) {
1177 				u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1178 
1179 				BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1180 					  i, cos, j, tx_bd[0], tx_bd[1],
1181 					  tx_bd[2], tx_bd[3]);
1182 			}
1183 		}
1184 	}
1185 #endif
1186 	if (IS_PF(bp)) {
1187 		int tmp_msg_en = bp->msg_enable;
1188 
1189 		bnx2x_fw_dump(bp);
1190 		bp->msg_enable |= NETIF_MSG_HW;
1191 		BNX2X_ERR("Idle check (1st round) ----------\n");
1192 		bnx2x_idle_chk(bp);
1193 		BNX2X_ERR("Idle check (2nd round) ----------\n");
1194 		bnx2x_idle_chk(bp);
1195 		bp->msg_enable = tmp_msg_en;
1196 		bnx2x_mc_assert(bp);
1197 	}
1198 
1199 	BNX2X_ERR("end crash dump -----------------\n");
1200 }
1201 
1202 /*
1203  * FLR Support for E2
1204  *
1205  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1206  * initialization.
1207  */
1208 #define FLR_WAIT_USEC		10000	/* 10 milliseconds */
1209 #define FLR_WAIT_INTERVAL	50	/* usec */
1210 #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1211 
1212 struct pbf_pN_buf_regs {
1213 	int pN;
1214 	u32 init_crd;
1215 	u32 crd;
1216 	u32 crd_freed;
1217 };
1218 
1219 struct pbf_pN_cmd_regs {
1220 	int pN;
1221 	u32 lines_occup;
1222 	u32 lines_freed;
1223 };
1224 
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1225 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1226 				     struct pbf_pN_buf_regs *regs,
1227 				     u32 poll_count)
1228 {
1229 	u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1230 	u32 cur_cnt = poll_count;
1231 
1232 	crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1233 	crd = crd_start = REG_RD(bp, regs->crd);
1234 	init_crd = REG_RD(bp, regs->init_crd);
1235 
1236 	DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1237 	DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1238 	DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1239 
1240 	while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1241 	       (init_crd - crd_start))) {
1242 		if (cur_cnt--) {
1243 			udelay(FLR_WAIT_INTERVAL);
1244 			crd = REG_RD(bp, regs->crd);
1245 			crd_freed = REG_RD(bp, regs->crd_freed);
1246 		} else {
1247 			DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1248 			   regs->pN);
1249 			DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1250 			   regs->pN, crd);
1251 			DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1252 			   regs->pN, crd_freed);
1253 			break;
1254 		}
1255 	}
1256 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1257 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1258 }
1259 
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1260 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1261 				     struct pbf_pN_cmd_regs *regs,
1262 				     u32 poll_count)
1263 {
1264 	u32 occup, to_free, freed, freed_start;
1265 	u32 cur_cnt = poll_count;
1266 
1267 	occup = to_free = REG_RD(bp, regs->lines_occup);
1268 	freed = freed_start = REG_RD(bp, regs->lines_freed);
1269 
1270 	DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1271 	DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1272 
1273 	while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1274 		if (cur_cnt--) {
1275 			udelay(FLR_WAIT_INTERVAL);
1276 			occup = REG_RD(bp, regs->lines_occup);
1277 			freed = REG_RD(bp, regs->lines_freed);
1278 		} else {
1279 			DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1280 			   regs->pN);
1281 			DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1282 			   regs->pN, occup);
1283 			DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1284 			   regs->pN, freed);
1285 			break;
1286 		}
1287 	}
1288 	DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1289 	   poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1290 }
1291 
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1292 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1293 				    u32 expected, u32 poll_count)
1294 {
1295 	u32 cur_cnt = poll_count;
1296 	u32 val;
1297 
1298 	while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1299 		udelay(FLR_WAIT_INTERVAL);
1300 
1301 	return val;
1302 }
1303 
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1304 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1305 				    char *msg, u32 poll_cnt)
1306 {
1307 	u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1308 	if (val != 0) {
1309 		BNX2X_ERR("%s usage count=%d\n", msg, val);
1310 		return 1;
1311 	}
1312 	return 0;
1313 }
1314 
1315 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1316 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1317 {
1318 	/* adjust polling timeout */
1319 	if (CHIP_REV_IS_EMUL(bp))
1320 		return FLR_POLL_CNT * 2000;
1321 
1322 	if (CHIP_REV_IS_FPGA(bp))
1323 		return FLR_POLL_CNT * 120;
1324 
1325 	return FLR_POLL_CNT;
1326 }
1327 
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1328 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1329 {
1330 	struct pbf_pN_cmd_regs cmd_regs[] = {
1331 		{0, (CHIP_IS_E3B0(bp)) ?
1332 			PBF_REG_TQ_OCCUPANCY_Q0 :
1333 			PBF_REG_P0_TQ_OCCUPANCY,
1334 		    (CHIP_IS_E3B0(bp)) ?
1335 			PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1336 			PBF_REG_P0_TQ_LINES_FREED_CNT},
1337 		{1, (CHIP_IS_E3B0(bp)) ?
1338 			PBF_REG_TQ_OCCUPANCY_Q1 :
1339 			PBF_REG_P1_TQ_OCCUPANCY,
1340 		    (CHIP_IS_E3B0(bp)) ?
1341 			PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1342 			PBF_REG_P1_TQ_LINES_FREED_CNT},
1343 		{4, (CHIP_IS_E3B0(bp)) ?
1344 			PBF_REG_TQ_OCCUPANCY_LB_Q :
1345 			PBF_REG_P4_TQ_OCCUPANCY,
1346 		    (CHIP_IS_E3B0(bp)) ?
1347 			PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1348 			PBF_REG_P4_TQ_LINES_FREED_CNT}
1349 	};
1350 
1351 	struct pbf_pN_buf_regs buf_regs[] = {
1352 		{0, (CHIP_IS_E3B0(bp)) ?
1353 			PBF_REG_INIT_CRD_Q0 :
1354 			PBF_REG_P0_INIT_CRD ,
1355 		    (CHIP_IS_E3B0(bp)) ?
1356 			PBF_REG_CREDIT_Q0 :
1357 			PBF_REG_P0_CREDIT,
1358 		    (CHIP_IS_E3B0(bp)) ?
1359 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1360 			PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1361 		{1, (CHIP_IS_E3B0(bp)) ?
1362 			PBF_REG_INIT_CRD_Q1 :
1363 			PBF_REG_P1_INIT_CRD,
1364 		    (CHIP_IS_E3B0(bp)) ?
1365 			PBF_REG_CREDIT_Q1 :
1366 			PBF_REG_P1_CREDIT,
1367 		    (CHIP_IS_E3B0(bp)) ?
1368 			PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1369 			PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1370 		{4, (CHIP_IS_E3B0(bp)) ?
1371 			PBF_REG_INIT_CRD_LB_Q :
1372 			PBF_REG_P4_INIT_CRD,
1373 		    (CHIP_IS_E3B0(bp)) ?
1374 			PBF_REG_CREDIT_LB_Q :
1375 			PBF_REG_P4_CREDIT,
1376 		    (CHIP_IS_E3B0(bp)) ?
1377 			PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1378 			PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1379 	};
1380 
1381 	int i;
1382 
1383 	/* Verify the command queues are flushed P0, P1, P4 */
1384 	for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1385 		bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1386 
1387 	/* Verify the transmission buffers are flushed P0, P1, P4 */
1388 	for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1389 		bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1390 }
1391 
1392 #define OP_GEN_PARAM(param) \
1393 	(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1394 
1395 #define OP_GEN_TYPE(type) \
1396 	(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1397 
1398 #define OP_GEN_AGG_VECT(index) \
1399 	(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1400 
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1401 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1402 {
1403 	u32 op_gen_command = 0;
1404 	u32 comp_addr = BAR_CSTRORM_INTMEM +
1405 			CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1406 	int ret = 0;
1407 
1408 	if (REG_RD(bp, comp_addr)) {
1409 		BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1410 		return 1;
1411 	}
1412 
1413 	op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1414 	op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1415 	op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1416 	op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1417 
1418 	DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1419 	REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1420 
1421 	if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1422 		BNX2X_ERR("FW final cleanup did not succeed\n");
1423 		DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1424 		   (REG_RD(bp, comp_addr)));
1425 		bnx2x_panic();
1426 		return 1;
1427 	}
1428 	/* Zero completion for next FLR */
1429 	REG_WR(bp, comp_addr, 0);
1430 
1431 	return ret;
1432 }
1433 
bnx2x_is_pcie_pending(struct pci_dev * dev)1434 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1435 {
1436 	u16 status;
1437 
1438 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1439 	return status & PCI_EXP_DEVSTA_TRPND;
1440 }
1441 
1442 /* PF FLR specific routines
1443 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1444 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1445 {
1446 	/* wait for CFC PF usage-counter to zero (includes all the VFs) */
1447 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1448 			CFC_REG_NUM_LCIDS_INSIDE_PF,
1449 			"CFC PF usage counter timed out",
1450 			poll_cnt))
1451 		return 1;
1452 
1453 	/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1454 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1455 			DORQ_REG_PF_USAGE_CNT,
1456 			"DQ PF usage counter timed out",
1457 			poll_cnt))
1458 		return 1;
1459 
1460 	/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1461 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1462 			QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1463 			"QM PF usage counter timed out",
1464 			poll_cnt))
1465 		return 1;
1466 
1467 	/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1468 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1469 			TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1470 			"Timers VNIC usage counter timed out",
1471 			poll_cnt))
1472 		return 1;
1473 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1474 			TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1475 			"Timers NUM_SCANS usage counter timed out",
1476 			poll_cnt))
1477 		return 1;
1478 
1479 	/* Wait DMAE PF usage counter to zero */
1480 	if (bnx2x_flr_clnup_poll_hw_counter(bp,
1481 			dmae_reg_go_c[INIT_DMAE_C(bp)],
1482 			"DMAE command register timed out",
1483 			poll_cnt))
1484 		return 1;
1485 
1486 	return 0;
1487 }
1488 
bnx2x_hw_enable_status(struct bnx2x * bp)1489 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1490 {
1491 	u32 val;
1492 
1493 	val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1494 	DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1495 
1496 	val = REG_RD(bp, PBF_REG_DISABLE_PF);
1497 	DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1498 
1499 	val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1500 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1501 
1502 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1503 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1504 
1505 	val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1506 	DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1507 
1508 	val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1509 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1510 
1511 	val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1512 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1513 
1514 	val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1515 	DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1516 	   val);
1517 }
1518 
bnx2x_pf_flr_clnup(struct bnx2x * bp)1519 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1520 {
1521 	u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1522 
1523 	DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1524 
1525 	/* Re-enable PF target read access */
1526 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1527 
1528 	/* Poll HW usage counters */
1529 	DP(BNX2X_MSG_SP, "Polling usage counters\n");
1530 	if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1531 		return -EBUSY;
1532 
1533 	/* Zero the igu 'trailing edge' and 'leading edge' */
1534 
1535 	/* Send the FW cleanup command */
1536 	if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1537 		return -EBUSY;
1538 
1539 	/* ATC cleanup */
1540 
1541 	/* Verify TX hw is flushed */
1542 	bnx2x_tx_hw_flushed(bp, poll_cnt);
1543 
1544 	/* Wait 100ms (not adjusted according to platform) */
1545 	msleep(100);
1546 
1547 	/* Verify no pending pci transactions */
1548 	if (bnx2x_is_pcie_pending(bp->pdev))
1549 		BNX2X_ERR("PCIE Transactions still pending\n");
1550 
1551 	/* Debug */
1552 	bnx2x_hw_enable_status(bp);
1553 
1554 	/*
1555 	 * Master enable - Due to WB DMAE writes performed before this
1556 	 * register is re-initialized as part of the regular function init
1557 	 */
1558 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1559 
1560 	return 0;
1561 }
1562 
bnx2x_hc_int_enable(struct bnx2x * bp)1563 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1564 {
1565 	int port = BP_PORT(bp);
1566 	u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1567 	u32 val = REG_RD(bp, addr);
1568 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1569 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1570 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1571 
1572 	if (msix) {
1573 		val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574 			 HC_CONFIG_0_REG_INT_LINE_EN_0);
1575 		val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1576 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1577 		if (single_msix)
1578 			val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1579 	} else if (msi) {
1580 		val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1581 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1582 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1583 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1584 	} else {
1585 		val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1586 			HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1587 			HC_CONFIG_0_REG_INT_LINE_EN_0 |
1588 			HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1589 
1590 		if (!CHIP_IS_E1(bp)) {
1591 			DP(NETIF_MSG_IFUP,
1592 			   "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1593 
1594 			REG_WR(bp, addr, val);
1595 
1596 			val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1597 		}
1598 	}
1599 
1600 	if (CHIP_IS_E1(bp))
1601 		REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1602 
1603 	DP(NETIF_MSG_IFUP,
1604 	   "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1605 	   (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1606 
1607 	REG_WR(bp, addr, val);
1608 	/*
1609 	 * Ensure that HC_CONFIG is written before leading/trailing edge config
1610 	 */
1611 	barrier();
1612 
1613 	if (!CHIP_IS_E1(bp)) {
1614 		/* init leading/trailing edge */
1615 		if (IS_MF(bp)) {
1616 			val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1617 			if (bp->port.pmf)
1618 				/* enable nig and gpio3 attention */
1619 				val |= 0x1100;
1620 		} else
1621 			val = 0xffff;
1622 
1623 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1624 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1625 	}
1626 }
1627 
bnx2x_igu_int_enable(struct bnx2x * bp)1628 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1629 {
1630 	u32 val;
1631 	bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1632 	bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1633 	bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1634 
1635 	val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1636 
1637 	if (msix) {
1638 		val &= ~(IGU_PF_CONF_INT_LINE_EN |
1639 			 IGU_PF_CONF_SINGLE_ISR_EN);
1640 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1641 			IGU_PF_CONF_ATTN_BIT_EN);
1642 
1643 		if (single_msix)
1644 			val |= IGU_PF_CONF_SINGLE_ISR_EN;
1645 	} else if (msi) {
1646 		val &= ~IGU_PF_CONF_INT_LINE_EN;
1647 		val |= (IGU_PF_CONF_MSI_MSIX_EN |
1648 			IGU_PF_CONF_ATTN_BIT_EN |
1649 			IGU_PF_CONF_SINGLE_ISR_EN);
1650 	} else {
1651 		val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1652 		val |= (IGU_PF_CONF_INT_LINE_EN |
1653 			IGU_PF_CONF_ATTN_BIT_EN |
1654 			IGU_PF_CONF_SINGLE_ISR_EN);
1655 	}
1656 
1657 	/* Clean previous status - need to configure igu prior to ack*/
1658 	if ((!msix) || single_msix) {
1659 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 		bnx2x_ack_int(bp);
1661 	}
1662 
1663 	val |= IGU_PF_CONF_FUNC_EN;
1664 
1665 	DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1666 	   val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1667 
1668 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1669 
1670 	if (val & IGU_PF_CONF_INT_LINE_EN)
1671 		pci_intx(bp->pdev, true);
1672 
1673 	barrier();
1674 
1675 	/* init leading/trailing edge */
1676 	if (IS_MF(bp)) {
1677 		val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1678 		if (bp->port.pmf)
1679 			/* enable nig and gpio3 attention */
1680 			val |= 0x1100;
1681 	} else
1682 		val = 0xffff;
1683 
1684 	REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1685 	REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1686 }
1687 
bnx2x_int_enable(struct bnx2x * bp)1688 void bnx2x_int_enable(struct bnx2x *bp)
1689 {
1690 	if (bp->common.int_block == INT_BLOCK_HC)
1691 		bnx2x_hc_int_enable(bp);
1692 	else
1693 		bnx2x_igu_int_enable(bp);
1694 }
1695 
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1696 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1697 {
1698 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1699 	int i, offset;
1700 
1701 	if (disable_hw)
1702 		/* prevent the HW from sending interrupts */
1703 		bnx2x_int_disable(bp);
1704 
1705 	/* make sure all ISRs are done */
1706 	if (msix) {
1707 		synchronize_irq(bp->msix_table[0].vector);
1708 		offset = 1;
1709 		if (CNIC_SUPPORT(bp))
1710 			offset++;
1711 		for_each_eth_queue(bp, i)
1712 			synchronize_irq(bp->msix_table[offset++].vector);
1713 	} else
1714 		synchronize_irq(bp->pdev->irq);
1715 
1716 	/* make sure sp_task is not running */
1717 	cancel_delayed_work(&bp->sp_task);
1718 	cancel_delayed_work(&bp->period_task);
1719 	flush_workqueue(bnx2x_wq);
1720 }
1721 
1722 /* fast path */
1723 
1724 /*
1725  * General service functions
1726  */
1727 
1728 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1729 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1730 {
1731 	u32 lock_status;
1732 	u32 resource_bit = (1 << resource);
1733 	int func = BP_FUNC(bp);
1734 	u32 hw_lock_control_reg;
1735 
1736 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1737 	   "Trying to take a lock on resource %d\n", resource);
1738 
1739 	/* Validating that the resource is within range */
1740 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1741 		DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1742 		   "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1743 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
1744 		return false;
1745 	}
1746 
1747 	if (func <= 5)
1748 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1749 	else
1750 		hw_lock_control_reg =
1751 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1752 
1753 	/* Try to acquire the lock */
1754 	REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1755 	lock_status = REG_RD(bp, hw_lock_control_reg);
1756 	if (lock_status & resource_bit)
1757 		return true;
1758 
1759 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1760 	   "Failed to get a lock on resource %d\n", resource);
1761 	return false;
1762 }
1763 
1764 /**
1765  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1766  *
1767  * @bp:	driver handle
1768  *
1769  * Returns the recovery leader resource id according to the engine this function
1770  * belongs to. Currently only only 2 engines is supported.
1771  */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1772 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1773 {
1774 	if (BP_PATH(bp))
1775 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1776 	else
1777 		return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1778 }
1779 
1780 /**
1781  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1782  *
1783  * @bp: driver handle
1784  *
1785  * Tries to acquire a leader lock for current engine.
1786  */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1787 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1788 {
1789 	return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1790 }
1791 
1792 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1793 
1794 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1795 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1796 {
1797 	/* Set the interrupt occurred bit for the sp-task to recognize it
1798 	 * must ack the interrupt and transition according to the IGU
1799 	 * state machine.
1800 	 */
1801 	atomic_set(&bp->interrupt_occurred, 1);
1802 
1803 	/* The sp_task must execute only after this bit
1804 	 * is set, otherwise we will get out of sync and miss all
1805 	 * further interrupts. Hence, the barrier.
1806 	 */
1807 	smp_wmb();
1808 
1809 	/* schedule sp_task to workqueue */
1810 	return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1811 }
1812 
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1813 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1814 {
1815 	struct bnx2x *bp = fp->bp;
1816 	int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1817 	int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818 	enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1819 	struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1820 
1821 	DP(BNX2X_MSG_SP,
1822 	   "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1823 	   fp->index, cid, command, bp->state,
1824 	   rr_cqe->ramrod_cqe.ramrod_type);
1825 
1826 	/* If cid is within VF range, replace the slowpath object with the
1827 	 * one corresponding to this VF
1828 	 */
1829 	if (cid >= BNX2X_FIRST_VF_CID  &&
1830 	    cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1831 		bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1832 
1833 	switch (command) {
1834 	case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1835 		DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1836 		drv_cmd = BNX2X_Q_CMD_UPDATE;
1837 		break;
1838 
1839 	case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1840 		DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1841 		drv_cmd = BNX2X_Q_CMD_SETUP;
1842 		break;
1843 
1844 	case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1845 		DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1846 		drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1847 		break;
1848 
1849 	case (RAMROD_CMD_ID_ETH_HALT):
1850 		DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1851 		drv_cmd = BNX2X_Q_CMD_HALT;
1852 		break;
1853 
1854 	case (RAMROD_CMD_ID_ETH_TERMINATE):
1855 		DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1856 		drv_cmd = BNX2X_Q_CMD_TERMINATE;
1857 		break;
1858 
1859 	case (RAMROD_CMD_ID_ETH_EMPTY):
1860 		DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1861 		drv_cmd = BNX2X_Q_CMD_EMPTY;
1862 		break;
1863 
1864 	case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1865 		DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1866 		drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1867 		break;
1868 
1869 	default:
1870 		BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1871 			  command, fp->index);
1872 		return;
1873 	}
1874 
1875 	if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1876 	    q_obj->complete_cmd(bp, q_obj, drv_cmd))
1877 		/* q_obj->complete_cmd() failure means that this was
1878 		 * an unexpected completion.
1879 		 *
1880 		 * In this case we don't want to increase the bp->spq_left
1881 		 * because apparently we haven't sent this command the first
1882 		 * place.
1883 		 */
1884 #ifdef BNX2X_STOP_ON_ERROR
1885 		bnx2x_panic();
1886 #else
1887 		return;
1888 #endif
1889 
1890 	smp_mb__before_atomic();
1891 	atomic_inc(&bp->cq_spq_left);
1892 	/* push the change in bp->spq_left and towards the memory */
1893 	smp_mb__after_atomic();
1894 
1895 	DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1896 
1897 	if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1898 	    (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1899 		/* if Q update ramrod is completed for last Q in AFEX vif set
1900 		 * flow, then ACK MCP at the end
1901 		 *
1902 		 * mark pending ACK to MCP bit.
1903 		 * prevent case that both bits are cleared.
1904 		 * At the end of load/unload driver checks that
1905 		 * sp_state is cleared, and this order prevents
1906 		 * races
1907 		 */
1908 		smp_mb__before_atomic();
1909 		set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1910 		wmb();
1911 		clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1912 		smp_mb__after_atomic();
1913 
1914 		/* schedule the sp task as mcp ack is required */
1915 		bnx2x_schedule_sp_task(bp);
1916 	}
1917 
1918 	return;
1919 }
1920 
bnx2x_interrupt(int irq,void * dev_instance)1921 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1922 {
1923 	struct bnx2x *bp = netdev_priv(dev_instance);
1924 	u16 status = bnx2x_ack_int(bp);
1925 	u16 mask;
1926 	int i;
1927 	u8 cos;
1928 
1929 	/* Return here if interrupt is shared and it's not for us */
1930 	if (unlikely(status == 0)) {
1931 		DP(NETIF_MSG_INTR, "not our interrupt!\n");
1932 		return IRQ_NONE;
1933 	}
1934 	DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1935 
1936 #ifdef BNX2X_STOP_ON_ERROR
1937 	if (unlikely(bp->panic))
1938 		return IRQ_HANDLED;
1939 #endif
1940 
1941 	for_each_eth_queue(bp, i) {
1942 		struct bnx2x_fastpath *fp = &bp->fp[i];
1943 
1944 		mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1945 		if (status & mask) {
1946 			/* Handle Rx or Tx according to SB id */
1947 			for_each_cos_in_tx_queue(fp, cos)
1948 				prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1949 			prefetch(&fp->sb_running_index[SM_RX_ID]);
1950 			napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1951 			status &= ~mask;
1952 		}
1953 	}
1954 
1955 	if (CNIC_SUPPORT(bp)) {
1956 		mask = 0x2;
1957 		if (status & (mask | 0x1)) {
1958 			struct cnic_ops *c_ops = NULL;
1959 
1960 			rcu_read_lock();
1961 			c_ops = rcu_dereference(bp->cnic_ops);
1962 			if (c_ops && (bp->cnic_eth_dev.drv_state &
1963 				      CNIC_DRV_STATE_HANDLES_IRQ))
1964 				c_ops->cnic_handler(bp->cnic_data, NULL);
1965 			rcu_read_unlock();
1966 
1967 			status &= ~mask;
1968 		}
1969 	}
1970 
1971 	if (unlikely(status & 0x1)) {
1972 
1973 		/* schedule sp task to perform default status block work, ack
1974 		 * attentions and enable interrupts.
1975 		 */
1976 		bnx2x_schedule_sp_task(bp);
1977 
1978 		status &= ~0x1;
1979 		if (!status)
1980 			return IRQ_HANDLED;
1981 	}
1982 
1983 	if (unlikely(status))
1984 		DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1985 		   status);
1986 
1987 	return IRQ_HANDLED;
1988 }
1989 
1990 /* Link */
1991 
1992 /*
1993  * General service functions
1994  */
1995 
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1996 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1997 {
1998 	u32 lock_status;
1999 	u32 resource_bit = (1 << resource);
2000 	int func = BP_FUNC(bp);
2001 	u32 hw_lock_control_reg;
2002 	int cnt;
2003 
2004 	/* Validating that the resource is within range */
2005 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2006 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2007 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2008 		return -EINVAL;
2009 	}
2010 
2011 	if (func <= 5) {
2012 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2013 	} else {
2014 		hw_lock_control_reg =
2015 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2016 	}
2017 
2018 	/* Validating that the resource is not already taken */
2019 	lock_status = REG_RD(bp, hw_lock_control_reg);
2020 	if (lock_status & resource_bit) {
2021 		BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2022 		   lock_status, resource_bit);
2023 		return -EEXIST;
2024 	}
2025 
2026 	/* Try for 5 second every 5ms */
2027 	for (cnt = 0; cnt < 1000; cnt++) {
2028 		/* Try to acquire the lock */
2029 		REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2030 		lock_status = REG_RD(bp, hw_lock_control_reg);
2031 		if (lock_status & resource_bit)
2032 			return 0;
2033 
2034 		usleep_range(5000, 10000);
2035 	}
2036 	BNX2X_ERR("Timeout\n");
2037 	return -EAGAIN;
2038 }
2039 
bnx2x_release_leader_lock(struct bnx2x * bp)2040 int bnx2x_release_leader_lock(struct bnx2x *bp)
2041 {
2042 	return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2043 }
2044 
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2045 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2046 {
2047 	u32 lock_status;
2048 	u32 resource_bit = (1 << resource);
2049 	int func = BP_FUNC(bp);
2050 	u32 hw_lock_control_reg;
2051 
2052 	/* Validating that the resource is within range */
2053 	if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2054 		BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2055 		   resource, HW_LOCK_MAX_RESOURCE_VALUE);
2056 		return -EINVAL;
2057 	}
2058 
2059 	if (func <= 5) {
2060 		hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2061 	} else {
2062 		hw_lock_control_reg =
2063 				(MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2064 	}
2065 
2066 	/* Validating that the resource is currently taken */
2067 	lock_status = REG_RD(bp, hw_lock_control_reg);
2068 	if (!(lock_status & resource_bit)) {
2069 		BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2070 			  lock_status, resource_bit);
2071 		return -EFAULT;
2072 	}
2073 
2074 	REG_WR(bp, hw_lock_control_reg, resource_bit);
2075 	return 0;
2076 }
2077 
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2078 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2079 {
2080 	/* The GPIO should be swapped if swap register is set and active */
2081 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2082 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2083 	int gpio_shift = gpio_num +
2084 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2085 	u32 gpio_mask = (1 << gpio_shift);
2086 	u32 gpio_reg;
2087 	int value;
2088 
2089 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091 		return -EINVAL;
2092 	}
2093 
2094 	/* read GPIO value */
2095 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096 
2097 	/* get the requested pin value */
2098 	if ((gpio_reg & gpio_mask) == gpio_mask)
2099 		value = 1;
2100 	else
2101 		value = 0;
2102 
2103 	return value;
2104 }
2105 
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2106 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2107 {
2108 	/* The GPIO should be swapped if swap register is set and active */
2109 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2110 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2111 	int gpio_shift = gpio_num +
2112 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2113 	u32 gpio_mask = (1 << gpio_shift);
2114 	u32 gpio_reg;
2115 
2116 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2117 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2118 		return -EINVAL;
2119 	}
2120 
2121 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122 	/* read GPIO and mask except the float bits */
2123 	gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2124 
2125 	switch (mode) {
2126 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2127 		DP(NETIF_MSG_LINK,
2128 		   "Set GPIO %d (shift %d) -> output low\n",
2129 		   gpio_num, gpio_shift);
2130 		/* clear FLOAT and set CLR */
2131 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2132 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2133 		break;
2134 
2135 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136 		DP(NETIF_MSG_LINK,
2137 		   "Set GPIO %d (shift %d) -> output high\n",
2138 		   gpio_num, gpio_shift);
2139 		/* clear FLOAT and set SET */
2140 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2141 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2142 		break;
2143 
2144 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2145 		DP(NETIF_MSG_LINK,
2146 		   "Set GPIO %d (shift %d) -> input\n",
2147 		   gpio_num, gpio_shift);
2148 		/* set FLOAT */
2149 		gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2150 		break;
2151 
2152 	default:
2153 		break;
2154 	}
2155 
2156 	REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2157 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2158 
2159 	return 0;
2160 }
2161 
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2162 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2163 {
2164 	u32 gpio_reg = 0;
2165 	int rc = 0;
2166 
2167 	/* Any port swapping should be handled by caller. */
2168 
2169 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2170 	/* read GPIO and mask except the float bits */
2171 	gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2172 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2173 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2174 	gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2175 
2176 	switch (mode) {
2177 	case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2178 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2179 		/* set CLR */
2180 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2181 		break;
2182 
2183 	case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2184 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2185 		/* set SET */
2186 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2187 		break;
2188 
2189 	case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2190 		DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2191 		/* set FLOAT */
2192 		gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2193 		break;
2194 
2195 	default:
2196 		BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2197 		rc = -EINVAL;
2198 		break;
2199 	}
2200 
2201 	if (rc == 0)
2202 		REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2203 
2204 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205 
2206 	return rc;
2207 }
2208 
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2209 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2210 {
2211 	/* The GPIO should be swapped if swap register is set and active */
2212 	int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2213 			 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2214 	int gpio_shift = gpio_num +
2215 			(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2216 	u32 gpio_mask = (1 << gpio_shift);
2217 	u32 gpio_reg;
2218 
2219 	if (gpio_num > MISC_REGISTERS_GPIO_3) {
2220 		BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2221 		return -EINVAL;
2222 	}
2223 
2224 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2225 	/* read GPIO int */
2226 	gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2227 
2228 	switch (mode) {
2229 	case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2230 		DP(NETIF_MSG_LINK,
2231 		   "Clear GPIO INT %d (shift %d) -> output low\n",
2232 		   gpio_num, gpio_shift);
2233 		/* clear SET and set CLR */
2234 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236 		break;
2237 
2238 	case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2239 		DP(NETIF_MSG_LINK,
2240 		   "Set GPIO INT %d (shift %d) -> output high\n",
2241 		   gpio_num, gpio_shift);
2242 		/* clear CLR and set SET */
2243 		gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2244 		gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2245 		break;
2246 
2247 	default:
2248 		break;
2249 	}
2250 
2251 	REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2252 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2253 
2254 	return 0;
2255 }
2256 
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2257 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2258 {
2259 	u32 spio_reg;
2260 
2261 	/* Only 2 SPIOs are configurable */
2262 	if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2263 		BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2264 		return -EINVAL;
2265 	}
2266 
2267 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2268 	/* read SPIO and mask except the float bits */
2269 	spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2270 
2271 	switch (mode) {
2272 	case MISC_SPIO_OUTPUT_LOW:
2273 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2274 		/* clear FLOAT and set CLR */
2275 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2276 		spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2277 		break;
2278 
2279 	case MISC_SPIO_OUTPUT_HIGH:
2280 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2281 		/* clear FLOAT and set SET */
2282 		spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2283 		spio_reg |=  (spio << MISC_SPIO_SET_POS);
2284 		break;
2285 
2286 	case MISC_SPIO_INPUT_HI_Z:
2287 		DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2288 		/* set FLOAT */
2289 		spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2290 		break;
2291 
2292 	default:
2293 		break;
2294 	}
2295 
2296 	REG_WR(bp, MISC_REG_SPIO, spio_reg);
2297 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2298 
2299 	return 0;
2300 }
2301 
bnx2x_calc_fc_adv(struct bnx2x * bp)2302 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2303 {
2304 	u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2305 
2306 	bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2307 					   ADVERTISED_Pause);
2308 	switch (bp->link_vars.ieee_fc &
2309 		MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2310 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2311 		bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2312 						  ADVERTISED_Pause);
2313 		break;
2314 
2315 	case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2316 		bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2317 		break;
2318 
2319 	default:
2320 		break;
2321 	}
2322 }
2323 
bnx2x_set_requested_fc(struct bnx2x * bp)2324 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2325 {
2326 	/* Initialize link parameters structure variables
2327 	 * It is recommended to turn off RX FC for jumbo frames
2328 	 *  for better performance
2329 	 */
2330 	if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2331 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2332 	else
2333 		bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2334 }
2335 
bnx2x_init_dropless_fc(struct bnx2x * bp)2336 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2337 {
2338 	u32 pause_enabled = 0;
2339 
2340 	if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2341 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2342 			pause_enabled = 1;
2343 
2344 		REG_WR(bp, BAR_USTRORM_INTMEM +
2345 			   USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2346 		       pause_enabled);
2347 	}
2348 
2349 	DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2350 	   pause_enabled ? "enabled" : "disabled");
2351 }
2352 
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2353 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2354 {
2355 	int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2356 	u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2357 
2358 	if (!BP_NOMCP(bp)) {
2359 		bnx2x_set_requested_fc(bp);
2360 		bnx2x_acquire_phy_lock(bp);
2361 
2362 		if (load_mode == LOAD_DIAG) {
2363 			struct link_params *lp = &bp->link_params;
2364 			lp->loopback_mode = LOOPBACK_XGXS;
2365 			/* Prefer doing PHY loopback at highest speed */
2366 			if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2367 				if (lp->speed_cap_mask[cfx_idx] &
2368 				    PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2369 					lp->req_line_speed[cfx_idx] =
2370 					SPEED_20000;
2371 				else if (lp->speed_cap_mask[cfx_idx] &
2372 					    PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2373 						lp->req_line_speed[cfx_idx] =
2374 						SPEED_10000;
2375 				else
2376 					lp->req_line_speed[cfx_idx] =
2377 					SPEED_1000;
2378 			}
2379 		}
2380 
2381 		if (load_mode == LOAD_LOOPBACK_EXT) {
2382 			struct link_params *lp = &bp->link_params;
2383 			lp->loopback_mode = LOOPBACK_EXT;
2384 		}
2385 
2386 		rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2387 
2388 		bnx2x_release_phy_lock(bp);
2389 
2390 		bnx2x_init_dropless_fc(bp);
2391 
2392 		bnx2x_calc_fc_adv(bp);
2393 
2394 		if (bp->link_vars.link_up) {
2395 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2396 			bnx2x_link_report(bp);
2397 		}
2398 		queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2399 		bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2400 		return rc;
2401 	}
2402 	BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2403 	return -EINVAL;
2404 }
2405 
bnx2x_link_set(struct bnx2x * bp)2406 void bnx2x_link_set(struct bnx2x *bp)
2407 {
2408 	if (!BP_NOMCP(bp)) {
2409 		bnx2x_acquire_phy_lock(bp);
2410 		bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2411 		bnx2x_release_phy_lock(bp);
2412 
2413 		bnx2x_init_dropless_fc(bp);
2414 
2415 		bnx2x_calc_fc_adv(bp);
2416 	} else
2417 		BNX2X_ERR("Bootcode is missing - can not set link\n");
2418 }
2419 
bnx2x__link_reset(struct bnx2x * bp)2420 static void bnx2x__link_reset(struct bnx2x *bp)
2421 {
2422 	if (!BP_NOMCP(bp)) {
2423 		bnx2x_acquire_phy_lock(bp);
2424 		bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2425 		bnx2x_release_phy_lock(bp);
2426 	} else
2427 		BNX2X_ERR("Bootcode is missing - can not reset link\n");
2428 }
2429 
bnx2x_force_link_reset(struct bnx2x * bp)2430 void bnx2x_force_link_reset(struct bnx2x *bp)
2431 {
2432 	bnx2x_acquire_phy_lock(bp);
2433 	bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2434 	bnx2x_release_phy_lock(bp);
2435 }
2436 
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2437 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2438 {
2439 	u8 rc = 0;
2440 
2441 	if (!BP_NOMCP(bp)) {
2442 		bnx2x_acquire_phy_lock(bp);
2443 		rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2444 				     is_serdes);
2445 		bnx2x_release_phy_lock(bp);
2446 	} else
2447 		BNX2X_ERR("Bootcode is missing - can not test link\n");
2448 
2449 	return rc;
2450 }
2451 
2452 /* Calculates the sum of vn_min_rates.
2453    It's needed for further normalizing of the min_rates.
2454    Returns:
2455      sum of vn_min_rates.
2456        or
2457      0 - if all the min_rates are 0.
2458      In the later case fairness algorithm should be deactivated.
2459      If not all min_rates are zero then those that are zeroes will be set to 1.
2460  */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2461 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2462 				      struct cmng_init_input *input)
2463 {
2464 	int all_zero = 1;
2465 	int vn;
2466 
2467 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2468 		u32 vn_cfg = bp->mf_config[vn];
2469 		u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2470 				   FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2471 
2472 		/* Skip hidden vns */
2473 		if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2474 			vn_min_rate = 0;
2475 		/* If min rate is zero - set it to 1 */
2476 		else if (!vn_min_rate)
2477 			vn_min_rate = DEF_MIN_RATE;
2478 		else
2479 			all_zero = 0;
2480 
2481 		input->vnic_min_rate[vn] = vn_min_rate;
2482 	}
2483 
2484 	/* if ETS or all min rates are zeros - disable fairness */
2485 	if (BNX2X_IS_ETS_ENABLED(bp)) {
2486 		input->flags.cmng_enables &=
2487 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2488 		DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2489 	} else if (all_zero) {
2490 		input->flags.cmng_enables &=
2491 					~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2492 		DP(NETIF_MSG_IFUP,
2493 		   "All MIN values are zeroes fairness will be disabled\n");
2494 	} else
2495 		input->flags.cmng_enables |=
2496 					CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2497 }
2498 
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2499 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2500 				    struct cmng_init_input *input)
2501 {
2502 	u16 vn_max_rate;
2503 	u32 vn_cfg = bp->mf_config[vn];
2504 
2505 	if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2506 		vn_max_rate = 0;
2507 	else {
2508 		u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2509 
2510 		if (IS_MF_PERCENT_BW(bp)) {
2511 			/* maxCfg in percents of linkspeed */
2512 			vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2513 		} else /* SD modes */
2514 			/* maxCfg is absolute in 100Mb units */
2515 			vn_max_rate = maxCfg * 100;
2516 	}
2517 
2518 	DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2519 
2520 	input->vnic_max_rate[vn] = vn_max_rate;
2521 }
2522 
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2523 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2524 {
2525 	if (CHIP_REV_IS_SLOW(bp))
2526 		return CMNG_FNS_NONE;
2527 	if (IS_MF(bp))
2528 		return CMNG_FNS_MINMAX;
2529 
2530 	return CMNG_FNS_NONE;
2531 }
2532 
bnx2x_read_mf_cfg(struct bnx2x * bp)2533 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2534 {
2535 	int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2536 
2537 	if (BP_NOMCP(bp))
2538 		return; /* what should be the default value in this case */
2539 
2540 	/* For 2 port configuration the absolute function number formula
2541 	 * is:
2542 	 *      abs_func = 2 * vn + BP_PORT + BP_PATH
2543 	 *
2544 	 *      and there are 4 functions per port
2545 	 *
2546 	 * For 4 port configuration it is
2547 	 *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2548 	 *
2549 	 *      and there are 2 functions per port
2550 	 */
2551 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2552 		int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2553 
2554 		if (func >= E1H_FUNC_MAX)
2555 			break;
2556 
2557 		bp->mf_config[vn] =
2558 			MF_CFG_RD(bp, func_mf_config[func].config);
2559 	}
2560 	if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2561 		DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2562 		bp->flags |= MF_FUNC_DIS;
2563 	} else {
2564 		DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2565 		bp->flags &= ~MF_FUNC_DIS;
2566 	}
2567 }
2568 
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2569 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2570 {
2571 	struct cmng_init_input input;
2572 	memset(&input, 0, sizeof(struct cmng_init_input));
2573 
2574 	input.port_rate = bp->link_vars.line_speed;
2575 
2576 	if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2577 		int vn;
2578 
2579 		/* read mf conf from shmem */
2580 		if (read_cfg)
2581 			bnx2x_read_mf_cfg(bp);
2582 
2583 		/* vn_weight_sum and enable fairness if not 0 */
2584 		bnx2x_calc_vn_min(bp, &input);
2585 
2586 		/* calculate and set min-max rate for each vn */
2587 		if (bp->port.pmf)
2588 			for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2589 				bnx2x_calc_vn_max(bp, vn, &input);
2590 
2591 		/* always enable rate shaping and fairness */
2592 		input.flags.cmng_enables |=
2593 					CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2594 
2595 		bnx2x_init_cmng(&input, &bp->cmng);
2596 		return;
2597 	}
2598 
2599 	/* rate shaping and fairness are disabled */
2600 	DP(NETIF_MSG_IFUP,
2601 	   "rate shaping and fairness are disabled\n");
2602 }
2603 
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2604 static void storm_memset_cmng(struct bnx2x *bp,
2605 			      struct cmng_init *cmng,
2606 			      u8 port)
2607 {
2608 	int vn;
2609 	size_t size = sizeof(struct cmng_struct_per_port);
2610 
2611 	u32 addr = BAR_XSTRORM_INTMEM +
2612 			XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2613 
2614 	__storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2615 
2616 	for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2617 		int func = func_by_vn(bp, vn);
2618 
2619 		addr = BAR_XSTRORM_INTMEM +
2620 		       XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2621 		size = sizeof(struct rate_shaping_vars_per_vn);
2622 		__storm_memset_struct(bp, addr, size,
2623 				      (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2624 
2625 		addr = BAR_XSTRORM_INTMEM +
2626 		       XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2627 		size = sizeof(struct fairness_vars_per_vn);
2628 		__storm_memset_struct(bp, addr, size,
2629 				      (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2630 	}
2631 }
2632 
2633 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2634 void bnx2x_set_local_cmng(struct bnx2x *bp)
2635 {
2636 	int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2637 
2638 	if (cmng_fns != CMNG_FNS_NONE) {
2639 		bnx2x_cmng_fns_init(bp, false, cmng_fns);
2640 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2641 	} else {
2642 		/* rate shaping and fairness are disabled */
2643 		DP(NETIF_MSG_IFUP,
2644 		   "single function mode without fairness\n");
2645 	}
2646 }
2647 
2648 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2649 static void bnx2x_link_attn(struct bnx2x *bp)
2650 {
2651 	/* Make sure that we are synced with the current statistics */
2652 	bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2653 
2654 	bnx2x_link_update(&bp->link_params, &bp->link_vars);
2655 
2656 	bnx2x_init_dropless_fc(bp);
2657 
2658 	if (bp->link_vars.link_up) {
2659 
2660 		if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2661 			struct host_port_stats *pstats;
2662 
2663 			pstats = bnx2x_sp(bp, port_stats);
2664 			/* reset old mac stats */
2665 			memset(&(pstats->mac_stx[0]), 0,
2666 			       sizeof(struct mac_stx));
2667 		}
2668 		if (bp->state == BNX2X_STATE_OPEN)
2669 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2670 	}
2671 
2672 	if (bp->link_vars.link_up && bp->link_vars.line_speed)
2673 		bnx2x_set_local_cmng(bp);
2674 
2675 	__bnx2x_link_report(bp);
2676 
2677 	if (IS_MF(bp))
2678 		bnx2x_link_sync_notify(bp);
2679 }
2680 
bnx2x__link_status_update(struct bnx2x * bp)2681 void bnx2x__link_status_update(struct bnx2x *bp)
2682 {
2683 	if (bp->state != BNX2X_STATE_OPEN)
2684 		return;
2685 
2686 	/* read updated dcb configuration */
2687 	if (IS_PF(bp)) {
2688 		bnx2x_dcbx_pmf_update(bp);
2689 		bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2690 		if (bp->link_vars.link_up)
2691 			bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2692 		else
2693 			bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2694 			/* indicate link status */
2695 		bnx2x_link_report(bp);
2696 
2697 	} else { /* VF */
2698 		bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2699 					  SUPPORTED_10baseT_Full |
2700 					  SUPPORTED_100baseT_Half |
2701 					  SUPPORTED_100baseT_Full |
2702 					  SUPPORTED_1000baseT_Full |
2703 					  SUPPORTED_2500baseX_Full |
2704 					  SUPPORTED_10000baseT_Full |
2705 					  SUPPORTED_TP |
2706 					  SUPPORTED_FIBRE |
2707 					  SUPPORTED_Autoneg |
2708 					  SUPPORTED_Pause |
2709 					  SUPPORTED_Asym_Pause);
2710 		bp->port.advertising[0] = bp->port.supported[0];
2711 
2712 		bp->link_params.bp = bp;
2713 		bp->link_params.port = BP_PORT(bp);
2714 		bp->link_params.req_duplex[0] = DUPLEX_FULL;
2715 		bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2716 		bp->link_params.req_line_speed[0] = SPEED_10000;
2717 		bp->link_params.speed_cap_mask[0] = 0x7f0000;
2718 		bp->link_params.switch_cfg = SWITCH_CFG_10G;
2719 		bp->link_vars.mac_type = MAC_TYPE_BMAC;
2720 		bp->link_vars.line_speed = SPEED_10000;
2721 		bp->link_vars.link_status =
2722 			(LINK_STATUS_LINK_UP |
2723 			 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2724 		bp->link_vars.link_up = 1;
2725 		bp->link_vars.duplex = DUPLEX_FULL;
2726 		bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2727 		__bnx2x_link_report(bp);
2728 
2729 		bnx2x_sample_bulletin(bp);
2730 
2731 		/* if bulletin board did not have an update for link status
2732 		 * __bnx2x_link_report will report current status
2733 		 * but it will NOT duplicate report in case of already reported
2734 		 * during sampling bulletin board.
2735 		 */
2736 		bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2737 	}
2738 }
2739 
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2740 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2741 				  u16 vlan_val, u8 allowed_prio)
2742 {
2743 	struct bnx2x_func_state_params func_params = {NULL};
2744 	struct bnx2x_func_afex_update_params *f_update_params =
2745 		&func_params.params.afex_update;
2746 
2747 	func_params.f_obj = &bp->func_obj;
2748 	func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2749 
2750 	/* no need to wait for RAMROD completion, so don't
2751 	 * set RAMROD_COMP_WAIT flag
2752 	 */
2753 
2754 	f_update_params->vif_id = vifid;
2755 	f_update_params->afex_default_vlan = vlan_val;
2756 	f_update_params->allowed_priorities = allowed_prio;
2757 
2758 	/* if ramrod can not be sent, response to MCP immediately */
2759 	if (bnx2x_func_state_change(bp, &func_params) < 0)
2760 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2761 
2762 	return 0;
2763 }
2764 
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2765 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2766 					  u16 vif_index, u8 func_bit_map)
2767 {
2768 	struct bnx2x_func_state_params func_params = {NULL};
2769 	struct bnx2x_func_afex_viflists_params *update_params =
2770 		&func_params.params.afex_viflists;
2771 	int rc;
2772 	u32 drv_msg_code;
2773 
2774 	/* validate only LIST_SET and LIST_GET are received from switch */
2775 	if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2776 		BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2777 			  cmd_type);
2778 
2779 	func_params.f_obj = &bp->func_obj;
2780 	func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2781 
2782 	/* set parameters according to cmd_type */
2783 	update_params->afex_vif_list_command = cmd_type;
2784 	update_params->vif_list_index = vif_index;
2785 	update_params->func_bit_map =
2786 		(cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2787 	update_params->func_to_clear = 0;
2788 	drv_msg_code =
2789 		(cmd_type == VIF_LIST_RULE_GET) ?
2790 		DRV_MSG_CODE_AFEX_LISTGET_ACK :
2791 		DRV_MSG_CODE_AFEX_LISTSET_ACK;
2792 
2793 	/* if ramrod can not be sent, respond to MCP immediately for
2794 	 * SET and GET requests (other are not triggered from MCP)
2795 	 */
2796 	rc = bnx2x_func_state_change(bp, &func_params);
2797 	if (rc < 0)
2798 		bnx2x_fw_command(bp, drv_msg_code, 0);
2799 
2800 	return 0;
2801 }
2802 
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2803 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2804 {
2805 	struct afex_stats afex_stats;
2806 	u32 func = BP_ABS_FUNC(bp);
2807 	u32 mf_config;
2808 	u16 vlan_val;
2809 	u32 vlan_prio;
2810 	u16 vif_id;
2811 	u8 allowed_prio;
2812 	u8 vlan_mode;
2813 	u32 addr_to_write, vifid, addrs, stats_type, i;
2814 
2815 	if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2816 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2817 		DP(BNX2X_MSG_MCP,
2818 		   "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2819 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2820 	}
2821 
2822 	if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2823 		vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2824 		addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2825 		DP(BNX2X_MSG_MCP,
2826 		   "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2827 		   vifid, addrs);
2828 		bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2829 					       addrs);
2830 	}
2831 
2832 	if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2833 		addr_to_write = SHMEM2_RD(bp,
2834 			afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2835 		stats_type = SHMEM2_RD(bp,
2836 			afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2837 
2838 		DP(BNX2X_MSG_MCP,
2839 		   "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2840 		   addr_to_write);
2841 
2842 		bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2843 
2844 		/* write response to scratchpad, for MCP */
2845 		for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2846 			REG_WR(bp, addr_to_write + i*sizeof(u32),
2847 			       *(((u32 *)(&afex_stats))+i));
2848 
2849 		/* send ack message to MCP */
2850 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2851 	}
2852 
2853 	if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2854 		mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2855 		bp->mf_config[BP_VN(bp)] = mf_config;
2856 		DP(BNX2X_MSG_MCP,
2857 		   "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2858 		   mf_config);
2859 
2860 		/* if VIF_SET is "enabled" */
2861 		if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2862 			/* set rate limit directly to internal RAM */
2863 			struct cmng_init_input cmng_input;
2864 			struct rate_shaping_vars_per_vn m_rs_vn;
2865 			size_t size = sizeof(struct rate_shaping_vars_per_vn);
2866 			u32 addr = BAR_XSTRORM_INTMEM +
2867 			    XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2868 
2869 			bp->mf_config[BP_VN(bp)] = mf_config;
2870 
2871 			bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2872 			m_rs_vn.vn_counter.rate =
2873 				cmng_input.vnic_max_rate[BP_VN(bp)];
2874 			m_rs_vn.vn_counter.quota =
2875 				(m_rs_vn.vn_counter.rate *
2876 				 RS_PERIODIC_TIMEOUT_USEC) / 8;
2877 
2878 			__storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2879 
2880 			/* read relevant values from mf_cfg struct in shmem */
2881 			vif_id =
2882 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2883 				 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2884 				FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2885 			vlan_val =
2886 				(MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2887 				 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2888 				FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2889 			vlan_prio = (mf_config &
2890 				     FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2891 				    FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2892 			vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2893 			vlan_mode =
2894 				(MF_CFG_RD(bp,
2895 					   func_mf_config[func].afex_config) &
2896 				 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2897 				FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2898 			allowed_prio =
2899 				(MF_CFG_RD(bp,
2900 					   func_mf_config[func].afex_config) &
2901 				 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2902 				FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2903 
2904 			/* send ramrod to FW, return in case of failure */
2905 			if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2906 						   allowed_prio))
2907 				return;
2908 
2909 			bp->afex_def_vlan_tag = vlan_val;
2910 			bp->afex_vlan_mode = vlan_mode;
2911 		} else {
2912 			/* notify link down because BP->flags is disabled */
2913 			bnx2x_link_report(bp);
2914 
2915 			/* send INVALID VIF ramrod to FW */
2916 			bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2917 
2918 			/* Reset the default afex VLAN */
2919 			bp->afex_def_vlan_tag = -1;
2920 		}
2921 	}
2922 }
2923 
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2924 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2925 {
2926 	struct bnx2x_func_switch_update_params *switch_update_params;
2927 	struct bnx2x_func_state_params func_params;
2928 
2929 	memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2930 	switch_update_params = &func_params.params.switch_update;
2931 	func_params.f_obj = &bp->func_obj;
2932 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2933 
2934 	/* Prepare parameters for function state transitions */
2935 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2936 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2937 
2938 	if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2939 		int func = BP_ABS_FUNC(bp);
2940 		u32 val;
2941 
2942 		/* Re-learn the S-tag from shmem */
2943 		val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2944 				FUNC_MF_CFG_E1HOV_TAG_MASK;
2945 		if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2946 			bp->mf_ov = val;
2947 		} else {
2948 			BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2949 			goto fail;
2950 		}
2951 
2952 		/* Configure new S-tag in LLH */
2953 		REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2954 		       bp->mf_ov);
2955 
2956 		/* Send Ramrod to update FW of change */
2957 		__set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2958 			  &switch_update_params->changes);
2959 		switch_update_params->vlan = bp->mf_ov;
2960 
2961 		if (bnx2x_func_state_change(bp, &func_params) < 0) {
2962 			BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2963 				  bp->mf_ov);
2964 			goto fail;
2965 		} else {
2966 			DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2967 			   bp->mf_ov);
2968 		}
2969 	} else {
2970 		goto fail;
2971 	}
2972 
2973 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2974 	return;
2975 fail:
2976 	bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2977 }
2978 
bnx2x_pmf_update(struct bnx2x * bp)2979 static void bnx2x_pmf_update(struct bnx2x *bp)
2980 {
2981 	int port = BP_PORT(bp);
2982 	u32 val;
2983 
2984 	bp->port.pmf = 1;
2985 	DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2986 
2987 	/*
2988 	 * We need the mb() to ensure the ordering between the writing to
2989 	 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2990 	 */
2991 	smp_mb();
2992 
2993 	/* queue a periodic task */
2994 	queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2995 
2996 	bnx2x_dcbx_pmf_update(bp);
2997 
2998 	/* enable nig attention */
2999 	val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3000 	if (bp->common.int_block == INT_BLOCK_HC) {
3001 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3002 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3003 	} else if (!CHIP_IS_E1x(bp)) {
3004 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3005 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3006 	}
3007 
3008 	bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3009 }
3010 
3011 /* end of Link */
3012 
3013 /* slow path */
3014 
3015 /*
3016  * General service functions
3017  */
3018 
3019 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3020 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3021 {
3022 	int mb_idx = BP_FW_MB_IDX(bp);
3023 	u32 seq;
3024 	u32 rc = 0;
3025 	u32 cnt = 1;
3026 	u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3027 
3028 	mutex_lock(&bp->fw_mb_mutex);
3029 	seq = ++bp->fw_seq;
3030 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3031 	SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3032 
3033 	DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3034 			(command | seq), param);
3035 
3036 	do {
3037 		/* let the FW do it's magic ... */
3038 		msleep(delay);
3039 
3040 		rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3041 
3042 		/* Give the FW up to 5 second (500*10ms) */
3043 	} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3044 
3045 	DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3046 	   cnt*delay, rc, seq);
3047 
3048 	/* is this a reply to our command? */
3049 	if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3050 		rc &= FW_MSG_CODE_MASK;
3051 	else {
3052 		/* FW BUG! */
3053 		BNX2X_ERR("FW failed to respond!\n");
3054 		bnx2x_fw_dump(bp);
3055 		rc = 0;
3056 	}
3057 	mutex_unlock(&bp->fw_mb_mutex);
3058 
3059 	return rc;
3060 }
3061 
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3062 static void storm_memset_func_cfg(struct bnx2x *bp,
3063 				 struct tstorm_eth_function_common_config *tcfg,
3064 				 u16 abs_fid)
3065 {
3066 	size_t size = sizeof(struct tstorm_eth_function_common_config);
3067 
3068 	u32 addr = BAR_TSTRORM_INTMEM +
3069 			TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3070 
3071 	__storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3072 }
3073 
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3074 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3075 {
3076 	if (CHIP_IS_E1x(bp)) {
3077 		struct tstorm_eth_function_common_config tcfg = {0};
3078 
3079 		storm_memset_func_cfg(bp, &tcfg, p->func_id);
3080 	}
3081 
3082 	/* Enable the function in the FW */
3083 	storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3084 	storm_memset_func_en(bp, p->func_id, 1);
3085 
3086 	/* spq */
3087 	if (p->spq_active) {
3088 		storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3089 		REG_WR(bp, XSEM_REG_FAST_MEMORY +
3090 		       XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3091 	}
3092 }
3093 
3094 /**
3095  * bnx2x_get_common_flags - Return common flags
3096  *
3097  * @bp:		device handle
3098  * @fp:		queue handle
3099  * @zero_stats:	TRUE if statistics zeroing is needed
3100  *
3101  * Return the flags that are common for the Tx-only and not normal connections.
3102  */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3103 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3104 					    struct bnx2x_fastpath *fp,
3105 					    bool zero_stats)
3106 {
3107 	unsigned long flags = 0;
3108 
3109 	/* PF driver will always initialize the Queue to an ACTIVE state */
3110 	__set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3111 
3112 	/* tx only connections collect statistics (on the same index as the
3113 	 * parent connection). The statistics are zeroed when the parent
3114 	 * connection is initialized.
3115 	 */
3116 
3117 	__set_bit(BNX2X_Q_FLG_STATS, &flags);
3118 	if (zero_stats)
3119 		__set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3120 
3121 	if (bp->flags & TX_SWITCHING)
3122 		__set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3123 
3124 	__set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3125 	__set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3126 
3127 #ifdef BNX2X_STOP_ON_ERROR
3128 	__set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3129 #endif
3130 
3131 	return flags;
3132 }
3133 
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3134 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3135 				       struct bnx2x_fastpath *fp,
3136 				       bool leading)
3137 {
3138 	unsigned long flags = 0;
3139 
3140 	/* calculate other queue flags */
3141 	if (IS_MF_SD(bp))
3142 		__set_bit(BNX2X_Q_FLG_OV, &flags);
3143 
3144 	if (IS_FCOE_FP(fp)) {
3145 		__set_bit(BNX2X_Q_FLG_FCOE, &flags);
3146 		/* For FCoE - force usage of default priority (for afex) */
3147 		__set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3148 	}
3149 
3150 	if (fp->mode != TPA_MODE_DISABLED) {
3151 		__set_bit(BNX2X_Q_FLG_TPA, &flags);
3152 		__set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3153 		if (fp->mode == TPA_MODE_GRO)
3154 			__set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3155 	}
3156 
3157 	if (leading) {
3158 		__set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3159 		__set_bit(BNX2X_Q_FLG_MCAST, &flags);
3160 	}
3161 
3162 	/* Always set HW VLAN stripping */
3163 	__set_bit(BNX2X_Q_FLG_VLAN, &flags);
3164 
3165 	/* configure silent vlan removal */
3166 	if (IS_MF_AFEX(bp))
3167 		__set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3168 
3169 	return flags | bnx2x_get_common_flags(bp, fp, true);
3170 }
3171 
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3172 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3173 	struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3174 	u8 cos)
3175 {
3176 	gen_init->stat_id = bnx2x_stats_id(fp);
3177 	gen_init->spcl_id = fp->cl_id;
3178 
3179 	/* Always use mini-jumbo MTU for FCoE L2 ring */
3180 	if (IS_FCOE_FP(fp))
3181 		gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3182 	else
3183 		gen_init->mtu = bp->dev->mtu;
3184 
3185 	gen_init->cos = cos;
3186 
3187 	gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3188 }
3189 
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3190 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3191 	struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3192 	struct bnx2x_rxq_setup_params *rxq_init)
3193 {
3194 	u8 max_sge = 0;
3195 	u16 sge_sz = 0;
3196 	u16 tpa_agg_size = 0;
3197 
3198 	if (fp->mode != TPA_MODE_DISABLED) {
3199 		pause->sge_th_lo = SGE_TH_LO(bp);
3200 		pause->sge_th_hi = SGE_TH_HI(bp);
3201 
3202 		/* validate SGE ring has enough to cross high threshold */
3203 		WARN_ON(bp->dropless_fc &&
3204 				pause->sge_th_hi + FW_PREFETCH_CNT >
3205 				MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3206 
3207 		tpa_agg_size = TPA_AGG_SIZE;
3208 		max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3209 			SGE_PAGE_SHIFT;
3210 		max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3211 			  (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3212 		sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3213 	}
3214 
3215 	/* pause - not for e1 */
3216 	if (!CHIP_IS_E1(bp)) {
3217 		pause->bd_th_lo = BD_TH_LO(bp);
3218 		pause->bd_th_hi = BD_TH_HI(bp);
3219 
3220 		pause->rcq_th_lo = RCQ_TH_LO(bp);
3221 		pause->rcq_th_hi = RCQ_TH_HI(bp);
3222 		/*
3223 		 * validate that rings have enough entries to cross
3224 		 * high thresholds
3225 		 */
3226 		WARN_ON(bp->dropless_fc &&
3227 				pause->bd_th_hi + FW_PREFETCH_CNT >
3228 				bp->rx_ring_size);
3229 		WARN_ON(bp->dropless_fc &&
3230 				pause->rcq_th_hi + FW_PREFETCH_CNT >
3231 				NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3232 
3233 		pause->pri_map = 1;
3234 	}
3235 
3236 	/* rxq setup */
3237 	rxq_init->dscr_map = fp->rx_desc_mapping;
3238 	rxq_init->sge_map = fp->rx_sge_mapping;
3239 	rxq_init->rcq_map = fp->rx_comp_mapping;
3240 	rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3241 
3242 	/* This should be a maximum number of data bytes that may be
3243 	 * placed on the BD (not including paddings).
3244 	 */
3245 	rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3246 			   BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3247 
3248 	rxq_init->cl_qzone_id = fp->cl_qzone_id;
3249 	rxq_init->tpa_agg_sz = tpa_agg_size;
3250 	rxq_init->sge_buf_sz = sge_sz;
3251 	rxq_init->max_sges_pkt = max_sge;
3252 	rxq_init->rss_engine_id = BP_FUNC(bp);
3253 	rxq_init->mcast_engine_id = BP_FUNC(bp);
3254 
3255 	/* Maximum number or simultaneous TPA aggregation for this Queue.
3256 	 *
3257 	 * For PF Clients it should be the maximum available number.
3258 	 * VF driver(s) may want to define it to a smaller value.
3259 	 */
3260 	rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3261 
3262 	rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3263 	rxq_init->fw_sb_id = fp->fw_sb_id;
3264 
3265 	if (IS_FCOE_FP(fp))
3266 		rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3267 	else
3268 		rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3269 	/* configure silent vlan removal
3270 	 * if multi function mode is afex, then mask default vlan
3271 	 */
3272 	if (IS_MF_AFEX(bp)) {
3273 		rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3274 		rxq_init->silent_removal_mask = VLAN_VID_MASK;
3275 	}
3276 }
3277 
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3278 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3279 	struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3280 	u8 cos)
3281 {
3282 	txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3283 	txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3284 	txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3285 	txq_init->fw_sb_id = fp->fw_sb_id;
3286 
3287 	/*
3288 	 * set the tss leading client id for TX classification ==
3289 	 * leading RSS client id
3290 	 */
3291 	txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3292 
3293 	if (IS_FCOE_FP(fp)) {
3294 		txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3295 		txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3296 	}
3297 }
3298 
bnx2x_pf_init(struct bnx2x * bp)3299 static void bnx2x_pf_init(struct bnx2x *bp)
3300 {
3301 	struct bnx2x_func_init_params func_init = {0};
3302 	struct event_ring_data eq_data = { {0} };
3303 
3304 	if (!CHIP_IS_E1x(bp)) {
3305 		/* reset IGU PF statistics: MSIX + ATTN */
3306 		/* PF */
3307 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3308 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3309 			   (CHIP_MODE_IS_4_PORT(bp) ?
3310 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311 		/* ATTN */
3312 		REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3313 			   BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3314 			   BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3315 			   (CHIP_MODE_IS_4_PORT(bp) ?
3316 				BP_FUNC(bp) : BP_VN(bp))*4, 0);
3317 	}
3318 
3319 	func_init.spq_active = true;
3320 	func_init.pf_id = BP_FUNC(bp);
3321 	func_init.func_id = BP_FUNC(bp);
3322 	func_init.spq_map = bp->spq_mapping;
3323 	func_init.spq_prod = bp->spq_prod_idx;
3324 
3325 	bnx2x_func_init(bp, &func_init);
3326 
3327 	memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3328 
3329 	/*
3330 	 * Congestion management values depend on the link rate
3331 	 * There is no active link so initial link rate is set to 10 Gbps.
3332 	 * When the link comes up The congestion management values are
3333 	 * re-calculated according to the actual link rate.
3334 	 */
3335 	bp->link_vars.line_speed = SPEED_10000;
3336 	bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3337 
3338 	/* Only the PMF sets the HW */
3339 	if (bp->port.pmf)
3340 		storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3341 
3342 	/* init Event Queue - PCI bus guarantees correct endianity*/
3343 	eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3344 	eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3345 	eq_data.producer = bp->eq_prod;
3346 	eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3347 	eq_data.sb_id = DEF_SB_ID;
3348 	storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3349 }
3350 
bnx2x_e1h_disable(struct bnx2x * bp)3351 static void bnx2x_e1h_disable(struct bnx2x *bp)
3352 {
3353 	int port = BP_PORT(bp);
3354 
3355 	bnx2x_tx_disable(bp);
3356 
3357 	REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3358 }
3359 
bnx2x_e1h_enable(struct bnx2x * bp)3360 static void bnx2x_e1h_enable(struct bnx2x *bp)
3361 {
3362 	int port = BP_PORT(bp);
3363 
3364 	if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3365 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3366 
3367 	/* Tx queue should be only re-enabled */
3368 	netif_tx_wake_all_queues(bp->dev);
3369 
3370 	/*
3371 	 * Should not call netif_carrier_on since it will be called if the link
3372 	 * is up when checking for link state
3373 	 */
3374 }
3375 
3376 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3377 
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3378 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3379 {
3380 	struct eth_stats_info *ether_stat =
3381 		&bp->slowpath->drv_info_to_mcp.ether_stat;
3382 	struct bnx2x_vlan_mac_obj *mac_obj =
3383 		&bp->sp_objs->mac_obj;
3384 	int i;
3385 
3386 	strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3387 		ETH_STAT_INFO_VERSION_LEN);
3388 
3389 	/* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3390 	 * mac_local field in ether_stat struct. The base address is offset by 2
3391 	 * bytes to account for the field being 8 bytes but a mac address is
3392 	 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3393 	 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3394 	 * allocated by the ether_stat struct, so the macs will land in their
3395 	 * proper positions.
3396 	 */
3397 	for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3398 		memset(ether_stat->mac_local + i, 0,
3399 		       sizeof(ether_stat->mac_local[0]));
3400 	mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3401 				DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3402 				ether_stat->mac_local + MAC_PAD, MAC_PAD,
3403 				ETH_ALEN);
3404 	ether_stat->mtu_size = bp->dev->mtu;
3405 	if (bp->dev->features & NETIF_F_RXCSUM)
3406 		ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3407 	if (bp->dev->features & NETIF_F_TSO)
3408 		ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3409 	ether_stat->feature_flags |= bp->common.boot_mode;
3410 
3411 	ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3412 
3413 	ether_stat->txq_size = bp->tx_ring_size;
3414 	ether_stat->rxq_size = bp->rx_ring_size;
3415 
3416 #ifdef CONFIG_BNX2X_SRIOV
3417 	ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3418 #endif
3419 }
3420 
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3421 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3422 {
3423 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3424 	struct fcoe_stats_info *fcoe_stat =
3425 		&bp->slowpath->drv_info_to_mcp.fcoe_stat;
3426 
3427 	if (!CNIC_LOADED(bp))
3428 		return;
3429 
3430 	memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3431 
3432 	fcoe_stat->qos_priority =
3433 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3434 
3435 	/* insert FCoE stats from ramrod response */
3436 	if (!NO_FCOE(bp)) {
3437 		struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3438 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3439 			tstorm_queue_statistics;
3440 
3441 		struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3442 			&bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3443 			xstorm_queue_statistics;
3444 
3445 		struct fcoe_statistics_params *fw_fcoe_stat =
3446 			&bp->fw_stats_data->fcoe;
3447 
3448 		ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3449 			  fcoe_stat->rx_bytes_lo,
3450 			  fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3451 
3452 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3454 			  fcoe_stat->rx_bytes_lo,
3455 			  fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3456 
3457 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3458 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3459 			  fcoe_stat->rx_bytes_lo,
3460 			  fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3461 
3462 		ADD_64_LE(fcoe_stat->rx_bytes_hi,
3463 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3464 			  fcoe_stat->rx_bytes_lo,
3465 			  fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3466 
3467 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468 			  fcoe_stat->rx_frames_lo,
3469 			  fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3470 
3471 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472 			  fcoe_stat->rx_frames_lo,
3473 			  fcoe_q_tstorm_stats->rcv_ucast_pkts);
3474 
3475 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3476 			  fcoe_stat->rx_frames_lo,
3477 			  fcoe_q_tstorm_stats->rcv_bcast_pkts);
3478 
3479 		ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3480 			  fcoe_stat->rx_frames_lo,
3481 			  fcoe_q_tstorm_stats->rcv_mcast_pkts);
3482 
3483 		ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3484 			  fcoe_stat->tx_bytes_lo,
3485 			  fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3486 
3487 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 			  fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3489 			  fcoe_stat->tx_bytes_lo,
3490 			  fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3491 
3492 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3493 			  fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3494 			  fcoe_stat->tx_bytes_lo,
3495 			  fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3496 
3497 		ADD_64_LE(fcoe_stat->tx_bytes_hi,
3498 			  fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3499 			  fcoe_stat->tx_bytes_lo,
3500 			  fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3501 
3502 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503 			  fcoe_stat->tx_frames_lo,
3504 			  fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3505 
3506 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507 			  fcoe_stat->tx_frames_lo,
3508 			  fcoe_q_xstorm_stats->ucast_pkts_sent);
3509 
3510 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3511 			  fcoe_stat->tx_frames_lo,
3512 			  fcoe_q_xstorm_stats->bcast_pkts_sent);
3513 
3514 		ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3515 			  fcoe_stat->tx_frames_lo,
3516 			  fcoe_q_xstorm_stats->mcast_pkts_sent);
3517 	}
3518 
3519 	/* ask L5 driver to add data to the struct */
3520 	bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3521 }
3522 
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3523 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3524 {
3525 	struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3526 	struct iscsi_stats_info *iscsi_stat =
3527 		&bp->slowpath->drv_info_to_mcp.iscsi_stat;
3528 
3529 	if (!CNIC_LOADED(bp))
3530 		return;
3531 
3532 	memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3533 	       ETH_ALEN);
3534 
3535 	iscsi_stat->qos_priority =
3536 		app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3537 
3538 	/* ask L5 driver to add data to the struct */
3539 	bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3540 }
3541 
3542 /* called due to MCP event (on pmf):
3543  *	reread new bandwidth configuration
3544  *	configure FW
3545  *	notify others function about the change
3546  */
bnx2x_config_mf_bw(struct bnx2x * bp)3547 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3548 {
3549 	/* Workaround for MFW bug.
3550 	 * MFW is not supposed to generate BW attention in
3551 	 * single function mode.
3552 	 */
3553 	if (!IS_MF(bp)) {
3554 		DP(BNX2X_MSG_MCP,
3555 		   "Ignoring MF BW config in single function mode\n");
3556 		return;
3557 	}
3558 
3559 	if (bp->link_vars.link_up) {
3560 		bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3561 		bnx2x_link_sync_notify(bp);
3562 	}
3563 	storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3564 }
3565 
bnx2x_set_mf_bw(struct bnx2x * bp)3566 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3567 {
3568 	bnx2x_config_mf_bw(bp);
3569 	bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3570 }
3571 
bnx2x_handle_eee_event(struct bnx2x * bp)3572 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3573 {
3574 	DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3575 	bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3576 }
3577 
3578 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20)
3579 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25)
3580 
bnx2x_handle_drv_info_req(struct bnx2x * bp)3581 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3582 {
3583 	enum drv_info_opcode op_code;
3584 	u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3585 	bool release = false;
3586 	int wait;
3587 
3588 	/* if drv_info version supported by MFW doesn't match - send NACK */
3589 	if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3590 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3591 		return;
3592 	}
3593 
3594 	op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3595 		  DRV_INFO_CONTROL_OP_CODE_SHIFT;
3596 
3597 	/* Must prevent other flows from accessing drv_info_to_mcp */
3598 	mutex_lock(&bp->drv_info_mutex);
3599 
3600 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3601 	       sizeof(union drv_info_to_mcp));
3602 
3603 	switch (op_code) {
3604 	case ETH_STATS_OPCODE:
3605 		bnx2x_drv_info_ether_stat(bp);
3606 		break;
3607 	case FCOE_STATS_OPCODE:
3608 		bnx2x_drv_info_fcoe_stat(bp);
3609 		break;
3610 	case ISCSI_STATS_OPCODE:
3611 		bnx2x_drv_info_iscsi_stat(bp);
3612 		break;
3613 	default:
3614 		/* if op code isn't supported - send NACK */
3615 		bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3616 		goto out;
3617 	}
3618 
3619 	/* if we got drv_info attn from MFW then these fields are defined in
3620 	 * shmem2 for sure
3621 	 */
3622 	SHMEM2_WR(bp, drv_info_host_addr_lo,
3623 		U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3624 	SHMEM2_WR(bp, drv_info_host_addr_hi,
3625 		U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626 
3627 	bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3628 
3629 	/* Since possible management wants both this and get_driver_version
3630 	 * need to wait until management notifies us it finished utilizing
3631 	 * the buffer.
3632 	 */
3633 	if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3634 		DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3635 	} else if (!bp->drv_info_mng_owner) {
3636 		u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3637 
3638 		for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3639 			u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3640 
3641 			/* Management is done; need to clear indication */
3642 			if (indication & bit) {
3643 				SHMEM2_WR(bp, mfw_drv_indication,
3644 					  indication & ~bit);
3645 				release = true;
3646 				break;
3647 			}
3648 
3649 			msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3650 		}
3651 	}
3652 	if (!release) {
3653 		DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3654 		bp->drv_info_mng_owner = true;
3655 	}
3656 
3657 out:
3658 	mutex_unlock(&bp->drv_info_mutex);
3659 }
3660 
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3661 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3662 {
3663 	u8 vals[4];
3664 	int i = 0;
3665 
3666 	if (bnx2x_format) {
3667 		i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3668 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3669 		if (i > 0)
3670 			vals[0] -= '0';
3671 	} else {
3672 		i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3673 			   &vals[0], &vals[1], &vals[2], &vals[3]);
3674 	}
3675 
3676 	while (i < 4)
3677 		vals[i++] = 0;
3678 
3679 	return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3680 }
3681 
bnx2x_update_mng_version(struct bnx2x * bp)3682 void bnx2x_update_mng_version(struct bnx2x *bp)
3683 {
3684 	u32 iscsiver = DRV_VER_NOT_LOADED;
3685 	u32 fcoever = DRV_VER_NOT_LOADED;
3686 	u32 ethver = DRV_VER_NOT_LOADED;
3687 	int idx = BP_FW_MB_IDX(bp);
3688 	u8 *version;
3689 
3690 	if (!SHMEM2_HAS(bp, func_os_drv_ver))
3691 		return;
3692 
3693 	mutex_lock(&bp->drv_info_mutex);
3694 	/* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3695 	if (bp->drv_info_mng_owner)
3696 		goto out;
3697 
3698 	if (bp->state != BNX2X_STATE_OPEN)
3699 		goto out;
3700 
3701 	/* Parse ethernet driver version */
3702 	ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3703 	if (!CNIC_LOADED(bp))
3704 		goto out;
3705 
3706 	/* Try getting storage driver version via cnic */
3707 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3708 	       sizeof(union drv_info_to_mcp));
3709 	bnx2x_drv_info_iscsi_stat(bp);
3710 	version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3711 	iscsiver = bnx2x_update_mng_version_utility(version, false);
3712 
3713 	memset(&bp->slowpath->drv_info_to_mcp, 0,
3714 	       sizeof(union drv_info_to_mcp));
3715 	bnx2x_drv_info_fcoe_stat(bp);
3716 	version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3717 	fcoever = bnx2x_update_mng_version_utility(version, false);
3718 
3719 out:
3720 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3721 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3722 	SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3723 
3724 	mutex_unlock(&bp->drv_info_mutex);
3725 
3726 	DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3727 	   ethver, iscsiver, fcoever);
3728 }
3729 
bnx2x_update_mfw_dump(struct bnx2x * bp)3730 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3731 {
3732 	u32 drv_ver;
3733 	u32 valid_dump;
3734 
3735 	if (!SHMEM2_HAS(bp, drv_info))
3736 		return;
3737 
3738 	/* Update Driver load time, possibly broken in y2038 */
3739 	SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3740 
3741 	drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3742 	SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3743 
3744 	SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3745 
3746 	/* Check & notify On-Chip dump. */
3747 	valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3748 
3749 	if (valid_dump & FIRST_DUMP_VALID)
3750 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3751 
3752 	if (valid_dump & SECOND_DUMP_VALID)
3753 		DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3754 }
3755 
bnx2x_oem_event(struct bnx2x * bp,u32 event)3756 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3757 {
3758 	u32 cmd_ok, cmd_fail;
3759 
3760 	/* sanity */
3761 	if (event & DRV_STATUS_DCC_EVENT_MASK &&
3762 	    event & DRV_STATUS_OEM_EVENT_MASK) {
3763 		BNX2X_ERR("Received simultaneous events %08x\n", event);
3764 		return;
3765 	}
3766 
3767 	if (event & DRV_STATUS_DCC_EVENT_MASK) {
3768 		cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3769 		cmd_ok = DRV_MSG_CODE_DCC_OK;
3770 	} else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3771 		cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3772 		cmd_ok = DRV_MSG_CODE_OEM_OK;
3773 	}
3774 
3775 	DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3776 
3777 	if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3778 		     DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3779 		/* This is the only place besides the function initialization
3780 		 * where the bp->flags can change so it is done without any
3781 		 * locks
3782 		 */
3783 		if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3784 			DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3785 			bp->flags |= MF_FUNC_DIS;
3786 
3787 			bnx2x_e1h_disable(bp);
3788 		} else {
3789 			DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3790 			bp->flags &= ~MF_FUNC_DIS;
3791 
3792 			bnx2x_e1h_enable(bp);
3793 		}
3794 		event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3795 			   DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3796 	}
3797 
3798 	if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3799 		     DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3800 		bnx2x_config_mf_bw(bp);
3801 		event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3802 			   DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3803 	}
3804 
3805 	/* Report results to MCP */
3806 	if (event)
3807 		bnx2x_fw_command(bp, cmd_fail, 0);
3808 	else
3809 		bnx2x_fw_command(bp, cmd_ok, 0);
3810 }
3811 
3812 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3813 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3814 {
3815 	struct eth_spe *next_spe = bp->spq_prod_bd;
3816 
3817 	if (bp->spq_prod_bd == bp->spq_last_bd) {
3818 		bp->spq_prod_bd = bp->spq;
3819 		bp->spq_prod_idx = 0;
3820 		DP(BNX2X_MSG_SP, "end of spq\n");
3821 	} else {
3822 		bp->spq_prod_bd++;
3823 		bp->spq_prod_idx++;
3824 	}
3825 	return next_spe;
3826 }
3827 
3828 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3829 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3830 {
3831 	int func = BP_FUNC(bp);
3832 
3833 	/*
3834 	 * Make sure that BD data is updated before writing the producer:
3835 	 * BD data is written to the memory, the producer is read from the
3836 	 * memory, thus we need a full memory barrier to ensure the ordering.
3837 	 */
3838 	mb();
3839 
3840 	REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3841 			 bp->spq_prod_idx);
3842 }
3843 
3844 /**
3845  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3846  *
3847  * @cmd:	command to check
3848  * @cmd_type:	command type
3849  */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3850 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3851 {
3852 	if ((cmd_type == NONE_CONNECTION_TYPE) ||
3853 	    (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3854 	    (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3855 	    (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3856 	    (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3857 	    (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3858 	    (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3859 		return true;
3860 	else
3861 		return false;
3862 }
3863 
3864 /**
3865  * bnx2x_sp_post - place a single command on an SP ring
3866  *
3867  * @bp:		driver handle
3868  * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.)
3869  * @cid:	SW CID the command is related to
3870  * @data_hi:	command private data address (high 32 bits)
3871  * @data_lo:	command private data address (low 32 bits)
3872  * @cmd_type:	command type (e.g. NONE, ETH)
3873  *
3874  * SP data is handled as if it's always an address pair, thus data fields are
3875  * not swapped to little endian in upper functions. Instead this function swaps
3876  * data as if it's two u32 fields.
3877  */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3878 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3879 		  u32 data_hi, u32 data_lo, int cmd_type)
3880 {
3881 	struct eth_spe *spe;
3882 	u16 type;
3883 	bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3884 
3885 #ifdef BNX2X_STOP_ON_ERROR
3886 	if (unlikely(bp->panic)) {
3887 		BNX2X_ERR("Can't post SP when there is panic\n");
3888 		return -EIO;
3889 	}
3890 #endif
3891 
3892 	spin_lock_bh(&bp->spq_lock);
3893 
3894 	if (common) {
3895 		if (!atomic_read(&bp->eq_spq_left)) {
3896 			BNX2X_ERR("BUG! EQ ring full!\n");
3897 			spin_unlock_bh(&bp->spq_lock);
3898 			bnx2x_panic();
3899 			return -EBUSY;
3900 		}
3901 	} else if (!atomic_read(&bp->cq_spq_left)) {
3902 			BNX2X_ERR("BUG! SPQ ring full!\n");
3903 			spin_unlock_bh(&bp->spq_lock);
3904 			bnx2x_panic();
3905 			return -EBUSY;
3906 	}
3907 
3908 	spe = bnx2x_sp_get_next(bp);
3909 
3910 	/* CID needs port number to be encoded int it */
3911 	spe->hdr.conn_and_cmd_data =
3912 			cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3913 				    HW_CID(bp, cid));
3914 
3915 	/* In some cases, type may already contain the func-id
3916 	 * mainly in SRIOV related use cases, so we add it here only
3917 	 * if it's not already set.
3918 	 */
3919 	if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3920 		type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3921 			SPE_HDR_CONN_TYPE;
3922 		type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3923 			 SPE_HDR_FUNCTION_ID);
3924 	} else {
3925 		type = cmd_type;
3926 	}
3927 
3928 	spe->hdr.type = cpu_to_le16(type);
3929 
3930 	spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3931 	spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3932 
3933 	/*
3934 	 * It's ok if the actual decrement is issued towards the memory
3935 	 * somewhere between the spin_lock and spin_unlock. Thus no
3936 	 * more explicit memory barrier is needed.
3937 	 */
3938 	if (common)
3939 		atomic_dec(&bp->eq_spq_left);
3940 	else
3941 		atomic_dec(&bp->cq_spq_left);
3942 
3943 	DP(BNX2X_MSG_SP,
3944 	   "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3945 	   bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3946 	   (u32)(U64_LO(bp->spq_mapping) +
3947 	   (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3948 	   HW_CID(bp, cid), data_hi, data_lo, type,
3949 	   atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3950 
3951 	bnx2x_sp_prod_update(bp);
3952 	spin_unlock_bh(&bp->spq_lock);
3953 	return 0;
3954 }
3955 
3956 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3957 static int bnx2x_acquire_alr(struct bnx2x *bp)
3958 {
3959 	u32 j, val;
3960 	int rc = 0;
3961 
3962 	might_sleep();
3963 	for (j = 0; j < 1000; j++) {
3964 		REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3965 		val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3966 		if (val & MCPR_ACCESS_LOCK_LOCK)
3967 			break;
3968 
3969 		usleep_range(5000, 10000);
3970 	}
3971 	if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3972 		BNX2X_ERR("Cannot acquire MCP access lock register\n");
3973 		rc = -EBUSY;
3974 	}
3975 
3976 	return rc;
3977 }
3978 
3979 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3980 static void bnx2x_release_alr(struct bnx2x *bp)
3981 {
3982 	REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3983 }
3984 
3985 #define BNX2X_DEF_SB_ATT_IDX	0x0001
3986 #define BNX2X_DEF_SB_IDX	0x0002
3987 
bnx2x_update_dsb_idx(struct bnx2x * bp)3988 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3989 {
3990 	struct host_sp_status_block *def_sb = bp->def_status_blk;
3991 	u16 rc = 0;
3992 
3993 	barrier(); /* status block is written to by the chip */
3994 	if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3995 		bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3996 		rc |= BNX2X_DEF_SB_ATT_IDX;
3997 	}
3998 
3999 	if (bp->def_idx != def_sb->sp_sb.running_index) {
4000 		bp->def_idx = def_sb->sp_sb.running_index;
4001 		rc |= BNX2X_DEF_SB_IDX;
4002 	}
4003 
4004 	/* Do not reorder: indices reading should complete before handling */
4005 	barrier();
4006 	return rc;
4007 }
4008 
4009 /*
4010  * slow path service functions
4011  */
4012 
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4013 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4014 {
4015 	int port = BP_PORT(bp);
4016 	u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4017 			      MISC_REG_AEU_MASK_ATTN_FUNC_0;
4018 	u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4019 				       NIG_REG_MASK_INTERRUPT_PORT0;
4020 	u32 aeu_mask;
4021 	u32 nig_mask = 0;
4022 	u32 reg_addr;
4023 
4024 	if (bp->attn_state & asserted)
4025 		BNX2X_ERR("IGU ERROR\n");
4026 
4027 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4028 	aeu_mask = REG_RD(bp, aeu_addr);
4029 
4030 	DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4031 	   aeu_mask, asserted);
4032 	aeu_mask &= ~(asserted & 0x3ff);
4033 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4034 
4035 	REG_WR(bp, aeu_addr, aeu_mask);
4036 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4037 
4038 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4039 	bp->attn_state |= asserted;
4040 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4041 
4042 	if (asserted & ATTN_HARD_WIRED_MASK) {
4043 		if (asserted & ATTN_NIG_FOR_FUNC) {
4044 
4045 			bnx2x_acquire_phy_lock(bp);
4046 
4047 			/* save nig interrupt mask */
4048 			nig_mask = REG_RD(bp, nig_int_mask_addr);
4049 
4050 			/* If nig_mask is not set, no need to call the update
4051 			 * function.
4052 			 */
4053 			if (nig_mask) {
4054 				REG_WR(bp, nig_int_mask_addr, 0);
4055 
4056 				bnx2x_link_attn(bp);
4057 			}
4058 
4059 			/* handle unicore attn? */
4060 		}
4061 		if (asserted & ATTN_SW_TIMER_4_FUNC)
4062 			DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4063 
4064 		if (asserted & GPIO_2_FUNC)
4065 			DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4066 
4067 		if (asserted & GPIO_3_FUNC)
4068 			DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4069 
4070 		if (asserted & GPIO_4_FUNC)
4071 			DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4072 
4073 		if (port == 0) {
4074 			if (asserted & ATTN_GENERAL_ATTN_1) {
4075 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4076 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4077 			}
4078 			if (asserted & ATTN_GENERAL_ATTN_2) {
4079 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4080 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4081 			}
4082 			if (asserted & ATTN_GENERAL_ATTN_3) {
4083 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4084 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4085 			}
4086 		} else {
4087 			if (asserted & ATTN_GENERAL_ATTN_4) {
4088 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4089 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4090 			}
4091 			if (asserted & ATTN_GENERAL_ATTN_5) {
4092 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4093 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4094 			}
4095 			if (asserted & ATTN_GENERAL_ATTN_6) {
4096 				DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4097 				REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4098 			}
4099 		}
4100 
4101 	} /* if hardwired */
4102 
4103 	if (bp->common.int_block == INT_BLOCK_HC)
4104 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
4105 			    COMMAND_REG_ATTN_BITS_SET);
4106 	else
4107 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4108 
4109 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4110 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4111 	REG_WR(bp, reg_addr, asserted);
4112 
4113 	/* now set back the mask */
4114 	if (asserted & ATTN_NIG_FOR_FUNC) {
4115 		/* Verify that IGU ack through BAR was written before restoring
4116 		 * NIG mask. This loop should exit after 2-3 iterations max.
4117 		 */
4118 		if (bp->common.int_block != INT_BLOCK_HC) {
4119 			u32 cnt = 0, igu_acked;
4120 			do {
4121 				igu_acked = REG_RD(bp,
4122 						   IGU_REG_ATTENTION_ACK_BITS);
4123 			} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4124 				 (++cnt < MAX_IGU_ATTN_ACK_TO));
4125 			if (!igu_acked)
4126 				DP(NETIF_MSG_HW,
4127 				   "Failed to verify IGU ack on time\n");
4128 			barrier();
4129 		}
4130 		REG_WR(bp, nig_int_mask_addr, nig_mask);
4131 		bnx2x_release_phy_lock(bp);
4132 	}
4133 }
4134 
bnx2x_fan_failure(struct bnx2x * bp)4135 static void bnx2x_fan_failure(struct bnx2x *bp)
4136 {
4137 	int port = BP_PORT(bp);
4138 	u32 ext_phy_config;
4139 	/* mark the failure */
4140 	ext_phy_config =
4141 		SHMEM_RD(bp,
4142 			 dev_info.port_hw_config[port].external_phy_config);
4143 
4144 	ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4145 	ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4146 	SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4147 		 ext_phy_config);
4148 
4149 	/* log the failure */
4150 	netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4151 			    "Please contact OEM Support for assistance\n");
4152 
4153 	/* Schedule device reset (unload)
4154 	 * This is due to some boards consuming sufficient power when driver is
4155 	 * up to overheat if fan fails.
4156 	 */
4157 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4158 }
4159 
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4160 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4161 {
4162 	int port = BP_PORT(bp);
4163 	int reg_offset;
4164 	u32 val;
4165 
4166 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4167 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4168 
4169 	if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4170 
4171 		val = REG_RD(bp, reg_offset);
4172 		val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4173 		REG_WR(bp, reg_offset, val);
4174 
4175 		BNX2X_ERR("SPIO5 hw attention\n");
4176 
4177 		/* Fan failure attention */
4178 		bnx2x_hw_reset_phy(&bp->link_params);
4179 		bnx2x_fan_failure(bp);
4180 	}
4181 
4182 	if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4183 		bnx2x_acquire_phy_lock(bp);
4184 		bnx2x_handle_module_detect_int(&bp->link_params);
4185 		bnx2x_release_phy_lock(bp);
4186 	}
4187 
4188 	if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4189 
4190 		val = REG_RD(bp, reg_offset);
4191 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4192 		REG_WR(bp, reg_offset, val);
4193 
4194 		BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4195 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4196 		bnx2x_panic();
4197 	}
4198 }
4199 
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4200 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4201 {
4202 	u32 val;
4203 
4204 	if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4205 
4206 		val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4207 		BNX2X_ERR("DB hw attention 0x%x\n", val);
4208 		/* DORQ discard attention */
4209 		if (val & 0x2)
4210 			BNX2X_ERR("FATAL error from DORQ\n");
4211 	}
4212 
4213 	if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4214 
4215 		int port = BP_PORT(bp);
4216 		int reg_offset;
4217 
4218 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4219 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4220 
4221 		val = REG_RD(bp, reg_offset);
4222 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4223 		REG_WR(bp, reg_offset, val);
4224 
4225 		BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4226 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4227 		bnx2x_panic();
4228 	}
4229 }
4230 
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4231 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4232 {
4233 	u32 val;
4234 
4235 	if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4236 
4237 		val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4238 		BNX2X_ERR("CFC hw attention 0x%x\n", val);
4239 		/* CFC error attention */
4240 		if (val & 0x2)
4241 			BNX2X_ERR("FATAL error from CFC\n");
4242 	}
4243 
4244 	if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4245 		val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4246 		BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4247 		/* RQ_USDMDP_FIFO_OVERFLOW */
4248 		if (val & 0x18000)
4249 			BNX2X_ERR("FATAL error from PXP\n");
4250 
4251 		if (!CHIP_IS_E1x(bp)) {
4252 			val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4253 			BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4254 		}
4255 	}
4256 
4257 	if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4258 
4259 		int port = BP_PORT(bp);
4260 		int reg_offset;
4261 
4262 		reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4263 				     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4264 
4265 		val = REG_RD(bp, reg_offset);
4266 		val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4267 		REG_WR(bp, reg_offset, val);
4268 
4269 		BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4270 			  (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4271 		bnx2x_panic();
4272 	}
4273 }
4274 
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4275 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4276 {
4277 	u32 val;
4278 
4279 	if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4280 
4281 		if (attn & BNX2X_PMF_LINK_ASSERT) {
4282 			int func = BP_FUNC(bp);
4283 
4284 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4285 			bnx2x_read_mf_cfg(bp);
4286 			bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4287 					func_mf_config[BP_ABS_FUNC(bp)].config);
4288 			val = SHMEM_RD(bp,
4289 				       func_mb[BP_FW_MB_IDX(bp)].drv_status);
4290 
4291 			if (val & (DRV_STATUS_DCC_EVENT_MASK |
4292 				   DRV_STATUS_OEM_EVENT_MASK))
4293 				bnx2x_oem_event(bp,
4294 					(val & (DRV_STATUS_DCC_EVENT_MASK |
4295 						DRV_STATUS_OEM_EVENT_MASK)));
4296 
4297 			if (val & DRV_STATUS_SET_MF_BW)
4298 				bnx2x_set_mf_bw(bp);
4299 
4300 			if (val & DRV_STATUS_DRV_INFO_REQ)
4301 				bnx2x_handle_drv_info_req(bp);
4302 
4303 			if (val & DRV_STATUS_VF_DISABLED)
4304 				bnx2x_schedule_iov_task(bp,
4305 							BNX2X_IOV_HANDLE_FLR);
4306 
4307 			if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4308 				bnx2x_pmf_update(bp);
4309 
4310 			if (bp->port.pmf &&
4311 			    (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4312 				bp->dcbx_enabled > 0)
4313 				/* start dcbx state machine */
4314 				bnx2x_dcbx_set_params(bp,
4315 					BNX2X_DCBX_STATE_NEG_RECEIVED);
4316 			if (val & DRV_STATUS_AFEX_EVENT_MASK)
4317 				bnx2x_handle_afex_cmd(bp,
4318 					val & DRV_STATUS_AFEX_EVENT_MASK);
4319 			if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4320 				bnx2x_handle_eee_event(bp);
4321 
4322 			if (val & DRV_STATUS_OEM_UPDATE_SVID)
4323 				bnx2x_schedule_sp_rtnl(bp,
4324 					BNX2X_SP_RTNL_UPDATE_SVID, 0);
4325 
4326 			if (bp->link_vars.periodic_flags &
4327 			    PERIODIC_FLAGS_LINK_EVENT) {
4328 				/*  sync with link */
4329 				bnx2x_acquire_phy_lock(bp);
4330 				bp->link_vars.periodic_flags &=
4331 					~PERIODIC_FLAGS_LINK_EVENT;
4332 				bnx2x_release_phy_lock(bp);
4333 				if (IS_MF(bp))
4334 					bnx2x_link_sync_notify(bp);
4335 				bnx2x_link_report(bp);
4336 			}
4337 			/* Always call it here: bnx2x_link_report() will
4338 			 * prevent the link indication duplication.
4339 			 */
4340 			bnx2x__link_status_update(bp);
4341 		} else if (attn & BNX2X_MC_ASSERT_BITS) {
4342 
4343 			BNX2X_ERR("MC assert!\n");
4344 			bnx2x_mc_assert(bp);
4345 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4346 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4347 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4348 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4349 			bnx2x_panic();
4350 
4351 		} else if (attn & BNX2X_MCP_ASSERT) {
4352 
4353 			BNX2X_ERR("MCP assert!\n");
4354 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4355 			bnx2x_fw_dump(bp);
4356 
4357 		} else
4358 			BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4359 	}
4360 
4361 	if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4362 		BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4363 		if (attn & BNX2X_GRC_TIMEOUT) {
4364 			val = CHIP_IS_E1(bp) ? 0 :
4365 					REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4366 			BNX2X_ERR("GRC time-out 0x%08x\n", val);
4367 		}
4368 		if (attn & BNX2X_GRC_RSV) {
4369 			val = CHIP_IS_E1(bp) ? 0 :
4370 					REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4371 			BNX2X_ERR("GRC reserved 0x%08x\n", val);
4372 		}
4373 		REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4374 	}
4375 }
4376 
4377 /*
4378  * Bits map:
4379  * 0-7   - Engine0 load counter.
4380  * 8-15  - Engine1 load counter.
4381  * 16    - Engine0 RESET_IN_PROGRESS bit.
4382  * 17    - Engine1 RESET_IN_PROGRESS bit.
4383  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4384  *         on the engine
4385  * 19    - Engine1 ONE_IS_LOADED.
4386  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4387  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4388  *         just the one belonging to its engine).
4389  *
4390  */
4391 #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1
4392 
4393 #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff
4394 #define BNX2X_PATH0_LOAD_CNT_SHIFT	0
4395 #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00
4396 #define BNX2X_PATH1_LOAD_CNT_SHIFT	8
4397 #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000
4398 #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000
4399 #define BNX2X_GLOBAL_RESET_BIT		0x00040000
4400 
4401 /*
4402  * Set the GLOBAL_RESET bit.
4403  *
4404  * Should be run under rtnl lock
4405  */
bnx2x_set_reset_global(struct bnx2x * bp)4406 void bnx2x_set_reset_global(struct bnx2x *bp)
4407 {
4408 	u32 val;
4409 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4410 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4411 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4412 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4413 }
4414 
4415 /*
4416  * Clear the GLOBAL_RESET bit.
4417  *
4418  * Should be run under rtnl lock
4419  */
bnx2x_clear_reset_global(struct bnx2x * bp)4420 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4421 {
4422 	u32 val;
4423 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4424 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4425 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4426 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 }
4428 
4429 /*
4430  * Checks the GLOBAL_RESET bit.
4431  *
4432  * should be run under rtnl lock
4433  */
bnx2x_reset_is_global(struct bnx2x * bp)4434 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4435 {
4436 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4437 
4438 	DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4439 	return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4440 }
4441 
4442 /*
4443  * Clear RESET_IN_PROGRESS bit for the current engine.
4444  *
4445  * Should be run under rtnl lock
4446  */
bnx2x_set_reset_done(struct bnx2x * bp)4447 static void bnx2x_set_reset_done(struct bnx2x *bp)
4448 {
4449 	u32 val;
4450 	u32 bit = BP_PATH(bp) ?
4451 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4452 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4453 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4454 
4455 	/* Clear the bit */
4456 	val &= ~bit;
4457 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4458 
4459 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460 }
4461 
4462 /*
4463  * Set RESET_IN_PROGRESS for the current engine.
4464  *
4465  * should be run under rtnl lock
4466  */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4467 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4468 {
4469 	u32 val;
4470 	u32 bit = BP_PATH(bp) ?
4471 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4472 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4473 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4474 
4475 	/* Set the bit */
4476 	val |= bit;
4477 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4478 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4479 }
4480 
4481 /*
4482  * Checks the RESET_IN_PROGRESS bit for the given engine.
4483  * should be run under rtnl lock
4484  */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4485 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4486 {
4487 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4488 	u32 bit = engine ?
4489 		BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4490 
4491 	/* return false if bit is set */
4492 	return (val & bit) ? false : true;
4493 }
4494 
4495 /*
4496  * set pf load for the current pf.
4497  *
4498  * should be run under rtnl lock
4499  */
bnx2x_set_pf_load(struct bnx2x * bp)4500 void bnx2x_set_pf_load(struct bnx2x *bp)
4501 {
4502 	u32 val1, val;
4503 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4504 			     BNX2X_PATH0_LOAD_CNT_MASK;
4505 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4506 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4507 
4508 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4509 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4510 
4511 	DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4512 
4513 	/* get the current counter value */
4514 	val1 = (val & mask) >> shift;
4515 
4516 	/* set bit of that PF */
4517 	val1 |= (1 << bp->pf_num);
4518 
4519 	/* clear the old value */
4520 	val &= ~mask;
4521 
4522 	/* set the new one */
4523 	val |= ((val1 << shift) & mask);
4524 
4525 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4526 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4527 }
4528 
4529 /**
4530  * bnx2x_clear_pf_load - clear pf load mark
4531  *
4532  * @bp:		driver handle
4533  *
4534  * Should be run under rtnl lock.
4535  * Decrements the load counter for the current engine. Returns
4536  * whether other functions are still loaded
4537  */
bnx2x_clear_pf_load(struct bnx2x * bp)4538 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4539 {
4540 	u32 val1, val;
4541 	u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4542 			     BNX2X_PATH0_LOAD_CNT_MASK;
4543 	u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4544 			     BNX2X_PATH0_LOAD_CNT_SHIFT;
4545 
4546 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4547 	val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4548 	DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4549 
4550 	/* get the current counter value */
4551 	val1 = (val & mask) >> shift;
4552 
4553 	/* clear bit of that PF */
4554 	val1 &= ~(1 << bp->pf_num);
4555 
4556 	/* clear the old value */
4557 	val &= ~mask;
4558 
4559 	/* set the new one */
4560 	val |= ((val1 << shift) & mask);
4561 
4562 	REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4563 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4564 	return val1 != 0;
4565 }
4566 
4567 /*
4568  * Read the load status for the current engine.
4569  *
4570  * should be run under rtnl lock
4571  */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4572 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4573 {
4574 	u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4575 			     BNX2X_PATH0_LOAD_CNT_MASK);
4576 	u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4577 			     BNX2X_PATH0_LOAD_CNT_SHIFT);
4578 	u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4579 
4580 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4581 
4582 	val = (val & mask) >> shift;
4583 
4584 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4585 	   engine, val);
4586 
4587 	return val != 0;
4588 }
4589 
_print_parity(struct bnx2x * bp,u32 reg)4590 static void _print_parity(struct bnx2x *bp, u32 reg)
4591 {
4592 	pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4593 }
4594 
_print_next_block(int idx,const char * blk)4595 static void _print_next_block(int idx, const char *blk)
4596 {
4597 	pr_cont("%s%s", idx ? ", " : "", blk);
4598 }
4599 
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4600 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4601 					    int *par_num, bool print)
4602 {
4603 	u32 cur_bit;
4604 	bool res;
4605 	int i;
4606 
4607 	res = false;
4608 
4609 	for (i = 0; sig; i++) {
4610 		cur_bit = (0x1UL << i);
4611 		if (sig & cur_bit) {
4612 			res |= true; /* Each bit is real error! */
4613 
4614 			if (print) {
4615 				switch (cur_bit) {
4616 				case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4617 					_print_next_block((*par_num)++, "BRB");
4618 					_print_parity(bp,
4619 						      BRB1_REG_BRB1_PRTY_STS);
4620 					break;
4621 				case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4622 					_print_next_block((*par_num)++,
4623 							  "PARSER");
4624 					_print_parity(bp, PRS_REG_PRS_PRTY_STS);
4625 					break;
4626 				case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4627 					_print_next_block((*par_num)++, "TSDM");
4628 					_print_parity(bp,
4629 						      TSDM_REG_TSDM_PRTY_STS);
4630 					break;
4631 				case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4632 					_print_next_block((*par_num)++,
4633 							  "SEARCHER");
4634 					_print_parity(bp, SRC_REG_SRC_PRTY_STS);
4635 					break;
4636 				case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4637 					_print_next_block((*par_num)++, "TCM");
4638 					_print_parity(bp, TCM_REG_TCM_PRTY_STS);
4639 					break;
4640 				case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4641 					_print_next_block((*par_num)++,
4642 							  "TSEMI");
4643 					_print_parity(bp,
4644 						      TSEM_REG_TSEM_PRTY_STS_0);
4645 					_print_parity(bp,
4646 						      TSEM_REG_TSEM_PRTY_STS_1);
4647 					break;
4648 				case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4649 					_print_next_block((*par_num)++, "XPB");
4650 					_print_parity(bp, GRCBASE_XPB +
4651 							  PB_REG_PB_PRTY_STS);
4652 					break;
4653 				}
4654 			}
4655 
4656 			/* Clear the bit */
4657 			sig &= ~cur_bit;
4658 		}
4659 	}
4660 
4661 	return res;
4662 }
4663 
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4664 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4665 					    int *par_num, bool *global,
4666 					    bool print)
4667 {
4668 	u32 cur_bit;
4669 	bool res;
4670 	int i;
4671 
4672 	res = false;
4673 
4674 	for (i = 0; sig; i++) {
4675 		cur_bit = (0x1UL << i);
4676 		if (sig & cur_bit) {
4677 			res |= true; /* Each bit is real error! */
4678 			switch (cur_bit) {
4679 			case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4680 				if (print) {
4681 					_print_next_block((*par_num)++, "PBF");
4682 					_print_parity(bp, PBF_REG_PBF_PRTY_STS);
4683 				}
4684 				break;
4685 			case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4686 				if (print) {
4687 					_print_next_block((*par_num)++, "QM");
4688 					_print_parity(bp, QM_REG_QM_PRTY_STS);
4689 				}
4690 				break;
4691 			case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4692 				if (print) {
4693 					_print_next_block((*par_num)++, "TM");
4694 					_print_parity(bp, TM_REG_TM_PRTY_STS);
4695 				}
4696 				break;
4697 			case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4698 				if (print) {
4699 					_print_next_block((*par_num)++, "XSDM");
4700 					_print_parity(bp,
4701 						      XSDM_REG_XSDM_PRTY_STS);
4702 				}
4703 				break;
4704 			case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4705 				if (print) {
4706 					_print_next_block((*par_num)++, "XCM");
4707 					_print_parity(bp, XCM_REG_XCM_PRTY_STS);
4708 				}
4709 				break;
4710 			case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4711 				if (print) {
4712 					_print_next_block((*par_num)++,
4713 							  "XSEMI");
4714 					_print_parity(bp,
4715 						      XSEM_REG_XSEM_PRTY_STS_0);
4716 					_print_parity(bp,
4717 						      XSEM_REG_XSEM_PRTY_STS_1);
4718 				}
4719 				break;
4720 			case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4721 				if (print) {
4722 					_print_next_block((*par_num)++,
4723 							  "DOORBELLQ");
4724 					_print_parity(bp,
4725 						      DORQ_REG_DORQ_PRTY_STS);
4726 				}
4727 				break;
4728 			case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4729 				if (print) {
4730 					_print_next_block((*par_num)++, "NIG");
4731 					if (CHIP_IS_E1x(bp)) {
4732 						_print_parity(bp,
4733 							NIG_REG_NIG_PRTY_STS);
4734 					} else {
4735 						_print_parity(bp,
4736 							NIG_REG_NIG_PRTY_STS_0);
4737 						_print_parity(bp,
4738 							NIG_REG_NIG_PRTY_STS_1);
4739 					}
4740 				}
4741 				break;
4742 			case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4743 				if (print)
4744 					_print_next_block((*par_num)++,
4745 							  "VAUX PCI CORE");
4746 				*global = true;
4747 				break;
4748 			case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4749 				if (print) {
4750 					_print_next_block((*par_num)++,
4751 							  "DEBUG");
4752 					_print_parity(bp, DBG_REG_DBG_PRTY_STS);
4753 				}
4754 				break;
4755 			case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4756 				if (print) {
4757 					_print_next_block((*par_num)++, "USDM");
4758 					_print_parity(bp,
4759 						      USDM_REG_USDM_PRTY_STS);
4760 				}
4761 				break;
4762 			case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4763 				if (print) {
4764 					_print_next_block((*par_num)++, "UCM");
4765 					_print_parity(bp, UCM_REG_UCM_PRTY_STS);
4766 				}
4767 				break;
4768 			case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4769 				if (print) {
4770 					_print_next_block((*par_num)++,
4771 							  "USEMI");
4772 					_print_parity(bp,
4773 						      USEM_REG_USEM_PRTY_STS_0);
4774 					_print_parity(bp,
4775 						      USEM_REG_USEM_PRTY_STS_1);
4776 				}
4777 				break;
4778 			case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4779 				if (print) {
4780 					_print_next_block((*par_num)++, "UPB");
4781 					_print_parity(bp, GRCBASE_UPB +
4782 							  PB_REG_PB_PRTY_STS);
4783 				}
4784 				break;
4785 			case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4786 				if (print) {
4787 					_print_next_block((*par_num)++, "CSDM");
4788 					_print_parity(bp,
4789 						      CSDM_REG_CSDM_PRTY_STS);
4790 				}
4791 				break;
4792 			case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4793 				if (print) {
4794 					_print_next_block((*par_num)++, "CCM");
4795 					_print_parity(bp, CCM_REG_CCM_PRTY_STS);
4796 				}
4797 				break;
4798 			}
4799 
4800 			/* Clear the bit */
4801 			sig &= ~cur_bit;
4802 		}
4803 	}
4804 
4805 	return res;
4806 }
4807 
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4808 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4809 					    int *par_num, bool print)
4810 {
4811 	u32 cur_bit;
4812 	bool res;
4813 	int i;
4814 
4815 	res = false;
4816 
4817 	for (i = 0; sig; i++) {
4818 		cur_bit = (0x1UL << i);
4819 		if (sig & cur_bit) {
4820 			res = true; /* Each bit is real error! */
4821 			if (print) {
4822 				switch (cur_bit) {
4823 				case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4824 					_print_next_block((*par_num)++,
4825 							  "CSEMI");
4826 					_print_parity(bp,
4827 						      CSEM_REG_CSEM_PRTY_STS_0);
4828 					_print_parity(bp,
4829 						      CSEM_REG_CSEM_PRTY_STS_1);
4830 					break;
4831 				case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4832 					_print_next_block((*par_num)++, "PXP");
4833 					_print_parity(bp, PXP_REG_PXP_PRTY_STS);
4834 					_print_parity(bp,
4835 						      PXP2_REG_PXP2_PRTY_STS_0);
4836 					_print_parity(bp,
4837 						      PXP2_REG_PXP2_PRTY_STS_1);
4838 					break;
4839 				case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4840 					_print_next_block((*par_num)++,
4841 							  "PXPPCICLOCKCLIENT");
4842 					break;
4843 				case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4844 					_print_next_block((*par_num)++, "CFC");
4845 					_print_parity(bp,
4846 						      CFC_REG_CFC_PRTY_STS);
4847 					break;
4848 				case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4849 					_print_next_block((*par_num)++, "CDU");
4850 					_print_parity(bp, CDU_REG_CDU_PRTY_STS);
4851 					break;
4852 				case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4853 					_print_next_block((*par_num)++, "DMAE");
4854 					_print_parity(bp,
4855 						      DMAE_REG_DMAE_PRTY_STS);
4856 					break;
4857 				case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4858 					_print_next_block((*par_num)++, "IGU");
4859 					if (CHIP_IS_E1x(bp))
4860 						_print_parity(bp,
4861 							HC_REG_HC_PRTY_STS);
4862 					else
4863 						_print_parity(bp,
4864 							IGU_REG_IGU_PRTY_STS);
4865 					break;
4866 				case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4867 					_print_next_block((*par_num)++, "MISC");
4868 					_print_parity(bp,
4869 						      MISC_REG_MISC_PRTY_STS);
4870 					break;
4871 				}
4872 			}
4873 
4874 			/* Clear the bit */
4875 			sig &= ~cur_bit;
4876 		}
4877 	}
4878 
4879 	return res;
4880 }
4881 
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4882 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4883 					    int *par_num, bool *global,
4884 					    bool print)
4885 {
4886 	bool res = false;
4887 	u32 cur_bit;
4888 	int i;
4889 
4890 	for (i = 0; sig; i++) {
4891 		cur_bit = (0x1UL << i);
4892 		if (sig & cur_bit) {
4893 			switch (cur_bit) {
4894 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4895 				if (print)
4896 					_print_next_block((*par_num)++,
4897 							  "MCP ROM");
4898 				*global = true;
4899 				res = true;
4900 				break;
4901 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4902 				if (print)
4903 					_print_next_block((*par_num)++,
4904 							  "MCP UMP RX");
4905 				*global = true;
4906 				res = true;
4907 				break;
4908 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4909 				if (print)
4910 					_print_next_block((*par_num)++,
4911 							  "MCP UMP TX");
4912 				*global = true;
4913 				res = true;
4914 				break;
4915 			case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4916 				(*par_num)++;
4917 				/* clear latched SCPAD PATIRY from MCP */
4918 				REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4919 				       1UL << 10);
4920 				break;
4921 			}
4922 
4923 			/* Clear the bit */
4924 			sig &= ~cur_bit;
4925 		}
4926 	}
4927 
4928 	return res;
4929 }
4930 
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4931 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4932 					    int *par_num, bool print)
4933 {
4934 	u32 cur_bit;
4935 	bool res;
4936 	int i;
4937 
4938 	res = false;
4939 
4940 	for (i = 0; sig; i++) {
4941 		cur_bit = (0x1UL << i);
4942 		if (sig & cur_bit) {
4943 			res = true; /* Each bit is real error! */
4944 			if (print) {
4945 				switch (cur_bit) {
4946 				case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4947 					_print_next_block((*par_num)++,
4948 							  "PGLUE_B");
4949 					_print_parity(bp,
4950 						      PGLUE_B_REG_PGLUE_B_PRTY_STS);
4951 					break;
4952 				case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4953 					_print_next_block((*par_num)++, "ATC");
4954 					_print_parity(bp,
4955 						      ATC_REG_ATC_PRTY_STS);
4956 					break;
4957 				}
4958 			}
4959 			/* Clear the bit */
4960 			sig &= ~cur_bit;
4961 		}
4962 	}
4963 
4964 	return res;
4965 }
4966 
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4967 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4968 			      u32 *sig)
4969 {
4970 	bool res = false;
4971 
4972 	if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4973 	    (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4974 	    (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4975 	    (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4976 	    (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4977 		int par_num = 0;
4978 
4979 		DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4980 				 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4981 			  sig[0] & HW_PRTY_ASSERT_SET_0,
4982 			  sig[1] & HW_PRTY_ASSERT_SET_1,
4983 			  sig[2] & HW_PRTY_ASSERT_SET_2,
4984 			  sig[3] & HW_PRTY_ASSERT_SET_3,
4985 			  sig[4] & HW_PRTY_ASSERT_SET_4);
4986 		if (print) {
4987 			if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4988 			     (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4989 			     (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4990 			     (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4991 			     (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4992 				netdev_err(bp->dev,
4993 					   "Parity errors detected in blocks: ");
4994 			} else {
4995 				print = false;
4996 			}
4997 		}
4998 		res |= bnx2x_check_blocks_with_parity0(bp,
4999 			sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5000 		res |= bnx2x_check_blocks_with_parity1(bp,
5001 			sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5002 		res |= bnx2x_check_blocks_with_parity2(bp,
5003 			sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5004 		res |= bnx2x_check_blocks_with_parity3(bp,
5005 			sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5006 		res |= bnx2x_check_blocks_with_parity4(bp,
5007 			sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5008 
5009 		if (print)
5010 			pr_cont("\n");
5011 	}
5012 
5013 	return res;
5014 }
5015 
5016 /**
5017  * bnx2x_chk_parity_attn - checks for parity attentions.
5018  *
5019  * @bp:		driver handle
5020  * @global:	true if there was a global attention
5021  * @print:	show parity attention in syslog
5022  */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5023 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5024 {
5025 	struct attn_route attn = { {0} };
5026 	int port = BP_PORT(bp);
5027 
5028 	attn.sig[0] = REG_RD(bp,
5029 		MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5030 			     port*4);
5031 	attn.sig[1] = REG_RD(bp,
5032 		MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5033 			     port*4);
5034 	attn.sig[2] = REG_RD(bp,
5035 		MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5036 			     port*4);
5037 	attn.sig[3] = REG_RD(bp,
5038 		MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5039 			     port*4);
5040 	/* Since MCP attentions can't be disabled inside the block, we need to
5041 	 * read AEU registers to see whether they're currently disabled
5042 	 */
5043 	attn.sig[3] &= ((REG_RD(bp,
5044 				!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5045 				      : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5046 			 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5047 			~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5048 
5049 	if (!CHIP_IS_E1x(bp))
5050 		attn.sig[4] = REG_RD(bp,
5051 			MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5052 				     port*4);
5053 
5054 	return bnx2x_parity_attn(bp, global, print, attn.sig);
5055 }
5056 
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5057 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5058 {
5059 	u32 val;
5060 	if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5061 
5062 		val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5063 		BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5064 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5065 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5066 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5067 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5068 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5069 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5070 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5071 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5072 		if (val &
5073 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5074 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5075 		if (val &
5076 		    PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5077 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5078 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5079 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5080 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5081 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5082 		if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5083 			BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5084 	}
5085 	if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5086 		val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5087 		BNX2X_ERR("ATC hw attention 0x%x\n", val);
5088 		if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5089 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5090 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5091 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5092 		if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5093 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5094 		if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5095 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5096 		if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5097 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5098 		if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5099 			BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5100 	}
5101 
5102 	if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5103 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5104 		BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5105 		(u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5106 		    AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5107 	}
5108 }
5109 
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5110 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5111 {
5112 	struct attn_route attn, *group_mask;
5113 	int port = BP_PORT(bp);
5114 	int index;
5115 	u32 reg_addr;
5116 	u32 val;
5117 	u32 aeu_mask;
5118 	bool global = false;
5119 
5120 	/* need to take HW lock because MCP or other port might also
5121 	   try to handle this event */
5122 	bnx2x_acquire_alr(bp);
5123 
5124 	if (bnx2x_chk_parity_attn(bp, &global, true)) {
5125 #ifndef BNX2X_STOP_ON_ERROR
5126 		bp->recovery_state = BNX2X_RECOVERY_INIT;
5127 		schedule_delayed_work(&bp->sp_rtnl_task, 0);
5128 		/* Disable HW interrupts */
5129 		bnx2x_int_disable(bp);
5130 		/* In case of parity errors don't handle attentions so that
5131 		 * other function would "see" parity errors.
5132 		 */
5133 #else
5134 		bnx2x_panic();
5135 #endif
5136 		bnx2x_release_alr(bp);
5137 		return;
5138 	}
5139 
5140 	attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5141 	attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5142 	attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5143 	attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5144 	if (!CHIP_IS_E1x(bp))
5145 		attn.sig[4] =
5146 		      REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5147 	else
5148 		attn.sig[4] = 0;
5149 
5150 	DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5151 	   attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5152 
5153 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5154 		if (deasserted & (1 << index)) {
5155 			group_mask = &bp->attn_group[index];
5156 
5157 			DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5158 			   index,
5159 			   group_mask->sig[0], group_mask->sig[1],
5160 			   group_mask->sig[2], group_mask->sig[3],
5161 			   group_mask->sig[4]);
5162 
5163 			bnx2x_attn_int_deasserted4(bp,
5164 					attn.sig[4] & group_mask->sig[4]);
5165 			bnx2x_attn_int_deasserted3(bp,
5166 					attn.sig[3] & group_mask->sig[3]);
5167 			bnx2x_attn_int_deasserted1(bp,
5168 					attn.sig[1] & group_mask->sig[1]);
5169 			bnx2x_attn_int_deasserted2(bp,
5170 					attn.sig[2] & group_mask->sig[2]);
5171 			bnx2x_attn_int_deasserted0(bp,
5172 					attn.sig[0] & group_mask->sig[0]);
5173 		}
5174 	}
5175 
5176 	bnx2x_release_alr(bp);
5177 
5178 	if (bp->common.int_block == INT_BLOCK_HC)
5179 		reg_addr = (HC_REG_COMMAND_REG + port*32 +
5180 			    COMMAND_REG_ATTN_BITS_CLR);
5181 	else
5182 		reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5183 
5184 	val = ~deasserted;
5185 	DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5186 	   (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5187 	REG_WR(bp, reg_addr, val);
5188 
5189 	if (~bp->attn_state & deasserted)
5190 		BNX2X_ERR("IGU ERROR\n");
5191 
5192 	reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5193 			  MISC_REG_AEU_MASK_ATTN_FUNC_0;
5194 
5195 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5196 	aeu_mask = REG_RD(bp, reg_addr);
5197 
5198 	DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5199 	   aeu_mask, deasserted);
5200 	aeu_mask |= (deasserted & 0x3ff);
5201 	DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5202 
5203 	REG_WR(bp, reg_addr, aeu_mask);
5204 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5205 
5206 	DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5207 	bp->attn_state &= ~deasserted;
5208 	DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5209 }
5210 
bnx2x_attn_int(struct bnx2x * bp)5211 static void bnx2x_attn_int(struct bnx2x *bp)
5212 {
5213 	/* read local copy of bits */
5214 	u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5215 								attn_bits);
5216 	u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217 								attn_bits_ack);
5218 	u32 attn_state = bp->attn_state;
5219 
5220 	/* look for changed bits */
5221 	u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5222 	u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5223 
5224 	DP(NETIF_MSG_HW,
5225 	   "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5226 	   attn_bits, attn_ack, asserted, deasserted);
5227 
5228 	if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5229 		BNX2X_ERR("BAD attention state\n");
5230 
5231 	/* handle bits that were raised */
5232 	if (asserted)
5233 		bnx2x_attn_int_asserted(bp, asserted);
5234 
5235 	if (deasserted)
5236 		bnx2x_attn_int_deasserted(bp, deasserted);
5237 }
5238 
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5239 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5240 		      u16 index, u8 op, u8 update)
5241 {
5242 	u32 igu_addr = bp->igu_base_addr;
5243 	igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5244 	bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5245 			     igu_addr);
5246 }
5247 
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5248 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5249 {
5250 	/* No memory barriers */
5251 	storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5252 }
5253 
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5254 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5255 				      union event_ring_elem *elem)
5256 {
5257 	u8 err = elem->message.error;
5258 
5259 	if (!bp->cnic_eth_dev.starting_cid  ||
5260 	    (cid < bp->cnic_eth_dev.starting_cid &&
5261 	    cid != bp->cnic_eth_dev.iscsi_l2_cid))
5262 		return 1;
5263 
5264 	DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5265 
5266 	if (unlikely(err)) {
5267 
5268 		BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5269 			  cid);
5270 		bnx2x_panic_dump(bp, false);
5271 	}
5272 	bnx2x_cnic_cfc_comp(bp, cid, err);
5273 	return 0;
5274 }
5275 
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5276 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5277 {
5278 	struct bnx2x_mcast_ramrod_params rparam;
5279 	int rc;
5280 
5281 	memset(&rparam, 0, sizeof(rparam));
5282 
5283 	rparam.mcast_obj = &bp->mcast_obj;
5284 
5285 	netif_addr_lock_bh(bp->dev);
5286 
5287 	/* Clear pending state for the last command */
5288 	bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5289 
5290 	/* If there are pending mcast commands - send them */
5291 	if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5292 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5293 		if (rc < 0)
5294 			BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5295 				  rc);
5296 	}
5297 
5298 	netif_addr_unlock_bh(bp->dev);
5299 }
5300 
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5301 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5302 					    union event_ring_elem *elem)
5303 {
5304 	unsigned long ramrod_flags = 0;
5305 	int rc = 0;
5306 	u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5307 	u32 cid = echo & BNX2X_SWCID_MASK;
5308 	struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5309 
5310 	/* Always push next commands out, don't wait here */
5311 	__set_bit(RAMROD_CONT, &ramrod_flags);
5312 
5313 	switch (echo >> BNX2X_SWCID_SHIFT) {
5314 	case BNX2X_FILTER_MAC_PENDING:
5315 		DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5316 		if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5317 			vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5318 		else
5319 			vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5320 
5321 		break;
5322 	case BNX2X_FILTER_VLAN_PENDING:
5323 		DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5324 		vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5325 		break;
5326 	case BNX2X_FILTER_MCAST_PENDING:
5327 		DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5328 		/* This is only relevant for 57710 where multicast MACs are
5329 		 * configured as unicast MACs using the same ramrod.
5330 		 */
5331 		bnx2x_handle_mcast_eqe(bp);
5332 		return;
5333 	default:
5334 		BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5335 		return;
5336 	}
5337 
5338 	rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5339 
5340 	if (rc < 0)
5341 		BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5342 	else if (rc > 0)
5343 		DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5344 }
5345 
5346 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5347 
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5348 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5349 {
5350 	netif_addr_lock_bh(bp->dev);
5351 
5352 	clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5353 
5354 	/* Send rx_mode command again if was requested */
5355 	if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5356 		bnx2x_set_storm_rx_mode(bp);
5357 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5358 				    &bp->sp_state))
5359 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
5360 	else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5361 				    &bp->sp_state))
5362 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
5363 
5364 	netif_addr_unlock_bh(bp->dev);
5365 }
5366 
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5367 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5368 					      union event_ring_elem *elem)
5369 {
5370 	if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5371 		DP(BNX2X_MSG_SP,
5372 		   "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5373 		   elem->message.data.vif_list_event.func_bit_map);
5374 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5375 			elem->message.data.vif_list_event.func_bit_map);
5376 	} else if (elem->message.data.vif_list_event.echo ==
5377 		   VIF_LIST_RULE_SET) {
5378 		DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5379 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5380 	}
5381 }
5382 
5383 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5384 static void bnx2x_after_function_update(struct bnx2x *bp)
5385 {
5386 	int q, rc;
5387 	struct bnx2x_fastpath *fp;
5388 	struct bnx2x_queue_state_params queue_params = {NULL};
5389 	struct bnx2x_queue_update_params *q_update_params =
5390 		&queue_params.params.update;
5391 
5392 	/* Send Q update command with afex vlan removal values for all Qs */
5393 	queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5394 
5395 	/* set silent vlan removal values according to vlan mode */
5396 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5397 		  &q_update_params->update_flags);
5398 	__set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5399 		  &q_update_params->update_flags);
5400 	__set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5401 
5402 	/* in access mode mark mask and value are 0 to strip all vlans */
5403 	if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5404 		q_update_params->silent_removal_value = 0;
5405 		q_update_params->silent_removal_mask = 0;
5406 	} else {
5407 		q_update_params->silent_removal_value =
5408 			(bp->afex_def_vlan_tag & VLAN_VID_MASK);
5409 		q_update_params->silent_removal_mask = VLAN_VID_MASK;
5410 	}
5411 
5412 	for_each_eth_queue(bp, q) {
5413 		/* Set the appropriate Queue object */
5414 		fp = &bp->fp[q];
5415 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5416 
5417 		/* send the ramrod */
5418 		rc = bnx2x_queue_state_change(bp, &queue_params);
5419 		if (rc < 0)
5420 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 				  q);
5422 	}
5423 
5424 	if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5425 		fp = &bp->fp[FCOE_IDX(bp)];
5426 		queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5427 
5428 		/* clear pending completion bit */
5429 		__clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5430 
5431 		/* mark latest Q bit */
5432 		smp_mb__before_atomic();
5433 		set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5434 		smp_mb__after_atomic();
5435 
5436 		/* send Q update ramrod for FCoE Q */
5437 		rc = bnx2x_queue_state_change(bp, &queue_params);
5438 		if (rc < 0)
5439 			BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5440 				  q);
5441 	} else {
5442 		/* If no FCoE ring - ACK MCP now */
5443 		bnx2x_link_report(bp);
5444 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5445 	}
5446 }
5447 
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5448 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5449 	struct bnx2x *bp, u32 cid)
5450 {
5451 	DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5452 
5453 	if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5454 		return &bnx2x_fcoe_sp_obj(bp, q_obj);
5455 	else
5456 		return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5457 }
5458 
bnx2x_eq_int(struct bnx2x * bp)5459 static void bnx2x_eq_int(struct bnx2x *bp)
5460 {
5461 	u16 hw_cons, sw_cons, sw_prod;
5462 	union event_ring_elem *elem;
5463 	u8 echo;
5464 	u32 cid;
5465 	u8 opcode;
5466 	int rc, spqe_cnt = 0;
5467 	struct bnx2x_queue_sp_obj *q_obj;
5468 	struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5469 	struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5470 
5471 	hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5472 
5473 	/* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5474 	 * when we get the next-page we need to adjust so the loop
5475 	 * condition below will be met. The next element is the size of a
5476 	 * regular element and hence incrementing by 1
5477 	 */
5478 	if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5479 		hw_cons++;
5480 
5481 	/* This function may never run in parallel with itself for a
5482 	 * specific bp, thus there is no need in "paired" read memory
5483 	 * barrier here.
5484 	 */
5485 	sw_cons = bp->eq_cons;
5486 	sw_prod = bp->eq_prod;
5487 
5488 	DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5489 			hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5490 
5491 	for (; sw_cons != hw_cons;
5492 	      sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5493 
5494 		elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5495 
5496 		rc = bnx2x_iov_eq_sp_event(bp, elem);
5497 		if (!rc) {
5498 			DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5499 			   rc);
5500 			goto next_spqe;
5501 		}
5502 
5503 		opcode = elem->message.opcode;
5504 
5505 		/* handle eq element */
5506 		switch (opcode) {
5507 		case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5508 			bnx2x_vf_mbx_schedule(bp,
5509 					      &elem->message.data.vf_pf_event);
5510 			continue;
5511 
5512 		case EVENT_RING_OPCODE_STAT_QUERY:
5513 			DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5514 			       "got statistics comp event %d\n",
5515 			       bp->stats_comp++);
5516 			/* nothing to do with stats comp */
5517 			goto next_spqe;
5518 
5519 		case EVENT_RING_OPCODE_CFC_DEL:
5520 			/* handle according to cid range */
5521 			/*
5522 			 * we may want to verify here that the bp state is
5523 			 * HALTING
5524 			 */
5525 
5526 			/* elem CID originates from FW; actually LE */
5527 			cid = SW_CID(elem->message.data.cfc_del_event.cid);
5528 
5529 			DP(BNX2X_MSG_SP,
5530 			   "got delete ramrod for MULTI[%d]\n", cid);
5531 
5532 			if (CNIC_LOADED(bp) &&
5533 			    !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5534 				goto next_spqe;
5535 
5536 			q_obj = bnx2x_cid_to_q_obj(bp, cid);
5537 
5538 			if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5539 				break;
5540 
5541 			goto next_spqe;
5542 
5543 		case EVENT_RING_OPCODE_STOP_TRAFFIC:
5544 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5545 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5546 			if (f_obj->complete_cmd(bp, f_obj,
5547 						BNX2X_F_CMD_TX_STOP))
5548 				break;
5549 			goto next_spqe;
5550 
5551 		case EVENT_RING_OPCODE_START_TRAFFIC:
5552 			DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5553 			bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5554 			if (f_obj->complete_cmd(bp, f_obj,
5555 						BNX2X_F_CMD_TX_START))
5556 				break;
5557 			goto next_spqe;
5558 
5559 		case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5560 			echo = elem->message.data.function_update_event.echo;
5561 			if (echo == SWITCH_UPDATE) {
5562 				DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5563 				   "got FUNC_SWITCH_UPDATE ramrod\n");
5564 				if (f_obj->complete_cmd(
5565 					bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5566 					break;
5567 
5568 			} else {
5569 				int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5570 
5571 				DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5572 				   "AFEX: ramrod completed FUNCTION_UPDATE\n");
5573 				f_obj->complete_cmd(bp, f_obj,
5574 						    BNX2X_F_CMD_AFEX_UPDATE);
5575 
5576 				/* We will perform the Queues update from
5577 				 * sp_rtnl task as all Queue SP operations
5578 				 * should run under rtnl_lock.
5579 				 */
5580 				bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5581 			}
5582 
5583 			goto next_spqe;
5584 
5585 		case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5586 			f_obj->complete_cmd(bp, f_obj,
5587 					    BNX2X_F_CMD_AFEX_VIFLISTS);
5588 			bnx2x_after_afex_vif_lists(bp, elem);
5589 			goto next_spqe;
5590 		case EVENT_RING_OPCODE_FUNCTION_START:
5591 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592 			   "got FUNC_START ramrod\n");
5593 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5594 				break;
5595 
5596 			goto next_spqe;
5597 
5598 		case EVENT_RING_OPCODE_FUNCTION_STOP:
5599 			DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5600 			   "got FUNC_STOP ramrod\n");
5601 			if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5602 				break;
5603 
5604 			goto next_spqe;
5605 
5606 		case EVENT_RING_OPCODE_SET_TIMESYNC:
5607 			DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5608 			   "got set_timesync ramrod completion\n");
5609 			if (f_obj->complete_cmd(bp, f_obj,
5610 						BNX2X_F_CMD_SET_TIMESYNC))
5611 				break;
5612 			goto next_spqe;
5613 		}
5614 
5615 		switch (opcode | bp->state) {
5616 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5617 		      BNX2X_STATE_OPEN):
5618 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619 		      BNX2X_STATE_OPENING_WAIT4_PORT):
5620 		case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5622 			DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5623 			   SW_CID(elem->message.data.eth_event.echo));
5624 			rss_raw->clear_pending(rss_raw);
5625 			break;
5626 
5627 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5628 		case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5629 		case (EVENT_RING_OPCODE_SET_MAC |
5630 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5631 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5632 		      BNX2X_STATE_OPEN):
5633 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634 		      BNX2X_STATE_DIAG):
5635 		case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5637 			DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5638 			bnx2x_handle_classification_eqe(bp, elem);
5639 			break;
5640 
5641 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5642 		      BNX2X_STATE_OPEN):
5643 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644 		      BNX2X_STATE_DIAG):
5645 		case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5647 			DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5648 			bnx2x_handle_mcast_eqe(bp);
5649 			break;
5650 
5651 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5652 		      BNX2X_STATE_OPEN):
5653 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5654 		      BNX2X_STATE_DIAG):
5655 		case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 		      BNX2X_STATE_CLOSING_WAIT4_HALT):
5657 			DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5658 			bnx2x_handle_rx_mode_eqe(bp);
5659 			break;
5660 		default:
5661 			/* unknown event log error and continue */
5662 			BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5663 				  elem->message.opcode, bp->state);
5664 		}
5665 next_spqe:
5666 		spqe_cnt++;
5667 	} /* for */
5668 
5669 	smp_mb__before_atomic();
5670 	atomic_add(spqe_cnt, &bp->eq_spq_left);
5671 
5672 	bp->eq_cons = sw_cons;
5673 	bp->eq_prod = sw_prod;
5674 	/* Make sure that above mem writes were issued towards the memory */
5675 	smp_wmb();
5676 
5677 	/* update producer */
5678 	bnx2x_update_eq_prod(bp, bp->eq_prod);
5679 }
5680 
bnx2x_sp_task(struct work_struct * work)5681 static void bnx2x_sp_task(struct work_struct *work)
5682 {
5683 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5684 
5685 	DP(BNX2X_MSG_SP, "sp task invoked\n");
5686 
5687 	/* make sure the atomic interrupt_occurred has been written */
5688 	smp_rmb();
5689 	if (atomic_read(&bp->interrupt_occurred)) {
5690 
5691 		/* what work needs to be performed? */
5692 		u16 status = bnx2x_update_dsb_idx(bp);
5693 
5694 		DP(BNX2X_MSG_SP, "status %x\n", status);
5695 		DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5696 		atomic_set(&bp->interrupt_occurred, 0);
5697 
5698 		/* HW attentions */
5699 		if (status & BNX2X_DEF_SB_ATT_IDX) {
5700 			bnx2x_attn_int(bp);
5701 			status &= ~BNX2X_DEF_SB_ATT_IDX;
5702 		}
5703 
5704 		/* SP events: STAT_QUERY and others */
5705 		if (status & BNX2X_DEF_SB_IDX) {
5706 			struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5707 
5708 			if (FCOE_INIT(bp) &&
5709 			    (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5710 				/* Prevent local bottom-halves from running as
5711 				 * we are going to change the local NAPI list.
5712 				 */
5713 				local_bh_disable();
5714 				napi_schedule(&bnx2x_fcoe(bp, napi));
5715 				local_bh_enable();
5716 			}
5717 
5718 			/* Handle EQ completions */
5719 			bnx2x_eq_int(bp);
5720 			bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5721 				     le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5722 
5723 			status &= ~BNX2X_DEF_SB_IDX;
5724 		}
5725 
5726 		/* if status is non zero then perhaps something went wrong */
5727 		if (unlikely(status))
5728 			DP(BNX2X_MSG_SP,
5729 			   "got an unknown interrupt! (status 0x%x)\n", status);
5730 
5731 		/* ack status block only if something was actually handled */
5732 		bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5733 			     le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5734 	}
5735 
5736 	/* afex - poll to check if VIFSET_ACK should be sent to MFW */
5737 	if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5738 			       &bp->sp_state)) {
5739 		bnx2x_link_report(bp);
5740 		bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5741 	}
5742 }
5743 
bnx2x_msix_sp_int(int irq,void * dev_instance)5744 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5745 {
5746 	struct net_device *dev = dev_instance;
5747 	struct bnx2x *bp = netdev_priv(dev);
5748 
5749 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5750 		     IGU_INT_DISABLE, 0);
5751 
5752 #ifdef BNX2X_STOP_ON_ERROR
5753 	if (unlikely(bp->panic))
5754 		return IRQ_HANDLED;
5755 #endif
5756 
5757 	if (CNIC_LOADED(bp)) {
5758 		struct cnic_ops *c_ops;
5759 
5760 		rcu_read_lock();
5761 		c_ops = rcu_dereference(bp->cnic_ops);
5762 		if (c_ops)
5763 			c_ops->cnic_handler(bp->cnic_data, NULL);
5764 		rcu_read_unlock();
5765 	}
5766 
5767 	/* schedule sp task to perform default status block work, ack
5768 	 * attentions and enable interrupts.
5769 	 */
5770 	bnx2x_schedule_sp_task(bp);
5771 
5772 	return IRQ_HANDLED;
5773 }
5774 
5775 /* end of slow path */
5776 
bnx2x_drv_pulse(struct bnx2x * bp)5777 void bnx2x_drv_pulse(struct bnx2x *bp)
5778 {
5779 	SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5780 		 bp->fw_drv_pulse_wr_seq);
5781 }
5782 
bnx2x_timer(struct timer_list * t)5783 static void bnx2x_timer(struct timer_list *t)
5784 {
5785 	struct bnx2x *bp = from_timer(bp, t, timer);
5786 
5787 	if (!netif_running(bp->dev))
5788 		return;
5789 
5790 	if (IS_PF(bp) &&
5791 	    !BP_NOMCP(bp)) {
5792 		int mb_idx = BP_FW_MB_IDX(bp);
5793 		u16 drv_pulse;
5794 		u16 mcp_pulse;
5795 
5796 		++bp->fw_drv_pulse_wr_seq;
5797 		bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5798 		drv_pulse = bp->fw_drv_pulse_wr_seq;
5799 		bnx2x_drv_pulse(bp);
5800 
5801 		mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5802 			     MCP_PULSE_SEQ_MASK);
5803 		/* The delta between driver pulse and mcp response
5804 		 * should not get too big. If the MFW is more than 5 pulses
5805 		 * behind, we should worry about it enough to generate an error
5806 		 * log.
5807 		 */
5808 		if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5809 			BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5810 				  drv_pulse, mcp_pulse);
5811 	}
5812 
5813 	if (bp->state == BNX2X_STATE_OPEN)
5814 		bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5815 
5816 	/* sample pf vf bulletin board for new posts from pf */
5817 	if (IS_VF(bp))
5818 		bnx2x_timer_sriov(bp);
5819 
5820 	mod_timer(&bp->timer, jiffies + bp->current_interval);
5821 }
5822 
5823 /* end of Statistics */
5824 
5825 /* nic init */
5826 
5827 /*
5828  * nic init service functions
5829  */
5830 
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5831 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5832 {
5833 	u32 i;
5834 	if (!(len%4) && !(addr%4))
5835 		for (i = 0; i < len; i += 4)
5836 			REG_WR(bp, addr + i, fill);
5837 	else
5838 		for (i = 0; i < len; i++)
5839 			REG_WR8(bp, addr + i, fill);
5840 }
5841 
5842 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5843 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5844 				int fw_sb_id,
5845 				u32 *sb_data_p,
5846 				u32 data_size)
5847 {
5848 	int index;
5849 	for (index = 0; index < data_size; index++)
5850 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5851 			CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5852 			sizeof(u32)*index,
5853 			*(sb_data_p + index));
5854 }
5855 
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5856 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5857 {
5858 	u32 *sb_data_p;
5859 	u32 data_size = 0;
5860 	struct hc_status_block_data_e2 sb_data_e2;
5861 	struct hc_status_block_data_e1x sb_data_e1x;
5862 
5863 	/* disable the function first */
5864 	if (!CHIP_IS_E1x(bp)) {
5865 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5866 		sb_data_e2.common.state = SB_DISABLED;
5867 		sb_data_e2.common.p_func.vf_valid = false;
5868 		sb_data_p = (u32 *)&sb_data_e2;
5869 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5870 	} else {
5871 		memset(&sb_data_e1x, 0,
5872 		       sizeof(struct hc_status_block_data_e1x));
5873 		sb_data_e1x.common.state = SB_DISABLED;
5874 		sb_data_e1x.common.p_func.vf_valid = false;
5875 		sb_data_p = (u32 *)&sb_data_e1x;
5876 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5877 	}
5878 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5879 
5880 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5881 			CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5882 			CSTORM_STATUS_BLOCK_SIZE);
5883 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5884 			CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5885 			CSTORM_SYNC_BLOCK_SIZE);
5886 }
5887 
5888 /* helper:  writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5889 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5890 		struct hc_sp_status_block_data *sp_sb_data)
5891 {
5892 	int func = BP_FUNC(bp);
5893 	int i;
5894 	for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5895 		REG_WR(bp, BAR_CSTRORM_INTMEM +
5896 			CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5897 			i*sizeof(u32),
5898 			*((u32 *)sp_sb_data + i));
5899 }
5900 
bnx2x_zero_sp_sb(struct bnx2x * bp)5901 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5902 {
5903 	int func = BP_FUNC(bp);
5904 	struct hc_sp_status_block_data sp_sb_data;
5905 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5906 
5907 	sp_sb_data.state = SB_DISABLED;
5908 	sp_sb_data.p_func.vf_valid = false;
5909 
5910 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5911 
5912 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5913 			CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5914 			CSTORM_SP_STATUS_BLOCK_SIZE);
5915 	bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5916 			CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5917 			CSTORM_SP_SYNC_BLOCK_SIZE);
5918 }
5919 
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5920 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5921 					   int igu_sb_id, int igu_seg_id)
5922 {
5923 	hc_sm->igu_sb_id = igu_sb_id;
5924 	hc_sm->igu_seg_id = igu_seg_id;
5925 	hc_sm->timer_value = 0xFF;
5926 	hc_sm->time_to_expire = 0xFFFFFFFF;
5927 }
5928 
5929 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5930 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5931 {
5932 	/* zero out state machine indices */
5933 	/* rx indices */
5934 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5935 
5936 	/* tx indices */
5937 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5939 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5940 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5941 
5942 	/* map indices */
5943 	/* rx indices */
5944 	index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5945 		SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946 
5947 	/* tx indices */
5948 	index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5949 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5951 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5953 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954 	index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5955 		SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956 }
5957 
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5958 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5959 			  u8 vf_valid, int fw_sb_id, int igu_sb_id)
5960 {
5961 	int igu_seg_id;
5962 
5963 	struct hc_status_block_data_e2 sb_data_e2;
5964 	struct hc_status_block_data_e1x sb_data_e1x;
5965 	struct hc_status_block_sm  *hc_sm_p;
5966 	int data_size;
5967 	u32 *sb_data_p;
5968 
5969 	if (CHIP_INT_MODE_IS_BC(bp))
5970 		igu_seg_id = HC_SEG_ACCESS_NORM;
5971 	else
5972 		igu_seg_id = IGU_SEG_ACCESS_NORM;
5973 
5974 	bnx2x_zero_fp_sb(bp, fw_sb_id);
5975 
5976 	if (!CHIP_IS_E1x(bp)) {
5977 		memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5978 		sb_data_e2.common.state = SB_ENABLED;
5979 		sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5980 		sb_data_e2.common.p_func.vf_id = vfid;
5981 		sb_data_e2.common.p_func.vf_valid = vf_valid;
5982 		sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5983 		sb_data_e2.common.same_igu_sb_1b = true;
5984 		sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5985 		sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5986 		hc_sm_p = sb_data_e2.common.state_machine;
5987 		sb_data_p = (u32 *)&sb_data_e2;
5988 		data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5989 		bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5990 	} else {
5991 		memset(&sb_data_e1x, 0,
5992 		       sizeof(struct hc_status_block_data_e1x));
5993 		sb_data_e1x.common.state = SB_ENABLED;
5994 		sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5995 		sb_data_e1x.common.p_func.vf_id = 0xff;
5996 		sb_data_e1x.common.p_func.vf_valid = false;
5997 		sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5998 		sb_data_e1x.common.same_igu_sb_1b = true;
5999 		sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6000 		sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6001 		hc_sm_p = sb_data_e1x.common.state_machine;
6002 		sb_data_p = (u32 *)&sb_data_e1x;
6003 		data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6004 		bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6005 	}
6006 
6007 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6008 				       igu_sb_id, igu_seg_id);
6009 	bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6010 				       igu_sb_id, igu_seg_id);
6011 
6012 	DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6013 
6014 	/* write indices to HW - PCI guarantees endianity of regpairs */
6015 	bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6016 }
6017 
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6018 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6019 				     u16 tx_usec, u16 rx_usec)
6020 {
6021 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6022 				    false, rx_usec);
6023 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6024 				       HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6025 				       tx_usec);
6026 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6027 				       HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6028 				       tx_usec);
6029 	bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6030 				       HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6031 				       tx_usec);
6032 }
6033 
bnx2x_init_def_sb(struct bnx2x * bp)6034 static void bnx2x_init_def_sb(struct bnx2x *bp)
6035 {
6036 	struct host_sp_status_block *def_sb = bp->def_status_blk;
6037 	dma_addr_t mapping = bp->def_status_blk_mapping;
6038 	int igu_sp_sb_index;
6039 	int igu_seg_id;
6040 	int port = BP_PORT(bp);
6041 	int func = BP_FUNC(bp);
6042 	int reg_offset, reg_offset_en5;
6043 	u64 section;
6044 	int index;
6045 	struct hc_sp_status_block_data sp_sb_data;
6046 	memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6047 
6048 	if (CHIP_INT_MODE_IS_BC(bp)) {
6049 		igu_sp_sb_index = DEF_SB_IGU_ID;
6050 		igu_seg_id = HC_SEG_ACCESS_DEF;
6051 	} else {
6052 		igu_sp_sb_index = bp->igu_dsb_id;
6053 		igu_seg_id = IGU_SEG_ACCESS_DEF;
6054 	}
6055 
6056 	/* ATTN */
6057 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6058 					    atten_status_block);
6059 	def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6060 
6061 	bp->attn_state = 0;
6062 
6063 	reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6064 			     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6065 	reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6066 				 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6067 	for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6068 		int sindex;
6069 		/* take care of sig[0]..sig[4] */
6070 		for (sindex = 0; sindex < 4; sindex++)
6071 			bp->attn_group[index].sig[sindex] =
6072 			   REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6073 
6074 		if (!CHIP_IS_E1x(bp))
6075 			/*
6076 			 * enable5 is separate from the rest of the registers,
6077 			 * and therefore the address skip is 4
6078 			 * and not 16 between the different groups
6079 			 */
6080 			bp->attn_group[index].sig[4] = REG_RD(bp,
6081 					reg_offset_en5 + 0x4*index);
6082 		else
6083 			bp->attn_group[index].sig[4] = 0;
6084 	}
6085 
6086 	if (bp->common.int_block == INT_BLOCK_HC) {
6087 		reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6088 				     HC_REG_ATTN_MSG0_ADDR_L);
6089 
6090 		REG_WR(bp, reg_offset, U64_LO(section));
6091 		REG_WR(bp, reg_offset + 4, U64_HI(section));
6092 	} else if (!CHIP_IS_E1x(bp)) {
6093 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6094 		REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6095 	}
6096 
6097 	section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6098 					    sp_sb);
6099 
6100 	bnx2x_zero_sp_sb(bp);
6101 
6102 	/* PCI guarantees endianity of regpairs */
6103 	sp_sb_data.state		= SB_ENABLED;
6104 	sp_sb_data.host_sb_addr.lo	= U64_LO(section);
6105 	sp_sb_data.host_sb_addr.hi	= U64_HI(section);
6106 	sp_sb_data.igu_sb_id		= igu_sp_sb_index;
6107 	sp_sb_data.igu_seg_id		= igu_seg_id;
6108 	sp_sb_data.p_func.pf_id		= func;
6109 	sp_sb_data.p_func.vnic_id	= BP_VN(bp);
6110 	sp_sb_data.p_func.vf_id		= 0xff;
6111 
6112 	bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6113 
6114 	bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6115 }
6116 
bnx2x_update_coalesce(struct bnx2x * bp)6117 void bnx2x_update_coalesce(struct bnx2x *bp)
6118 {
6119 	int i;
6120 
6121 	for_each_eth_queue(bp, i)
6122 		bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6123 					 bp->tx_ticks, bp->rx_ticks);
6124 }
6125 
bnx2x_init_sp_ring(struct bnx2x * bp)6126 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6127 {
6128 	spin_lock_init(&bp->spq_lock);
6129 	atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6130 
6131 	bp->spq_prod_idx = 0;
6132 	bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6133 	bp->spq_prod_bd = bp->spq;
6134 	bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6135 }
6136 
bnx2x_init_eq_ring(struct bnx2x * bp)6137 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6138 {
6139 	int i;
6140 	for (i = 1; i <= NUM_EQ_PAGES; i++) {
6141 		union event_ring_elem *elem =
6142 			&bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6143 
6144 		elem->next_page.addr.hi =
6145 			cpu_to_le32(U64_HI(bp->eq_mapping +
6146 				   BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6147 		elem->next_page.addr.lo =
6148 			cpu_to_le32(U64_LO(bp->eq_mapping +
6149 				   BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6150 	}
6151 	bp->eq_cons = 0;
6152 	bp->eq_prod = NUM_EQ_DESC;
6153 	bp->eq_cons_sb = BNX2X_EQ_INDEX;
6154 	/* we want a warning message before it gets wrought... */
6155 	atomic_set(&bp->eq_spq_left,
6156 		min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6157 }
6158 
6159 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6160 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6161 			       unsigned long rx_mode_flags,
6162 			       unsigned long rx_accept_flags,
6163 			       unsigned long tx_accept_flags,
6164 			       unsigned long ramrod_flags)
6165 {
6166 	struct bnx2x_rx_mode_ramrod_params ramrod_param;
6167 	int rc;
6168 
6169 	memset(&ramrod_param, 0, sizeof(ramrod_param));
6170 
6171 	/* Prepare ramrod parameters */
6172 	ramrod_param.cid = 0;
6173 	ramrod_param.cl_id = cl_id;
6174 	ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6175 	ramrod_param.func_id = BP_FUNC(bp);
6176 
6177 	ramrod_param.pstate = &bp->sp_state;
6178 	ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6179 
6180 	ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6181 	ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6182 
6183 	set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6184 
6185 	ramrod_param.ramrod_flags = ramrod_flags;
6186 	ramrod_param.rx_mode_flags = rx_mode_flags;
6187 
6188 	ramrod_param.rx_accept_flags = rx_accept_flags;
6189 	ramrod_param.tx_accept_flags = tx_accept_flags;
6190 
6191 	rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6192 	if (rc < 0) {
6193 		BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6194 		return rc;
6195 	}
6196 
6197 	return 0;
6198 }
6199 
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6200 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6201 				   unsigned long *rx_accept_flags,
6202 				   unsigned long *tx_accept_flags)
6203 {
6204 	/* Clear the flags first */
6205 	*rx_accept_flags = 0;
6206 	*tx_accept_flags = 0;
6207 
6208 	switch (rx_mode) {
6209 	case BNX2X_RX_MODE_NONE:
6210 		/*
6211 		 * 'drop all' supersedes any accept flags that may have been
6212 		 * passed to the function.
6213 		 */
6214 		break;
6215 	case BNX2X_RX_MODE_NORMAL:
6216 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6217 		__set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6218 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6219 
6220 		/* internal switching mode */
6221 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6222 		__set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6223 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6224 
6225 		if (bp->accept_any_vlan) {
6226 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6227 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6228 		}
6229 
6230 		break;
6231 	case BNX2X_RX_MODE_ALLMULTI:
6232 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235 
6236 		/* internal switching mode */
6237 		__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6238 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6239 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6240 
6241 		if (bp->accept_any_vlan) {
6242 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6243 			__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6244 		}
6245 
6246 		break;
6247 	case BNX2X_RX_MODE_PROMISC:
6248 		/* According to definition of SI mode, iface in promisc mode
6249 		 * should receive matched and unmatched (in resolution of port)
6250 		 * unicast packets.
6251 		 */
6252 		__set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6253 		__set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6254 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6255 		__set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6256 
6257 		/* internal switching mode */
6258 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6259 		__set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6260 
6261 		if (IS_MF_SI(bp))
6262 			__set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6263 		else
6264 			__set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6265 
6266 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6267 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6268 
6269 		break;
6270 	default:
6271 		BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6272 		return -EINVAL;
6273 	}
6274 
6275 	return 0;
6276 }
6277 
6278 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6279 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6280 {
6281 	unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6282 	unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6283 	int rc;
6284 
6285 	if (!NO_FCOE(bp))
6286 		/* Configure rx_mode of FCoE Queue */
6287 		__set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6288 
6289 	rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6290 				     &tx_accept_flags);
6291 	if (rc)
6292 		return rc;
6293 
6294 	__set_bit(RAMROD_RX, &ramrod_flags);
6295 	__set_bit(RAMROD_TX, &ramrod_flags);
6296 
6297 	return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6298 				   rx_accept_flags, tx_accept_flags,
6299 				   ramrod_flags);
6300 }
6301 
bnx2x_init_internal_common(struct bnx2x * bp)6302 static void bnx2x_init_internal_common(struct bnx2x *bp)
6303 {
6304 	int i;
6305 
6306 	/* Zero this manually as its initialization is
6307 	   currently missing in the initTool */
6308 	for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6309 		REG_WR(bp, BAR_USTRORM_INTMEM +
6310 		       USTORM_AGG_DATA_OFFSET + i * 4, 0);
6311 	if (!CHIP_IS_E1x(bp)) {
6312 		REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6313 			CHIP_INT_MODE_IS_BC(bp) ?
6314 			HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6315 	}
6316 }
6317 
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6318 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6319 {
6320 	switch (load_code) {
6321 	case FW_MSG_CODE_DRV_LOAD_COMMON:
6322 	case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6323 		bnx2x_init_internal_common(bp);
6324 		fallthrough;
6325 
6326 	case FW_MSG_CODE_DRV_LOAD_PORT:
6327 		/* nothing to do */
6328 		fallthrough;
6329 
6330 	case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6331 		/* internal memory per function is
6332 		   initialized inside bnx2x_pf_init */
6333 		break;
6334 
6335 	default:
6336 		BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6337 		break;
6338 	}
6339 }
6340 
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6341 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6342 {
6343 	return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6344 }
6345 
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6346 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6347 {
6348 	return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6349 }
6350 
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6351 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6352 {
6353 	if (CHIP_IS_E1x(fp->bp))
6354 		return BP_L_ID(fp->bp) + fp->index;
6355 	else	/* We want Client ID to be the same as IGU SB ID for 57712 */
6356 		return bnx2x_fp_igu_sb_id(fp);
6357 }
6358 
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6359 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6360 {
6361 	struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6362 	u8 cos;
6363 	unsigned long q_type = 0;
6364 	u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6365 	fp->rx_queue = fp_idx;
6366 	fp->cid = fp_idx;
6367 	fp->cl_id = bnx2x_fp_cl_id(fp);
6368 	fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6369 	fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6370 	/* qZone id equals to FW (per path) client id */
6371 	fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6372 
6373 	/* init shortcut */
6374 	fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6375 
6376 	/* Setup SB indices */
6377 	fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6378 
6379 	/* Configure Queue State object */
6380 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6381 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6382 
6383 	BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6384 
6385 	/* init tx data */
6386 	for_each_cos_in_tx_queue(fp, cos) {
6387 		bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6388 				  CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6389 				  FP_COS_TO_TXQ(fp, cos, bp),
6390 				  BNX2X_TX_SB_INDEX_BASE + cos, fp);
6391 		cids[cos] = fp->txdata_ptr[cos]->cid;
6392 	}
6393 
6394 	/* nothing more for vf to do here */
6395 	if (IS_VF(bp))
6396 		return;
6397 
6398 	bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6399 		      fp->fw_sb_id, fp->igu_sb_id);
6400 	bnx2x_update_fpsb_idx(fp);
6401 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6402 			     fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6403 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6404 
6405 	/**
6406 	 * Configure classification DBs: Always enable Tx switching
6407 	 */
6408 	bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6409 
6410 	DP(NETIF_MSG_IFUP,
6411 	   "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6412 	   fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6413 	   fp->igu_sb_id);
6414 }
6415 
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6416 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6417 {
6418 	int i;
6419 
6420 	for (i = 1; i <= NUM_TX_RINGS; i++) {
6421 		struct eth_tx_next_bd *tx_next_bd =
6422 			&txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6423 
6424 		tx_next_bd->addr_hi =
6425 			cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6426 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6427 		tx_next_bd->addr_lo =
6428 			cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6429 				    BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6430 	}
6431 
6432 	*txdata->tx_cons_sb = cpu_to_le16(0);
6433 
6434 	SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6435 	txdata->tx_db.data.zero_fill1 = 0;
6436 	txdata->tx_db.data.prod = 0;
6437 
6438 	txdata->tx_pkt_prod = 0;
6439 	txdata->tx_pkt_cons = 0;
6440 	txdata->tx_bd_prod = 0;
6441 	txdata->tx_bd_cons = 0;
6442 	txdata->tx_pkt = 0;
6443 }
6444 
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6445 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6446 {
6447 	int i;
6448 
6449 	for_each_tx_queue_cnic(bp, i)
6450 		bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6451 }
6452 
bnx2x_init_tx_rings(struct bnx2x * bp)6453 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6454 {
6455 	int i;
6456 	u8 cos;
6457 
6458 	for_each_eth_queue(bp, i)
6459 		for_each_cos_in_tx_queue(&bp->fp[i], cos)
6460 			bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6461 }
6462 
bnx2x_init_fcoe_fp(struct bnx2x * bp)6463 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6464 {
6465 	struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6466 	unsigned long q_type = 0;
6467 
6468 	bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6469 	bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6470 						     BNX2X_FCOE_ETH_CL_ID_IDX);
6471 	bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6472 	bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6473 	bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6474 	bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6475 	bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6476 			  fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6477 			  fp);
6478 
6479 	DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6480 
6481 	/* qZone id equals to FW (per path) client id */
6482 	bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6483 	/* init shortcut */
6484 	bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6485 		bnx2x_rx_ustorm_prods_offset(fp);
6486 
6487 	/* Configure Queue State object */
6488 	__set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6489 	__set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6490 
6491 	/* No multi-CoS for FCoE L2 client */
6492 	BUG_ON(fp->max_cos != 1);
6493 
6494 	bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6495 			     &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6496 			     bnx2x_sp_mapping(bp, q_rdata), q_type);
6497 
6498 	DP(NETIF_MSG_IFUP,
6499 	   "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6500 	   fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6501 	   fp->igu_sb_id);
6502 }
6503 
bnx2x_nic_init_cnic(struct bnx2x * bp)6504 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6505 {
6506 	if (!NO_FCOE(bp))
6507 		bnx2x_init_fcoe_fp(bp);
6508 
6509 	bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6510 		      BNX2X_VF_ID_INVALID, false,
6511 		      bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6512 
6513 	/* ensure status block indices were read */
6514 	rmb();
6515 	bnx2x_init_rx_rings_cnic(bp);
6516 	bnx2x_init_tx_rings_cnic(bp);
6517 
6518 	/* flush all */
6519 	mb();
6520 }
6521 
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6522 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6523 {
6524 	int i;
6525 
6526 	/* Setup NIC internals and enable interrupts */
6527 	for_each_eth_queue(bp, i)
6528 		bnx2x_init_eth_fp(bp, i);
6529 
6530 	/* ensure status block indices were read */
6531 	rmb();
6532 	bnx2x_init_rx_rings(bp);
6533 	bnx2x_init_tx_rings(bp);
6534 
6535 	if (IS_PF(bp)) {
6536 		/* Initialize MOD_ABS interrupts */
6537 		bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6538 				       bp->common.shmem_base,
6539 				       bp->common.shmem2_base, BP_PORT(bp));
6540 
6541 		/* initialize the default status block and sp ring */
6542 		bnx2x_init_def_sb(bp);
6543 		bnx2x_update_dsb_idx(bp);
6544 		bnx2x_init_sp_ring(bp);
6545 	} else {
6546 		bnx2x_memset_stats(bp);
6547 	}
6548 }
6549 
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6550 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6551 {
6552 	bnx2x_init_eq_ring(bp);
6553 	bnx2x_init_internal(bp, load_code);
6554 	bnx2x_pf_init(bp);
6555 	bnx2x_stats_init(bp);
6556 
6557 	/* flush all before enabling interrupts */
6558 	mb();
6559 
6560 	bnx2x_int_enable(bp);
6561 
6562 	/* Check for SPIO5 */
6563 	bnx2x_attn_int_deasserted0(bp,
6564 		REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6565 				   AEU_INPUTS_ATTN_BITS_SPIO5);
6566 }
6567 
6568 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6569 static int bnx2x_gunzip_init(struct bnx2x *bp)
6570 {
6571 	bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6572 					    &bp->gunzip_mapping, GFP_KERNEL);
6573 	if (bp->gunzip_buf  == NULL)
6574 		goto gunzip_nomem1;
6575 
6576 	bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6577 	if (bp->strm  == NULL)
6578 		goto gunzip_nomem2;
6579 
6580 	bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6581 	if (bp->strm->workspace == NULL)
6582 		goto gunzip_nomem3;
6583 
6584 	return 0;
6585 
6586 gunzip_nomem3:
6587 	kfree(bp->strm);
6588 	bp->strm = NULL;
6589 
6590 gunzip_nomem2:
6591 	dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6592 			  bp->gunzip_mapping);
6593 	bp->gunzip_buf = NULL;
6594 
6595 gunzip_nomem1:
6596 	BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6597 	return -ENOMEM;
6598 }
6599 
bnx2x_gunzip_end(struct bnx2x * bp)6600 static void bnx2x_gunzip_end(struct bnx2x *bp)
6601 {
6602 	if (bp->strm) {
6603 		vfree(bp->strm->workspace);
6604 		kfree(bp->strm);
6605 		bp->strm = NULL;
6606 	}
6607 
6608 	if (bp->gunzip_buf) {
6609 		dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6610 				  bp->gunzip_mapping);
6611 		bp->gunzip_buf = NULL;
6612 	}
6613 }
6614 
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6615 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6616 {
6617 	int n, rc;
6618 
6619 	/* check gzip header */
6620 	if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6621 		BNX2X_ERR("Bad gzip header\n");
6622 		return -EINVAL;
6623 	}
6624 
6625 	n = 10;
6626 
6627 #define FNAME				0x8
6628 
6629 	if (zbuf[3] & FNAME)
6630 		while ((zbuf[n++] != 0) && (n < len));
6631 
6632 	bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6633 	bp->strm->avail_in = len - n;
6634 	bp->strm->next_out = bp->gunzip_buf;
6635 	bp->strm->avail_out = FW_BUF_SIZE;
6636 
6637 	rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6638 	if (rc != Z_OK)
6639 		return rc;
6640 
6641 	rc = zlib_inflate(bp->strm, Z_FINISH);
6642 	if ((rc != Z_OK) && (rc != Z_STREAM_END))
6643 		netdev_err(bp->dev, "Firmware decompression error: %s\n",
6644 			   bp->strm->msg);
6645 
6646 	bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6647 	if (bp->gunzip_outlen & 0x3)
6648 		netdev_err(bp->dev,
6649 			   "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6650 				bp->gunzip_outlen);
6651 	bp->gunzip_outlen >>= 2;
6652 
6653 	zlib_inflateEnd(bp->strm);
6654 
6655 	if (rc == Z_STREAM_END)
6656 		return 0;
6657 
6658 	return rc;
6659 }
6660 
6661 /* nic load/unload */
6662 
6663 /*
6664  * General service functions
6665  */
6666 
6667 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6668 static void bnx2x_lb_pckt(struct bnx2x *bp)
6669 {
6670 	u32 wb_write[3];
6671 
6672 	/* Ethernet source and destination addresses */
6673 	wb_write[0] = 0x55555555;
6674 	wb_write[1] = 0x55555555;
6675 	wb_write[2] = 0x20;		/* SOP */
6676 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6677 
6678 	/* NON-IP protocol */
6679 	wb_write[0] = 0x09000000;
6680 	wb_write[1] = 0x55555555;
6681 	wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */
6682 	REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6683 }
6684 
6685 /* some of the internal memories
6686  * are not directly readable from the driver
6687  * to test them we send debug packets
6688  */
bnx2x_int_mem_test(struct bnx2x * bp)6689 static int bnx2x_int_mem_test(struct bnx2x *bp)
6690 {
6691 	int factor;
6692 	int count, i;
6693 	u32 val = 0;
6694 
6695 	if (CHIP_REV_IS_FPGA(bp))
6696 		factor = 120;
6697 	else if (CHIP_REV_IS_EMUL(bp))
6698 		factor = 200;
6699 	else
6700 		factor = 1;
6701 
6702 	/* Disable inputs of parser neighbor blocks */
6703 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6704 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6705 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6706 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6707 
6708 	/*  Write 0 to parser credits for CFC search request */
6709 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6710 
6711 	/* send Ethernet packet */
6712 	bnx2x_lb_pckt(bp);
6713 
6714 	/* TODO do i reset NIG statistic? */
6715 	/* Wait until NIG register shows 1 packet of size 0x10 */
6716 	count = 1000 * factor;
6717 	while (count) {
6718 
6719 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6720 		val = *bnx2x_sp(bp, wb_data[0]);
6721 		if (val == 0x10)
6722 			break;
6723 
6724 		usleep_range(10000, 20000);
6725 		count--;
6726 	}
6727 	if (val != 0x10) {
6728 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6729 		return -1;
6730 	}
6731 
6732 	/* Wait until PRS register shows 1 packet */
6733 	count = 1000 * factor;
6734 	while (count) {
6735 		val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6736 		if (val == 1)
6737 			break;
6738 
6739 		usleep_range(10000, 20000);
6740 		count--;
6741 	}
6742 	if (val != 0x1) {
6743 		BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6744 		return -2;
6745 	}
6746 
6747 	/* Reset and init BRB, PRS */
6748 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6749 	msleep(50);
6750 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6751 	msleep(50);
6752 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6753 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6754 
6755 	DP(NETIF_MSG_HW, "part2\n");
6756 
6757 	/* Disable inputs of parser neighbor blocks */
6758 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6759 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6760 	REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6761 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6762 
6763 	/* Write 0 to parser credits for CFC search request */
6764 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6765 
6766 	/* send 10 Ethernet packets */
6767 	for (i = 0; i < 10; i++)
6768 		bnx2x_lb_pckt(bp);
6769 
6770 	/* Wait until NIG register shows 10 + 1
6771 	   packets of size 11*0x10 = 0xb0 */
6772 	count = 1000 * factor;
6773 	while (count) {
6774 
6775 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6776 		val = *bnx2x_sp(bp, wb_data[0]);
6777 		if (val == 0xb0)
6778 			break;
6779 
6780 		usleep_range(10000, 20000);
6781 		count--;
6782 	}
6783 	if (val != 0xb0) {
6784 		BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6785 		return -3;
6786 	}
6787 
6788 	/* Wait until PRS register shows 2 packets */
6789 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6790 	if (val != 2)
6791 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6792 
6793 	/* Write 1 to parser credits for CFC search request */
6794 	REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6795 
6796 	/* Wait until PRS register shows 3 packets */
6797 	msleep(10 * factor);
6798 	/* Wait until NIG register shows 1 packet of size 0x10 */
6799 	val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6800 	if (val != 3)
6801 		BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6802 
6803 	/* clear NIG EOP FIFO */
6804 	for (i = 0; i < 11; i++)
6805 		REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6806 	val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6807 	if (val != 1) {
6808 		BNX2X_ERR("clear of NIG failed\n");
6809 		return -4;
6810 	}
6811 
6812 	/* Reset and init BRB, PRS, NIG */
6813 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6814 	msleep(50);
6815 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6816 	msleep(50);
6817 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6818 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6819 	if (!CNIC_SUPPORT(bp))
6820 		/* set NIC mode */
6821 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
6822 
6823 	/* Enable inputs of parser neighbor blocks */
6824 	REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6825 	REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6826 	REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6827 	REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6828 
6829 	DP(NETIF_MSG_HW, "done\n");
6830 
6831 	return 0; /* OK */
6832 }
6833 
bnx2x_enable_blocks_attention(struct bnx2x * bp)6834 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6835 {
6836 	u32 val;
6837 
6838 	REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6839 	if (!CHIP_IS_E1x(bp))
6840 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6841 	else
6842 		REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6843 	REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6844 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6845 	/*
6846 	 * mask read length error interrupts in brb for parser
6847 	 * (parsing unit and 'checksum and crc' unit)
6848 	 * these errors are legal (PU reads fixed length and CAC can cause
6849 	 * read length error on truncated packets)
6850 	 */
6851 	REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6852 	REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6853 	REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6854 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6855 	REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6856 	REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6857 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6858 /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6859 	REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6860 	REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6861 	REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6862 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6863 /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6864 	REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6865 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6866 	REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6867 	REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6868 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6869 /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6870 
6871 	val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6872 		PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6873 		PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6874 	if (!CHIP_IS_E1x(bp))
6875 		val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6876 			PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6877 	REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6878 
6879 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6880 	REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6881 	REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6882 /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6883 
6884 	if (!CHIP_IS_E1x(bp))
6885 		/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6886 		REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6887 
6888 	REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6889 	REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6890 /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6891 	REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */
6892 }
6893 
bnx2x_reset_common(struct bnx2x * bp)6894 static void bnx2x_reset_common(struct bnx2x *bp)
6895 {
6896 	u32 val = 0x1400;
6897 
6898 	/* reset_common */
6899 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6900 	       0xd3ffff7f);
6901 
6902 	if (CHIP_IS_E3(bp)) {
6903 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6904 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6905 	}
6906 
6907 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6908 }
6909 
bnx2x_setup_dmae(struct bnx2x * bp)6910 static void bnx2x_setup_dmae(struct bnx2x *bp)
6911 {
6912 	bp->dmae_ready = 0;
6913 	spin_lock_init(&bp->dmae_lock);
6914 }
6915 
bnx2x_init_pxp(struct bnx2x * bp)6916 static void bnx2x_init_pxp(struct bnx2x *bp)
6917 {
6918 	u16 devctl;
6919 	int r_order, w_order;
6920 
6921 	pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6922 	DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6923 	w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6924 	if (bp->mrrs == -1)
6925 		r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6926 	else {
6927 		DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6928 		r_order = bp->mrrs;
6929 	}
6930 
6931 	bnx2x_init_pxp_arb(bp, r_order, w_order);
6932 }
6933 
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6934 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6935 {
6936 	int is_required;
6937 	u32 val;
6938 	int port;
6939 
6940 	if (BP_NOMCP(bp))
6941 		return;
6942 
6943 	is_required = 0;
6944 	val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6945 	      SHARED_HW_CFG_FAN_FAILURE_MASK;
6946 
6947 	if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6948 		is_required = 1;
6949 
6950 	/*
6951 	 * The fan failure mechanism is usually related to the PHY type since
6952 	 * the power consumption of the board is affected by the PHY. Currently,
6953 	 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6954 	 */
6955 	else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6956 		for (port = PORT_0; port < PORT_MAX; port++) {
6957 			is_required |=
6958 				bnx2x_fan_failure_det_req(
6959 					bp,
6960 					bp->common.shmem_base,
6961 					bp->common.shmem2_base,
6962 					port);
6963 		}
6964 
6965 	DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6966 
6967 	if (is_required == 0)
6968 		return;
6969 
6970 	/* Fan failure is indicated by SPIO 5 */
6971 	bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6972 
6973 	/* set to active low mode */
6974 	val = REG_RD(bp, MISC_REG_SPIO_INT);
6975 	val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6976 	REG_WR(bp, MISC_REG_SPIO_INT, val);
6977 
6978 	/* enable interrupt to signal the IGU */
6979 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6980 	val |= MISC_SPIO_SPIO5;
6981 	REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6982 }
6983 
bnx2x_pf_disable(struct bnx2x * bp)6984 void bnx2x_pf_disable(struct bnx2x *bp)
6985 {
6986 	u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6987 	val &= ~IGU_PF_CONF_FUNC_EN;
6988 
6989 	REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6990 	REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6991 	REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6992 }
6993 
bnx2x__common_init_phy(struct bnx2x * bp)6994 static void bnx2x__common_init_phy(struct bnx2x *bp)
6995 {
6996 	u32 shmem_base[2], shmem2_base[2];
6997 	/* Avoid common init in case MFW supports LFA */
6998 	if (SHMEM2_RD(bp, size) >
6999 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7000 		return;
7001 	shmem_base[0] =  bp->common.shmem_base;
7002 	shmem2_base[0] = bp->common.shmem2_base;
7003 	if (!CHIP_IS_E1x(bp)) {
7004 		shmem_base[1] =
7005 			SHMEM2_RD(bp, other_shmem_base_addr);
7006 		shmem2_base[1] =
7007 			SHMEM2_RD(bp, other_shmem2_base_addr);
7008 	}
7009 	bnx2x_acquire_phy_lock(bp);
7010 	bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7011 			      bp->common.chip_id);
7012 	bnx2x_release_phy_lock(bp);
7013 }
7014 
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7015 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7016 {
7017 	REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7018 	REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7019 	REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7020 	REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7021 	REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7022 
7023 	/* make sure this value is 0 */
7024 	REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7025 
7026 	REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7027 	REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7028 	REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7029 	REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7030 }
7031 
bnx2x_set_endianity(struct bnx2x * bp)7032 static void bnx2x_set_endianity(struct bnx2x *bp)
7033 {
7034 #ifdef __BIG_ENDIAN
7035 	bnx2x_config_endianity(bp, 1);
7036 #else
7037 	bnx2x_config_endianity(bp, 0);
7038 #endif
7039 }
7040 
bnx2x_reset_endianity(struct bnx2x * bp)7041 static void bnx2x_reset_endianity(struct bnx2x *bp)
7042 {
7043 	bnx2x_config_endianity(bp, 0);
7044 }
7045 
7046 /**
7047  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7048  *
7049  * @bp:		driver handle
7050  */
bnx2x_init_hw_common(struct bnx2x * bp)7051 static int bnx2x_init_hw_common(struct bnx2x *bp)
7052 {
7053 	u32 val;
7054 
7055 	DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7056 
7057 	/*
7058 	 * take the RESET lock to protect undi_unload flow from accessing
7059 	 * registers while we're resetting the chip
7060 	 */
7061 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7062 
7063 	bnx2x_reset_common(bp);
7064 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7065 
7066 	val = 0xfffc;
7067 	if (CHIP_IS_E3(bp)) {
7068 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7069 		val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7070 	}
7071 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7072 
7073 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7074 
7075 	bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7076 
7077 	if (!CHIP_IS_E1x(bp)) {
7078 		u8 abs_func_id;
7079 
7080 		/**
7081 		 * 4-port mode or 2-port mode we need to turn of master-enable
7082 		 * for everyone, after that, turn it back on for self.
7083 		 * so, we disregard multi-function or not, and always disable
7084 		 * for all functions on the given path, this means 0,2,4,6 for
7085 		 * path 0 and 1,3,5,7 for path 1
7086 		 */
7087 		for (abs_func_id = BP_PATH(bp);
7088 		     abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7089 			if (abs_func_id == BP_ABS_FUNC(bp)) {
7090 				REG_WR(bp,
7091 				    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7092 				    1);
7093 				continue;
7094 			}
7095 
7096 			bnx2x_pretend_func(bp, abs_func_id);
7097 			/* clear pf enable */
7098 			bnx2x_pf_disable(bp);
7099 			bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7100 		}
7101 	}
7102 
7103 	bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7104 	if (CHIP_IS_E1(bp)) {
7105 		/* enable HW interrupt from PXP on USDM overflow
7106 		   bit 16 on INT_MASK_0 */
7107 		REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7108 	}
7109 
7110 	bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7111 	bnx2x_init_pxp(bp);
7112 	bnx2x_set_endianity(bp);
7113 	bnx2x_ilt_init_page_size(bp, INITOP_SET);
7114 
7115 	if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7116 		REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7117 
7118 	/* let the HW do it's magic ... */
7119 	msleep(100);
7120 	/* finish PXP init */
7121 	val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7122 	if (val != 1) {
7123 		BNX2X_ERR("PXP2 CFG failed\n");
7124 		return -EBUSY;
7125 	}
7126 	val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7127 	if (val != 1) {
7128 		BNX2X_ERR("PXP2 RD_INIT failed\n");
7129 		return -EBUSY;
7130 	}
7131 
7132 	/* Timers bug workaround E2 only. We need to set the entire ILT to
7133 	 * have entries with value "0" and valid bit on.
7134 	 * This needs to be done by the first PF that is loaded in a path
7135 	 * (i.e. common phase)
7136 	 */
7137 	if (!CHIP_IS_E1x(bp)) {
7138 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7139  * (i.e. vnic3) to start even if it is marked as "scan-off".
7140  * This occurs when a different function (func2,3) is being marked
7141  * as "scan-off". Real-life scenario for example: if a driver is being
7142  * load-unloaded while func6,7 are down. This will cause the timer to access
7143  * the ilt, translate to a logical address and send a request to read/write.
7144  * Since the ilt for the function that is down is not valid, this will cause
7145  * a translation error which is unrecoverable.
7146  * The Workaround is intended to make sure that when this happens nothing fatal
7147  * will occur. The workaround:
7148  *	1.  First PF driver which loads on a path will:
7149  *		a.  After taking the chip out of reset, by using pretend,
7150  *		    it will write "0" to the following registers of
7151  *		    the other vnics.
7152  *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7153  *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7154  *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7155  *		    And for itself it will write '1' to
7156  *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7157  *		    dmae-operations (writing to pram for example.)
7158  *		    note: can be done for only function 6,7 but cleaner this
7159  *			  way.
7160  *		b.  Write zero+valid to the entire ILT.
7161  *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7162  *		    VNIC3 (of that port). The range allocated will be the
7163  *		    entire ILT. This is needed to prevent  ILT range error.
7164  *	2.  Any PF driver load flow:
7165  *		a.  ILT update with the physical addresses of the allocated
7166  *		    logical pages.
7167  *		b.  Wait 20msec. - note that this timeout is needed to make
7168  *		    sure there are no requests in one of the PXP internal
7169  *		    queues with "old" ILT addresses.
7170  *		c.  PF enable in the PGLC.
7171  *		d.  Clear the was_error of the PF in the PGLC. (could have
7172  *		    occurred while driver was down)
7173  *		e.  PF enable in the CFC (WEAK + STRONG)
7174  *		f.  Timers scan enable
7175  *	3.  PF driver unload flow:
7176  *		a.  Clear the Timers scan_en.
7177  *		b.  Polling for scan_on=0 for that PF.
7178  *		c.  Clear the PF enable bit in the PXP.
7179  *		d.  Clear the PF enable in the CFC (WEAK + STRONG)
7180  *		e.  Write zero+valid to all ILT entries (The valid bit must
7181  *		    stay set)
7182  *		f.  If this is VNIC 3 of a port then also init
7183  *		    first_timers_ilt_entry to zero and last_timers_ilt_entry
7184  *		    to the last entry in the ILT.
7185  *
7186  *	Notes:
7187  *	Currently the PF error in the PGLC is non recoverable.
7188  *	In the future the there will be a recovery routine for this error.
7189  *	Currently attention is masked.
7190  *	Having an MCP lock on the load/unload process does not guarantee that
7191  *	there is no Timer disable during Func6/7 enable. This is because the
7192  *	Timers scan is currently being cleared by the MCP on FLR.
7193  *	Step 2.d can be done only for PF6/7 and the driver can also check if
7194  *	there is error before clearing it. But the flow above is simpler and
7195  *	more general.
7196  *	All ILT entries are written by zero+valid and not just PF6/7
7197  *	ILT entries since in the future the ILT entries allocation for
7198  *	PF-s might be dynamic.
7199  */
7200 		struct ilt_client_info ilt_cli;
7201 		struct bnx2x_ilt ilt;
7202 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7203 		memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7204 
7205 		/* initialize dummy TM client */
7206 		ilt_cli.start = 0;
7207 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7208 		ilt_cli.client_num = ILT_CLIENT_TM;
7209 
7210 		/* Step 1: set zeroes to all ilt page entries with valid bit on
7211 		 * Step 2: set the timers first/last ilt entry to point
7212 		 * to the entire range to prevent ILT range error for 3rd/4th
7213 		 * vnic	(this code assumes existence of the vnic)
7214 		 *
7215 		 * both steps performed by call to bnx2x_ilt_client_init_op()
7216 		 * with dummy TM client
7217 		 *
7218 		 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7219 		 * and his brother are split registers
7220 		 */
7221 		bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7222 		bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7223 		bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7224 
7225 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7226 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7227 		REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7228 	}
7229 
7230 	REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7231 	REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7232 
7233 	if (!CHIP_IS_E1x(bp)) {
7234 		int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7235 				(CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7236 		bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7237 
7238 		bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7239 
7240 		/* let the HW do it's magic ... */
7241 		do {
7242 			msleep(200);
7243 			val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7244 		} while (factor-- && (val != 1));
7245 
7246 		if (val != 1) {
7247 			BNX2X_ERR("ATC_INIT failed\n");
7248 			return -EBUSY;
7249 		}
7250 	}
7251 
7252 	bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7253 
7254 	bnx2x_iov_init_dmae(bp);
7255 
7256 	/* clean the DMAE memory */
7257 	bp->dmae_ready = 1;
7258 	bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7259 
7260 	bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7261 
7262 	bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7263 
7264 	bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7265 
7266 	bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7267 
7268 	bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7269 	bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7270 	bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7271 	bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7272 
7273 	bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7274 
7275 	/* QM queues pointers table */
7276 	bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7277 
7278 	/* soft reset pulse */
7279 	REG_WR(bp, QM_REG_SOFT_RESET, 1);
7280 	REG_WR(bp, QM_REG_SOFT_RESET, 0);
7281 
7282 	if (CNIC_SUPPORT(bp))
7283 		bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7284 
7285 	bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7286 
7287 	if (!CHIP_REV_IS_SLOW(bp))
7288 		/* enable hw interrupt from doorbell Q */
7289 		REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7290 
7291 	bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7292 
7293 	bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7294 	REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7295 
7296 	if (!CHIP_IS_E1(bp))
7297 		REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7298 
7299 	if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7300 		if (IS_MF_AFEX(bp)) {
7301 			/* configure that VNTag and VLAN headers must be
7302 			 * received in afex mode
7303 			 */
7304 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7305 			REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7306 			REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7307 			REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7308 			REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7309 		} else {
7310 			/* Bit-map indicating which L2 hdrs may appear
7311 			 * after the basic Ethernet header
7312 			 */
7313 			REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7314 			       bp->path_has_ovlan ? 7 : 6);
7315 		}
7316 	}
7317 
7318 	bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7319 	bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7320 	bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7321 	bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7322 
7323 	if (!CHIP_IS_E1x(bp)) {
7324 		/* reset VFC memories */
7325 		REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7326 			   VFC_MEMORIES_RST_REG_CAM_RST |
7327 			   VFC_MEMORIES_RST_REG_RAM_RST);
7328 		REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7329 			   VFC_MEMORIES_RST_REG_CAM_RST |
7330 			   VFC_MEMORIES_RST_REG_RAM_RST);
7331 
7332 		msleep(20);
7333 	}
7334 
7335 	bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7336 	bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7337 	bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7338 	bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7339 
7340 	/* sync semi rtc */
7341 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7342 	       0x80000000);
7343 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7344 	       0x80000000);
7345 
7346 	bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7347 	bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7348 	bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7349 
7350 	if (!CHIP_IS_E1x(bp)) {
7351 		if (IS_MF_AFEX(bp)) {
7352 			/* configure that VNTag and VLAN headers must be
7353 			 * sent in afex mode
7354 			 */
7355 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7356 			REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7357 			REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7358 			REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7359 			REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7360 		} else {
7361 			REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7362 			       bp->path_has_ovlan ? 7 : 6);
7363 		}
7364 	}
7365 
7366 	REG_WR(bp, SRC_REG_SOFT_RST, 1);
7367 
7368 	bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7369 
7370 	if (CNIC_SUPPORT(bp)) {
7371 		REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7372 		REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7373 		REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7374 		REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7375 		REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7376 		REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7377 		REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7378 		REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7379 		REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7380 		REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7381 	}
7382 	REG_WR(bp, SRC_REG_SOFT_RST, 0);
7383 
7384 	if (sizeof(union cdu_context) != 1024)
7385 		/* we currently assume that a context is 1024 bytes */
7386 		dev_alert(&bp->pdev->dev,
7387 			  "please adjust the size of cdu_context(%ld)\n",
7388 			  (long)sizeof(union cdu_context));
7389 
7390 	bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7391 	val = (4 << 24) + (0 << 12) + 1024;
7392 	REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7393 
7394 	bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7395 	REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7396 	/* enable context validation interrupt from CFC */
7397 	REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7398 
7399 	/* set the thresholds to prevent CFC/CDU race */
7400 	REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7401 
7402 	bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7403 
7404 	if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7405 		REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7406 
7407 	bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7408 	bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7409 
7410 	/* Reset PCIE errors for debug */
7411 	REG_WR(bp, 0x2814, 0xffffffff);
7412 	REG_WR(bp, 0x3820, 0xffffffff);
7413 
7414 	if (!CHIP_IS_E1x(bp)) {
7415 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7416 			   (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7417 				PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7418 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7419 			   (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7420 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7421 				PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7422 		REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7423 			   (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7424 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7425 				PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7426 	}
7427 
7428 	bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7429 	if (!CHIP_IS_E1(bp)) {
7430 		/* in E3 this done in per-port section */
7431 		if (!CHIP_IS_E3(bp))
7432 			REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7433 	}
7434 	if (CHIP_IS_E1H(bp))
7435 		/* not applicable for E2 (and above ...) */
7436 		REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7437 
7438 	if (CHIP_REV_IS_SLOW(bp))
7439 		msleep(200);
7440 
7441 	/* finish CFC init */
7442 	val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7443 	if (val != 1) {
7444 		BNX2X_ERR("CFC LL_INIT failed\n");
7445 		return -EBUSY;
7446 	}
7447 	val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7448 	if (val != 1) {
7449 		BNX2X_ERR("CFC AC_INIT failed\n");
7450 		return -EBUSY;
7451 	}
7452 	val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7453 	if (val != 1) {
7454 		BNX2X_ERR("CFC CAM_INIT failed\n");
7455 		return -EBUSY;
7456 	}
7457 	REG_WR(bp, CFC_REG_DEBUG0, 0);
7458 
7459 	if (CHIP_IS_E1(bp)) {
7460 		/* read NIG statistic
7461 		   to see if this is our first up since powerup */
7462 		bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7463 		val = *bnx2x_sp(bp, wb_data[0]);
7464 
7465 		/* do internal memory self test */
7466 		if ((val == 0) && bnx2x_int_mem_test(bp)) {
7467 			BNX2X_ERR("internal mem self test failed\n");
7468 			return -EBUSY;
7469 		}
7470 	}
7471 
7472 	bnx2x_setup_fan_failure_detection(bp);
7473 
7474 	/* clear PXP2 attentions */
7475 	REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7476 
7477 	bnx2x_enable_blocks_attention(bp);
7478 	bnx2x_enable_blocks_parity(bp);
7479 
7480 	if (!BP_NOMCP(bp)) {
7481 		if (CHIP_IS_E1x(bp))
7482 			bnx2x__common_init_phy(bp);
7483 	} else
7484 		BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7485 
7486 	if (SHMEM2_HAS(bp, netproc_fw_ver))
7487 		SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7488 
7489 	return 0;
7490 }
7491 
7492 /**
7493  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7494  *
7495  * @bp:		driver handle
7496  */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7497 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7498 {
7499 	int rc = bnx2x_init_hw_common(bp);
7500 
7501 	if (rc)
7502 		return rc;
7503 
7504 	/* In E2 2-PORT mode, same ext phy is used for the two paths */
7505 	if (!BP_NOMCP(bp))
7506 		bnx2x__common_init_phy(bp);
7507 
7508 	return 0;
7509 }
7510 
bnx2x_init_hw_port(struct bnx2x * bp)7511 static int bnx2x_init_hw_port(struct bnx2x *bp)
7512 {
7513 	int port = BP_PORT(bp);
7514 	int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7515 	u32 low, high;
7516 	u32 val, reg;
7517 
7518 	DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7519 
7520 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7521 
7522 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7523 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7524 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7525 
7526 	/* Timers bug workaround: disables the pf_master bit in pglue at
7527 	 * common phase, we need to enable it here before any dmae access are
7528 	 * attempted. Therefore we manually added the enable-master to the
7529 	 * port phase (it also happens in the function phase)
7530 	 */
7531 	if (!CHIP_IS_E1x(bp))
7532 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7533 
7534 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7535 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7536 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7537 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
7538 
7539 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7540 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7541 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7542 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7543 
7544 	/* QM cid (connection) count */
7545 	bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7546 
7547 	if (CNIC_SUPPORT(bp)) {
7548 		bnx2x_init_block(bp, BLOCK_TM, init_phase);
7549 		REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7550 		REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7551 	}
7552 
7553 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7554 
7555 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7556 
7557 	if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7558 
7559 		if (IS_MF(bp))
7560 			low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7561 		else if (bp->dev->mtu > 4096) {
7562 			if (bp->flags & ONE_PORT_FLAG)
7563 				low = 160;
7564 			else {
7565 				val = bp->dev->mtu;
7566 				/* (24*1024 + val*4)/256 */
7567 				low = 96 + (val/64) +
7568 						((val % 64) ? 1 : 0);
7569 			}
7570 		} else
7571 			low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7572 		high = low + 56;	/* 14*1024/256 */
7573 		REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7574 		REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7575 	}
7576 
7577 	if (CHIP_MODE_IS_4_PORT(bp))
7578 		REG_WR(bp, (BP_PORT(bp) ?
7579 			    BRB1_REG_MAC_GUARANTIED_1 :
7580 			    BRB1_REG_MAC_GUARANTIED_0), 40);
7581 
7582 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7583 	if (CHIP_IS_E3B0(bp)) {
7584 		if (IS_MF_AFEX(bp)) {
7585 			/* configure headers for AFEX mode */
7586 			REG_WR(bp, BP_PORT(bp) ?
7587 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7588 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7589 			REG_WR(bp, BP_PORT(bp) ?
7590 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7591 			       PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7592 			REG_WR(bp, BP_PORT(bp) ?
7593 			       PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7594 			       PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7595 		} else {
7596 			/* Ovlan exists only if we are in multi-function +
7597 			 * switch-dependent mode, in switch-independent there
7598 			 * is no ovlan headers
7599 			 */
7600 			REG_WR(bp, BP_PORT(bp) ?
7601 			       PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7602 			       PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7603 			       (bp->path_has_ovlan ? 7 : 6));
7604 		}
7605 	}
7606 
7607 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7608 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7609 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7610 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7611 
7612 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7613 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7614 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7615 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7616 
7617 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7618 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7619 
7620 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7621 
7622 	if (CHIP_IS_E1x(bp)) {
7623 		/* configure PBF to work without PAUSE mtu 9000 */
7624 		REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7625 
7626 		/* update threshold */
7627 		REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7628 		/* update init credit */
7629 		REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7630 
7631 		/* probe changes */
7632 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7633 		udelay(50);
7634 		REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7635 	}
7636 
7637 	if (CNIC_SUPPORT(bp))
7638 		bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7639 
7640 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7641 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7642 
7643 	if (CHIP_IS_E1(bp)) {
7644 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7645 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7646 	}
7647 	bnx2x_init_block(bp, BLOCK_HC, init_phase);
7648 
7649 	bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7650 
7651 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7652 	/* init aeu_mask_attn_func_0/1:
7653 	 *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7654 	 *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7655 	 *             bits 4-7 are used for "per vn group attention" */
7656 	val = IS_MF(bp) ? 0xF7 : 0x7;
7657 	/* Enable DCBX attention for all but E1 */
7658 	val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7659 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7660 
7661 	/* SCPAD_PARITY should NOT trigger close the gates */
7662 	reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7663 	REG_WR(bp, reg,
7664 	       REG_RD(bp, reg) &
7665 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7666 
7667 	reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7668 	REG_WR(bp, reg,
7669 	       REG_RD(bp, reg) &
7670 	       ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7671 
7672 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7673 
7674 	if (!CHIP_IS_E1x(bp)) {
7675 		/* Bit-map indicating which L2 hdrs may appear after the
7676 		 * basic Ethernet header
7677 		 */
7678 		if (IS_MF_AFEX(bp))
7679 			REG_WR(bp, BP_PORT(bp) ?
7680 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7681 			       NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7682 		else
7683 			REG_WR(bp, BP_PORT(bp) ?
7684 			       NIG_REG_P1_HDRS_AFTER_BASIC :
7685 			       NIG_REG_P0_HDRS_AFTER_BASIC,
7686 			       IS_MF_SD(bp) ? 7 : 6);
7687 
7688 		if (CHIP_IS_E3(bp))
7689 			REG_WR(bp, BP_PORT(bp) ?
7690 				   NIG_REG_LLH1_MF_MODE :
7691 				   NIG_REG_LLH_MF_MODE, IS_MF(bp));
7692 	}
7693 	if (!CHIP_IS_E3(bp))
7694 		REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7695 
7696 	if (!CHIP_IS_E1(bp)) {
7697 		/* 0x2 disable mf_ov, 0x1 enable */
7698 		REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7699 		       (IS_MF_SD(bp) ? 0x1 : 0x2));
7700 
7701 		if (!CHIP_IS_E1x(bp)) {
7702 			val = 0;
7703 			switch (bp->mf_mode) {
7704 			case MULTI_FUNCTION_SD:
7705 				val = 1;
7706 				break;
7707 			case MULTI_FUNCTION_SI:
7708 			case MULTI_FUNCTION_AFEX:
7709 				val = 2;
7710 				break;
7711 			}
7712 
7713 			REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7714 						  NIG_REG_LLH0_CLS_TYPE), val);
7715 		}
7716 		{
7717 			REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7718 			REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7719 			REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7720 		}
7721 	}
7722 
7723 	/* If SPIO5 is set to generate interrupts, enable it for this port */
7724 	val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7725 	if (val & MISC_SPIO_SPIO5) {
7726 		u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7727 				       MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7728 		val = REG_RD(bp, reg_addr);
7729 		val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7730 		REG_WR(bp, reg_addr, val);
7731 	}
7732 
7733 	if (CHIP_IS_E3B0(bp))
7734 		bp->flags |= PTP_SUPPORTED;
7735 
7736 	return 0;
7737 }
7738 
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7739 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7740 {
7741 	int reg;
7742 	u32 wb_write[2];
7743 
7744 	if (CHIP_IS_E1(bp))
7745 		reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7746 	else
7747 		reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7748 
7749 	wb_write[0] = ONCHIP_ADDR1(addr);
7750 	wb_write[1] = ONCHIP_ADDR2(addr);
7751 	REG_WR_DMAE(bp, reg, wb_write, 2);
7752 }
7753 
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7754 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7755 {
7756 	u32 data, ctl, cnt = 100;
7757 	u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7758 	u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7759 	u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7760 	u32 sb_bit =  1 << (idu_sb_id%32);
7761 	u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7762 	u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7763 
7764 	/* Not supported in BC mode */
7765 	if (CHIP_INT_MODE_IS_BC(bp))
7766 		return;
7767 
7768 	data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7769 			<< IGU_REGULAR_CLEANUP_TYPE_SHIFT)	|
7770 		IGU_REGULAR_CLEANUP_SET				|
7771 		IGU_REGULAR_BCLEANUP;
7772 
7773 	ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		|
7774 	      func_encode << IGU_CTRL_REG_FID_SHIFT		|
7775 	      IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7776 
7777 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7778 			 data, igu_addr_data);
7779 	REG_WR(bp, igu_addr_data, data);
7780 	barrier();
7781 	DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7782 			  ctl, igu_addr_ctl);
7783 	REG_WR(bp, igu_addr_ctl, ctl);
7784 	barrier();
7785 
7786 	/* wait for clean up to finish */
7787 	while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7788 		msleep(20);
7789 
7790 	if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7791 		DP(NETIF_MSG_HW,
7792 		   "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7793 			  idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7794 	}
7795 }
7796 
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7797 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7798 {
7799 	bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7800 }
7801 
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7802 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7803 {
7804 	u32 i, base = FUNC_ILT_BASE(func);
7805 	for (i = base; i < base + ILT_PER_FUNC; i++)
7806 		bnx2x_ilt_wr(bp, i, 0);
7807 }
7808 
bnx2x_init_searcher(struct bnx2x * bp)7809 static void bnx2x_init_searcher(struct bnx2x *bp)
7810 {
7811 	int port = BP_PORT(bp);
7812 	bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7813 	/* T1 hash bits value determines the T1 number of entries */
7814 	REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7815 }
7816 
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7817 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7818 {
7819 	int rc;
7820 	struct bnx2x_func_state_params func_params = {NULL};
7821 	struct bnx2x_func_switch_update_params *switch_update_params =
7822 		&func_params.params.switch_update;
7823 
7824 	/* Prepare parameters for function state transitions */
7825 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7826 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7827 
7828 	func_params.f_obj = &bp->func_obj;
7829 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7830 
7831 	/* Function parameters */
7832 	__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7833 		  &switch_update_params->changes);
7834 	if (suspend)
7835 		__set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7836 			  &switch_update_params->changes);
7837 
7838 	rc = bnx2x_func_state_change(bp, &func_params);
7839 
7840 	return rc;
7841 }
7842 
bnx2x_reset_nic_mode(struct bnx2x * bp)7843 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7844 {
7845 	int rc, i, port = BP_PORT(bp);
7846 	int vlan_en = 0, mac_en[NUM_MACS];
7847 
7848 	/* Close input from network */
7849 	if (bp->mf_mode == SINGLE_FUNCTION) {
7850 		bnx2x_set_rx_filter(&bp->link_params, 0);
7851 	} else {
7852 		vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7853 				   NIG_REG_LLH0_FUNC_EN);
7854 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855 			  NIG_REG_LLH0_FUNC_EN, 0);
7856 		for (i = 0; i < NUM_MACS; i++) {
7857 			mac_en[i] = REG_RD(bp, port ?
7858 					     (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7859 					      4 * i) :
7860 					     (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7861 					      4 * i));
7862 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7863 					      4 * i) :
7864 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7865 		}
7866 	}
7867 
7868 	/* Close BMC to host */
7869 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7870 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7871 
7872 	/* Suspend Tx switching to the PF. Completion of this ramrod
7873 	 * further guarantees that all the packets of that PF / child
7874 	 * VFs in BRB were processed by the Parser, so it is safe to
7875 	 * change the NIC_MODE register.
7876 	 */
7877 	rc = bnx2x_func_switch_update(bp, 1);
7878 	if (rc) {
7879 		BNX2X_ERR("Can't suspend tx-switching!\n");
7880 		return rc;
7881 	}
7882 
7883 	/* Change NIC_MODE register */
7884 	REG_WR(bp, PRS_REG_NIC_MODE, 0);
7885 
7886 	/* Open input from network */
7887 	if (bp->mf_mode == SINGLE_FUNCTION) {
7888 		bnx2x_set_rx_filter(&bp->link_params, 1);
7889 	} else {
7890 		REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7891 			  NIG_REG_LLH0_FUNC_EN, vlan_en);
7892 		for (i = 0; i < NUM_MACS; i++) {
7893 			REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7894 					      4 * i) :
7895 				  (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7896 				  mac_en[i]);
7897 		}
7898 	}
7899 
7900 	/* Enable BMC to host */
7901 	REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7902 	       NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7903 
7904 	/* Resume Tx switching to the PF */
7905 	rc = bnx2x_func_switch_update(bp, 0);
7906 	if (rc) {
7907 		BNX2X_ERR("Can't resume tx-switching!\n");
7908 		return rc;
7909 	}
7910 
7911 	DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7912 	return 0;
7913 }
7914 
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7915 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7916 {
7917 	int rc;
7918 
7919 	bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7920 
7921 	if (CONFIGURE_NIC_MODE(bp)) {
7922 		/* Configure searcher as part of function hw init */
7923 		bnx2x_init_searcher(bp);
7924 
7925 		/* Reset NIC mode */
7926 		rc = bnx2x_reset_nic_mode(bp);
7927 		if (rc)
7928 			BNX2X_ERR("Can't change NIC mode!\n");
7929 		return rc;
7930 	}
7931 
7932 	return 0;
7933 }
7934 
7935 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7936  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7937  * the addresses of the transaction, resulting in was-error bit set in the pci
7938  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7939  * to clear the interrupt which detected this from the pglueb and the was done
7940  * bit
7941  */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7942 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7943 {
7944 	if (!CHIP_IS_E1x(bp))
7945 		REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7946 		       1 << BP_ABS_FUNC(bp));
7947 }
7948 
bnx2x_init_hw_func(struct bnx2x * bp)7949 static int bnx2x_init_hw_func(struct bnx2x *bp)
7950 {
7951 	int port = BP_PORT(bp);
7952 	int func = BP_FUNC(bp);
7953 	int init_phase = PHASE_PF0 + func;
7954 	struct bnx2x_ilt *ilt = BP_ILT(bp);
7955 	u16 cdu_ilt_start;
7956 	u32 addr, val;
7957 	u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7958 	int i, main_mem_width, rc;
7959 
7960 	DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7961 
7962 	/* FLR cleanup - hmmm */
7963 	if (!CHIP_IS_E1x(bp)) {
7964 		rc = bnx2x_pf_flr_clnup(bp);
7965 		if (rc) {
7966 			bnx2x_fw_dump(bp);
7967 			return rc;
7968 		}
7969 	}
7970 
7971 	/* set MSI reconfigure capability */
7972 	if (bp->common.int_block == INT_BLOCK_HC) {
7973 		addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7974 		val = REG_RD(bp, addr);
7975 		val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7976 		REG_WR(bp, addr, val);
7977 	}
7978 
7979 	bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7980 	bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7981 
7982 	ilt = BP_ILT(bp);
7983 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7984 
7985 	if (IS_SRIOV(bp))
7986 		cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7987 	cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7988 
7989 	/* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7990 	 * those of the VFs, so start line should be reset
7991 	 */
7992 	cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7993 	for (i = 0; i < L2_ILT_LINES(bp); i++) {
7994 		ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7995 		ilt->lines[cdu_ilt_start + i].page_mapping =
7996 			bp->context[i].cxt_mapping;
7997 		ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7998 	}
7999 
8000 	bnx2x_ilt_init_op(bp, INITOP_SET);
8001 
8002 	if (!CONFIGURE_NIC_MODE(bp)) {
8003 		bnx2x_init_searcher(bp);
8004 		REG_WR(bp, PRS_REG_NIC_MODE, 0);
8005 		DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8006 	} else {
8007 		/* Set NIC mode */
8008 		REG_WR(bp, PRS_REG_NIC_MODE, 1);
8009 		DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8010 	}
8011 
8012 	if (!CHIP_IS_E1x(bp)) {
8013 		u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8014 
8015 		/* Turn on a single ISR mode in IGU if driver is going to use
8016 		 * INT#x or MSI
8017 		 */
8018 		if (!(bp->flags & USING_MSIX_FLAG))
8019 			pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8020 		/*
8021 		 * Timers workaround bug: function init part.
8022 		 * Need to wait 20msec after initializing ILT,
8023 		 * needed to make sure there are no requests in
8024 		 * one of the PXP internal queues with "old" ILT addresses
8025 		 */
8026 		msleep(20);
8027 		/*
8028 		 * Master enable - Due to WB DMAE writes performed before this
8029 		 * register is re-initialized as part of the regular function
8030 		 * init
8031 		 */
8032 		REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8033 		/* Enable the function in IGU */
8034 		REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8035 	}
8036 
8037 	bp->dmae_ready = 1;
8038 
8039 	bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8040 
8041 	bnx2x_clean_pglue_errors(bp);
8042 
8043 	bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8044 	bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8045 	bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8046 	bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8047 	bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8048 	bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8049 	bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8050 	bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8051 	bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8052 	bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8053 	bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8054 	bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8055 	bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8056 
8057 	if (!CHIP_IS_E1x(bp))
8058 		REG_WR(bp, QM_REG_PF_EN, 1);
8059 
8060 	if (!CHIP_IS_E1x(bp)) {
8061 		REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8062 		REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063 		REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 		REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 	}
8066 	bnx2x_init_block(bp, BLOCK_QM, init_phase);
8067 
8068 	bnx2x_init_block(bp, BLOCK_TM, init_phase);
8069 	bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8070 	REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8071 
8072 	bnx2x_iov_init_dq(bp);
8073 
8074 	bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8075 	bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8076 	bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8077 	bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8078 	bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8079 	bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8080 	bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8081 	bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8082 	bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8083 	if (!CHIP_IS_E1x(bp))
8084 		REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8085 
8086 	bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8087 
8088 	bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8089 
8090 	if (!CHIP_IS_E1x(bp))
8091 		REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8092 
8093 	if (IS_MF(bp)) {
8094 		if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8095 			REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8096 			REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8097 			       bp->mf_ov);
8098 		}
8099 	}
8100 
8101 	bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8102 
8103 	/* HC init per function */
8104 	if (bp->common.int_block == INT_BLOCK_HC) {
8105 		if (CHIP_IS_E1H(bp)) {
8106 			REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8107 
8108 			REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8109 			REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8110 		}
8111 		bnx2x_init_block(bp, BLOCK_HC, init_phase);
8112 
8113 	} else {
8114 		int num_segs, sb_idx, prod_offset;
8115 
8116 		REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8117 
8118 		if (!CHIP_IS_E1x(bp)) {
8119 			REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8120 			REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8121 		}
8122 
8123 		bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8124 
8125 		if (!CHIP_IS_E1x(bp)) {
8126 			int dsb_idx = 0;
8127 			/**
8128 			 * Producer memory:
8129 			 * E2 mode: address 0-135 match to the mapping memory;
8130 			 * 136 - PF0 default prod; 137 - PF1 default prod;
8131 			 * 138 - PF2 default prod; 139 - PF3 default prod;
8132 			 * 140 - PF0 attn prod;    141 - PF1 attn prod;
8133 			 * 142 - PF2 attn prod;    143 - PF3 attn prod;
8134 			 * 144-147 reserved.
8135 			 *
8136 			 * E1.5 mode - In backward compatible mode;
8137 			 * for non default SB; each even line in the memory
8138 			 * holds the U producer and each odd line hold
8139 			 * the C producer. The first 128 producers are for
8140 			 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8141 			 * producers are for the DSB for each PF.
8142 			 * Each PF has five segments: (the order inside each
8143 			 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8144 			 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8145 			 * 144-147 attn prods;
8146 			 */
8147 			/* non-default-status-blocks */
8148 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149 				IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8150 			for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8151 				prod_offset = (bp->igu_base_sb + sb_idx) *
8152 					num_segs;
8153 
8154 				for (i = 0; i < num_segs; i++) {
8155 					addr = IGU_REG_PROD_CONS_MEMORY +
8156 							(prod_offset + i) * 4;
8157 					REG_WR(bp, addr, 0);
8158 				}
8159 				/* send consumer update with value 0 */
8160 				bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8161 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8162 				bnx2x_igu_clear_sb(bp,
8163 						   bp->igu_base_sb + sb_idx);
8164 			}
8165 
8166 			/* default-status-blocks */
8167 			num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8168 				IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8169 
8170 			if (CHIP_MODE_IS_4_PORT(bp))
8171 				dsb_idx = BP_FUNC(bp);
8172 			else
8173 				dsb_idx = BP_VN(bp);
8174 
8175 			prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8176 				       IGU_BC_BASE_DSB_PROD + dsb_idx :
8177 				       IGU_NORM_BASE_DSB_PROD + dsb_idx);
8178 
8179 			/*
8180 			 * igu prods come in chunks of E1HVN_MAX (4) -
8181 			 * does not matters what is the current chip mode
8182 			 */
8183 			for (i = 0; i < (num_segs * E1HVN_MAX);
8184 			     i += E1HVN_MAX) {
8185 				addr = IGU_REG_PROD_CONS_MEMORY +
8186 							(prod_offset + i)*4;
8187 				REG_WR(bp, addr, 0);
8188 			}
8189 			/* send consumer update with 0 */
8190 			if (CHIP_INT_MODE_IS_BC(bp)) {
8191 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8193 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 					     CSTORM_ID, 0, IGU_INT_NOP, 1);
8195 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 					     XSTORM_ID, 0, IGU_INT_NOP, 1);
8197 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 					     TSTORM_ID, 0, IGU_INT_NOP, 1);
8199 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8201 			} else {
8202 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203 					     USTORM_ID, 0, IGU_INT_NOP, 1);
8204 				bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205 					     ATTENTION_ID, 0, IGU_INT_NOP, 1);
8206 			}
8207 			bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8208 
8209 			/* !!! These should become driver const once
8210 			   rf-tool supports split-68 const */
8211 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8212 			REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8213 			REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8214 			REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8215 			REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8216 			REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8217 		}
8218 	}
8219 
8220 	/* Reset PCIE errors for debug */
8221 	REG_WR(bp, 0x2114, 0xffffffff);
8222 	REG_WR(bp, 0x2120, 0xffffffff);
8223 
8224 	if (CHIP_IS_E1x(bp)) {
8225 		main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8226 		main_mem_base = HC_REG_MAIN_MEMORY +
8227 				BP_PORT(bp) * (main_mem_size * 4);
8228 		main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8229 		main_mem_width = 8;
8230 
8231 		val = REG_RD(bp, main_mem_prty_clr);
8232 		if (val)
8233 			DP(NETIF_MSG_HW,
8234 			   "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8235 			   val);
8236 
8237 		/* Clear "false" parity errors in MSI-X table */
8238 		for (i = main_mem_base;
8239 		     i < main_mem_base + main_mem_size * 4;
8240 		     i += main_mem_width) {
8241 			bnx2x_read_dmae(bp, i, main_mem_width / 4);
8242 			bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8243 					 i, main_mem_width / 4);
8244 		}
8245 		/* Clear HC parity attention */
8246 		REG_RD(bp, main_mem_prty_clr);
8247 	}
8248 
8249 #ifdef BNX2X_STOP_ON_ERROR
8250 	/* Enable STORMs SP logging */
8251 	REG_WR8(bp, BAR_USTRORM_INTMEM +
8252 	       USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8253 	REG_WR8(bp, BAR_TSTRORM_INTMEM +
8254 	       TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
8256 	       CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 	REG_WR8(bp, BAR_XSTRORM_INTMEM +
8258 	       XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 #endif
8260 
8261 	bnx2x_phy_probe(&bp->link_params);
8262 
8263 	return 0;
8264 }
8265 
bnx2x_free_mem_cnic(struct bnx2x * bp)8266 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8267 {
8268 	bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8269 
8270 	if (!CHIP_IS_E1x(bp))
8271 		BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8272 			       sizeof(struct host_hc_status_block_e2));
8273 	else
8274 		BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8275 			       sizeof(struct host_hc_status_block_e1x));
8276 
8277 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8278 }
8279 
bnx2x_free_mem(struct bnx2x * bp)8280 void bnx2x_free_mem(struct bnx2x *bp)
8281 {
8282 	int i;
8283 
8284 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8285 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8286 
8287 	if (IS_VF(bp))
8288 		return;
8289 
8290 	BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8291 		       sizeof(struct host_sp_status_block));
8292 
8293 	BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8294 		       sizeof(struct bnx2x_slowpath));
8295 
8296 	for (i = 0; i < L2_ILT_LINES(bp); i++)
8297 		BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8298 			       bp->context[i].size);
8299 	bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8300 
8301 	BNX2X_FREE(bp->ilt->lines);
8302 
8303 	BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8304 
8305 	BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8306 		       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8307 
8308 	BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8309 
8310 	bnx2x_iov_free_mem(bp);
8311 }
8312 
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8313 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8314 {
8315 	if (!CHIP_IS_E1x(bp)) {
8316 		/* size = the status block + ramrod buffers */
8317 		bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8318 						    sizeof(struct host_hc_status_block_e2));
8319 		if (!bp->cnic_sb.e2_sb)
8320 			goto alloc_mem_err;
8321 	} else {
8322 		bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8323 						     sizeof(struct host_hc_status_block_e1x));
8324 		if (!bp->cnic_sb.e1x_sb)
8325 			goto alloc_mem_err;
8326 	}
8327 
8328 	if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8329 		/* allocate searcher T2 table, as it wasn't allocated before */
8330 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8331 		if (!bp->t2)
8332 			goto alloc_mem_err;
8333 	}
8334 
8335 	/* write address to which L5 should insert its values */
8336 	bp->cnic_eth_dev.addr_drv_info_to_mcp =
8337 		&bp->slowpath->drv_info_to_mcp;
8338 
8339 	if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8340 		goto alloc_mem_err;
8341 
8342 	return 0;
8343 
8344 alloc_mem_err:
8345 	bnx2x_free_mem_cnic(bp);
8346 	BNX2X_ERR("Can't allocate memory\n");
8347 	return -ENOMEM;
8348 }
8349 
bnx2x_alloc_mem(struct bnx2x * bp)8350 int bnx2x_alloc_mem(struct bnx2x *bp)
8351 {
8352 	int i, allocated, context_size;
8353 
8354 	if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8355 		/* allocate searcher T2 table */
8356 		bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8357 		if (!bp->t2)
8358 			goto alloc_mem_err;
8359 	}
8360 
8361 	bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8362 					     sizeof(struct host_sp_status_block));
8363 	if (!bp->def_status_blk)
8364 		goto alloc_mem_err;
8365 
8366 	bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8367 				       sizeof(struct bnx2x_slowpath));
8368 	if (!bp->slowpath)
8369 		goto alloc_mem_err;
8370 
8371 	/* Allocate memory for CDU context:
8372 	 * This memory is allocated separately and not in the generic ILT
8373 	 * functions because CDU differs in few aspects:
8374 	 * 1. There are multiple entities allocating memory for context -
8375 	 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8376 	 * its own ILT lines.
8377 	 * 2. Since CDU page-size is not a single 4KB page (which is the case
8378 	 * for the other ILT clients), to be efficient we want to support
8379 	 * allocation of sub-page-size in the last entry.
8380 	 * 3. Context pointers are used by the driver to pass to FW / update
8381 	 * the context (for the other ILT clients the pointers are used just to
8382 	 * free the memory during unload).
8383 	 */
8384 	context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8385 
8386 	for (i = 0, allocated = 0; allocated < context_size; i++) {
8387 		bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8388 					  (context_size - allocated));
8389 		bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8390 						      bp->context[i].size);
8391 		if (!bp->context[i].vcxt)
8392 			goto alloc_mem_err;
8393 		allocated += bp->context[i].size;
8394 	}
8395 	bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8396 				 GFP_KERNEL);
8397 	if (!bp->ilt->lines)
8398 		goto alloc_mem_err;
8399 
8400 	if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8401 		goto alloc_mem_err;
8402 
8403 	if (bnx2x_iov_alloc_mem(bp))
8404 		goto alloc_mem_err;
8405 
8406 	/* Slow path ring */
8407 	bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8408 	if (!bp->spq)
8409 		goto alloc_mem_err;
8410 
8411 	/* EQ */
8412 	bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8413 				      BCM_PAGE_SIZE * NUM_EQ_PAGES);
8414 	if (!bp->eq_ring)
8415 		goto alloc_mem_err;
8416 
8417 	return 0;
8418 
8419 alloc_mem_err:
8420 	bnx2x_free_mem(bp);
8421 	BNX2X_ERR("Can't allocate memory\n");
8422 	return -ENOMEM;
8423 }
8424 
8425 /*
8426  * Init service functions
8427  */
8428 
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8429 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8430 		      struct bnx2x_vlan_mac_obj *obj, bool set,
8431 		      int mac_type, unsigned long *ramrod_flags)
8432 {
8433 	int rc;
8434 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8435 
8436 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8437 
8438 	/* Fill general parameters */
8439 	ramrod_param.vlan_mac_obj = obj;
8440 	ramrod_param.ramrod_flags = *ramrod_flags;
8441 
8442 	/* Fill a user request section if needed */
8443 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8444 		memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8445 
8446 		__set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8447 
8448 		/* Set the command: ADD or DEL */
8449 		if (set)
8450 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8451 		else
8452 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8453 	}
8454 
8455 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8456 
8457 	if (rc == -EEXIST) {
8458 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8459 		/* do not treat adding same MAC as error */
8460 		rc = 0;
8461 	} else if (rc < 0)
8462 		BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8463 
8464 	return rc;
8465 }
8466 
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8467 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8468 		       struct bnx2x_vlan_mac_obj *obj, bool set,
8469 		       unsigned long *ramrod_flags)
8470 {
8471 	int rc;
8472 	struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8473 
8474 	memset(&ramrod_param, 0, sizeof(ramrod_param));
8475 
8476 	/* Fill general parameters */
8477 	ramrod_param.vlan_mac_obj = obj;
8478 	ramrod_param.ramrod_flags = *ramrod_flags;
8479 
8480 	/* Fill a user request section if needed */
8481 	if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8482 		ramrod_param.user_req.u.vlan.vlan = vlan;
8483 		__set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8484 		/* Set the command: ADD or DEL */
8485 		if (set)
8486 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8487 		else
8488 			ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8489 	}
8490 
8491 	rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8492 
8493 	if (rc == -EEXIST) {
8494 		/* Do not treat adding same vlan as error. */
8495 		DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8496 		rc = 0;
8497 	} else if (rc < 0) {
8498 		BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8499 	}
8500 
8501 	return rc;
8502 }
8503 
bnx2x_clear_vlan_info(struct bnx2x * bp)8504 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8505 {
8506 	struct bnx2x_vlan_entry *vlan;
8507 
8508 	/* Mark that hw forgot all entries */
8509 	list_for_each_entry(vlan, &bp->vlan_reg, link)
8510 		vlan->hw = false;
8511 
8512 	bp->vlan_cnt = 0;
8513 }
8514 
bnx2x_del_all_vlans(struct bnx2x * bp)8515 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8516 {
8517 	struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8518 	unsigned long ramrod_flags = 0, vlan_flags = 0;
8519 	int rc;
8520 
8521 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8522 	__set_bit(BNX2X_VLAN, &vlan_flags);
8523 	rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8524 	if (rc)
8525 		return rc;
8526 
8527 	bnx2x_clear_vlan_info(bp);
8528 
8529 	return 0;
8530 }
8531 
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8532 int bnx2x_del_all_macs(struct bnx2x *bp,
8533 		       struct bnx2x_vlan_mac_obj *mac_obj,
8534 		       int mac_type, bool wait_for_comp)
8535 {
8536 	int rc;
8537 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8538 
8539 	/* Wait for completion of requested */
8540 	if (wait_for_comp)
8541 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8542 
8543 	/* Set the mac type of addresses we want to clear */
8544 	__set_bit(mac_type, &vlan_mac_flags);
8545 
8546 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8547 	if (rc < 0)
8548 		BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8549 
8550 	return rc;
8551 }
8552 
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8553 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8554 {
8555 	if (IS_PF(bp)) {
8556 		unsigned long ramrod_flags = 0;
8557 
8558 		DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8559 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8560 		return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8561 					 &bp->sp_objs->mac_obj, set,
8562 					 BNX2X_ETH_MAC, &ramrod_flags);
8563 	} else { /* vf */
8564 		return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8565 					     bp->fp->index, set);
8566 	}
8567 }
8568 
bnx2x_setup_leading(struct bnx2x * bp)8569 int bnx2x_setup_leading(struct bnx2x *bp)
8570 {
8571 	if (IS_PF(bp))
8572 		return bnx2x_setup_queue(bp, &bp->fp[0], true);
8573 	else /* VF */
8574 		return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8575 }
8576 
8577 /**
8578  * bnx2x_set_int_mode - configure interrupt mode
8579  *
8580  * @bp:		driver handle
8581  *
8582  * In case of MSI-X it will also try to enable MSI-X.
8583  */
bnx2x_set_int_mode(struct bnx2x * bp)8584 int bnx2x_set_int_mode(struct bnx2x *bp)
8585 {
8586 	int rc = 0;
8587 
8588 	if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8589 		BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8590 		return -EINVAL;
8591 	}
8592 
8593 	switch (int_mode) {
8594 	case BNX2X_INT_MODE_MSIX:
8595 		/* attempt to enable msix */
8596 		rc = bnx2x_enable_msix(bp);
8597 
8598 		/* msix attained */
8599 		if (!rc)
8600 			return 0;
8601 
8602 		/* vfs use only msix */
8603 		if (rc && IS_VF(bp))
8604 			return rc;
8605 
8606 		/* failed to enable multiple MSI-X */
8607 		BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8608 			       bp->num_queues,
8609 			       1 + bp->num_cnic_queues);
8610 
8611 		fallthrough;
8612 	case BNX2X_INT_MODE_MSI:
8613 		bnx2x_enable_msi(bp);
8614 
8615 		fallthrough;
8616 	case BNX2X_INT_MODE_INTX:
8617 		bp->num_ethernet_queues = 1;
8618 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8619 		BNX2X_DEV_INFO("set number of queues to 1\n");
8620 		break;
8621 	default:
8622 		BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8623 		return -EINVAL;
8624 	}
8625 	return 0;
8626 }
8627 
8628 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8629 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8630 {
8631 	if (IS_SRIOV(bp))
8632 		return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8633 	return L2_ILT_LINES(bp);
8634 }
8635 
bnx2x_ilt_set_info(struct bnx2x * bp)8636 void bnx2x_ilt_set_info(struct bnx2x *bp)
8637 {
8638 	struct ilt_client_info *ilt_client;
8639 	struct bnx2x_ilt *ilt = BP_ILT(bp);
8640 	u16 line = 0;
8641 
8642 	ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8643 	DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8644 
8645 	/* CDU */
8646 	ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8647 	ilt_client->client_num = ILT_CLIENT_CDU;
8648 	ilt_client->page_size = CDU_ILT_PAGE_SZ;
8649 	ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8650 	ilt_client->start = line;
8651 	line += bnx2x_cid_ilt_lines(bp);
8652 
8653 	if (CNIC_SUPPORT(bp))
8654 		line += CNIC_ILT_LINES;
8655 	ilt_client->end = line - 1;
8656 
8657 	DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8658 	   ilt_client->start,
8659 	   ilt_client->end,
8660 	   ilt_client->page_size,
8661 	   ilt_client->flags,
8662 	   ilog2(ilt_client->page_size >> 12));
8663 
8664 	/* QM */
8665 	if (QM_INIT(bp->qm_cid_count)) {
8666 		ilt_client = &ilt->clients[ILT_CLIENT_QM];
8667 		ilt_client->client_num = ILT_CLIENT_QM;
8668 		ilt_client->page_size = QM_ILT_PAGE_SZ;
8669 		ilt_client->flags = 0;
8670 		ilt_client->start = line;
8671 
8672 		/* 4 bytes for each cid */
8673 		line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8674 							 QM_ILT_PAGE_SZ);
8675 
8676 		ilt_client->end = line - 1;
8677 
8678 		DP(NETIF_MSG_IFUP,
8679 		   "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8680 		   ilt_client->start,
8681 		   ilt_client->end,
8682 		   ilt_client->page_size,
8683 		   ilt_client->flags,
8684 		   ilog2(ilt_client->page_size >> 12));
8685 	}
8686 
8687 	if (CNIC_SUPPORT(bp)) {
8688 		/* SRC */
8689 		ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8690 		ilt_client->client_num = ILT_CLIENT_SRC;
8691 		ilt_client->page_size = SRC_ILT_PAGE_SZ;
8692 		ilt_client->flags = 0;
8693 		ilt_client->start = line;
8694 		line += SRC_ILT_LINES;
8695 		ilt_client->end = line - 1;
8696 
8697 		DP(NETIF_MSG_IFUP,
8698 		   "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8699 		   ilt_client->start,
8700 		   ilt_client->end,
8701 		   ilt_client->page_size,
8702 		   ilt_client->flags,
8703 		   ilog2(ilt_client->page_size >> 12));
8704 
8705 		/* TM */
8706 		ilt_client = &ilt->clients[ILT_CLIENT_TM];
8707 		ilt_client->client_num = ILT_CLIENT_TM;
8708 		ilt_client->page_size = TM_ILT_PAGE_SZ;
8709 		ilt_client->flags = 0;
8710 		ilt_client->start = line;
8711 		line += TM_ILT_LINES;
8712 		ilt_client->end = line - 1;
8713 
8714 		DP(NETIF_MSG_IFUP,
8715 		   "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8716 		   ilt_client->start,
8717 		   ilt_client->end,
8718 		   ilt_client->page_size,
8719 		   ilt_client->flags,
8720 		   ilog2(ilt_client->page_size >> 12));
8721 	}
8722 
8723 	BUG_ON(line > ILT_MAX_LINES);
8724 }
8725 
8726 /**
8727  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8728  *
8729  * @bp:			driver handle
8730  * @fp:			pointer to fastpath
8731  * @init_params:	pointer to parameters structure
8732  *
8733  * parameters configured:
8734  *      - HC configuration
8735  *      - Queue's CDU context
8736  */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8737 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8738 	struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8739 {
8740 	u8 cos;
8741 	int cxt_index, cxt_offset;
8742 
8743 	/* FCoE Queue uses Default SB, thus has no HC capabilities */
8744 	if (!IS_FCOE_FP(fp)) {
8745 		__set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8746 		__set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8747 
8748 		/* If HC is supported, enable host coalescing in the transition
8749 		 * to INIT state.
8750 		 */
8751 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8752 		__set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8753 
8754 		/* HC rate */
8755 		init_params->rx.hc_rate = bp->rx_ticks ?
8756 			(1000000 / bp->rx_ticks) : 0;
8757 		init_params->tx.hc_rate = bp->tx_ticks ?
8758 			(1000000 / bp->tx_ticks) : 0;
8759 
8760 		/* FW SB ID */
8761 		init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8762 			fp->fw_sb_id;
8763 
8764 		/*
8765 		 * CQ index among the SB indices: FCoE clients uses the default
8766 		 * SB, therefore it's different.
8767 		 */
8768 		init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8769 		init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8770 	}
8771 
8772 	/* set maximum number of COSs supported by this queue */
8773 	init_params->max_cos = fp->max_cos;
8774 
8775 	DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8776 	    fp->index, init_params->max_cos);
8777 
8778 	/* set the context pointers queue object */
8779 	for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8780 		cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8781 		cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8782 				ILT_PAGE_CIDS);
8783 		init_params->cxts[cos] =
8784 			&bp->context[cxt_index].vcxt[cxt_offset].eth;
8785 	}
8786 }
8787 
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8788 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8789 			struct bnx2x_queue_state_params *q_params,
8790 			struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8791 			int tx_index, bool leading)
8792 {
8793 	memset(tx_only_params, 0, sizeof(*tx_only_params));
8794 
8795 	/* Set the command */
8796 	q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8797 
8798 	/* Set tx-only QUEUE flags: don't zero statistics */
8799 	tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8800 
8801 	/* choose the index of the cid to send the slow path on */
8802 	tx_only_params->cid_index = tx_index;
8803 
8804 	/* Set general TX_ONLY_SETUP parameters */
8805 	bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8806 
8807 	/* Set Tx TX_ONLY_SETUP parameters */
8808 	bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8809 
8810 	DP(NETIF_MSG_IFUP,
8811 	   "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8812 	   tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8813 	   q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8814 	   tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8815 
8816 	/* send the ramrod */
8817 	return bnx2x_queue_state_change(bp, q_params);
8818 }
8819 
8820 /**
8821  * bnx2x_setup_queue - setup queue
8822  *
8823  * @bp:		driver handle
8824  * @fp:		pointer to fastpath
8825  * @leading:	is leading
8826  *
8827  * This function performs 2 steps in a Queue state machine
8828  *      actually: 1) RESET->INIT 2) INIT->SETUP
8829  */
8830 
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8831 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8832 		       bool leading)
8833 {
8834 	struct bnx2x_queue_state_params q_params = {NULL};
8835 	struct bnx2x_queue_setup_params *setup_params =
8836 						&q_params.params.setup;
8837 	struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8838 						&q_params.params.tx_only;
8839 	int rc;
8840 	u8 tx_index;
8841 
8842 	DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8843 
8844 	/* reset IGU state skip FCoE L2 queue */
8845 	if (!IS_FCOE_FP(fp))
8846 		bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8847 			     IGU_INT_ENABLE, 0);
8848 
8849 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8850 	/* We want to wait for completion in this context */
8851 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8852 
8853 	/* Prepare the INIT parameters */
8854 	bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8855 
8856 	/* Set the command */
8857 	q_params.cmd = BNX2X_Q_CMD_INIT;
8858 
8859 	/* Change the state to INIT */
8860 	rc = bnx2x_queue_state_change(bp, &q_params);
8861 	if (rc) {
8862 		BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8863 		return rc;
8864 	}
8865 
8866 	DP(NETIF_MSG_IFUP, "init complete\n");
8867 
8868 	/* Now move the Queue to the SETUP state... */
8869 	memset(setup_params, 0, sizeof(*setup_params));
8870 
8871 	/* Set QUEUE flags */
8872 	setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8873 
8874 	/* Set general SETUP parameters */
8875 	bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8876 				FIRST_TX_COS_INDEX);
8877 
8878 	bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8879 			    &setup_params->rxq_params);
8880 
8881 	bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8882 			   FIRST_TX_COS_INDEX);
8883 
8884 	/* Set the command */
8885 	q_params.cmd = BNX2X_Q_CMD_SETUP;
8886 
8887 	if (IS_FCOE_FP(fp))
8888 		bp->fcoe_init = true;
8889 
8890 	/* Change the state to SETUP */
8891 	rc = bnx2x_queue_state_change(bp, &q_params);
8892 	if (rc) {
8893 		BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8894 		return rc;
8895 	}
8896 
8897 	/* loop through the relevant tx-only indices */
8898 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8899 	      tx_index < fp->max_cos;
8900 	      tx_index++) {
8901 
8902 		/* prepare and send tx-only ramrod*/
8903 		rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8904 					  tx_only_params, tx_index, leading);
8905 		if (rc) {
8906 			BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8907 				  fp->index, tx_index);
8908 			return rc;
8909 		}
8910 	}
8911 
8912 	return rc;
8913 }
8914 
bnx2x_stop_queue(struct bnx2x * bp,int index)8915 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8916 {
8917 	struct bnx2x_fastpath *fp = &bp->fp[index];
8918 	struct bnx2x_fp_txdata *txdata;
8919 	struct bnx2x_queue_state_params q_params = {NULL};
8920 	int rc, tx_index;
8921 
8922 	DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8923 
8924 	q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8925 	/* We want to wait for completion in this context */
8926 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8927 
8928 	/* close tx-only connections */
8929 	for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8930 	     tx_index < fp->max_cos;
8931 	     tx_index++){
8932 
8933 		/* ascertain this is a normal queue*/
8934 		txdata = fp->txdata_ptr[tx_index];
8935 
8936 		DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8937 							txdata->txq_index);
8938 
8939 		/* send halt terminate on tx-only connection */
8940 		q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8941 		memset(&q_params.params.terminate, 0,
8942 		       sizeof(q_params.params.terminate));
8943 		q_params.params.terminate.cid_index = tx_index;
8944 
8945 		rc = bnx2x_queue_state_change(bp, &q_params);
8946 		if (rc)
8947 			return rc;
8948 
8949 		/* send halt terminate on tx-only connection */
8950 		q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8951 		memset(&q_params.params.cfc_del, 0,
8952 		       sizeof(q_params.params.cfc_del));
8953 		q_params.params.cfc_del.cid_index = tx_index;
8954 		rc = bnx2x_queue_state_change(bp, &q_params);
8955 		if (rc)
8956 			return rc;
8957 	}
8958 	/* Stop the primary connection: */
8959 	/* ...halt the connection */
8960 	q_params.cmd = BNX2X_Q_CMD_HALT;
8961 	rc = bnx2x_queue_state_change(bp, &q_params);
8962 	if (rc)
8963 		return rc;
8964 
8965 	/* ...terminate the connection */
8966 	q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8967 	memset(&q_params.params.terminate, 0,
8968 	       sizeof(q_params.params.terminate));
8969 	q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8970 	rc = bnx2x_queue_state_change(bp, &q_params);
8971 	if (rc)
8972 		return rc;
8973 	/* ...delete cfc entry */
8974 	q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8975 	memset(&q_params.params.cfc_del, 0,
8976 	       sizeof(q_params.params.cfc_del));
8977 	q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8978 	return bnx2x_queue_state_change(bp, &q_params);
8979 }
8980 
bnx2x_reset_func(struct bnx2x * bp)8981 static void bnx2x_reset_func(struct bnx2x *bp)
8982 {
8983 	int port = BP_PORT(bp);
8984 	int func = BP_FUNC(bp);
8985 	int i;
8986 
8987 	/* Disable the function in the FW */
8988 	REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8989 	REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8990 	REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8991 	REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8992 
8993 	/* FP SBs */
8994 	for_each_eth_queue(bp, i) {
8995 		struct bnx2x_fastpath *fp = &bp->fp[i];
8996 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
8997 			   CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8998 			   SB_DISABLED);
8999 	}
9000 
9001 	if (CNIC_LOADED(bp))
9002 		/* CNIC SB */
9003 		REG_WR8(bp, BAR_CSTRORM_INTMEM +
9004 			CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9005 			(bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9006 
9007 	/* SP SB */
9008 	REG_WR8(bp, BAR_CSTRORM_INTMEM +
9009 		CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9010 		SB_DISABLED);
9011 
9012 	for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9013 		REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9014 		       0);
9015 
9016 	/* Configure IGU */
9017 	if (bp->common.int_block == INT_BLOCK_HC) {
9018 		REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9019 		REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9020 	} else {
9021 		REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9022 		REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9023 	}
9024 
9025 	if (CNIC_LOADED(bp)) {
9026 		/* Disable Timer scan */
9027 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9028 		/*
9029 		 * Wait for at least 10ms and up to 2 second for the timers
9030 		 * scan to complete
9031 		 */
9032 		for (i = 0; i < 200; i++) {
9033 			usleep_range(10000, 20000);
9034 			if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9035 				break;
9036 		}
9037 	}
9038 	/* Clear ILT */
9039 	bnx2x_clear_func_ilt(bp, func);
9040 
9041 	/* Timers workaround bug for E2: if this is vnic-3,
9042 	 * we need to set the entire ilt range for this timers.
9043 	 */
9044 	if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9045 		struct ilt_client_info ilt_cli;
9046 		/* use dummy TM client */
9047 		memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9048 		ilt_cli.start = 0;
9049 		ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9050 		ilt_cli.client_num = ILT_CLIENT_TM;
9051 
9052 		bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9053 	}
9054 
9055 	/* this assumes that reset_port() called before reset_func()*/
9056 	if (!CHIP_IS_E1x(bp))
9057 		bnx2x_pf_disable(bp);
9058 
9059 	bp->dmae_ready = 0;
9060 }
9061 
bnx2x_reset_port(struct bnx2x * bp)9062 static void bnx2x_reset_port(struct bnx2x *bp)
9063 {
9064 	int port = BP_PORT(bp);
9065 	u32 val;
9066 
9067 	/* Reset physical Link */
9068 	bnx2x__link_reset(bp);
9069 
9070 	REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9071 
9072 	/* Do not rcv packets to BRB */
9073 	REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9074 	/* Do not direct rcv packets that are not for MCP to the BRB */
9075 	REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9076 			   NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9077 
9078 	/* Configure AEU */
9079 	REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9080 
9081 	msleep(100);
9082 	/* Check for BRB port occupancy */
9083 	val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9084 	if (val)
9085 		DP(NETIF_MSG_IFDOWN,
9086 		   "BRB1 is not empty  %d blocks are occupied\n", val);
9087 
9088 	/* TODO: Close Doorbell port? */
9089 }
9090 
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9091 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9092 {
9093 	struct bnx2x_func_state_params func_params = {NULL};
9094 
9095 	/* Prepare parameters for function state transitions */
9096 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9097 
9098 	func_params.f_obj = &bp->func_obj;
9099 	func_params.cmd = BNX2X_F_CMD_HW_RESET;
9100 
9101 	func_params.params.hw_init.load_phase = load_code;
9102 
9103 	return bnx2x_func_state_change(bp, &func_params);
9104 }
9105 
bnx2x_func_stop(struct bnx2x * bp)9106 static int bnx2x_func_stop(struct bnx2x *bp)
9107 {
9108 	struct bnx2x_func_state_params func_params = {NULL};
9109 	int rc;
9110 
9111 	/* Prepare parameters for function state transitions */
9112 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9113 	func_params.f_obj = &bp->func_obj;
9114 	func_params.cmd = BNX2X_F_CMD_STOP;
9115 
9116 	/*
9117 	 * Try to stop the function the 'good way'. If fails (in case
9118 	 * of a parity error during bnx2x_chip_cleanup()) and we are
9119 	 * not in a debug mode, perform a state transaction in order to
9120 	 * enable further HW_RESET transaction.
9121 	 */
9122 	rc = bnx2x_func_state_change(bp, &func_params);
9123 	if (rc) {
9124 #ifdef BNX2X_STOP_ON_ERROR
9125 		return rc;
9126 #else
9127 		BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9128 		__set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9129 		return bnx2x_func_state_change(bp, &func_params);
9130 #endif
9131 	}
9132 
9133 	return 0;
9134 }
9135 
9136 /**
9137  * bnx2x_send_unload_req - request unload mode from the MCP.
9138  *
9139  * @bp:			driver handle
9140  * @unload_mode:	requested function's unload mode
9141  *
9142  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9143  */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9144 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9145 {
9146 	u32 reset_code = 0;
9147 	int port = BP_PORT(bp);
9148 
9149 	/* Select the UNLOAD request mode */
9150 	if (unload_mode == UNLOAD_NORMAL)
9151 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9152 
9153 	else if (bp->flags & NO_WOL_FLAG)
9154 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9155 
9156 	else if (bp->wol) {
9157 		u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9158 		u8 *mac_addr = bp->dev->dev_addr;
9159 		struct pci_dev *pdev = bp->pdev;
9160 		u32 val;
9161 		u16 pmc;
9162 
9163 		/* The mac address is written to entries 1-4 to
9164 		 * preserve entry 0 which is used by the PMF
9165 		 */
9166 		u8 entry = (BP_VN(bp) + 1)*8;
9167 
9168 		val = (mac_addr[0] << 8) | mac_addr[1];
9169 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9170 
9171 		val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9172 		      (mac_addr[4] << 8) | mac_addr[5];
9173 		EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9174 
9175 		/* Enable the PME and clear the status */
9176 		pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9177 		pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9178 		pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9179 
9180 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9181 
9182 	} else
9183 		reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9184 
9185 	/* Send the request to the MCP */
9186 	if (!BP_NOMCP(bp))
9187 		reset_code = bnx2x_fw_command(bp, reset_code, 0);
9188 	else {
9189 		int path = BP_PATH(bp);
9190 
9191 		DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9192 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9193 		   bnx2x_load_count[path][2]);
9194 		bnx2x_load_count[path][0]--;
9195 		bnx2x_load_count[path][1 + port]--;
9196 		DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9197 		   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9198 		   bnx2x_load_count[path][2]);
9199 		if (bnx2x_load_count[path][0] == 0)
9200 			reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9201 		else if (bnx2x_load_count[path][1 + port] == 0)
9202 			reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9203 		else
9204 			reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9205 	}
9206 
9207 	return reset_code;
9208 }
9209 
9210 /**
9211  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9212  *
9213  * @bp:		driver handle
9214  * @keep_link:		true iff link should be kept up
9215  */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9216 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9217 {
9218 	u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9219 
9220 	/* Report UNLOAD_DONE to MCP */
9221 	if (!BP_NOMCP(bp))
9222 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9223 }
9224 
bnx2x_func_wait_started(struct bnx2x * bp)9225 static int bnx2x_func_wait_started(struct bnx2x *bp)
9226 {
9227 	int tout = 50;
9228 	int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9229 
9230 	if (!bp->port.pmf)
9231 		return 0;
9232 
9233 	/*
9234 	 * (assumption: No Attention from MCP at this stage)
9235 	 * PMF probably in the middle of TX disable/enable transaction
9236 	 * 1. Sync IRS for default SB
9237 	 * 2. Sync SP queue - this guarantees us that attention handling started
9238 	 * 3. Wait, that TX disable/enable transaction completes
9239 	 *
9240 	 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9241 	 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9242 	 * received completion for the transaction the state is TX_STOPPED.
9243 	 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9244 	 * transaction.
9245 	 */
9246 
9247 	/* make sure default SB ISR is done */
9248 	if (msix)
9249 		synchronize_irq(bp->msix_table[0].vector);
9250 	else
9251 		synchronize_irq(bp->pdev->irq);
9252 
9253 	flush_workqueue(bnx2x_wq);
9254 	flush_workqueue(bnx2x_iov_wq);
9255 
9256 	while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9257 				BNX2X_F_STATE_STARTED && tout--)
9258 		msleep(20);
9259 
9260 	if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9261 						BNX2X_F_STATE_STARTED) {
9262 #ifdef BNX2X_STOP_ON_ERROR
9263 		BNX2X_ERR("Wrong function state\n");
9264 		return -EBUSY;
9265 #else
9266 		/*
9267 		 * Failed to complete the transaction in a "good way"
9268 		 * Force both transactions with CLR bit
9269 		 */
9270 		struct bnx2x_func_state_params func_params = {NULL};
9271 
9272 		DP(NETIF_MSG_IFDOWN,
9273 		   "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9274 
9275 		func_params.f_obj = &bp->func_obj;
9276 		__set_bit(RAMROD_DRV_CLR_ONLY,
9277 					&func_params.ramrod_flags);
9278 
9279 		/* STARTED-->TX_ST0PPED */
9280 		func_params.cmd = BNX2X_F_CMD_TX_STOP;
9281 		bnx2x_func_state_change(bp, &func_params);
9282 
9283 		/* TX_ST0PPED-->STARTED */
9284 		func_params.cmd = BNX2X_F_CMD_TX_START;
9285 		return bnx2x_func_state_change(bp, &func_params);
9286 #endif
9287 	}
9288 
9289 	return 0;
9290 }
9291 
bnx2x_disable_ptp(struct bnx2x * bp)9292 static void bnx2x_disable_ptp(struct bnx2x *bp)
9293 {
9294 	int port = BP_PORT(bp);
9295 
9296 	/* Disable sending PTP packets to host */
9297 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9298 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9299 
9300 	/* Reset PTP event detection rules */
9301 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9302 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9303 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9304 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9305 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9306 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9307 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9308 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9309 
9310 	/* Disable the PTP feature */
9311 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9312 	       NIG_REG_P0_PTP_EN, 0x0);
9313 }
9314 
9315 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9316 static void bnx2x_stop_ptp(struct bnx2x *bp)
9317 {
9318 	/* Cancel PTP work queue. Should be done after the Tx queues are
9319 	 * drained to prevent additional scheduling.
9320 	 */
9321 	cancel_work_sync(&bp->ptp_task);
9322 
9323 	if (bp->ptp_tx_skb) {
9324 		dev_kfree_skb_any(bp->ptp_tx_skb);
9325 		bp->ptp_tx_skb = NULL;
9326 	}
9327 
9328 	/* Disable PTP in HW */
9329 	bnx2x_disable_ptp(bp);
9330 
9331 	DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9332 }
9333 
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9334 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9335 {
9336 	int port = BP_PORT(bp);
9337 	int i, rc = 0;
9338 	u8 cos;
9339 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
9340 	u32 reset_code;
9341 
9342 	/* Wait until tx fastpath tasks complete */
9343 	for_each_tx_queue(bp, i) {
9344 		struct bnx2x_fastpath *fp = &bp->fp[i];
9345 
9346 		for_each_cos_in_tx_queue(fp, cos)
9347 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9348 #ifdef BNX2X_STOP_ON_ERROR
9349 		if (rc)
9350 			return;
9351 #endif
9352 	}
9353 
9354 	/* Give HW time to discard old tx messages */
9355 	usleep_range(1000, 2000);
9356 
9357 	/* Clean all ETH MACs */
9358 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9359 				false);
9360 	if (rc < 0)
9361 		BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9362 
9363 	/* Clean up UC list  */
9364 	rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9365 				true);
9366 	if (rc < 0)
9367 		BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9368 			  rc);
9369 
9370 	/* The whole *vlan_obj structure may be not initialized if VLAN
9371 	 * filtering offload is not supported by hardware. Currently this is
9372 	 * true for all hardware covered by CHIP_IS_E1x().
9373 	 */
9374 	if (!CHIP_IS_E1x(bp)) {
9375 		/* Remove all currently configured VLANs */
9376 		rc = bnx2x_del_all_vlans(bp);
9377 		if (rc < 0)
9378 			BNX2X_ERR("Failed to delete all VLANs\n");
9379 	}
9380 
9381 	/* Disable LLH */
9382 	if (!CHIP_IS_E1(bp))
9383 		REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9384 
9385 	/* Set "drop all" (stop Rx).
9386 	 * We need to take a netif_addr_lock() here in order to prevent
9387 	 * a race between the completion code and this code.
9388 	 */
9389 	netif_addr_lock_bh(bp->dev);
9390 	/* Schedule the rx_mode command */
9391 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9392 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9393 	else if (bp->slowpath)
9394 		bnx2x_set_storm_rx_mode(bp);
9395 
9396 	/* Cleanup multicast configuration */
9397 	rparam.mcast_obj = &bp->mcast_obj;
9398 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9399 	if (rc < 0)
9400 		BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9401 
9402 	netif_addr_unlock_bh(bp->dev);
9403 
9404 	bnx2x_iov_chip_cleanup(bp);
9405 
9406 	/*
9407 	 * Send the UNLOAD_REQUEST to the MCP. This will return if
9408 	 * this function should perform FUNC, PORT or COMMON HW
9409 	 * reset.
9410 	 */
9411 	reset_code = bnx2x_send_unload_req(bp, unload_mode);
9412 
9413 	/*
9414 	 * (assumption: No Attention from MCP at this stage)
9415 	 * PMF probably in the middle of TX disable/enable transaction
9416 	 */
9417 	rc = bnx2x_func_wait_started(bp);
9418 	if (rc) {
9419 		BNX2X_ERR("bnx2x_func_wait_started failed\n");
9420 #ifdef BNX2X_STOP_ON_ERROR
9421 		return;
9422 #endif
9423 	}
9424 
9425 	/* Close multi and leading connections
9426 	 * Completions for ramrods are collected in a synchronous way
9427 	 */
9428 	for_each_eth_queue(bp, i)
9429 		if (bnx2x_stop_queue(bp, i))
9430 #ifdef BNX2X_STOP_ON_ERROR
9431 			return;
9432 #else
9433 			goto unload_error;
9434 #endif
9435 
9436 	if (CNIC_LOADED(bp)) {
9437 		for_each_cnic_queue(bp, i)
9438 			if (bnx2x_stop_queue(bp, i))
9439 #ifdef BNX2X_STOP_ON_ERROR
9440 				return;
9441 #else
9442 				goto unload_error;
9443 #endif
9444 	}
9445 
9446 	/* If SP settings didn't get completed so far - something
9447 	 * very wrong has happen.
9448 	 */
9449 	if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9450 		BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9451 
9452 #ifndef BNX2X_STOP_ON_ERROR
9453 unload_error:
9454 #endif
9455 	rc = bnx2x_func_stop(bp);
9456 	if (rc) {
9457 		BNX2X_ERR("Function stop failed!\n");
9458 #ifdef BNX2X_STOP_ON_ERROR
9459 		return;
9460 #endif
9461 	}
9462 
9463 	/* stop_ptp should be after the Tx queues are drained to prevent
9464 	 * scheduling to the cancelled PTP work queue. It should also be after
9465 	 * function stop ramrod is sent, since as part of this ramrod FW access
9466 	 * PTP registers.
9467 	 */
9468 	if (bp->flags & PTP_SUPPORTED) {
9469 		bnx2x_stop_ptp(bp);
9470 		if (bp->ptp_clock) {
9471 			ptp_clock_unregister(bp->ptp_clock);
9472 			bp->ptp_clock = NULL;
9473 		}
9474 	}
9475 
9476 	/* Disable HW interrupts, NAPI */
9477 	bnx2x_netif_stop(bp, 1);
9478 	/* Delete all NAPI objects */
9479 	bnx2x_del_all_napi(bp);
9480 	if (CNIC_LOADED(bp))
9481 		bnx2x_del_all_napi_cnic(bp);
9482 
9483 	/* Release IRQs */
9484 	bnx2x_free_irq(bp);
9485 
9486 	/* Reset the chip, unless PCI function is offline. If we reach this
9487 	 * point following a PCI error handling, it means device is really
9488 	 * in a bad state and we're about to remove it, so reset the chip
9489 	 * is not a good idea.
9490 	 */
9491 	if (!pci_channel_offline(bp->pdev)) {
9492 		rc = bnx2x_reset_hw(bp, reset_code);
9493 		if (rc)
9494 			BNX2X_ERR("HW_RESET failed\n");
9495 	}
9496 
9497 	/* Report UNLOAD_DONE to MCP */
9498 	bnx2x_send_unload_done(bp, keep_link);
9499 }
9500 
bnx2x_disable_close_the_gate(struct bnx2x * bp)9501 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9502 {
9503 	u32 val;
9504 
9505 	DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9506 
9507 	if (CHIP_IS_E1(bp)) {
9508 		int port = BP_PORT(bp);
9509 		u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9510 			MISC_REG_AEU_MASK_ATTN_FUNC_0;
9511 
9512 		val = REG_RD(bp, addr);
9513 		val &= ~(0x300);
9514 		REG_WR(bp, addr, val);
9515 	} else {
9516 		val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9517 		val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9518 			 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9519 		REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9520 	}
9521 }
9522 
9523 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9524 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9525 {
9526 	u32 val;
9527 
9528 	/* Gates #2 and #4a are closed/opened for "not E1" only */
9529 	if (!CHIP_IS_E1(bp)) {
9530 		/* #4 */
9531 		REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9532 		/* #2 */
9533 		REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9534 	}
9535 
9536 	/* #3 */
9537 	if (CHIP_IS_E1x(bp)) {
9538 		/* Prevent interrupts from HC on both ports */
9539 		val = REG_RD(bp, HC_REG_CONFIG_1);
9540 		REG_WR(bp, HC_REG_CONFIG_1,
9541 		       (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9542 		       (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9543 
9544 		val = REG_RD(bp, HC_REG_CONFIG_0);
9545 		REG_WR(bp, HC_REG_CONFIG_0,
9546 		       (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9547 		       (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9548 	} else {
9549 		/* Prevent incoming interrupts in IGU */
9550 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9551 
9552 		REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9553 		       (!close) ?
9554 		       (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9555 		       (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9556 	}
9557 
9558 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9559 		close ? "closing" : "opening");
9560 }
9561 
9562 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9563 
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9564 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9565 {
9566 	/* Do some magic... */
9567 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9568 	*magic_val = val & SHARED_MF_CLP_MAGIC;
9569 	MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9570 }
9571 
9572 /**
9573  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9574  *
9575  * @bp:		driver handle
9576  * @magic_val:	old value of the `magic' bit.
9577  */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9578 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9579 {
9580 	/* Restore the `magic' bit value... */
9581 	u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9582 	MF_CFG_WR(bp, shared_mf_config.clp_mb,
9583 		(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9584 }
9585 
9586 /**
9587  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9588  *
9589  * @bp:		driver handle
9590  * @magic_val:	old value of 'magic' bit.
9591  *
9592  * Takes care of CLP configurations.
9593  */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9594 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9595 {
9596 	u32 shmem;
9597 	u32 validity_offset;
9598 
9599 	DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9600 
9601 	/* Set `magic' bit in order to save MF config */
9602 	if (!CHIP_IS_E1(bp))
9603 		bnx2x_clp_reset_prep(bp, magic_val);
9604 
9605 	/* Get shmem offset */
9606 	shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9607 	validity_offset =
9608 		offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9609 
9610 	/* Clear validity map flags */
9611 	if (shmem > 0)
9612 		REG_WR(bp, shmem + validity_offset, 0);
9613 }
9614 
9615 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9616 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9617 
9618 /**
9619  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9620  *
9621  * @bp:	driver handle
9622  */
bnx2x_mcp_wait_one(struct bnx2x * bp)9623 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9624 {
9625 	/* special handling for emulation and FPGA,
9626 	   wait 10 times longer */
9627 	if (CHIP_REV_IS_SLOW(bp))
9628 		msleep(MCP_ONE_TIMEOUT*10);
9629 	else
9630 		msleep(MCP_ONE_TIMEOUT);
9631 }
9632 
9633 /*
9634  * initializes bp->common.shmem_base and waits for validity signature to appear
9635  */
bnx2x_init_shmem(struct bnx2x * bp)9636 static int bnx2x_init_shmem(struct bnx2x *bp)
9637 {
9638 	int cnt = 0;
9639 	u32 val = 0;
9640 
9641 	do {
9642 		bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9643 
9644 		/* If we read all 0xFFs, means we are in PCI error state and
9645 		 * should bail out to avoid crashes on adapter's FW reads.
9646 		 */
9647 		if (bp->common.shmem_base == 0xFFFFFFFF) {
9648 			bp->flags |= NO_MCP_FLAG;
9649 			return -ENODEV;
9650 		}
9651 
9652 		if (bp->common.shmem_base) {
9653 			val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9654 			if (val & SHR_MEM_VALIDITY_MB)
9655 				return 0;
9656 		}
9657 
9658 		bnx2x_mcp_wait_one(bp);
9659 
9660 	} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9661 
9662 	BNX2X_ERR("BAD MCP validity signature\n");
9663 
9664 	return -ENODEV;
9665 }
9666 
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9667 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9668 {
9669 	int rc = bnx2x_init_shmem(bp);
9670 
9671 	/* Restore the `magic' bit value */
9672 	if (!CHIP_IS_E1(bp))
9673 		bnx2x_clp_reset_done(bp, magic_val);
9674 
9675 	return rc;
9676 }
9677 
bnx2x_pxp_prep(struct bnx2x * bp)9678 static void bnx2x_pxp_prep(struct bnx2x *bp)
9679 {
9680 	if (!CHIP_IS_E1(bp)) {
9681 		REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9682 		REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9683 	}
9684 }
9685 
9686 /*
9687  * Reset the whole chip except for:
9688  *      - PCIE core
9689  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9690  *              one reset bit)
9691  *      - IGU
9692  *      - MISC (including AEU)
9693  *      - GRC
9694  *      - RBCN, RBCP
9695  */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9696 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9697 {
9698 	u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9699 	u32 global_bits2, stay_reset2;
9700 
9701 	/*
9702 	 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9703 	 * (per chip) blocks.
9704 	 */
9705 	global_bits2 =
9706 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9707 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9708 
9709 	/* Don't reset the following blocks.
9710 	 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9711 	 *            reset, as in 4 port device they might still be owned
9712 	 *            by the MCP (there is only one leader per path).
9713 	 */
9714 	not_reset_mask1 =
9715 		MISC_REGISTERS_RESET_REG_1_RST_HC |
9716 		MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9717 		MISC_REGISTERS_RESET_REG_1_RST_PXP;
9718 
9719 	not_reset_mask2 =
9720 		MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9721 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9722 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9723 		MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9724 		MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9725 		MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9726 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9727 		MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9728 		MISC_REGISTERS_RESET_REG_2_RST_ATC |
9729 		MISC_REGISTERS_RESET_REG_2_PGLC |
9730 		MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9731 		MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9732 		MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9733 		MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9734 		MISC_REGISTERS_RESET_REG_2_UMAC0 |
9735 		MISC_REGISTERS_RESET_REG_2_UMAC1;
9736 
9737 	/*
9738 	 * Keep the following blocks in reset:
9739 	 *  - all xxMACs are handled by the bnx2x_link code.
9740 	 */
9741 	stay_reset2 =
9742 		MISC_REGISTERS_RESET_REG_2_XMAC |
9743 		MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9744 
9745 	/* Full reset masks according to the chip */
9746 	reset_mask1 = 0xffffffff;
9747 
9748 	if (CHIP_IS_E1(bp))
9749 		reset_mask2 = 0xffff;
9750 	else if (CHIP_IS_E1H(bp))
9751 		reset_mask2 = 0x1ffff;
9752 	else if (CHIP_IS_E2(bp))
9753 		reset_mask2 = 0xfffff;
9754 	else /* CHIP_IS_E3 */
9755 		reset_mask2 = 0x3ffffff;
9756 
9757 	/* Don't reset global blocks unless we need to */
9758 	if (!global)
9759 		reset_mask2 &= ~global_bits2;
9760 
9761 	/*
9762 	 * In case of attention in the QM, we need to reset PXP
9763 	 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9764 	 * because otherwise QM reset would release 'close the gates' shortly
9765 	 * before resetting the PXP, then the PSWRQ would send a write
9766 	 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9767 	 * read the payload data from PSWWR, but PSWWR would not
9768 	 * respond. The write queue in PGLUE would stuck, dmae commands
9769 	 * would not return. Therefore it's important to reset the second
9770 	 * reset register (containing the
9771 	 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9772 	 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9773 	 * bit).
9774 	 */
9775 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9776 	       reset_mask2 & (~not_reset_mask2));
9777 
9778 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9779 	       reset_mask1 & (~not_reset_mask1));
9780 
9781 	barrier();
9782 
9783 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9784 	       reset_mask2 & (~stay_reset2));
9785 
9786 	barrier();
9787 
9788 	REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9789 }
9790 
9791 /**
9792  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9793  * It should get cleared in no more than 1s.
9794  *
9795  * @bp:	driver handle
9796  *
9797  * It should get cleared in no more than 1s. Returns 0 if
9798  * pending writes bit gets cleared.
9799  */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9800 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9801 {
9802 	u32 cnt = 1000;
9803 	u32 pend_bits = 0;
9804 
9805 	do {
9806 		pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9807 
9808 		if (pend_bits == 0)
9809 			break;
9810 
9811 		usleep_range(1000, 2000);
9812 	} while (cnt-- > 0);
9813 
9814 	if (cnt <= 0) {
9815 		BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9816 			  pend_bits);
9817 		return -EBUSY;
9818 	}
9819 
9820 	return 0;
9821 }
9822 
bnx2x_process_kill(struct bnx2x * bp,bool global)9823 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9824 {
9825 	int cnt = 1000;
9826 	u32 val = 0;
9827 	u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9828 	u32 tags_63_32 = 0;
9829 
9830 	/* Empty the Tetris buffer, wait for 1s */
9831 	do {
9832 		sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9833 		blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9834 		port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9835 		port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9836 		pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9837 		if (CHIP_IS_E3(bp))
9838 			tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9839 
9840 		if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9841 		    ((port_is_idle_0 & 0x1) == 0x1) &&
9842 		    ((port_is_idle_1 & 0x1) == 0x1) &&
9843 		    (pgl_exp_rom2 == 0xffffffff) &&
9844 		    (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9845 			break;
9846 		usleep_range(1000, 2000);
9847 	} while (cnt-- > 0);
9848 
9849 	if (cnt <= 0) {
9850 		BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9851 		BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9852 			  sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9853 			  pgl_exp_rom2);
9854 		return -EAGAIN;
9855 	}
9856 
9857 	barrier();
9858 
9859 	/* Close gates #2, #3 and #4 */
9860 	bnx2x_set_234_gates(bp, true);
9861 
9862 	/* Poll for IGU VQs for 57712 and newer chips */
9863 	if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9864 		return -EAGAIN;
9865 
9866 	/* TBD: Indicate that "process kill" is in progress to MCP */
9867 
9868 	/* Clear "unprepared" bit */
9869 	REG_WR(bp, MISC_REG_UNPREPARED, 0);
9870 	barrier();
9871 
9872 	/* Wait for 1ms to empty GLUE and PCI-E core queues,
9873 	 * PSWHST, GRC and PSWRD Tetris buffer.
9874 	 */
9875 	usleep_range(1000, 2000);
9876 
9877 	/* Prepare to chip reset: */
9878 	/* MCP */
9879 	if (global)
9880 		bnx2x_reset_mcp_prep(bp, &val);
9881 
9882 	/* PXP */
9883 	bnx2x_pxp_prep(bp);
9884 	barrier();
9885 
9886 	/* reset the chip */
9887 	bnx2x_process_kill_chip_reset(bp, global);
9888 	barrier();
9889 
9890 	/* clear errors in PGB */
9891 	if (!CHIP_IS_E1x(bp))
9892 		REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9893 
9894 	/* Recover after reset: */
9895 	/* MCP */
9896 	if (global && bnx2x_reset_mcp_comp(bp, val))
9897 		return -EAGAIN;
9898 
9899 	/* TBD: Add resetting the NO_MCP mode DB here */
9900 
9901 	/* Open the gates #2, #3 and #4 */
9902 	bnx2x_set_234_gates(bp, false);
9903 
9904 	/* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9905 	 * reset state, re-enable attentions. */
9906 
9907 	return 0;
9908 }
9909 
bnx2x_leader_reset(struct bnx2x * bp)9910 static int bnx2x_leader_reset(struct bnx2x *bp)
9911 {
9912 	int rc = 0;
9913 	bool global = bnx2x_reset_is_global(bp);
9914 	u32 load_code;
9915 
9916 	/* if not going to reset MCP - load "fake" driver to reset HW while
9917 	 * driver is owner of the HW
9918 	 */
9919 	if (!global && !BP_NOMCP(bp)) {
9920 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9921 					     DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9922 		if (!load_code) {
9923 			BNX2X_ERR("MCP response failure, aborting\n");
9924 			rc = -EAGAIN;
9925 			goto exit_leader_reset;
9926 		}
9927 		if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9928 		    (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9929 			BNX2X_ERR("MCP unexpected resp, aborting\n");
9930 			rc = -EAGAIN;
9931 			goto exit_leader_reset2;
9932 		}
9933 		load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9934 		if (!load_code) {
9935 			BNX2X_ERR("MCP response failure, aborting\n");
9936 			rc = -EAGAIN;
9937 			goto exit_leader_reset2;
9938 		}
9939 	}
9940 
9941 	/* Try to recover after the failure */
9942 	if (bnx2x_process_kill(bp, global)) {
9943 		BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9944 			  BP_PATH(bp));
9945 		rc = -EAGAIN;
9946 		goto exit_leader_reset2;
9947 	}
9948 
9949 	/*
9950 	 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9951 	 * state.
9952 	 */
9953 	bnx2x_set_reset_done(bp);
9954 	if (global)
9955 		bnx2x_clear_reset_global(bp);
9956 
9957 exit_leader_reset2:
9958 	/* unload "fake driver" if it was loaded */
9959 	if (!global && !BP_NOMCP(bp)) {
9960 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9961 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9962 	}
9963 exit_leader_reset:
9964 	bp->is_leader = 0;
9965 	bnx2x_release_leader_lock(bp);
9966 	smp_mb();
9967 	return rc;
9968 }
9969 
bnx2x_recovery_failed(struct bnx2x * bp)9970 static void bnx2x_recovery_failed(struct bnx2x *bp)
9971 {
9972 	netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9973 
9974 	/* Disconnect this device */
9975 	netif_device_detach(bp->dev);
9976 
9977 	/*
9978 	 * Block ifup for all function on this engine until "process kill"
9979 	 * or power cycle.
9980 	 */
9981 	bnx2x_set_reset_in_progress(bp);
9982 
9983 	/* Shut down the power */
9984 	bnx2x_set_power_state(bp, PCI_D3hot);
9985 
9986 	bp->recovery_state = BNX2X_RECOVERY_FAILED;
9987 
9988 	smp_mb();
9989 }
9990 
9991 /*
9992  * Assumption: runs under rtnl lock. This together with the fact
9993  * that it's called only from bnx2x_sp_rtnl() ensure that it
9994  * will never be called when netif_running(bp->dev) is false.
9995  */
bnx2x_parity_recover(struct bnx2x * bp)9996 static void bnx2x_parity_recover(struct bnx2x *bp)
9997 {
9998 	u32 error_recovered, error_unrecovered;
9999 	bool is_parity, global = false;
10000 #ifdef CONFIG_BNX2X_SRIOV
10001 	int vf_idx;
10002 
10003 	for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10004 		struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10005 
10006 		if (vf)
10007 			vf->state = VF_LOST;
10008 	}
10009 #endif
10010 	DP(NETIF_MSG_HW, "Handling parity\n");
10011 	while (1) {
10012 		switch (bp->recovery_state) {
10013 		case BNX2X_RECOVERY_INIT:
10014 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10015 			is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10016 			WARN_ON(!is_parity);
10017 
10018 			/* Try to get a LEADER_LOCK HW lock */
10019 			if (bnx2x_trylock_leader_lock(bp)) {
10020 				bnx2x_set_reset_in_progress(bp);
10021 				/*
10022 				 * Check if there is a global attention and if
10023 				 * there was a global attention, set the global
10024 				 * reset bit.
10025 				 */
10026 
10027 				if (global)
10028 					bnx2x_set_reset_global(bp);
10029 
10030 				bp->is_leader = 1;
10031 			}
10032 
10033 			/* Stop the driver */
10034 			/* If interface has been removed - break */
10035 			if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10036 				return;
10037 
10038 			bp->recovery_state = BNX2X_RECOVERY_WAIT;
10039 
10040 			/* Ensure "is_leader", MCP command sequence and
10041 			 * "recovery_state" update values are seen on other
10042 			 * CPUs.
10043 			 */
10044 			smp_mb();
10045 			break;
10046 
10047 		case BNX2X_RECOVERY_WAIT:
10048 			DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10049 			if (bp->is_leader) {
10050 				int other_engine = BP_PATH(bp) ? 0 : 1;
10051 				bool other_load_status =
10052 					bnx2x_get_load_status(bp, other_engine);
10053 				bool load_status =
10054 					bnx2x_get_load_status(bp, BP_PATH(bp));
10055 				global = bnx2x_reset_is_global(bp);
10056 
10057 				/*
10058 				 * In case of a parity in a global block, let
10059 				 * the first leader that performs a
10060 				 * leader_reset() reset the global blocks in
10061 				 * order to clear global attentions. Otherwise
10062 				 * the gates will remain closed for that
10063 				 * engine.
10064 				 */
10065 				if (load_status ||
10066 				    (global && other_load_status)) {
10067 					/* Wait until all other functions get
10068 					 * down.
10069 					 */
10070 					schedule_delayed_work(&bp->sp_rtnl_task,
10071 								HZ/10);
10072 					return;
10073 				} else {
10074 					/* If all other functions got down -
10075 					 * try to bring the chip back to
10076 					 * normal. In any case it's an exit
10077 					 * point for a leader.
10078 					 */
10079 					if (bnx2x_leader_reset(bp)) {
10080 						bnx2x_recovery_failed(bp);
10081 						return;
10082 					}
10083 
10084 					/* If we are here, means that the
10085 					 * leader has succeeded and doesn't
10086 					 * want to be a leader any more. Try
10087 					 * to continue as a none-leader.
10088 					 */
10089 					break;
10090 				}
10091 			} else { /* non-leader */
10092 				if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10093 					/* Try to get a LEADER_LOCK HW lock as
10094 					 * long as a former leader may have
10095 					 * been unloaded by the user or
10096 					 * released a leadership by another
10097 					 * reason.
10098 					 */
10099 					if (bnx2x_trylock_leader_lock(bp)) {
10100 						/* I'm a leader now! Restart a
10101 						 * switch case.
10102 						 */
10103 						bp->is_leader = 1;
10104 						break;
10105 					}
10106 
10107 					schedule_delayed_work(&bp->sp_rtnl_task,
10108 								HZ/10);
10109 					return;
10110 
10111 				} else {
10112 					/*
10113 					 * If there was a global attention, wait
10114 					 * for it to be cleared.
10115 					 */
10116 					if (bnx2x_reset_is_global(bp)) {
10117 						schedule_delayed_work(
10118 							&bp->sp_rtnl_task,
10119 							HZ/10);
10120 						return;
10121 					}
10122 
10123 					error_recovered =
10124 					  bp->eth_stats.recoverable_error;
10125 					error_unrecovered =
10126 					  bp->eth_stats.unrecoverable_error;
10127 					bp->recovery_state =
10128 						BNX2X_RECOVERY_NIC_LOADING;
10129 					if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10130 						error_unrecovered++;
10131 						netdev_err(bp->dev,
10132 							   "Recovery failed. Power cycle needed\n");
10133 						/* Disconnect this device */
10134 						netif_device_detach(bp->dev);
10135 						/* Shut down the power */
10136 						bnx2x_set_power_state(
10137 							bp, PCI_D3hot);
10138 						smp_mb();
10139 					} else {
10140 						bp->recovery_state =
10141 							BNX2X_RECOVERY_DONE;
10142 						error_recovered++;
10143 						smp_mb();
10144 					}
10145 					bp->eth_stats.recoverable_error =
10146 						error_recovered;
10147 					bp->eth_stats.unrecoverable_error =
10148 						error_unrecovered;
10149 
10150 					return;
10151 				}
10152 			}
10153 		default:
10154 			return;
10155 		}
10156 	}
10157 }
10158 
bnx2x_udp_port_update(struct bnx2x * bp)10159 static int bnx2x_udp_port_update(struct bnx2x *bp)
10160 {
10161 	struct bnx2x_func_switch_update_params *switch_update_params;
10162 	struct bnx2x_func_state_params func_params = {NULL};
10163 	u16 vxlan_port = 0, geneve_port = 0;
10164 	int rc;
10165 
10166 	switch_update_params = &func_params.params.switch_update;
10167 
10168 	/* Prepare parameters for function state transitions */
10169 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10170 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10171 
10172 	func_params.f_obj = &bp->func_obj;
10173 	func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10174 
10175 	/* Function parameters */
10176 	__set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10177 		  &switch_update_params->changes);
10178 
10179 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10180 		geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10181 		switch_update_params->geneve_dst_port = geneve_port;
10182 	}
10183 
10184 	if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10185 		vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10186 		switch_update_params->vxlan_dst_port = vxlan_port;
10187 	}
10188 
10189 	/* Re-enable inner-rss for the offloaded UDP tunnels */
10190 	__set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10191 		  &switch_update_params->changes);
10192 
10193 	rc = bnx2x_func_state_change(bp, &func_params);
10194 	if (rc)
10195 		BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10196 			  vxlan_port, geneve_port, rc);
10197 	else
10198 		DP(BNX2X_MSG_SP,
10199 		   "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10200 		   vxlan_port, geneve_port);
10201 
10202 	return rc;
10203 }
10204 
bnx2x_udp_tunnel_sync(struct net_device * netdev,unsigned int table)10205 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10206 {
10207 	struct bnx2x *bp = netdev_priv(netdev);
10208 	struct udp_tunnel_info ti;
10209 
10210 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10211 	bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10212 
10213 	return bnx2x_udp_port_update(bp);
10214 }
10215 
10216 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10217 	.sync_table	= bnx2x_udp_tunnel_sync,
10218 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10219 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10220 	.tables		= {
10221 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
10222 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10223 	},
10224 };
10225 
10226 static int bnx2x_close(struct net_device *dev);
10227 
10228 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10229  * scheduled on a general queue in order to prevent a dead lock.
10230  */
bnx2x_sp_rtnl_task(struct work_struct * work)10231 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10232 {
10233 	struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10234 
10235 	rtnl_lock();
10236 
10237 	if (!netif_running(bp->dev)) {
10238 		rtnl_unlock();
10239 		return;
10240 	}
10241 
10242 	if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10243 #ifdef BNX2X_STOP_ON_ERROR
10244 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10245 			  "you will need to reboot when done\n");
10246 		goto sp_rtnl_not_reset;
10247 #endif
10248 		/*
10249 		 * Clear all pending SP commands as we are going to reset the
10250 		 * function anyway.
10251 		 */
10252 		bp->sp_rtnl_state = 0;
10253 		smp_mb();
10254 
10255 		bnx2x_parity_recover(bp);
10256 
10257 		rtnl_unlock();
10258 		return;
10259 	}
10260 
10261 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10262 #ifdef BNX2X_STOP_ON_ERROR
10263 		BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10264 			  "you will need to reboot when done\n");
10265 		goto sp_rtnl_not_reset;
10266 #endif
10267 
10268 		/*
10269 		 * Clear all pending SP commands as we are going to reset the
10270 		 * function anyway.
10271 		 */
10272 		bp->sp_rtnl_state = 0;
10273 		smp_mb();
10274 
10275 		/* Immediately indicate link as down */
10276 		bp->link_vars.link_up = 0;
10277 		bp->force_link_down = true;
10278 		netif_carrier_off(bp->dev);
10279 		BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10280 
10281 		bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10282 		/* When ret value shows failure of allocation failure,
10283 		 * the nic is rebooted again. If open still fails, a error
10284 		 * message to notify the user.
10285 		 */
10286 		if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10287 			bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10288 			if (bnx2x_nic_load(bp, LOAD_NORMAL))
10289 				BNX2X_ERR("Open the NIC fails again!\n");
10290 		}
10291 		rtnl_unlock();
10292 		return;
10293 	}
10294 #ifdef BNX2X_STOP_ON_ERROR
10295 sp_rtnl_not_reset:
10296 #endif
10297 	if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10298 		bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10299 	if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10300 		bnx2x_after_function_update(bp);
10301 	/*
10302 	 * in case of fan failure we need to reset id if the "stop on error"
10303 	 * debug flag is set, since we trying to prevent permanent overheating
10304 	 * damage
10305 	 */
10306 	if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10307 		DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10308 		netif_device_detach(bp->dev);
10309 		bnx2x_close(bp->dev);
10310 		rtnl_unlock();
10311 		return;
10312 	}
10313 
10314 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10315 		DP(BNX2X_MSG_SP,
10316 		   "sending set mcast vf pf channel message from rtnl sp-task\n");
10317 		bnx2x_vfpf_set_mcast(bp->dev);
10318 	}
10319 	if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10320 			       &bp->sp_rtnl_state)){
10321 		if (netif_carrier_ok(bp->dev)) {
10322 			bnx2x_tx_disable(bp);
10323 			BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10324 		}
10325 	}
10326 
10327 	if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10328 		DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10329 		bnx2x_set_rx_mode_inner(bp);
10330 	}
10331 
10332 	if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10333 			       &bp->sp_rtnl_state))
10334 		bnx2x_pf_set_vfs_vlan(bp);
10335 
10336 	if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10337 		bnx2x_dcbx_stop_hw_tx(bp);
10338 		bnx2x_dcbx_resume_hw_tx(bp);
10339 	}
10340 
10341 	if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10342 			       &bp->sp_rtnl_state))
10343 		bnx2x_update_mng_version(bp);
10344 
10345 	if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10346 		bnx2x_handle_update_svid_cmd(bp);
10347 
10348 	/* work which needs rtnl lock not-taken (as it takes the lock itself and
10349 	 * can be called from other contexts as well)
10350 	 */
10351 	rtnl_unlock();
10352 
10353 	/* enable SR-IOV if applicable */
10354 	if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10355 					       &bp->sp_rtnl_state)) {
10356 		bnx2x_disable_sriov(bp);
10357 		bnx2x_enable_sriov(bp);
10358 	}
10359 }
10360 
bnx2x_period_task(struct work_struct * work)10361 static void bnx2x_period_task(struct work_struct *work)
10362 {
10363 	struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10364 
10365 	if (!netif_running(bp->dev))
10366 		goto period_task_exit;
10367 
10368 	if (CHIP_REV_IS_SLOW(bp)) {
10369 		BNX2X_ERR("period task called on emulation, ignoring\n");
10370 		goto period_task_exit;
10371 	}
10372 
10373 	bnx2x_acquire_phy_lock(bp);
10374 	/*
10375 	 * The barrier is needed to ensure the ordering between the writing to
10376 	 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10377 	 * the reading here.
10378 	 */
10379 	smp_mb();
10380 	if (bp->port.pmf) {
10381 		bnx2x_period_func(&bp->link_params, &bp->link_vars);
10382 
10383 		/* Re-queue task in 1 sec */
10384 		queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10385 	}
10386 
10387 	bnx2x_release_phy_lock(bp);
10388 period_task_exit:
10389 	return;
10390 }
10391 
10392 /*
10393  * Init service functions
10394  */
10395 
bnx2x_get_pretend_reg(struct bnx2x * bp)10396 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10397 {
10398 	u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10399 	u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10400 	return base + (BP_ABS_FUNC(bp)) * stride;
10401 }
10402 
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10403 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10404 					 u8 port, u32 reset_reg,
10405 					 struct bnx2x_mac_vals *vals)
10406 {
10407 	u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10408 	u32 base_addr;
10409 
10410 	if (!(mask & reset_reg))
10411 		return false;
10412 
10413 	BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10414 	base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10415 	vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10416 	vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10417 	REG_WR(bp, vals->umac_addr[port], 0);
10418 
10419 	return true;
10420 }
10421 
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10422 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10423 					struct bnx2x_mac_vals *vals)
10424 {
10425 	u32 val, base_addr, offset, mask, reset_reg;
10426 	bool mac_stopped = false;
10427 	u8 port = BP_PORT(bp);
10428 
10429 	/* reset addresses as they also mark which values were changed */
10430 	memset(vals, 0, sizeof(*vals));
10431 
10432 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10433 
10434 	if (!CHIP_IS_E3(bp)) {
10435 		val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10436 		mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10437 		if ((mask & reset_reg) && val) {
10438 			u32 wb_data[2];
10439 			BNX2X_DEV_INFO("Disable bmac Rx\n");
10440 			base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10441 						: NIG_REG_INGRESS_BMAC0_MEM;
10442 			offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10443 						: BIGMAC_REGISTER_BMAC_CONTROL;
10444 
10445 			/*
10446 			 * use rd/wr since we cannot use dmae. This is safe
10447 			 * since MCP won't access the bus due to the request
10448 			 * to unload, and no function on the path can be
10449 			 * loaded at this time.
10450 			 */
10451 			wb_data[0] = REG_RD(bp, base_addr + offset);
10452 			wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10453 			vals->bmac_addr = base_addr + offset;
10454 			vals->bmac_val[0] = wb_data[0];
10455 			vals->bmac_val[1] = wb_data[1];
10456 			wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10457 			REG_WR(bp, vals->bmac_addr, wb_data[0]);
10458 			REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10459 		}
10460 		BNX2X_DEV_INFO("Disable emac Rx\n");
10461 		vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10462 		vals->emac_val = REG_RD(bp, vals->emac_addr);
10463 		REG_WR(bp, vals->emac_addr, 0);
10464 		mac_stopped = true;
10465 	} else {
10466 		if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10467 			BNX2X_DEV_INFO("Disable xmac Rx\n");
10468 			base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10469 			val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10470 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10471 			       val & ~(1 << 1));
10472 			REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 			       val | (1 << 1));
10474 			vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10475 			vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10476 			REG_WR(bp, vals->xmac_addr, 0);
10477 			mac_stopped = true;
10478 		}
10479 
10480 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10481 							    reset_reg, vals);
10482 		mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10483 							    reset_reg, vals);
10484 	}
10485 
10486 	if (mac_stopped)
10487 		msleep(20);
10488 }
10489 
10490 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10491 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10492 					0x1848 + ((f) << 4))
10493 #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff)
10494 #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff)
10495 #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq))
10496 
10497 #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07)
10498 #define BCM_5710_UNDI_FW_MF_MINOR	(0x08)
10499 #define BCM_5710_UNDI_FW_MF_VERS	(0x05)
10500 
bnx2x_prev_is_after_undi(struct bnx2x * bp)10501 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10502 {
10503 	/* UNDI marks its presence in DORQ -
10504 	 * it initializes CID offset for normal bell to 0x7
10505 	 */
10506 	if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10507 	    MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10508 		return false;
10509 
10510 	if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10511 		BNX2X_DEV_INFO("UNDI previously loaded\n");
10512 		return true;
10513 	}
10514 
10515 	return false;
10516 }
10517 
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10518 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10519 {
10520 	u16 rcq, bd;
10521 	u32 addr, tmp_reg;
10522 
10523 	if (BP_FUNC(bp) < 2)
10524 		addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10525 	else
10526 		addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10527 
10528 	tmp_reg = REG_RD(bp, addr);
10529 	rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10530 	bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10531 
10532 	tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10533 	REG_WR(bp, addr, tmp_reg);
10534 
10535 	BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10536 		       BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10537 }
10538 
bnx2x_prev_mcp_done(struct bnx2x * bp)10539 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10540 {
10541 	u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10542 				  DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10543 	if (!rc) {
10544 		BNX2X_ERR("MCP response failure, aborting\n");
10545 		return -EBUSY;
10546 	}
10547 
10548 	return 0;
10549 }
10550 
10551 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10552 		bnx2x_prev_path_get_entry(struct bnx2x *bp)
10553 {
10554 	struct bnx2x_prev_path_list *tmp_list;
10555 
10556 	list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10557 		if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10558 		    bp->pdev->bus->number == tmp_list->bus &&
10559 		    BP_PATH(bp) == tmp_list->path)
10560 			return tmp_list;
10561 
10562 	return NULL;
10563 }
10564 
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10565 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10566 {
10567 	struct bnx2x_prev_path_list *tmp_list;
10568 	int rc;
10569 
10570 	rc = down_interruptible(&bnx2x_prev_sem);
10571 	if (rc) {
10572 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10573 		return rc;
10574 	}
10575 
10576 	tmp_list = bnx2x_prev_path_get_entry(bp);
10577 	if (tmp_list) {
10578 		tmp_list->aer = 1;
10579 		rc = 0;
10580 	} else {
10581 		BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10582 			  BP_PATH(bp));
10583 	}
10584 
10585 	up(&bnx2x_prev_sem);
10586 
10587 	return rc;
10588 }
10589 
bnx2x_prev_is_path_marked(struct bnx2x * bp)10590 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10591 {
10592 	struct bnx2x_prev_path_list *tmp_list;
10593 	bool rc = false;
10594 
10595 	if (down_trylock(&bnx2x_prev_sem))
10596 		return false;
10597 
10598 	tmp_list = bnx2x_prev_path_get_entry(bp);
10599 	if (tmp_list) {
10600 		if (tmp_list->aer) {
10601 			DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10602 			   BP_PATH(bp));
10603 		} else {
10604 			rc = true;
10605 			BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10606 				       BP_PATH(bp));
10607 		}
10608 	}
10609 
10610 	up(&bnx2x_prev_sem);
10611 
10612 	return rc;
10613 }
10614 
bnx2x_port_after_undi(struct bnx2x * bp)10615 bool bnx2x_port_after_undi(struct bnx2x *bp)
10616 {
10617 	struct bnx2x_prev_path_list *entry;
10618 	bool val;
10619 
10620 	down(&bnx2x_prev_sem);
10621 
10622 	entry = bnx2x_prev_path_get_entry(bp);
10623 	val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10624 
10625 	up(&bnx2x_prev_sem);
10626 
10627 	return val;
10628 }
10629 
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10630 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10631 {
10632 	struct bnx2x_prev_path_list *tmp_list;
10633 	int rc;
10634 
10635 	rc = down_interruptible(&bnx2x_prev_sem);
10636 	if (rc) {
10637 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10638 		return rc;
10639 	}
10640 
10641 	/* Check whether the entry for this path already exists */
10642 	tmp_list = bnx2x_prev_path_get_entry(bp);
10643 	if (tmp_list) {
10644 		if (!tmp_list->aer) {
10645 			BNX2X_ERR("Re-Marking the path.\n");
10646 		} else {
10647 			DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10648 			   BP_PATH(bp));
10649 			tmp_list->aer = 0;
10650 		}
10651 		up(&bnx2x_prev_sem);
10652 		return 0;
10653 	}
10654 	up(&bnx2x_prev_sem);
10655 
10656 	/* Create an entry for this path and add it */
10657 	tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10658 	if (!tmp_list) {
10659 		BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10660 		return -ENOMEM;
10661 	}
10662 
10663 	tmp_list->bus = bp->pdev->bus->number;
10664 	tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10665 	tmp_list->path = BP_PATH(bp);
10666 	tmp_list->aer = 0;
10667 	tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10668 
10669 	rc = down_interruptible(&bnx2x_prev_sem);
10670 	if (rc) {
10671 		BNX2X_ERR("Received %d when tried to take lock\n", rc);
10672 		kfree(tmp_list);
10673 	} else {
10674 		DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10675 		   BP_PATH(bp));
10676 		list_add(&tmp_list->list, &bnx2x_prev_list);
10677 		up(&bnx2x_prev_sem);
10678 	}
10679 
10680 	return rc;
10681 }
10682 
bnx2x_do_flr(struct bnx2x * bp)10683 static int bnx2x_do_flr(struct bnx2x *bp)
10684 {
10685 	struct pci_dev *dev = bp->pdev;
10686 
10687 	if (CHIP_IS_E1x(bp)) {
10688 		BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10689 		return -EINVAL;
10690 	}
10691 
10692 	/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10693 	if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10694 		BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10695 			  bp->common.bc_ver);
10696 		return -EINVAL;
10697 	}
10698 
10699 	if (!pci_wait_for_pending_transaction(dev))
10700 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10701 
10702 	BNX2X_DEV_INFO("Initiating FLR\n");
10703 	bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10704 
10705 	return 0;
10706 }
10707 
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10708 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10709 {
10710 	int rc;
10711 
10712 	BNX2X_DEV_INFO("Uncommon unload Flow\n");
10713 
10714 	/* Test if previous unload process was already finished for this path */
10715 	if (bnx2x_prev_is_path_marked(bp))
10716 		return bnx2x_prev_mcp_done(bp);
10717 
10718 	BNX2X_DEV_INFO("Path is unmarked\n");
10719 
10720 	/* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10721 	if (bnx2x_prev_is_after_undi(bp))
10722 		goto out;
10723 
10724 	/* If function has FLR capabilities, and existing FW version matches
10725 	 * the one required, then FLR will be sufficient to clean any residue
10726 	 * left by previous driver
10727 	 */
10728 	rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10729 
10730 	if (!rc) {
10731 		/* fw version is good */
10732 		BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10733 		rc = bnx2x_do_flr(bp);
10734 	}
10735 
10736 	if (!rc) {
10737 		/* FLR was performed */
10738 		BNX2X_DEV_INFO("FLR successful\n");
10739 		return 0;
10740 	}
10741 
10742 	BNX2X_DEV_INFO("Could not FLR\n");
10743 
10744 out:
10745 	/* Close the MCP request, return failure*/
10746 	rc = bnx2x_prev_mcp_done(bp);
10747 	if (!rc)
10748 		rc = BNX2X_PREV_WAIT_NEEDED;
10749 
10750 	return rc;
10751 }
10752 
bnx2x_prev_unload_common(struct bnx2x * bp)10753 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10754 {
10755 	u32 reset_reg, tmp_reg = 0, rc;
10756 	bool prev_undi = false;
10757 	struct bnx2x_mac_vals mac_vals;
10758 
10759 	/* It is possible a previous function received 'common' answer,
10760 	 * but hasn't loaded yet, therefore creating a scenario of
10761 	 * multiple functions receiving 'common' on the same path.
10762 	 */
10763 	BNX2X_DEV_INFO("Common unload Flow\n");
10764 
10765 	memset(&mac_vals, 0, sizeof(mac_vals));
10766 
10767 	if (bnx2x_prev_is_path_marked(bp))
10768 		return bnx2x_prev_mcp_done(bp);
10769 
10770 	reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10771 
10772 	/* Reset should be performed after BRB is emptied */
10773 	if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10774 		u32 timer_count = 1000;
10775 
10776 		/* Close the MAC Rx to prevent BRB from filling up */
10777 		bnx2x_prev_unload_close_mac(bp, &mac_vals);
10778 
10779 		/* close LLH filters for both ports towards the BRB */
10780 		bnx2x_set_rx_filter(&bp->link_params, 0);
10781 		bp->link_params.port ^= 1;
10782 		bnx2x_set_rx_filter(&bp->link_params, 0);
10783 		bp->link_params.port ^= 1;
10784 
10785 		/* Check if the UNDI driver was previously loaded */
10786 		if (bnx2x_prev_is_after_undi(bp)) {
10787 			prev_undi = true;
10788 			/* clear the UNDI indication */
10789 			REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10790 			/* clear possible idle check errors */
10791 			REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10792 		}
10793 		if (!CHIP_IS_E1x(bp))
10794 			/* block FW from writing to host */
10795 			REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10796 
10797 		/* wait until BRB is empty */
10798 		tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10799 		while (timer_count) {
10800 			u32 prev_brb = tmp_reg;
10801 
10802 			tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803 			if (!tmp_reg)
10804 				break;
10805 
10806 			BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10807 
10808 			/* reset timer as long as BRB actually gets emptied */
10809 			if (prev_brb > tmp_reg)
10810 				timer_count = 1000;
10811 			else
10812 				timer_count--;
10813 
10814 			/* If UNDI resides in memory, manually increment it */
10815 			if (prev_undi)
10816 				bnx2x_prev_unload_undi_inc(bp, 1);
10817 
10818 			udelay(10);
10819 		}
10820 
10821 		if (!timer_count)
10822 			BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10823 	}
10824 
10825 	/* No packets are in the pipeline, path is ready for reset */
10826 	bnx2x_reset_common(bp);
10827 
10828 	if (mac_vals.xmac_addr)
10829 		REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10830 	if (mac_vals.umac_addr[0])
10831 		REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10832 	if (mac_vals.umac_addr[1])
10833 		REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10834 	if (mac_vals.emac_addr)
10835 		REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10836 	if (mac_vals.bmac_addr) {
10837 		REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10838 		REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10839 	}
10840 
10841 	rc = bnx2x_prev_mark_path(bp, prev_undi);
10842 	if (rc) {
10843 		bnx2x_prev_mcp_done(bp);
10844 		return rc;
10845 	}
10846 
10847 	return bnx2x_prev_mcp_done(bp);
10848 }
10849 
bnx2x_prev_unload(struct bnx2x * bp)10850 static int bnx2x_prev_unload(struct bnx2x *bp)
10851 {
10852 	int time_counter = 10;
10853 	u32 rc, fw, hw_lock_reg, hw_lock_val;
10854 	BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10855 
10856 	/* clear hw from errors which may have resulted from an interrupted
10857 	 * dmae transaction.
10858 	 */
10859 	bnx2x_clean_pglue_errors(bp);
10860 
10861 	/* Release previously held locks */
10862 	hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10863 		      (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10864 		      (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10865 
10866 	hw_lock_val = REG_RD(bp, hw_lock_reg);
10867 	if (hw_lock_val) {
10868 		if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10869 			BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10870 			REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10871 			       (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10872 		}
10873 
10874 		BNX2X_DEV_INFO("Release Previously held hw lock\n");
10875 		REG_WR(bp, hw_lock_reg, 0xffffffff);
10876 	} else
10877 		BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10878 
10879 	if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10880 		BNX2X_DEV_INFO("Release previously held alr\n");
10881 		bnx2x_release_alr(bp);
10882 	}
10883 
10884 	do {
10885 		int aer = 0;
10886 		/* Lock MCP using an unload request */
10887 		fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10888 		if (!fw) {
10889 			BNX2X_ERR("MCP response failure, aborting\n");
10890 			rc = -EBUSY;
10891 			break;
10892 		}
10893 
10894 		rc = down_interruptible(&bnx2x_prev_sem);
10895 		if (rc) {
10896 			BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10897 				  rc);
10898 		} else {
10899 			/* If Path is marked by EEH, ignore unload status */
10900 			aer = !!(bnx2x_prev_path_get_entry(bp) &&
10901 				 bnx2x_prev_path_get_entry(bp)->aer);
10902 			up(&bnx2x_prev_sem);
10903 		}
10904 
10905 		if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10906 			rc = bnx2x_prev_unload_common(bp);
10907 			break;
10908 		}
10909 
10910 		/* non-common reply from MCP might require looping */
10911 		rc = bnx2x_prev_unload_uncommon(bp);
10912 		if (rc != BNX2X_PREV_WAIT_NEEDED)
10913 			break;
10914 
10915 		msleep(20);
10916 	} while (--time_counter);
10917 
10918 	if (!time_counter || rc) {
10919 		BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10920 		rc = -EPROBE_DEFER;
10921 	}
10922 
10923 	/* Mark function if its port was used to boot from SAN */
10924 	if (bnx2x_port_after_undi(bp))
10925 		bp->link_params.feature_config_flags |=
10926 			FEATURE_CONFIG_BOOT_FROM_SAN;
10927 
10928 	BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10929 
10930 	return rc;
10931 }
10932 
bnx2x_get_common_hwinfo(struct bnx2x * bp)10933 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10934 {
10935 	u32 val, val2, val3, val4, id, boot_mode;
10936 	u16 pmc;
10937 
10938 	/* Get the chip revision id and number. */
10939 	/* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10940 	val = REG_RD(bp, MISC_REG_CHIP_NUM);
10941 	id = ((val & 0xffff) << 16);
10942 	val = REG_RD(bp, MISC_REG_CHIP_REV);
10943 	id |= ((val & 0xf) << 12);
10944 
10945 	/* Metal is read from PCI regs, but we can't access >=0x400 from
10946 	 * the configuration space (so we need to reg_rd)
10947 	 */
10948 	val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10949 	id |= (((val >> 24) & 0xf) << 4);
10950 	val = REG_RD(bp, MISC_REG_BOND_ID);
10951 	id |= (val & 0xf);
10952 	bp->common.chip_id = id;
10953 
10954 	/* force 57811 according to MISC register */
10955 	if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10956 		if (CHIP_IS_57810(bp))
10957 			bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10958 				(bp->common.chip_id & 0x0000FFFF);
10959 		else if (CHIP_IS_57810_MF(bp))
10960 			bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10961 				(bp->common.chip_id & 0x0000FFFF);
10962 		bp->common.chip_id |= 0x1;
10963 	}
10964 
10965 	/* Set doorbell size */
10966 	bp->db_size = (1 << BNX2X_DB_SHIFT);
10967 
10968 	if (!CHIP_IS_E1x(bp)) {
10969 		val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10970 		if ((val & 1) == 0)
10971 			val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10972 		else
10973 			val = (val >> 1) & 1;
10974 		BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10975 						       "2_PORT_MODE");
10976 		bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10977 						 CHIP_2_PORT_MODE;
10978 
10979 		if (CHIP_MODE_IS_4_PORT(bp))
10980 			bp->pfid = (bp->pf_num >> 1);	/* 0..3 */
10981 		else
10982 			bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */
10983 	} else {
10984 		bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10985 		bp->pfid = bp->pf_num;			/* 0..7 */
10986 	}
10987 
10988 	BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10989 
10990 	bp->link_params.chip_id = bp->common.chip_id;
10991 	BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10992 
10993 	val = (REG_RD(bp, 0x2874) & 0x55);
10994 	if ((bp->common.chip_id & 0x1) ||
10995 	    (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10996 		bp->flags |= ONE_PORT_FLAG;
10997 		BNX2X_DEV_INFO("single port device\n");
10998 	}
10999 
11000 	val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11001 	bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11002 				 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11003 	BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11004 		       bp->common.flash_size, bp->common.flash_size);
11005 
11006 	bnx2x_init_shmem(bp);
11007 
11008 	bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11009 					MISC_REG_GENERIC_CR_1 :
11010 					MISC_REG_GENERIC_CR_0));
11011 
11012 	bp->link_params.shmem_base = bp->common.shmem_base;
11013 	bp->link_params.shmem2_base = bp->common.shmem2_base;
11014 	if (SHMEM2_RD(bp, size) >
11015 	    (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11016 		bp->link_params.lfa_base =
11017 		REG_RD(bp, bp->common.shmem2_base +
11018 		       (u32)offsetof(struct shmem2_region,
11019 				     lfa_host_addr[BP_PORT(bp)]));
11020 	else
11021 		bp->link_params.lfa_base = 0;
11022 	BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
11023 		       bp->common.shmem_base, bp->common.shmem2_base);
11024 
11025 	if (!bp->common.shmem_base) {
11026 		BNX2X_DEV_INFO("MCP not active\n");
11027 		bp->flags |= NO_MCP_FLAG;
11028 		return;
11029 	}
11030 
11031 	bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11032 	BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11033 
11034 	bp->link_params.hw_led_mode = ((bp->common.hw_config &
11035 					SHARED_HW_CFG_LED_MODE_MASK) >>
11036 				       SHARED_HW_CFG_LED_MODE_SHIFT);
11037 
11038 	bp->link_params.feature_config_flags = 0;
11039 	val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11040 	if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11041 		bp->link_params.feature_config_flags |=
11042 				FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11043 	else
11044 		bp->link_params.feature_config_flags &=
11045 				~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046 
11047 	val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11048 	bp->common.bc_ver = val;
11049 	BNX2X_DEV_INFO("bc_ver %X\n", val);
11050 	if (val < BNX2X_BC_VER) {
11051 		/* for now only warn
11052 		 * later we might need to enforce this */
11053 		BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11054 			  BNX2X_BC_VER, val);
11055 	}
11056 	bp->link_params.feature_config_flags |=
11057 				(val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11058 				FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11059 
11060 	bp->link_params.feature_config_flags |=
11061 		(val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11062 		FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11063 	bp->link_params.feature_config_flags |=
11064 		(val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11065 		FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11066 	bp->link_params.feature_config_flags |=
11067 		(val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11068 		FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11069 
11070 	bp->link_params.feature_config_flags |=
11071 		(val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11072 		FEATURE_CONFIG_MT_SUPPORT : 0;
11073 
11074 	bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11075 			BC_SUPPORTS_PFC_STATS : 0;
11076 
11077 	bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11078 			BC_SUPPORTS_FCOE_FEATURES : 0;
11079 
11080 	bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11081 			BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11082 
11083 	bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11084 			BC_SUPPORTS_RMMOD_CMD : 0;
11085 
11086 	boot_mode = SHMEM_RD(bp,
11087 			dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11088 			PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11089 	switch (boot_mode) {
11090 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11091 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11092 		break;
11093 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11094 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11095 		break;
11096 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11097 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11098 		break;
11099 	case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11100 		bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11101 		break;
11102 	}
11103 
11104 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11105 	bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11106 
11107 	BNX2X_DEV_INFO("%sWoL capable\n",
11108 		       (bp->flags & NO_WOL_FLAG) ? "not " : "");
11109 
11110 	val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11111 	val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11112 	val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11113 	val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11114 
11115 	dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11116 		 val, val2, val3, val4);
11117 }
11118 
11119 #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11120 #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11121 
bnx2x_get_igu_cam_info(struct bnx2x * bp)11122 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11123 {
11124 	int pfid = BP_FUNC(bp);
11125 	int igu_sb_id;
11126 	u32 val;
11127 	u8 fid, igu_sb_cnt = 0;
11128 
11129 	bp->igu_base_sb = 0xff;
11130 	if (CHIP_INT_MODE_IS_BC(bp)) {
11131 		int vn = BP_VN(bp);
11132 		igu_sb_cnt = bp->igu_sb_cnt;
11133 		bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11134 			FP_SB_MAX_E1x;
11135 
11136 		bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11137 			(CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11138 
11139 		return 0;
11140 	}
11141 
11142 	/* IGU in normal mode - read CAM */
11143 	for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11144 	     igu_sb_id++) {
11145 		val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11146 		if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11147 			continue;
11148 		fid = IGU_FID(val);
11149 		if ((fid & IGU_FID_ENCODE_IS_PF)) {
11150 			if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11151 				continue;
11152 			if (IGU_VEC(val) == 0)
11153 				/* default status block */
11154 				bp->igu_dsb_id = igu_sb_id;
11155 			else {
11156 				if (bp->igu_base_sb == 0xff)
11157 					bp->igu_base_sb = igu_sb_id;
11158 				igu_sb_cnt++;
11159 			}
11160 		}
11161 	}
11162 
11163 #ifdef CONFIG_PCI_MSI
11164 	/* Due to new PF resource allocation by MFW T7.4 and above, it's
11165 	 * optional that number of CAM entries will not be equal to the value
11166 	 * advertised in PCI.
11167 	 * Driver should use the minimal value of both as the actual status
11168 	 * block count
11169 	 */
11170 	bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11171 #endif
11172 
11173 	if (igu_sb_cnt == 0) {
11174 		BNX2X_ERR("CAM configuration error\n");
11175 		return -EINVAL;
11176 	}
11177 
11178 	return 0;
11179 }
11180 
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11181 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11182 {
11183 	int cfg_size = 0, idx, port = BP_PORT(bp);
11184 
11185 	/* Aggregation of supported attributes of all external phys */
11186 	bp->port.supported[0] = 0;
11187 	bp->port.supported[1] = 0;
11188 	switch (bp->link_params.num_phys) {
11189 	case 1:
11190 		bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11191 		cfg_size = 1;
11192 		break;
11193 	case 2:
11194 		bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11195 		cfg_size = 1;
11196 		break;
11197 	case 3:
11198 		if (bp->link_params.multi_phy_config &
11199 		    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11200 			bp->port.supported[1] =
11201 				bp->link_params.phy[EXT_PHY1].supported;
11202 			bp->port.supported[0] =
11203 				bp->link_params.phy[EXT_PHY2].supported;
11204 		} else {
11205 			bp->port.supported[0] =
11206 				bp->link_params.phy[EXT_PHY1].supported;
11207 			bp->port.supported[1] =
11208 				bp->link_params.phy[EXT_PHY2].supported;
11209 		}
11210 		cfg_size = 2;
11211 		break;
11212 	}
11213 
11214 	if (!(bp->port.supported[0] || bp->port.supported[1])) {
11215 		BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11216 			   SHMEM_RD(bp,
11217 			   dev_info.port_hw_config[port].external_phy_config),
11218 			   SHMEM_RD(bp,
11219 			   dev_info.port_hw_config[port].external_phy_config2));
11220 		return;
11221 	}
11222 
11223 	if (CHIP_IS_E3(bp))
11224 		bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11225 	else {
11226 		switch (switch_cfg) {
11227 		case SWITCH_CFG_1G:
11228 			bp->port.phy_addr = REG_RD(
11229 				bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11230 			break;
11231 		case SWITCH_CFG_10G:
11232 			bp->port.phy_addr = REG_RD(
11233 				bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11234 			break;
11235 		default:
11236 			BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11237 				  bp->port.link_config[0]);
11238 			return;
11239 		}
11240 	}
11241 	BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11242 	/* mask what we support according to speed_cap_mask per configuration */
11243 	for (idx = 0; idx < cfg_size; idx++) {
11244 		if (!(bp->link_params.speed_cap_mask[idx] &
11245 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11246 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11247 
11248 		if (!(bp->link_params.speed_cap_mask[idx] &
11249 				PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11250 			bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11251 
11252 		if (!(bp->link_params.speed_cap_mask[idx] &
11253 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11254 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11255 
11256 		if (!(bp->link_params.speed_cap_mask[idx] &
11257 				PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11258 			bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11259 
11260 		if (!(bp->link_params.speed_cap_mask[idx] &
11261 					PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11262 			bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11263 						     SUPPORTED_1000baseT_Full);
11264 
11265 		if (!(bp->link_params.speed_cap_mask[idx] &
11266 					PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11267 			bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11268 
11269 		if (!(bp->link_params.speed_cap_mask[idx] &
11270 					PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11271 			bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11272 
11273 		if (!(bp->link_params.speed_cap_mask[idx] &
11274 					PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11275 			bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11276 	}
11277 
11278 	BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11279 		       bp->port.supported[1]);
11280 }
11281 
bnx2x_link_settings_requested(struct bnx2x * bp)11282 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11283 {
11284 	u32 link_config, idx, cfg_size = 0;
11285 	bp->port.advertising[0] = 0;
11286 	bp->port.advertising[1] = 0;
11287 	switch (bp->link_params.num_phys) {
11288 	case 1:
11289 	case 2:
11290 		cfg_size = 1;
11291 		break;
11292 	case 3:
11293 		cfg_size = 2;
11294 		break;
11295 	}
11296 	for (idx = 0; idx < cfg_size; idx++) {
11297 		bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11298 		link_config = bp->port.link_config[idx];
11299 		switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11300 		case PORT_FEATURE_LINK_SPEED_AUTO:
11301 			if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11302 				bp->link_params.req_line_speed[idx] =
11303 					SPEED_AUTO_NEG;
11304 				bp->port.advertising[idx] |=
11305 					bp->port.supported[idx];
11306 				if (bp->link_params.phy[EXT_PHY1].type ==
11307 				    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11308 					bp->port.advertising[idx] |=
11309 					(SUPPORTED_100baseT_Half |
11310 					 SUPPORTED_100baseT_Full);
11311 			} else {
11312 				/* force 10G, no AN */
11313 				bp->link_params.req_line_speed[idx] =
11314 					SPEED_10000;
11315 				bp->port.advertising[idx] |=
11316 					(ADVERTISED_10000baseT_Full |
11317 					 ADVERTISED_FIBRE);
11318 				continue;
11319 			}
11320 			break;
11321 
11322 		case PORT_FEATURE_LINK_SPEED_10M_FULL:
11323 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11324 				bp->link_params.req_line_speed[idx] =
11325 					SPEED_10;
11326 				bp->port.advertising[idx] |=
11327 					(ADVERTISED_10baseT_Full |
11328 					 ADVERTISED_TP);
11329 			} else {
11330 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11331 					    link_config,
11332 				    bp->link_params.speed_cap_mask[idx]);
11333 				return;
11334 			}
11335 			break;
11336 
11337 		case PORT_FEATURE_LINK_SPEED_10M_HALF:
11338 			if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11339 				bp->link_params.req_line_speed[idx] =
11340 					SPEED_10;
11341 				bp->link_params.req_duplex[idx] =
11342 					DUPLEX_HALF;
11343 				bp->port.advertising[idx] |=
11344 					(ADVERTISED_10baseT_Half |
11345 					 ADVERTISED_TP);
11346 			} else {
11347 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11348 					    link_config,
11349 					  bp->link_params.speed_cap_mask[idx]);
11350 				return;
11351 			}
11352 			break;
11353 
11354 		case PORT_FEATURE_LINK_SPEED_100M_FULL:
11355 			if (bp->port.supported[idx] &
11356 			    SUPPORTED_100baseT_Full) {
11357 				bp->link_params.req_line_speed[idx] =
11358 					SPEED_100;
11359 				bp->port.advertising[idx] |=
11360 					(ADVERTISED_100baseT_Full |
11361 					 ADVERTISED_TP);
11362 			} else {
11363 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11364 					    link_config,
11365 					  bp->link_params.speed_cap_mask[idx]);
11366 				return;
11367 			}
11368 			break;
11369 
11370 		case PORT_FEATURE_LINK_SPEED_100M_HALF:
11371 			if (bp->port.supported[idx] &
11372 			    SUPPORTED_100baseT_Half) {
11373 				bp->link_params.req_line_speed[idx] =
11374 								SPEED_100;
11375 				bp->link_params.req_duplex[idx] =
11376 								DUPLEX_HALF;
11377 				bp->port.advertising[idx] |=
11378 					(ADVERTISED_100baseT_Half |
11379 					 ADVERTISED_TP);
11380 			} else {
11381 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11382 				    link_config,
11383 				    bp->link_params.speed_cap_mask[idx]);
11384 				return;
11385 			}
11386 			break;
11387 
11388 		case PORT_FEATURE_LINK_SPEED_1G:
11389 			if (bp->port.supported[idx] &
11390 			    SUPPORTED_1000baseT_Full) {
11391 				bp->link_params.req_line_speed[idx] =
11392 					SPEED_1000;
11393 				bp->port.advertising[idx] |=
11394 					(ADVERTISED_1000baseT_Full |
11395 					 ADVERTISED_TP);
11396 			} else if (bp->port.supported[idx] &
11397 				   SUPPORTED_1000baseKX_Full) {
11398 				bp->link_params.req_line_speed[idx] =
11399 					SPEED_1000;
11400 				bp->port.advertising[idx] |=
11401 					ADVERTISED_1000baseKX_Full;
11402 			} else {
11403 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11404 				    link_config,
11405 				    bp->link_params.speed_cap_mask[idx]);
11406 				return;
11407 			}
11408 			break;
11409 
11410 		case PORT_FEATURE_LINK_SPEED_2_5G:
11411 			if (bp->port.supported[idx] &
11412 			    SUPPORTED_2500baseX_Full) {
11413 				bp->link_params.req_line_speed[idx] =
11414 					SPEED_2500;
11415 				bp->port.advertising[idx] |=
11416 					(ADVERTISED_2500baseX_Full |
11417 						ADVERTISED_TP);
11418 			} else {
11419 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11420 				    link_config,
11421 				    bp->link_params.speed_cap_mask[idx]);
11422 				return;
11423 			}
11424 			break;
11425 
11426 		case PORT_FEATURE_LINK_SPEED_10G_CX4:
11427 			if (bp->port.supported[idx] &
11428 			    SUPPORTED_10000baseT_Full) {
11429 				bp->link_params.req_line_speed[idx] =
11430 					SPEED_10000;
11431 				bp->port.advertising[idx] |=
11432 					(ADVERTISED_10000baseT_Full |
11433 						ADVERTISED_FIBRE);
11434 			} else if (bp->port.supported[idx] &
11435 				   SUPPORTED_10000baseKR_Full) {
11436 				bp->link_params.req_line_speed[idx] =
11437 					SPEED_10000;
11438 				bp->port.advertising[idx] |=
11439 					(ADVERTISED_10000baseKR_Full |
11440 						ADVERTISED_FIBRE);
11441 			} else {
11442 				BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11443 				    link_config,
11444 				    bp->link_params.speed_cap_mask[idx]);
11445 				return;
11446 			}
11447 			break;
11448 		case PORT_FEATURE_LINK_SPEED_20G:
11449 			bp->link_params.req_line_speed[idx] = SPEED_20000;
11450 
11451 			break;
11452 		default:
11453 			BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11454 				  link_config);
11455 				bp->link_params.req_line_speed[idx] =
11456 							SPEED_AUTO_NEG;
11457 				bp->port.advertising[idx] =
11458 						bp->port.supported[idx];
11459 			break;
11460 		}
11461 
11462 		bp->link_params.req_flow_ctrl[idx] = (link_config &
11463 					 PORT_FEATURE_FLOW_CONTROL_MASK);
11464 		if (bp->link_params.req_flow_ctrl[idx] ==
11465 		    BNX2X_FLOW_CTRL_AUTO) {
11466 			if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11467 				bp->link_params.req_flow_ctrl[idx] =
11468 							BNX2X_FLOW_CTRL_NONE;
11469 			else
11470 				bnx2x_set_requested_fc(bp);
11471 		}
11472 
11473 		BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11474 			       bp->link_params.req_line_speed[idx],
11475 			       bp->link_params.req_duplex[idx],
11476 			       bp->link_params.req_flow_ctrl[idx],
11477 			       bp->port.advertising[idx]);
11478 	}
11479 }
11480 
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11481 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11482 {
11483 	__be16 mac_hi_be = cpu_to_be16(mac_hi);
11484 	__be32 mac_lo_be = cpu_to_be32(mac_lo);
11485 	memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11486 	memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11487 }
11488 
bnx2x_get_port_hwinfo(struct bnx2x * bp)11489 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11490 {
11491 	int port = BP_PORT(bp);
11492 	u32 config;
11493 	u32 ext_phy_type, ext_phy_config, eee_mode;
11494 
11495 	bp->link_params.bp = bp;
11496 	bp->link_params.port = port;
11497 
11498 	bp->link_params.lane_config =
11499 		SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11500 
11501 	bp->link_params.speed_cap_mask[0] =
11502 		SHMEM_RD(bp,
11503 			 dev_info.port_hw_config[port].speed_capability_mask) &
11504 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11505 	bp->link_params.speed_cap_mask[1] =
11506 		SHMEM_RD(bp,
11507 			 dev_info.port_hw_config[port].speed_capability_mask2) &
11508 		PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509 	bp->port.link_config[0] =
11510 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11511 
11512 	bp->port.link_config[1] =
11513 		SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11514 
11515 	bp->link_params.multi_phy_config =
11516 		SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11517 	/* If the device is capable of WoL, set the default state according
11518 	 * to the HW
11519 	 */
11520 	config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11521 	bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11522 		   (config & PORT_FEATURE_WOL_ENABLED));
11523 
11524 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11525 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11526 		bp->flags |= NO_ISCSI_FLAG;
11527 	if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528 	    PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11529 		bp->flags |= NO_FCOE_FLAG;
11530 
11531 	BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11532 		       bp->link_params.lane_config,
11533 		       bp->link_params.speed_cap_mask[0],
11534 		       bp->port.link_config[0]);
11535 
11536 	bp->link_params.switch_cfg = (bp->port.link_config[0] &
11537 				      PORT_FEATURE_CONNECTED_SWITCH_MASK);
11538 	bnx2x_phy_probe(&bp->link_params);
11539 	bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11540 
11541 	bnx2x_link_settings_requested(bp);
11542 
11543 	/*
11544 	 * If connected directly, work with the internal PHY, otherwise, work
11545 	 * with the external PHY
11546 	 */
11547 	ext_phy_config =
11548 		SHMEM_RD(bp,
11549 			 dev_info.port_hw_config[port].external_phy_config);
11550 	ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11551 	if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11552 		bp->mdio.prtad = bp->port.phy_addr;
11553 
11554 	else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11555 		 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11556 		bp->mdio.prtad =
11557 			XGXS_EXT_PHY_ADDR(ext_phy_config);
11558 
11559 	/* Configure link feature according to nvram value */
11560 	eee_mode = (((SHMEM_RD(bp, dev_info.
11561 		      port_feature_config[port].eee_power_mode)) &
11562 		     PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11563 		    PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11564 	if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11565 		bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11566 					   EEE_MODE_ENABLE_LPI |
11567 					   EEE_MODE_OUTPUT_TIME;
11568 	} else {
11569 		bp->link_params.eee_mode = 0;
11570 	}
11571 }
11572 
bnx2x_get_iscsi_info(struct bnx2x * bp)11573 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11574 {
11575 	u32 no_flags = NO_ISCSI_FLAG;
11576 	int port = BP_PORT(bp);
11577 	u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11578 				drv_lic_key[port].max_iscsi_conn);
11579 
11580 	if (!CNIC_SUPPORT(bp)) {
11581 		bp->flags |= no_flags;
11582 		return;
11583 	}
11584 
11585 	/* Get the number of maximum allowed iSCSI connections */
11586 	bp->cnic_eth_dev.max_iscsi_conn =
11587 		(max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11588 		BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11589 
11590 	BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11591 		       bp->cnic_eth_dev.max_iscsi_conn);
11592 
11593 	/*
11594 	 * If maximum allowed number of connections is zero -
11595 	 * disable the feature.
11596 	 */
11597 	if (!bp->cnic_eth_dev.max_iscsi_conn)
11598 		bp->flags |= no_flags;
11599 }
11600 
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11601 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11602 {
11603 	/* Port info */
11604 	bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11605 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11606 	bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11607 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11608 
11609 	/* Node info */
11610 	bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11611 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11612 	bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11613 		MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11614 }
11615 
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11616 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11617 {
11618 	u8 count = 0;
11619 
11620 	if (IS_MF(bp)) {
11621 		u8 fid;
11622 
11623 		/* iterate over absolute function ids for this path: */
11624 		for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11625 			if (IS_MF_SD(bp)) {
11626 				u32 cfg = MF_CFG_RD(bp,
11627 						    func_mf_config[fid].config);
11628 
11629 				if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11630 				    ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11631 					    FUNC_MF_CFG_PROTOCOL_FCOE))
11632 					count++;
11633 			} else {
11634 				u32 cfg = MF_CFG_RD(bp,
11635 						    func_ext_config[fid].
11636 								      func_cfg);
11637 
11638 				if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11639 				    (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11640 					count++;
11641 			}
11642 		}
11643 	} else { /* SF */
11644 		int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11645 
11646 		for (port = 0; port < port_cnt; port++) {
11647 			u32 lic = SHMEM_RD(bp,
11648 					   drv_lic_key[port].max_fcoe_conn) ^
11649 				  FW_ENCODE_32BIT_PATTERN;
11650 			if (lic)
11651 				count++;
11652 		}
11653 	}
11654 
11655 	return count;
11656 }
11657 
bnx2x_get_fcoe_info(struct bnx2x * bp)11658 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11659 {
11660 	int port = BP_PORT(bp);
11661 	int func = BP_ABS_FUNC(bp);
11662 	u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11663 				drv_lic_key[port].max_fcoe_conn);
11664 	u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11665 
11666 	if (!CNIC_SUPPORT(bp)) {
11667 		bp->flags |= NO_FCOE_FLAG;
11668 		return;
11669 	}
11670 
11671 	/* Get the number of maximum allowed FCoE connections */
11672 	bp->cnic_eth_dev.max_fcoe_conn =
11673 		(max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11674 		BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11675 
11676 	/* Calculate the number of maximum allowed FCoE tasks */
11677 	bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11678 
11679 	/* check if FCoE resources must be shared between different functions */
11680 	if (num_fcoe_func)
11681 		bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11682 
11683 	/* Read the WWN: */
11684 	if (!IS_MF(bp)) {
11685 		/* Port info */
11686 		bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11687 			SHMEM_RD(bp,
11688 				 dev_info.port_hw_config[port].
11689 				 fcoe_wwn_port_name_upper);
11690 		bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11691 			SHMEM_RD(bp,
11692 				 dev_info.port_hw_config[port].
11693 				 fcoe_wwn_port_name_lower);
11694 
11695 		/* Node info */
11696 		bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11697 			SHMEM_RD(bp,
11698 				 dev_info.port_hw_config[port].
11699 				 fcoe_wwn_node_name_upper);
11700 		bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11701 			SHMEM_RD(bp,
11702 				 dev_info.port_hw_config[port].
11703 				 fcoe_wwn_node_name_lower);
11704 	} else if (!IS_MF_SD(bp)) {
11705 		/* Read the WWN info only if the FCoE feature is enabled for
11706 		 * this function.
11707 		 */
11708 		if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11709 			bnx2x_get_ext_wwn_info(bp, func);
11710 	} else {
11711 		if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11712 			bnx2x_get_ext_wwn_info(bp, func);
11713 	}
11714 
11715 	BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11716 
11717 	/*
11718 	 * If maximum allowed number of connections is zero -
11719 	 * disable the feature.
11720 	 */
11721 	if (!bp->cnic_eth_dev.max_fcoe_conn) {
11722 		bp->flags |= NO_FCOE_FLAG;
11723 		eth_zero_addr(bp->fip_mac);
11724 	}
11725 }
11726 
bnx2x_get_cnic_info(struct bnx2x * bp)11727 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11728 {
11729 	/*
11730 	 * iSCSI may be dynamically disabled but reading
11731 	 * info here we will decrease memory usage by driver
11732 	 * if the feature is disabled for good
11733 	 */
11734 	bnx2x_get_iscsi_info(bp);
11735 	bnx2x_get_fcoe_info(bp);
11736 }
11737 
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11738 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11739 {
11740 	u32 val, val2;
11741 	int func = BP_ABS_FUNC(bp);
11742 	int port = BP_PORT(bp);
11743 	u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11744 	u8 *fip_mac = bp->fip_mac;
11745 
11746 	if (IS_MF(bp)) {
11747 		/* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11748 		 * FCoE MAC then the appropriate feature should be disabled.
11749 		 * In non SD mode features configuration comes from struct
11750 		 * func_ext_config.
11751 		 */
11752 		if (!IS_MF_SD(bp)) {
11753 			u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11754 			if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11755 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11756 						 iscsi_mac_addr_upper);
11757 				val = MF_CFG_RD(bp, func_ext_config[func].
11758 						iscsi_mac_addr_lower);
11759 				bnx2x_set_mac_buf(iscsi_mac, val, val2);
11760 				BNX2X_DEV_INFO
11761 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11762 			} else {
11763 				bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11764 			}
11765 
11766 			if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11767 				val2 = MF_CFG_RD(bp, func_ext_config[func].
11768 						 fcoe_mac_addr_upper);
11769 				val = MF_CFG_RD(bp, func_ext_config[func].
11770 						fcoe_mac_addr_lower);
11771 				bnx2x_set_mac_buf(fip_mac, val, val2);
11772 				BNX2X_DEV_INFO
11773 					("Read FCoE L2 MAC: %pM\n", fip_mac);
11774 			} else {
11775 				bp->flags |= NO_FCOE_FLAG;
11776 			}
11777 
11778 			bp->mf_ext_config = cfg;
11779 
11780 		} else { /* SD MODE */
11781 			if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11782 				/* use primary mac as iscsi mac */
11783 				memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11784 
11785 				BNX2X_DEV_INFO("SD ISCSI MODE\n");
11786 				BNX2X_DEV_INFO
11787 					("Read iSCSI MAC: %pM\n", iscsi_mac);
11788 			} else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11789 				/* use primary mac as fip mac */
11790 				memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11791 				BNX2X_DEV_INFO("SD FCoE MODE\n");
11792 				BNX2X_DEV_INFO
11793 					("Read FIP MAC: %pM\n", fip_mac);
11794 			}
11795 		}
11796 
11797 		/* If this is a storage-only interface, use SAN mac as
11798 		 * primary MAC. Notice that for SD this is already the case,
11799 		 * as the SAN mac was copied from the primary MAC.
11800 		 */
11801 		if (IS_MF_FCOE_AFEX(bp))
11802 			memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11803 	} else {
11804 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805 				iscsi_mac_upper);
11806 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807 			       iscsi_mac_lower);
11808 		bnx2x_set_mac_buf(iscsi_mac, val, val2);
11809 
11810 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811 				fcoe_fip_mac_upper);
11812 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813 			       fcoe_fip_mac_lower);
11814 		bnx2x_set_mac_buf(fip_mac, val, val2);
11815 	}
11816 
11817 	/* Disable iSCSI OOO if MAC configuration is invalid. */
11818 	if (!is_valid_ether_addr(iscsi_mac)) {
11819 		bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11820 		eth_zero_addr(iscsi_mac);
11821 	}
11822 
11823 	/* Disable FCoE if MAC configuration is invalid. */
11824 	if (!is_valid_ether_addr(fip_mac)) {
11825 		bp->flags |= NO_FCOE_FLAG;
11826 		eth_zero_addr(bp->fip_mac);
11827 	}
11828 }
11829 
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11830 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11831 {
11832 	u32 val, val2;
11833 	int func = BP_ABS_FUNC(bp);
11834 	int port = BP_PORT(bp);
11835 
11836 	/* Zero primary MAC configuration */
11837 	eth_zero_addr(bp->dev->dev_addr);
11838 
11839 	if (BP_NOMCP(bp)) {
11840 		BNX2X_ERROR("warning: random MAC workaround active\n");
11841 		eth_hw_addr_random(bp->dev);
11842 	} else if (IS_MF(bp)) {
11843 		val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11844 		val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11845 		if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11846 		    (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11847 			bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11848 
11849 		if (CNIC_SUPPORT(bp))
11850 			bnx2x_get_cnic_mac_hwinfo(bp);
11851 	} else {
11852 		/* in SF read MACs from port configuration */
11853 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11854 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11855 		bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11856 
11857 		if (CNIC_SUPPORT(bp))
11858 			bnx2x_get_cnic_mac_hwinfo(bp);
11859 	}
11860 
11861 	if (!BP_NOMCP(bp)) {
11862 		/* Read physical port identifier from shmem */
11863 		val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11864 		val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11865 		bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11866 		bp->flags |= HAS_PHYS_PORT_ID;
11867 	}
11868 
11869 	memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11870 
11871 	if (!is_valid_ether_addr(bp->dev->dev_addr))
11872 		dev_err(&bp->pdev->dev,
11873 			"bad Ethernet MAC address configuration: %pM\n"
11874 			"change it manually before bringing up the appropriate network interface\n",
11875 			bp->dev->dev_addr);
11876 }
11877 
bnx2x_get_dropless_info(struct bnx2x * bp)11878 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11879 {
11880 	int tmp;
11881 	u32 cfg;
11882 
11883 	if (IS_VF(bp))
11884 		return false;
11885 
11886 	if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11887 		/* Take function: tmp = func */
11888 		tmp = BP_ABS_FUNC(bp);
11889 		cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11890 		cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11891 	} else {
11892 		/* Take port: tmp = port */
11893 		tmp = BP_PORT(bp);
11894 		cfg = SHMEM_RD(bp,
11895 			       dev_info.port_hw_config[tmp].generic_features);
11896 		cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11897 	}
11898 	return cfg;
11899 }
11900 
validate_set_si_mode(struct bnx2x * bp)11901 static void validate_set_si_mode(struct bnx2x *bp)
11902 {
11903 	u8 func = BP_ABS_FUNC(bp);
11904 	u32 val;
11905 
11906 	val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11907 
11908 	/* check for legal mac (upper bytes) */
11909 	if (val != 0xffff) {
11910 		bp->mf_mode = MULTI_FUNCTION_SI;
11911 		bp->mf_config[BP_VN(bp)] =
11912 			MF_CFG_RD(bp, func_mf_config[func].config);
11913 	} else
11914 		BNX2X_DEV_INFO("illegal MAC address for SI\n");
11915 }
11916 
bnx2x_get_hwinfo(struct bnx2x * bp)11917 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11918 {
11919 	int /*abs*/func = BP_ABS_FUNC(bp);
11920 	int vn;
11921 	u32 val = 0, val2 = 0;
11922 	int rc = 0;
11923 
11924 	/* Validate that chip access is feasible */
11925 	if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11926 		dev_err(&bp->pdev->dev,
11927 			"Chip read returns all Fs. Preventing probe from continuing\n");
11928 		return -EINVAL;
11929 	}
11930 
11931 	bnx2x_get_common_hwinfo(bp);
11932 
11933 	/*
11934 	 * initialize IGU parameters
11935 	 */
11936 	if (CHIP_IS_E1x(bp)) {
11937 		bp->common.int_block = INT_BLOCK_HC;
11938 
11939 		bp->igu_dsb_id = DEF_SB_IGU_ID;
11940 		bp->igu_base_sb = 0;
11941 	} else {
11942 		bp->common.int_block = INT_BLOCK_IGU;
11943 
11944 		/* do not allow device reset during IGU info processing */
11945 		bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11946 
11947 		val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11948 
11949 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11950 			int tout = 5000;
11951 
11952 			BNX2X_DEV_INFO("FORCING Normal Mode\n");
11953 
11954 			val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11955 			REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11956 			REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11957 
11958 			while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11959 				tout--;
11960 				usleep_range(1000, 2000);
11961 			}
11962 
11963 			if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11964 				dev_err(&bp->pdev->dev,
11965 					"FORCING Normal Mode failed!!!\n");
11966 				bnx2x_release_hw_lock(bp,
11967 						      HW_LOCK_RESOURCE_RESET);
11968 				return -EPERM;
11969 			}
11970 		}
11971 
11972 		if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11973 			BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11974 			bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11975 		} else
11976 			BNX2X_DEV_INFO("IGU Normal Mode\n");
11977 
11978 		rc = bnx2x_get_igu_cam_info(bp);
11979 		bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11980 		if (rc)
11981 			return rc;
11982 	}
11983 
11984 	/*
11985 	 * set base FW non-default (fast path) status block id, this value is
11986 	 * used to initialize the fw_sb_id saved on the fp/queue structure to
11987 	 * determine the id used by the FW.
11988 	 */
11989 	if (CHIP_IS_E1x(bp))
11990 		bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11991 	else /*
11992 	      * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11993 	      * the same queue are indicated on the same IGU SB). So we prefer
11994 	      * FW and IGU SBs to be the same value.
11995 	      */
11996 		bp->base_fw_ndsb = bp->igu_base_sb;
11997 
11998 	BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11999 		       "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12000 		       bp->igu_sb_cnt, bp->base_fw_ndsb);
12001 
12002 	/*
12003 	 * Initialize MF configuration
12004 	 */
12005 	bp->mf_ov = 0;
12006 	bp->mf_mode = 0;
12007 	bp->mf_sub_mode = 0;
12008 	vn = BP_VN(bp);
12009 
12010 	if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12011 		BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12012 			       bp->common.shmem2_base, SHMEM2_RD(bp, size),
12013 			      (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12014 
12015 		if (SHMEM2_HAS(bp, mf_cfg_addr))
12016 			bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12017 		else
12018 			bp->common.mf_cfg_base = bp->common.shmem_base +
12019 				offsetof(struct shmem_region, func_mb) +
12020 				E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12021 		/*
12022 		 * get mf configuration:
12023 		 * 1. Existence of MF configuration
12024 		 * 2. MAC address must be legal (check only upper bytes)
12025 		 *    for  Switch-Independent mode;
12026 		 *    OVLAN must be legal for Switch-Dependent mode
12027 		 * 3. SF_MODE configures specific MF mode
12028 		 */
12029 		if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12030 			/* get mf configuration */
12031 			val = SHMEM_RD(bp,
12032 				       dev_info.shared_feature_config.config);
12033 			val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12034 
12035 			switch (val) {
12036 			case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12037 				validate_set_si_mode(bp);
12038 				break;
12039 			case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12040 				if ((!CHIP_IS_E1x(bp)) &&
12041 				    (MF_CFG_RD(bp, func_mf_config[func].
12042 					       mac_upper) != 0xffff) &&
12043 				    (SHMEM2_HAS(bp,
12044 						afex_driver_support))) {
12045 					bp->mf_mode = MULTI_FUNCTION_AFEX;
12046 					bp->mf_config[vn] = MF_CFG_RD(bp,
12047 						func_mf_config[func].config);
12048 				} else {
12049 					BNX2X_DEV_INFO("can not configure afex mode\n");
12050 				}
12051 				break;
12052 			case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12053 				/* get OV configuration */
12054 				val = MF_CFG_RD(bp,
12055 					func_mf_config[FUNC_0].e1hov_tag);
12056 				val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12057 
12058 				if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12059 					bp->mf_mode = MULTI_FUNCTION_SD;
12060 					bp->mf_config[vn] = MF_CFG_RD(bp,
12061 						func_mf_config[func].config);
12062 				} else
12063 					BNX2X_DEV_INFO("illegal OV for SD\n");
12064 				break;
12065 			case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12066 				bp->mf_mode = MULTI_FUNCTION_SD;
12067 				bp->mf_sub_mode = SUB_MF_MODE_BD;
12068 				bp->mf_config[vn] =
12069 					MF_CFG_RD(bp,
12070 						  func_mf_config[func].config);
12071 
12072 				if (SHMEM2_HAS(bp, mtu_size)) {
12073 					int mtu_idx = BP_FW_MB_IDX(bp);
12074 					u16 mtu_size;
12075 					u32 mtu;
12076 
12077 					mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12078 					mtu_size = (u16)mtu;
12079 					DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12080 					   mtu_size, mtu);
12081 
12082 					/* if valid: update device mtu */
12083 					if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12084 					    (mtu_size <=
12085 					     ETH_MAX_JUMBO_PACKET_SIZE))
12086 						bp->dev->mtu = mtu_size;
12087 				}
12088 				break;
12089 			case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12090 				bp->mf_mode = MULTI_FUNCTION_SD;
12091 				bp->mf_sub_mode = SUB_MF_MODE_UFP;
12092 				bp->mf_config[vn] =
12093 					MF_CFG_RD(bp,
12094 						  func_mf_config[func].config);
12095 				break;
12096 			case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12097 				bp->mf_config[vn] = 0;
12098 				break;
12099 			case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12100 				val2 = SHMEM_RD(bp,
12101 					dev_info.shared_hw_config.config_3);
12102 				val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12103 				switch (val2) {
12104 				case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12105 					validate_set_si_mode(bp);
12106 					bp->mf_sub_mode =
12107 							SUB_MF_MODE_NPAR1_DOT_5;
12108 					break;
12109 				default:
12110 					/* Unknown configuration */
12111 					bp->mf_config[vn] = 0;
12112 					BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12113 						       val);
12114 				}
12115 				break;
12116 			default:
12117 				/* Unknown configuration: reset mf_config */
12118 				bp->mf_config[vn] = 0;
12119 				BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12120 			}
12121 		}
12122 
12123 		BNX2X_DEV_INFO("%s function mode\n",
12124 			       IS_MF(bp) ? "multi" : "single");
12125 
12126 		switch (bp->mf_mode) {
12127 		case MULTI_FUNCTION_SD:
12128 			val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12129 			      FUNC_MF_CFG_E1HOV_TAG_MASK;
12130 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12131 				bp->mf_ov = val;
12132 				bp->path_has_ovlan = true;
12133 
12134 				BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12135 					       func, bp->mf_ov, bp->mf_ov);
12136 			} else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12137 				   (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12138 				dev_err(&bp->pdev->dev,
12139 					"Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12140 					func);
12141 				bp->path_has_ovlan = true;
12142 			} else {
12143 				dev_err(&bp->pdev->dev,
12144 					"No valid MF OV for func %d, aborting\n",
12145 					func);
12146 				return -EPERM;
12147 			}
12148 			break;
12149 		case MULTI_FUNCTION_AFEX:
12150 			BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12151 			break;
12152 		case MULTI_FUNCTION_SI:
12153 			BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12154 				       func);
12155 			break;
12156 		default:
12157 			if (vn) {
12158 				dev_err(&bp->pdev->dev,
12159 					"VN %d is in a single function mode, aborting\n",
12160 					vn);
12161 				return -EPERM;
12162 			}
12163 			break;
12164 		}
12165 
12166 		/* check if other port on the path needs ovlan:
12167 		 * Since MF configuration is shared between ports
12168 		 * Possible mixed modes are only
12169 		 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12170 		 */
12171 		if (CHIP_MODE_IS_4_PORT(bp) &&
12172 		    !bp->path_has_ovlan &&
12173 		    !IS_MF(bp) &&
12174 		    bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12175 			u8 other_port = !BP_PORT(bp);
12176 			u8 other_func = BP_PATH(bp) + 2*other_port;
12177 			val = MF_CFG_RD(bp,
12178 					func_mf_config[other_func].e1hov_tag);
12179 			if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12180 				bp->path_has_ovlan = true;
12181 		}
12182 	}
12183 
12184 	/* adjust igu_sb_cnt to MF for E1H */
12185 	if (CHIP_IS_E1H(bp) && IS_MF(bp))
12186 		bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12187 
12188 	/* port info */
12189 	bnx2x_get_port_hwinfo(bp);
12190 
12191 	/* Get MAC addresses */
12192 	bnx2x_get_mac_hwinfo(bp);
12193 
12194 	bnx2x_get_cnic_info(bp);
12195 
12196 	return rc;
12197 }
12198 
bnx2x_read_fwinfo(struct bnx2x * bp)12199 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12200 {
12201 	int cnt, i, block_end, rodi;
12202 	char vpd_start[BNX2X_VPD_LEN+1];
12203 	char str_id_reg[VENDOR_ID_LEN+1];
12204 	char str_id_cap[VENDOR_ID_LEN+1];
12205 	char *vpd_data;
12206 	char *vpd_extended_data = NULL;
12207 	u8 len;
12208 
12209 	cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12210 	memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12211 
12212 	if (cnt < BNX2X_VPD_LEN)
12213 		goto out_not_found;
12214 
12215 	/* VPD RO tag should be first tag after identifier string, hence
12216 	 * we should be able to find it in first BNX2X_VPD_LEN chars
12217 	 */
12218 	i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12219 			     PCI_VPD_LRDT_RO_DATA);
12220 	if (i < 0)
12221 		goto out_not_found;
12222 
12223 	block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12224 		    pci_vpd_lrdt_size(&vpd_start[i]);
12225 
12226 	i += PCI_VPD_LRDT_TAG_SIZE;
12227 
12228 	if (block_end > BNX2X_VPD_LEN) {
12229 		vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12230 		if (vpd_extended_data  == NULL)
12231 			goto out_not_found;
12232 
12233 		/* read rest of vpd image into vpd_extended_data */
12234 		memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12235 		cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12236 				   block_end - BNX2X_VPD_LEN,
12237 				   vpd_extended_data + BNX2X_VPD_LEN);
12238 		if (cnt < (block_end - BNX2X_VPD_LEN))
12239 			goto out_not_found;
12240 		vpd_data = vpd_extended_data;
12241 	} else
12242 		vpd_data = vpd_start;
12243 
12244 	/* now vpd_data holds full vpd content in both cases */
12245 
12246 	rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12247 				   PCI_VPD_RO_KEYWORD_MFR_ID);
12248 	if (rodi < 0)
12249 		goto out_not_found;
12250 
12251 	len = pci_vpd_info_field_size(&vpd_data[rodi]);
12252 
12253 	if (len != VENDOR_ID_LEN)
12254 		goto out_not_found;
12255 
12256 	rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12257 
12258 	/* vendor specific info */
12259 	snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12260 	snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12261 	if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12262 	    !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12263 
12264 		rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12265 						PCI_VPD_RO_KEYWORD_VENDOR0);
12266 		if (rodi >= 0) {
12267 			len = pci_vpd_info_field_size(&vpd_data[rodi]);
12268 
12269 			rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12270 
12271 			if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12272 				memcpy(bp->fw_ver, &vpd_data[rodi], len);
12273 				bp->fw_ver[len] = ' ';
12274 			}
12275 		}
12276 		kfree(vpd_extended_data);
12277 		return;
12278 	}
12279 out_not_found:
12280 	kfree(vpd_extended_data);
12281 	return;
12282 }
12283 
bnx2x_set_modes_bitmap(struct bnx2x * bp)12284 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12285 {
12286 	u32 flags = 0;
12287 
12288 	if (CHIP_REV_IS_FPGA(bp))
12289 		SET_FLAGS(flags, MODE_FPGA);
12290 	else if (CHIP_REV_IS_EMUL(bp))
12291 		SET_FLAGS(flags, MODE_EMUL);
12292 	else
12293 		SET_FLAGS(flags, MODE_ASIC);
12294 
12295 	if (CHIP_MODE_IS_4_PORT(bp))
12296 		SET_FLAGS(flags, MODE_PORT4);
12297 	else
12298 		SET_FLAGS(flags, MODE_PORT2);
12299 
12300 	if (CHIP_IS_E2(bp))
12301 		SET_FLAGS(flags, MODE_E2);
12302 	else if (CHIP_IS_E3(bp)) {
12303 		SET_FLAGS(flags, MODE_E3);
12304 		if (CHIP_REV(bp) == CHIP_REV_Ax)
12305 			SET_FLAGS(flags, MODE_E3_A0);
12306 		else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12307 			SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12308 	}
12309 
12310 	if (IS_MF(bp)) {
12311 		SET_FLAGS(flags, MODE_MF);
12312 		switch (bp->mf_mode) {
12313 		case MULTI_FUNCTION_SD:
12314 			SET_FLAGS(flags, MODE_MF_SD);
12315 			break;
12316 		case MULTI_FUNCTION_SI:
12317 			SET_FLAGS(flags, MODE_MF_SI);
12318 			break;
12319 		case MULTI_FUNCTION_AFEX:
12320 			SET_FLAGS(flags, MODE_MF_AFEX);
12321 			break;
12322 		}
12323 	} else
12324 		SET_FLAGS(flags, MODE_SF);
12325 
12326 #if defined(__LITTLE_ENDIAN)
12327 	SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12328 #else /*(__BIG_ENDIAN)*/
12329 	SET_FLAGS(flags, MODE_BIG_ENDIAN);
12330 #endif
12331 	INIT_MODE_FLAGS(bp) = flags;
12332 }
12333 
bnx2x_init_bp(struct bnx2x * bp)12334 static int bnx2x_init_bp(struct bnx2x *bp)
12335 {
12336 	int func;
12337 	int rc;
12338 
12339 	mutex_init(&bp->port.phy_mutex);
12340 	mutex_init(&bp->fw_mb_mutex);
12341 	mutex_init(&bp->drv_info_mutex);
12342 	sema_init(&bp->stats_lock, 1);
12343 	bp->drv_info_mng_owner = false;
12344 	INIT_LIST_HEAD(&bp->vlan_reg);
12345 
12346 	INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12347 	INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12348 	INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12349 	INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12350 	if (IS_PF(bp)) {
12351 		rc = bnx2x_get_hwinfo(bp);
12352 		if (rc)
12353 			return rc;
12354 	} else {
12355 		eth_zero_addr(bp->dev->dev_addr);
12356 	}
12357 
12358 	bnx2x_set_modes_bitmap(bp);
12359 
12360 	rc = bnx2x_alloc_mem_bp(bp);
12361 	if (rc)
12362 		return rc;
12363 
12364 	bnx2x_read_fwinfo(bp);
12365 
12366 	if (IS_PF(bp)) {
12367 		rc = bnx2x_init_firmware(bp);
12368 
12369 		if (rc) {
12370 			bnx2x_free_mem_bp(bp);
12371 			return rc;
12372 		}
12373 	}
12374 
12375 	func = BP_FUNC(bp);
12376 
12377 	/* need to reset chip if undi was active */
12378 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
12379 		/* init fw_seq */
12380 		bp->fw_seq =
12381 			SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12382 							DRV_MSG_SEQ_NUMBER_MASK;
12383 		BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12384 
12385 		rc = bnx2x_prev_unload(bp);
12386 		if (rc) {
12387 			bnx2x_release_firmware(bp);
12388 			bnx2x_free_mem_bp(bp);
12389 			return rc;
12390 		}
12391 	}
12392 
12393 	if (CHIP_REV_IS_FPGA(bp))
12394 		dev_err(&bp->pdev->dev, "FPGA detected\n");
12395 
12396 	if (BP_NOMCP(bp) && (func == 0))
12397 		dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12398 
12399 	bp->disable_tpa = disable_tpa;
12400 	bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12401 	/* Reduce memory usage in kdump environment by disabling TPA */
12402 	bp->disable_tpa |= is_kdump_kernel();
12403 
12404 	/* Set TPA flags */
12405 	if (bp->disable_tpa) {
12406 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12407 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12408 	}
12409 
12410 	if (CHIP_IS_E1(bp))
12411 		bp->dropless_fc = false;
12412 	else
12413 		bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12414 
12415 	bp->mrrs = mrrs;
12416 
12417 	bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12418 	if (IS_VF(bp))
12419 		bp->rx_ring_size = MAX_RX_AVAIL;
12420 
12421 	/* make sure that the numbers are in the right granularity */
12422 	bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12423 	bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12424 
12425 	bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12426 
12427 	timer_setup(&bp->timer, bnx2x_timer, 0);
12428 	bp->timer.expires = jiffies + bp->current_interval;
12429 
12430 	if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12431 	    SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12432 	    SHMEM2_HAS(bp, dcbx_en) &&
12433 	    SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12434 	    SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12435 	    SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12436 		bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12437 		bnx2x_dcbx_init_params(bp);
12438 	} else {
12439 		bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12440 	}
12441 
12442 	if (CHIP_IS_E1x(bp))
12443 		bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12444 	else
12445 		bp->cnic_base_cl_id = FP_SB_MAX_E2;
12446 
12447 	/* multiple tx priority */
12448 	if (IS_VF(bp))
12449 		bp->max_cos = 1;
12450 	else if (CHIP_IS_E1x(bp))
12451 		bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12452 	else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12453 		bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12454 	else if (CHIP_IS_E3B0(bp))
12455 		bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12456 	else
12457 		BNX2X_ERR("unknown chip %x revision %x\n",
12458 			  CHIP_NUM(bp), CHIP_REV(bp));
12459 	BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12460 
12461 	/* We need at least one default status block for slow-path events,
12462 	 * second status block for the L2 queue, and a third status block for
12463 	 * CNIC if supported.
12464 	 */
12465 	if (IS_VF(bp))
12466 		bp->min_msix_vec_cnt = 1;
12467 	else if (CNIC_SUPPORT(bp))
12468 		bp->min_msix_vec_cnt = 3;
12469 	else /* PF w/o cnic */
12470 		bp->min_msix_vec_cnt = 2;
12471 	BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12472 
12473 	bp->dump_preset_idx = 1;
12474 
12475 	return rc;
12476 }
12477 
12478 /****************************************************************************
12479 * General service functions
12480 ****************************************************************************/
12481 
12482 /*
12483  * net_device service functions
12484  */
12485 
12486 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12487 static int bnx2x_open(struct net_device *dev)
12488 {
12489 	struct bnx2x *bp = netdev_priv(dev);
12490 	int rc;
12491 
12492 	bp->stats_init = true;
12493 
12494 	netif_carrier_off(dev);
12495 
12496 	bnx2x_set_power_state(bp, PCI_D0);
12497 
12498 	/* If parity had happen during the unload, then attentions
12499 	 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12500 	 * want the first function loaded on the current engine to
12501 	 * complete the recovery.
12502 	 * Parity recovery is only relevant for PF driver.
12503 	 */
12504 	if (IS_PF(bp)) {
12505 		int other_engine = BP_PATH(bp) ? 0 : 1;
12506 		bool other_load_status, load_status;
12507 		bool global = false;
12508 
12509 		other_load_status = bnx2x_get_load_status(bp, other_engine);
12510 		load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12511 		if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12512 		    bnx2x_chk_parity_attn(bp, &global, true)) {
12513 			do {
12514 				/* If there are attentions and they are in a
12515 				 * global blocks, set the GLOBAL_RESET bit
12516 				 * regardless whether it will be this function
12517 				 * that will complete the recovery or not.
12518 				 */
12519 				if (global)
12520 					bnx2x_set_reset_global(bp);
12521 
12522 				/* Only the first function on the current
12523 				 * engine should try to recover in open. In case
12524 				 * of attentions in global blocks only the first
12525 				 * in the chip should try to recover.
12526 				 */
12527 				if ((!load_status &&
12528 				     (!global || !other_load_status)) &&
12529 				      bnx2x_trylock_leader_lock(bp) &&
12530 				      !bnx2x_leader_reset(bp)) {
12531 					netdev_info(bp->dev,
12532 						    "Recovered in open\n");
12533 					break;
12534 				}
12535 
12536 				/* recovery has failed... */
12537 				bnx2x_set_power_state(bp, PCI_D3hot);
12538 				bp->recovery_state = BNX2X_RECOVERY_FAILED;
12539 
12540 				BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12541 					  "If you still see this message after a few retries then power cycle is required.\n");
12542 
12543 				return -EAGAIN;
12544 			} while (0);
12545 		}
12546 	}
12547 
12548 	bp->recovery_state = BNX2X_RECOVERY_DONE;
12549 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
12550 	if (rc)
12551 		return rc;
12552 
12553 	return 0;
12554 }
12555 
12556 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12557 static int bnx2x_close(struct net_device *dev)
12558 {
12559 	struct bnx2x *bp = netdev_priv(dev);
12560 
12561 	/* Unload the driver, release IRQs */
12562 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12563 
12564 	return 0;
12565 }
12566 
12567 struct bnx2x_mcast_list_elem_group
12568 {
12569 	struct list_head mcast_group_link;
12570 	struct bnx2x_mcast_list_elem mcast_elems[];
12571 };
12572 
12573 #define MCAST_ELEMS_PER_PG \
12574 	((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12575 	sizeof(struct bnx2x_mcast_list_elem))
12576 
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12577 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12578 {
12579 	struct bnx2x_mcast_list_elem_group *current_mcast_group;
12580 
12581 	while (!list_empty(mcast_group_list)) {
12582 		current_mcast_group = list_first_entry(mcast_group_list,
12583 				      struct bnx2x_mcast_list_elem_group,
12584 				      mcast_group_link);
12585 		list_del(&current_mcast_group->mcast_group_link);
12586 		free_page((unsigned long)current_mcast_group);
12587 	}
12588 }
12589 
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12590 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12591 				      struct bnx2x_mcast_ramrod_params *p,
12592 				      struct list_head *mcast_group_list)
12593 {
12594 	struct bnx2x_mcast_list_elem *mc_mac;
12595 	struct netdev_hw_addr *ha;
12596 	struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12597 	int mc_count = netdev_mc_count(bp->dev);
12598 	int offset = 0;
12599 
12600 	INIT_LIST_HEAD(&p->mcast_list);
12601 	netdev_for_each_mc_addr(ha, bp->dev) {
12602 		if (!offset) {
12603 			current_mcast_group =
12604 				(struct bnx2x_mcast_list_elem_group *)
12605 				__get_free_page(GFP_ATOMIC);
12606 			if (!current_mcast_group) {
12607 				bnx2x_free_mcast_macs_list(mcast_group_list);
12608 				BNX2X_ERR("Failed to allocate mc MAC list\n");
12609 				return -ENOMEM;
12610 			}
12611 			list_add(&current_mcast_group->mcast_group_link,
12612 				 mcast_group_list);
12613 		}
12614 		mc_mac = &current_mcast_group->mcast_elems[offset];
12615 		mc_mac->mac = bnx2x_mc_addr(ha);
12616 		list_add_tail(&mc_mac->link, &p->mcast_list);
12617 		offset++;
12618 		if (offset == MCAST_ELEMS_PER_PG)
12619 			offset = 0;
12620 	}
12621 	p->mcast_list_len = mc_count;
12622 	return 0;
12623 }
12624 
12625 /**
12626  * bnx2x_set_uc_list - configure a new unicast MACs list.
12627  *
12628  * @bp: driver handle
12629  *
12630  * We will use zero (0) as a MAC type for these MACs.
12631  */
bnx2x_set_uc_list(struct bnx2x * bp)12632 static int bnx2x_set_uc_list(struct bnx2x *bp)
12633 {
12634 	int rc;
12635 	struct net_device *dev = bp->dev;
12636 	struct netdev_hw_addr *ha;
12637 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12638 	unsigned long ramrod_flags = 0;
12639 
12640 	/* First schedule a cleanup up of old configuration */
12641 	rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12642 	if (rc < 0) {
12643 		BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12644 		return rc;
12645 	}
12646 
12647 	netdev_for_each_uc_addr(ha, dev) {
12648 		rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12649 				       BNX2X_UC_LIST_MAC, &ramrod_flags);
12650 		if (rc == -EEXIST) {
12651 			DP(BNX2X_MSG_SP,
12652 			   "Failed to schedule ADD operations: %d\n", rc);
12653 			/* do not treat adding same MAC as error */
12654 			rc = 0;
12655 
12656 		} else if (rc < 0) {
12657 
12658 			BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12659 				  rc);
12660 			return rc;
12661 		}
12662 	}
12663 
12664 	/* Execute the pending commands */
12665 	__set_bit(RAMROD_CONT, &ramrod_flags);
12666 	return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12667 				 BNX2X_UC_LIST_MAC, &ramrod_flags);
12668 }
12669 
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12670 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12671 {
12672 	LIST_HEAD(mcast_group_list);
12673 	struct net_device *dev = bp->dev;
12674 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12675 	int rc = 0;
12676 
12677 	rparam.mcast_obj = &bp->mcast_obj;
12678 
12679 	/* first, clear all configured multicast MACs */
12680 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12681 	if (rc < 0) {
12682 		BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12683 		return rc;
12684 	}
12685 
12686 	/* then, configure a new MACs list */
12687 	if (netdev_mc_count(dev)) {
12688 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12689 		if (rc)
12690 			return rc;
12691 
12692 		/* Now add the new MACs */
12693 		rc = bnx2x_config_mcast(bp, &rparam,
12694 					BNX2X_MCAST_CMD_ADD);
12695 		if (rc < 0)
12696 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12697 				  rc);
12698 
12699 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12700 	}
12701 
12702 	return rc;
12703 }
12704 
bnx2x_set_mc_list(struct bnx2x * bp)12705 static int bnx2x_set_mc_list(struct bnx2x *bp)
12706 {
12707 	LIST_HEAD(mcast_group_list);
12708 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
12709 	struct net_device *dev = bp->dev;
12710 	int rc = 0;
12711 
12712 	/* On older adapters, we need to flush and re-add filters */
12713 	if (CHIP_IS_E1x(bp))
12714 		return bnx2x_set_mc_list_e1x(bp);
12715 
12716 	rparam.mcast_obj = &bp->mcast_obj;
12717 
12718 	if (netdev_mc_count(dev)) {
12719 		rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12720 		if (rc)
12721 			return rc;
12722 
12723 		/* Override the curently configured set of mc filters */
12724 		rc = bnx2x_config_mcast(bp, &rparam,
12725 					BNX2X_MCAST_CMD_SET);
12726 		if (rc < 0)
12727 			BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12728 				  rc);
12729 
12730 		bnx2x_free_mcast_macs_list(&mcast_group_list);
12731 	} else {
12732 		/* If no mc addresses are required, flush the configuration */
12733 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12734 		if (rc < 0)
12735 			BNX2X_ERR("Failed to clear multicast configuration %d\n",
12736 				  rc);
12737 	}
12738 
12739 	return rc;
12740 }
12741 
12742 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12743 static void bnx2x_set_rx_mode(struct net_device *dev)
12744 {
12745 	struct bnx2x *bp = netdev_priv(dev);
12746 
12747 	if (bp->state != BNX2X_STATE_OPEN) {
12748 		DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12749 		return;
12750 	} else {
12751 		/* Schedule an SP task to handle rest of change */
12752 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12753 				       NETIF_MSG_IFUP);
12754 	}
12755 }
12756 
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12757 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12758 {
12759 	u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12760 
12761 	DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12762 
12763 	netif_addr_lock_bh(bp->dev);
12764 
12765 	if (bp->dev->flags & IFF_PROMISC) {
12766 		rx_mode = BNX2X_RX_MODE_PROMISC;
12767 	} else if ((bp->dev->flags & IFF_ALLMULTI) ||
12768 		   ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12769 		    CHIP_IS_E1(bp))) {
12770 		rx_mode = BNX2X_RX_MODE_ALLMULTI;
12771 	} else {
12772 		if (IS_PF(bp)) {
12773 			/* some multicasts */
12774 			if (bnx2x_set_mc_list(bp) < 0)
12775 				rx_mode = BNX2X_RX_MODE_ALLMULTI;
12776 
12777 			/* release bh lock, as bnx2x_set_uc_list might sleep */
12778 			netif_addr_unlock_bh(bp->dev);
12779 			if (bnx2x_set_uc_list(bp) < 0)
12780 				rx_mode = BNX2X_RX_MODE_PROMISC;
12781 			netif_addr_lock_bh(bp->dev);
12782 		} else {
12783 			/* configuring mcast to a vf involves sleeping (when we
12784 			 * wait for the pf's response).
12785 			 */
12786 			bnx2x_schedule_sp_rtnl(bp,
12787 					       BNX2X_SP_RTNL_VFPF_MCAST, 0);
12788 		}
12789 	}
12790 
12791 	bp->rx_mode = rx_mode;
12792 	/* handle ISCSI SD mode */
12793 	if (IS_MF_ISCSI_ONLY(bp))
12794 		bp->rx_mode = BNX2X_RX_MODE_NONE;
12795 
12796 	/* Schedule the rx_mode command */
12797 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12798 		set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12799 		netif_addr_unlock_bh(bp->dev);
12800 		return;
12801 	}
12802 
12803 	if (IS_PF(bp)) {
12804 		bnx2x_set_storm_rx_mode(bp);
12805 		netif_addr_unlock_bh(bp->dev);
12806 	} else {
12807 		/* VF will need to request the PF to make this change, and so
12808 		 * the VF needs to release the bottom-half lock prior to the
12809 		 * request (as it will likely require sleep on the VF side)
12810 		 */
12811 		netif_addr_unlock_bh(bp->dev);
12812 		bnx2x_vfpf_storm_rx_mode(bp);
12813 	}
12814 }
12815 
12816 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12817 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12818 			   int devad, u16 addr)
12819 {
12820 	struct bnx2x *bp = netdev_priv(netdev);
12821 	u16 value;
12822 	int rc;
12823 
12824 	DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12825 	   prtad, devad, addr);
12826 
12827 	/* The HW expects different devad if CL22 is used */
12828 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12829 
12830 	bnx2x_acquire_phy_lock(bp);
12831 	rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12832 	bnx2x_release_phy_lock(bp);
12833 	DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12834 
12835 	if (!rc)
12836 		rc = value;
12837 	return rc;
12838 }
12839 
12840 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12841 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12842 			    u16 addr, u16 value)
12843 {
12844 	struct bnx2x *bp = netdev_priv(netdev);
12845 	int rc;
12846 
12847 	DP(NETIF_MSG_LINK,
12848 	   "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12849 	   prtad, devad, addr, value);
12850 
12851 	/* The HW expects different devad if CL22 is used */
12852 	devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12853 
12854 	bnx2x_acquire_phy_lock(bp);
12855 	rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12856 	bnx2x_release_phy_lock(bp);
12857 	return rc;
12858 }
12859 
12860 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12861 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12862 {
12863 	struct bnx2x *bp = netdev_priv(dev);
12864 	struct mii_ioctl_data *mdio = if_mii(ifr);
12865 
12866 	if (!netif_running(dev))
12867 		return -EAGAIN;
12868 
12869 	switch (cmd) {
12870 	case SIOCSHWTSTAMP:
12871 		return bnx2x_hwtstamp_ioctl(bp, ifr);
12872 	default:
12873 		DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12874 		   mdio->phy_id, mdio->reg_num, mdio->val_in);
12875 		return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12876 	}
12877 }
12878 
bnx2x_validate_addr(struct net_device * dev)12879 static int bnx2x_validate_addr(struct net_device *dev)
12880 {
12881 	struct bnx2x *bp = netdev_priv(dev);
12882 
12883 	/* query the bulletin board for mac address configured by the PF */
12884 	if (IS_VF(bp))
12885 		bnx2x_sample_bulletin(bp);
12886 
12887 	if (!is_valid_ether_addr(dev->dev_addr)) {
12888 		BNX2X_ERR("Non-valid Ethernet address\n");
12889 		return -EADDRNOTAVAIL;
12890 	}
12891 	return 0;
12892 }
12893 
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12894 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12895 				  struct netdev_phys_item_id *ppid)
12896 {
12897 	struct bnx2x *bp = netdev_priv(netdev);
12898 
12899 	if (!(bp->flags & HAS_PHYS_PORT_ID))
12900 		return -EOPNOTSUPP;
12901 
12902 	ppid->id_len = sizeof(bp->phys_port_id);
12903 	memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12904 
12905 	return 0;
12906 }
12907 
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12908 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12909 					      struct net_device *dev,
12910 					      netdev_features_t features)
12911 {
12912 	/*
12913 	 * A skb with gso_size + header length > 9700 will cause a
12914 	 * firmware panic. Drop GSO support.
12915 	 *
12916 	 * Eventually the upper layer should not pass these packets down.
12917 	 *
12918 	 * For speed, if the gso_size is <= 9000, assume there will
12919 	 * not be 700 bytes of headers and pass it through. Only do a
12920 	 * full (slow) validation if the gso_size is > 9000.
12921 	 *
12922 	 * (Due to the way SKB_BY_FRAGS works this will also do a full
12923 	 * validation in that case.)
12924 	 */
12925 	if (unlikely(skb_is_gso(skb) &&
12926 		     (skb_shinfo(skb)->gso_size > 9000) &&
12927 		     !skb_gso_validate_mac_len(skb, 9700)))
12928 		features &= ~NETIF_F_GSO_MASK;
12929 
12930 	features = vlan_features_check(skb, features);
12931 	return vxlan_features_check(skb, features);
12932 }
12933 
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12934 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12935 {
12936 	int rc;
12937 
12938 	if (IS_PF(bp)) {
12939 		unsigned long ramrod_flags = 0;
12940 
12941 		__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12942 		rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12943 					add, &ramrod_flags);
12944 	} else {
12945 		rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12946 	}
12947 
12948 	return rc;
12949 }
12950 
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)12951 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12952 {
12953 	struct bnx2x_vlan_entry *vlan;
12954 	int rc = 0;
12955 
12956 	/* Configure all non-configured entries */
12957 	list_for_each_entry(vlan, &bp->vlan_reg, link) {
12958 		if (vlan->hw)
12959 			continue;
12960 
12961 		if (bp->vlan_cnt >= bp->vlan_credit)
12962 			return -ENOBUFS;
12963 
12964 		rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12965 		if (rc) {
12966 			BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12967 			return rc;
12968 		}
12969 
12970 		DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12971 		vlan->hw = true;
12972 		bp->vlan_cnt++;
12973 	}
12974 
12975 	return 0;
12976 }
12977 
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)12978 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12979 {
12980 	bool need_accept_any_vlan;
12981 
12982 	need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12983 
12984 	if (bp->accept_any_vlan != need_accept_any_vlan) {
12985 		bp->accept_any_vlan = need_accept_any_vlan;
12986 		DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12987 		   bp->accept_any_vlan ? "raised" : "cleared");
12988 		if (set_rx_mode) {
12989 			if (IS_PF(bp))
12990 				bnx2x_set_rx_mode_inner(bp);
12991 			else
12992 				bnx2x_vfpf_storm_rx_mode(bp);
12993 		}
12994 	}
12995 }
12996 
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)12997 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12998 {
12999 	/* Don't set rx mode here. Our caller will do it. */
13000 	bnx2x_vlan_configure(bp, false);
13001 
13002 	return 0;
13003 }
13004 
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)13005 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13006 {
13007 	struct bnx2x *bp = netdev_priv(dev);
13008 	struct bnx2x_vlan_entry *vlan;
13009 
13010 	DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13011 
13012 	vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13013 	if (!vlan)
13014 		return -ENOMEM;
13015 
13016 	vlan->vid = vid;
13017 	vlan->hw = false;
13018 	list_add_tail(&vlan->link, &bp->vlan_reg);
13019 
13020 	if (netif_running(dev))
13021 		bnx2x_vlan_configure(bp, true);
13022 
13023 	return 0;
13024 }
13025 
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13026 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13027 {
13028 	struct bnx2x *bp = netdev_priv(dev);
13029 	struct bnx2x_vlan_entry *vlan;
13030 	bool found = false;
13031 	int rc = 0;
13032 
13033 	DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13034 
13035 	list_for_each_entry(vlan, &bp->vlan_reg, link)
13036 		if (vlan->vid == vid) {
13037 			found = true;
13038 			break;
13039 		}
13040 
13041 	if (!found) {
13042 		BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13043 		return -EINVAL;
13044 	}
13045 
13046 	if (netif_running(dev) && vlan->hw) {
13047 		rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13048 		DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13049 		bp->vlan_cnt--;
13050 	}
13051 
13052 	list_del(&vlan->link);
13053 	kfree(vlan);
13054 
13055 	if (netif_running(dev))
13056 		bnx2x_vlan_configure(bp, true);
13057 
13058 	DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13059 
13060 	return rc;
13061 }
13062 
13063 static const struct net_device_ops bnx2x_netdev_ops = {
13064 	.ndo_open		= bnx2x_open,
13065 	.ndo_stop		= bnx2x_close,
13066 	.ndo_start_xmit		= bnx2x_start_xmit,
13067 	.ndo_select_queue	= bnx2x_select_queue,
13068 	.ndo_set_rx_mode	= bnx2x_set_rx_mode,
13069 	.ndo_set_mac_address	= bnx2x_change_mac_addr,
13070 	.ndo_validate_addr	= bnx2x_validate_addr,
13071 	.ndo_do_ioctl		= bnx2x_ioctl,
13072 	.ndo_change_mtu		= bnx2x_change_mtu,
13073 	.ndo_fix_features	= bnx2x_fix_features,
13074 	.ndo_set_features	= bnx2x_set_features,
13075 	.ndo_tx_timeout		= bnx2x_tx_timeout,
13076 	.ndo_vlan_rx_add_vid	= bnx2x_vlan_rx_add_vid,
13077 	.ndo_vlan_rx_kill_vid	= bnx2x_vlan_rx_kill_vid,
13078 	.ndo_setup_tc		= __bnx2x_setup_tc,
13079 #ifdef CONFIG_BNX2X_SRIOV
13080 	.ndo_set_vf_mac		= bnx2x_set_vf_mac,
13081 	.ndo_set_vf_vlan	= bnx2x_set_vf_vlan,
13082 	.ndo_get_vf_config	= bnx2x_get_vf_config,
13083 	.ndo_set_vf_spoofchk	= bnx2x_set_vf_spoofchk,
13084 #endif
13085 #ifdef NETDEV_FCOE_WWNN
13086 	.ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn,
13087 #endif
13088 
13089 	.ndo_get_phys_port_id	= bnx2x_get_phys_port_id,
13090 	.ndo_set_vf_link_state	= bnx2x_set_vf_link_state,
13091 	.ndo_features_check	= bnx2x_features_check,
13092 	.ndo_udp_tunnel_add	= udp_tunnel_nic_add_port,
13093 	.ndo_udp_tunnel_del	= udp_tunnel_nic_del_port,
13094 };
13095 
bnx2x_set_coherency_mask(struct bnx2x * bp)13096 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13097 {
13098 	struct device *dev = &bp->pdev->dev;
13099 
13100 	if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13101 	    dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13102 		dev_err(dev, "System does not support DMA, aborting\n");
13103 		return -EIO;
13104 	}
13105 
13106 	return 0;
13107 }
13108 
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13109 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13110 {
13111 	if (bp->flags & AER_ENABLED) {
13112 		pci_disable_pcie_error_reporting(bp->pdev);
13113 		bp->flags &= ~AER_ENABLED;
13114 	}
13115 }
13116 
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13117 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13118 			  struct net_device *dev, unsigned long board_type)
13119 {
13120 	int rc;
13121 	u32 pci_cfg_dword;
13122 	bool chip_is_e1x = (board_type == BCM57710 ||
13123 			    board_type == BCM57711 ||
13124 			    board_type == BCM57711E);
13125 
13126 	SET_NETDEV_DEV(dev, &pdev->dev);
13127 
13128 	bp->dev = dev;
13129 	bp->pdev = pdev;
13130 
13131 	rc = pci_enable_device(pdev);
13132 	if (rc) {
13133 		dev_err(&bp->pdev->dev,
13134 			"Cannot enable PCI device, aborting\n");
13135 		goto err_out;
13136 	}
13137 
13138 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13139 		dev_err(&bp->pdev->dev,
13140 			"Cannot find PCI device base address, aborting\n");
13141 		rc = -ENODEV;
13142 		goto err_out_disable;
13143 	}
13144 
13145 	if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13146 		dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13147 		rc = -ENODEV;
13148 		goto err_out_disable;
13149 	}
13150 
13151 	pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13152 	if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13153 	    PCICFG_REVESION_ID_ERROR_VAL) {
13154 		pr_err("PCI device error, probably due to fan failure, aborting\n");
13155 		rc = -ENODEV;
13156 		goto err_out_disable;
13157 	}
13158 
13159 	if (atomic_read(&pdev->enable_cnt) == 1) {
13160 		rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13161 		if (rc) {
13162 			dev_err(&bp->pdev->dev,
13163 				"Cannot obtain PCI resources, aborting\n");
13164 			goto err_out_disable;
13165 		}
13166 
13167 		pci_set_master(pdev);
13168 		pci_save_state(pdev);
13169 	}
13170 
13171 	if (IS_PF(bp)) {
13172 		if (!pdev->pm_cap) {
13173 			dev_err(&bp->pdev->dev,
13174 				"Cannot find power management capability, aborting\n");
13175 			rc = -EIO;
13176 			goto err_out_release;
13177 		}
13178 	}
13179 
13180 	if (!pci_is_pcie(pdev)) {
13181 		dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13182 		rc = -EIO;
13183 		goto err_out_release;
13184 	}
13185 
13186 	rc = bnx2x_set_coherency_mask(bp);
13187 	if (rc)
13188 		goto err_out_release;
13189 
13190 	dev->mem_start = pci_resource_start(pdev, 0);
13191 	dev->base_addr = dev->mem_start;
13192 	dev->mem_end = pci_resource_end(pdev, 0);
13193 
13194 	dev->irq = pdev->irq;
13195 
13196 	bp->regview = pci_ioremap_bar(pdev, 0);
13197 	if (!bp->regview) {
13198 		dev_err(&bp->pdev->dev,
13199 			"Cannot map register space, aborting\n");
13200 		rc = -ENOMEM;
13201 		goto err_out_release;
13202 	}
13203 
13204 	/* In E1/E1H use pci device function given by kernel.
13205 	 * In E2/E3 read physical function from ME register since these chips
13206 	 * support Physical Device Assignment where kernel BDF maybe arbitrary
13207 	 * (depending on hypervisor).
13208 	 */
13209 	if (chip_is_e1x) {
13210 		bp->pf_num = PCI_FUNC(pdev->devfn);
13211 	} else {
13212 		/* chip is E2/3*/
13213 		pci_read_config_dword(bp->pdev,
13214 				      PCICFG_ME_REGISTER, &pci_cfg_dword);
13215 		bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13216 				  ME_REG_ABS_PF_NUM_SHIFT);
13217 	}
13218 	BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13219 
13220 	/* clean indirect addresses */
13221 	pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13222 			       PCICFG_VENDOR_ID_OFFSET);
13223 
13224 	/* Set PCIe reset type to fundamental for EEH recovery */
13225 	pdev->needs_freset = 1;
13226 
13227 	/* AER (Advanced Error reporting) configuration */
13228 	rc = pci_enable_pcie_error_reporting(pdev);
13229 	if (!rc)
13230 		bp->flags |= AER_ENABLED;
13231 	else
13232 		BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13233 
13234 	/*
13235 	 * Clean the following indirect addresses for all functions since it
13236 	 * is not used by the driver.
13237 	 */
13238 	if (IS_PF(bp)) {
13239 		REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13240 		REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13241 		REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13242 		REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13243 
13244 		if (chip_is_e1x) {
13245 			REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13246 			REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13247 			REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13248 			REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13249 		}
13250 
13251 		/* Enable internal target-read (in case we are probed after PF
13252 		 * FLR). Must be done prior to any BAR read access. Only for
13253 		 * 57712 and up
13254 		 */
13255 		if (!chip_is_e1x)
13256 			REG_WR(bp,
13257 			       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13258 	}
13259 
13260 	dev->watchdog_timeo = TX_TIMEOUT;
13261 
13262 	dev->netdev_ops = &bnx2x_netdev_ops;
13263 	bnx2x_set_ethtool_ops(bp, dev);
13264 
13265 	dev->priv_flags |= IFF_UNICAST_FLT;
13266 
13267 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13268 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13269 		NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13270 		NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13271 	if (!chip_is_e1x) {
13272 		dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13273 				    NETIF_F_GSO_IPXIP4 |
13274 				    NETIF_F_GSO_UDP_TUNNEL |
13275 				    NETIF_F_GSO_UDP_TUNNEL_CSUM |
13276 				    NETIF_F_GSO_PARTIAL;
13277 
13278 		dev->hw_enc_features =
13279 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13280 			NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13281 			NETIF_F_GSO_IPXIP4 |
13282 			NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13283 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13284 			NETIF_F_GSO_PARTIAL;
13285 
13286 		dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13287 					    NETIF_F_GSO_UDP_TUNNEL_CSUM;
13288 
13289 		if (IS_PF(bp))
13290 			dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13291 	}
13292 
13293 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13294 		NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13295 
13296 	if (IS_PF(bp)) {
13297 		if (chip_is_e1x)
13298 			bp->accept_any_vlan = true;
13299 		else
13300 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13301 	}
13302 	/* For VF we'll know whether to enable VLAN filtering after
13303 	 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13304 	 */
13305 
13306 	dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13307 	dev->features |= NETIF_F_HIGHDMA;
13308 	if (dev->features & NETIF_F_LRO)
13309 		dev->features &= ~NETIF_F_GRO_HW;
13310 
13311 	/* Add Loopback capability to the device */
13312 	dev->hw_features |= NETIF_F_LOOPBACK;
13313 
13314 #ifdef BCM_DCBNL
13315 	dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13316 #endif
13317 
13318 	/* MTU range, 46 - 9600 */
13319 	dev->min_mtu = ETH_MIN_PACKET_SIZE;
13320 	dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13321 
13322 	/* get_port_hwinfo() will set prtad and mmds properly */
13323 	bp->mdio.prtad = MDIO_PRTAD_NONE;
13324 	bp->mdio.mmds = 0;
13325 	bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13326 	bp->mdio.dev = dev;
13327 	bp->mdio.mdio_read = bnx2x_mdio_read;
13328 	bp->mdio.mdio_write = bnx2x_mdio_write;
13329 
13330 	return 0;
13331 
13332 err_out_release:
13333 	if (atomic_read(&pdev->enable_cnt) == 1)
13334 		pci_release_regions(pdev);
13335 
13336 err_out_disable:
13337 	pci_disable_device(pdev);
13338 
13339 err_out:
13340 	return rc;
13341 }
13342 
bnx2x_check_firmware(struct bnx2x * bp)13343 static int bnx2x_check_firmware(struct bnx2x *bp)
13344 {
13345 	const struct firmware *firmware = bp->firmware;
13346 	struct bnx2x_fw_file_hdr *fw_hdr;
13347 	struct bnx2x_fw_file_section *sections;
13348 	u32 offset, len, num_ops;
13349 	__be16 *ops_offsets;
13350 	int i;
13351 	const u8 *fw_ver;
13352 
13353 	if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13354 		BNX2X_ERR("Wrong FW size\n");
13355 		return -EINVAL;
13356 	}
13357 
13358 	fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13359 	sections = (struct bnx2x_fw_file_section *)fw_hdr;
13360 
13361 	/* Make sure none of the offsets and sizes make us read beyond
13362 	 * the end of the firmware data */
13363 	for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13364 		offset = be32_to_cpu(sections[i].offset);
13365 		len = be32_to_cpu(sections[i].len);
13366 		if (offset + len > firmware->size) {
13367 			BNX2X_ERR("Section %d length is out of bounds\n", i);
13368 			return -EINVAL;
13369 		}
13370 	}
13371 
13372 	/* Likewise for the init_ops offsets */
13373 	offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13374 	ops_offsets = (__force __be16 *)(firmware->data + offset);
13375 	num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13376 
13377 	for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13378 		if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13379 			BNX2X_ERR("Section offset %d is out of bounds\n", i);
13380 			return -EINVAL;
13381 		}
13382 	}
13383 
13384 	/* Check FW version */
13385 	offset = be32_to_cpu(fw_hdr->fw_version.offset);
13386 	fw_ver = firmware->data + offset;
13387 	if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13388 	    fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13389 		BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13390 			  fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13391 			  bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13392 		return -EINVAL;
13393 	}
13394 
13395 	return 0;
13396 }
13397 
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13398 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13399 {
13400 	const __be32 *source = (const __be32 *)_source;
13401 	u32 *target = (u32 *)_target;
13402 	u32 i;
13403 
13404 	for (i = 0; i < n/4; i++)
13405 		target[i] = be32_to_cpu(source[i]);
13406 }
13407 
13408 /*
13409    Ops array is stored in the following format:
13410    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13411  */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13412 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13413 {
13414 	const __be32 *source = (const __be32 *)_source;
13415 	struct raw_op *target = (struct raw_op *)_target;
13416 	u32 i, j, tmp;
13417 
13418 	for (i = 0, j = 0; i < n/8; i++, j += 2) {
13419 		tmp = be32_to_cpu(source[j]);
13420 		target[i].op = (tmp >> 24) & 0xff;
13421 		target[i].offset = tmp & 0xffffff;
13422 		target[i].raw_data = be32_to_cpu(source[j + 1]);
13423 	}
13424 }
13425 
13426 /* IRO array is stored in the following format:
13427  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13428  */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13429 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13430 {
13431 	const __be32 *source = (const __be32 *)_source;
13432 	struct iro *target = (struct iro *)_target;
13433 	u32 i, j, tmp;
13434 
13435 	for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13436 		target[i].base = be32_to_cpu(source[j]);
13437 		j++;
13438 		tmp = be32_to_cpu(source[j]);
13439 		target[i].m1 = (tmp >> 16) & 0xffff;
13440 		target[i].m2 = tmp & 0xffff;
13441 		j++;
13442 		tmp = be32_to_cpu(source[j]);
13443 		target[i].m3 = (tmp >> 16) & 0xffff;
13444 		target[i].size = tmp & 0xffff;
13445 		j++;
13446 	}
13447 }
13448 
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13449 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13450 {
13451 	const __be16 *source = (const __be16 *)_source;
13452 	u16 *target = (u16 *)_target;
13453 	u32 i;
13454 
13455 	for (i = 0; i < n/2; i++)
13456 		target[i] = be16_to_cpu(source[i]);
13457 }
13458 
13459 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\
13460 do {									\
13461 	u32 len = be32_to_cpu(fw_hdr->arr.len);				\
13462 	bp->arr = kmalloc(len, GFP_KERNEL);				\
13463 	if (!bp->arr)							\
13464 		goto lbl;						\
13465 	func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\
13466 	     (u8 *)bp->arr, len);					\
13467 } while (0)
13468 
bnx2x_init_firmware(struct bnx2x * bp)13469 int bnx2x_init_firmware(struct bnx2x *bp)
13470 {
13471 	const char *fw_file_name, *fw_file_name_v15;
13472 	struct bnx2x_fw_file_hdr *fw_hdr;
13473 	int rc;
13474 
13475 	if (bp->firmware)
13476 		return 0;
13477 
13478 	if (CHIP_IS_E1(bp)) {
13479 		fw_file_name = FW_FILE_NAME_E1;
13480 		fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13481 	} else if (CHIP_IS_E1H(bp)) {
13482 		fw_file_name = FW_FILE_NAME_E1H;
13483 		fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13484 	} else if (!CHIP_IS_E1x(bp)) {
13485 		fw_file_name = FW_FILE_NAME_E2;
13486 		fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13487 	} else {
13488 		BNX2X_ERR("Unsupported chip revision\n");
13489 		return -EINVAL;
13490 	}
13491 
13492 	BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13493 
13494 	rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13495 	if (rc) {
13496 		BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13497 
13498 		/* try to load prev version */
13499 		rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13500 
13501 		if (rc)
13502 			goto request_firmware_exit;
13503 
13504 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13505 	} else {
13506 		bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13507 		bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13508 	}
13509 
13510 	bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13511 	bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13512 	bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13513 
13514 	rc = bnx2x_check_firmware(bp);
13515 	if (rc) {
13516 		BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13517 		goto request_firmware_exit;
13518 	}
13519 
13520 	fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13521 
13522 	/* Initialize the pointers to the init arrays */
13523 	/* Blob */
13524 	rc = -ENOMEM;
13525 	BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13526 
13527 	/* Opcodes */
13528 	BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13529 
13530 	/* Offsets */
13531 	BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13532 			    be16_to_cpu_n);
13533 
13534 	/* STORMs firmware */
13535 	INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13536 			be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13537 	INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13538 			be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13539 	INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13540 			be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13541 	INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13542 			be32_to_cpu(fw_hdr->usem_pram_data.offset);
13543 	INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13544 			be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13545 	INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13546 			be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13547 	INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13548 			be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13549 	INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13550 			be32_to_cpu(fw_hdr->csem_pram_data.offset);
13551 	/* IRO */
13552 	BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13553 
13554 	return 0;
13555 
13556 iro_alloc_err:
13557 	kfree(bp->init_ops_offsets);
13558 init_offsets_alloc_err:
13559 	kfree(bp->init_ops);
13560 init_ops_alloc_err:
13561 	kfree(bp->init_data);
13562 request_firmware_exit:
13563 	release_firmware(bp->firmware);
13564 	bp->firmware = NULL;
13565 
13566 	return rc;
13567 }
13568 
bnx2x_release_firmware(struct bnx2x * bp)13569 void bnx2x_release_firmware(struct bnx2x *bp)
13570 {
13571 	kfree(bp->init_ops_offsets);
13572 	kfree(bp->init_ops);
13573 	kfree(bp->init_data);
13574 	release_firmware(bp->firmware);
13575 	bp->firmware = NULL;
13576 }
13577 
13578 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13579 	.init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13580 	.init_hw_cmn      = bnx2x_init_hw_common,
13581 	.init_hw_port     = bnx2x_init_hw_port,
13582 	.init_hw_func     = bnx2x_init_hw_func,
13583 
13584 	.reset_hw_cmn     = bnx2x_reset_common,
13585 	.reset_hw_port    = bnx2x_reset_port,
13586 	.reset_hw_func    = bnx2x_reset_func,
13587 
13588 	.gunzip_init      = bnx2x_gunzip_init,
13589 	.gunzip_end       = bnx2x_gunzip_end,
13590 
13591 	.init_fw          = bnx2x_init_firmware,
13592 	.release_fw       = bnx2x_release_firmware,
13593 };
13594 
bnx2x__init_func_obj(struct bnx2x * bp)13595 void bnx2x__init_func_obj(struct bnx2x *bp)
13596 {
13597 	/* Prepare DMAE related driver resources */
13598 	bnx2x_setup_dmae(bp);
13599 
13600 	bnx2x_init_func_obj(bp, &bp->func_obj,
13601 			    bnx2x_sp(bp, func_rdata),
13602 			    bnx2x_sp_mapping(bp, func_rdata),
13603 			    bnx2x_sp(bp, func_afex_rdata),
13604 			    bnx2x_sp_mapping(bp, func_afex_rdata),
13605 			    &bnx2x_func_sp_drv);
13606 }
13607 
13608 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13609 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13610 {
13611 	int cid_count = BNX2X_L2_MAX_CID(bp);
13612 
13613 	if (IS_SRIOV(bp))
13614 		cid_count += BNX2X_VF_CIDS;
13615 
13616 	if (CNIC_SUPPORT(bp))
13617 		cid_count += CNIC_CID_MAX;
13618 
13619 	return roundup(cid_count, QM_CID_ROUND);
13620 }
13621 
13622 /**
13623  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13624  * @pdev: pci device
13625  * @cnic_cnt: count
13626  *
13627  */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13628 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13629 {
13630 	int index;
13631 	u16 control = 0;
13632 
13633 	/*
13634 	 * If MSI-X is not supported - return number of SBs needed to support
13635 	 * one fast path queue: one FP queue + SB for CNIC
13636 	 */
13637 	if (!pdev->msix_cap) {
13638 		dev_info(&pdev->dev, "no msix capability found\n");
13639 		return 1 + cnic_cnt;
13640 	}
13641 	dev_info(&pdev->dev, "msix capability found\n");
13642 
13643 	/*
13644 	 * The value in the PCI configuration space is the index of the last
13645 	 * entry, namely one less than the actual size of the table, which is
13646 	 * exactly what we want to return from this function: number of all SBs
13647 	 * without the default SB.
13648 	 * For VFs there is no default SB, then we return (index+1).
13649 	 */
13650 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13651 
13652 	index = control & PCI_MSIX_FLAGS_QSIZE;
13653 
13654 	return index;
13655 }
13656 
set_max_cos_est(int chip_id)13657 static int set_max_cos_est(int chip_id)
13658 {
13659 	switch (chip_id) {
13660 	case BCM57710:
13661 	case BCM57711:
13662 	case BCM57711E:
13663 		return BNX2X_MULTI_TX_COS_E1X;
13664 	case BCM57712:
13665 	case BCM57712_MF:
13666 		return BNX2X_MULTI_TX_COS_E2_E3A0;
13667 	case BCM57800:
13668 	case BCM57800_MF:
13669 	case BCM57810:
13670 	case BCM57810_MF:
13671 	case BCM57840_4_10:
13672 	case BCM57840_2_20:
13673 	case BCM57840_O:
13674 	case BCM57840_MFO:
13675 	case BCM57840_MF:
13676 	case BCM57811:
13677 	case BCM57811_MF:
13678 		return BNX2X_MULTI_TX_COS_E3B0;
13679 	case BCM57712_VF:
13680 	case BCM57800_VF:
13681 	case BCM57810_VF:
13682 	case BCM57840_VF:
13683 	case BCM57811_VF:
13684 		return 1;
13685 	default:
13686 		pr_err("Unknown board_type (%d), aborting\n", chip_id);
13687 		return -ENODEV;
13688 	}
13689 }
13690 
set_is_vf(int chip_id)13691 static int set_is_vf(int chip_id)
13692 {
13693 	switch (chip_id) {
13694 	case BCM57712_VF:
13695 	case BCM57800_VF:
13696 	case BCM57810_VF:
13697 	case BCM57840_VF:
13698 	case BCM57811_VF:
13699 		return true;
13700 	default:
13701 		return false;
13702 	}
13703 }
13704 
13705 /* nig_tsgen registers relative address */
13706 #define tsgen_ctrl 0x0
13707 #define tsgen_freecount 0x10
13708 #define tsgen_synctime_t0 0x20
13709 #define tsgen_offset_t0 0x28
13710 #define tsgen_drift_t0 0x30
13711 #define tsgen_synctime_t1 0x58
13712 #define tsgen_offset_t1 0x60
13713 #define tsgen_drift_t1 0x68
13714 
13715 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13716 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13717 					  int best_val, int best_period)
13718 {
13719 	struct bnx2x_func_state_params func_params = {NULL};
13720 	struct bnx2x_func_set_timesync_params *set_timesync_params =
13721 		&func_params.params.set_timesync;
13722 
13723 	/* Prepare parameters for function state transitions */
13724 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13725 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13726 
13727 	func_params.f_obj = &bp->func_obj;
13728 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13729 
13730 	/* Function parameters */
13731 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13732 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13733 	set_timesync_params->add_sub_drift_adjust_value =
13734 		drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13735 	set_timesync_params->drift_adjust_value = best_val;
13736 	set_timesync_params->drift_adjust_period = best_period;
13737 
13738 	return bnx2x_func_state_change(bp, &func_params);
13739 }
13740 
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13741 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13742 {
13743 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13744 	int rc;
13745 	int drift_dir = 1;
13746 	int val, period, period1, period2, dif, dif1, dif2;
13747 	int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13748 
13749 	DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13750 
13751 	if (!netif_running(bp->dev)) {
13752 		DP(BNX2X_MSG_PTP,
13753 		   "PTP adjfreq called while the interface is down\n");
13754 		return -ENETDOWN;
13755 	}
13756 
13757 	if (ppb < 0) {
13758 		ppb = -ppb;
13759 		drift_dir = 0;
13760 	}
13761 
13762 	if (ppb == 0) {
13763 		best_val = 1;
13764 		best_period = 0x1FFFFFF;
13765 	} else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13766 		best_val = 31;
13767 		best_period = 1;
13768 	} else {
13769 		/* Changed not to allow val = 8, 16, 24 as these values
13770 		 * are not supported in workaround.
13771 		 */
13772 		for (val = 0; val <= 31; val++) {
13773 			if ((val & 0x7) == 0)
13774 				continue;
13775 			period1 = val * 1000000 / ppb;
13776 			period2 = period1 + 1;
13777 			if (period1 != 0)
13778 				dif1 = ppb - (val * 1000000 / period1);
13779 			else
13780 				dif1 = BNX2X_MAX_PHC_DRIFT;
13781 			if (dif1 < 0)
13782 				dif1 = -dif1;
13783 			dif2 = ppb - (val * 1000000 / period2);
13784 			if (dif2 < 0)
13785 				dif2 = -dif2;
13786 			dif = (dif1 < dif2) ? dif1 : dif2;
13787 			period = (dif1 < dif2) ? period1 : period2;
13788 			if (dif < best_dif) {
13789 				best_dif = dif;
13790 				best_val = val;
13791 				best_period = period;
13792 			}
13793 		}
13794 	}
13795 
13796 	rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13797 					    best_period);
13798 	if (rc) {
13799 		BNX2X_ERR("Failed to set drift\n");
13800 		return -EFAULT;
13801 	}
13802 
13803 	DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13804 	   best_period);
13805 
13806 	return 0;
13807 }
13808 
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13809 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13810 {
13811 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13812 
13813 	if (!netif_running(bp->dev)) {
13814 		DP(BNX2X_MSG_PTP,
13815 		   "PTP adjtime called while the interface is down\n");
13816 		return -ENETDOWN;
13817 	}
13818 
13819 	DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13820 
13821 	timecounter_adjtime(&bp->timecounter, delta);
13822 
13823 	return 0;
13824 }
13825 
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13826 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13827 {
13828 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13829 	u64 ns;
13830 
13831 	if (!netif_running(bp->dev)) {
13832 		DP(BNX2X_MSG_PTP,
13833 		   "PTP gettime called while the interface is down\n");
13834 		return -ENETDOWN;
13835 	}
13836 
13837 	ns = timecounter_read(&bp->timecounter);
13838 
13839 	DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13840 
13841 	*ts = ns_to_timespec64(ns);
13842 
13843 	return 0;
13844 }
13845 
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13846 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13847 			     const struct timespec64 *ts)
13848 {
13849 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13850 	u64 ns;
13851 
13852 	if (!netif_running(bp->dev)) {
13853 		DP(BNX2X_MSG_PTP,
13854 		   "PTP settime called while the interface is down\n");
13855 		return -ENETDOWN;
13856 	}
13857 
13858 	ns = timespec64_to_ns(ts);
13859 
13860 	DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13861 
13862 	/* Re-init the timecounter */
13863 	timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13864 
13865 	return 0;
13866 }
13867 
13868 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13869 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13870 			    struct ptp_clock_request *rq, int on)
13871 {
13872 	struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13873 
13874 	BNX2X_ERR("PHC ancillary features are not supported\n");
13875 	return -ENOTSUPP;
13876 }
13877 
bnx2x_register_phc(struct bnx2x * bp)13878 void bnx2x_register_phc(struct bnx2x *bp)
13879 {
13880 	/* Fill the ptp_clock_info struct and register PTP clock*/
13881 	bp->ptp_clock_info.owner = THIS_MODULE;
13882 	snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13883 	bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13884 	bp->ptp_clock_info.n_alarm = 0;
13885 	bp->ptp_clock_info.n_ext_ts = 0;
13886 	bp->ptp_clock_info.n_per_out = 0;
13887 	bp->ptp_clock_info.pps = 0;
13888 	bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13889 	bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13890 	bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13891 	bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13892 	bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13893 
13894 	bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13895 	if (IS_ERR(bp->ptp_clock)) {
13896 		bp->ptp_clock = NULL;
13897 		BNX2X_ERR("PTP clock registration failed\n");
13898 	}
13899 }
13900 
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13901 static int bnx2x_init_one(struct pci_dev *pdev,
13902 				    const struct pci_device_id *ent)
13903 {
13904 	struct net_device *dev = NULL;
13905 	struct bnx2x *bp;
13906 	int rc, max_non_def_sbs;
13907 	int rx_count, tx_count, rss_count, doorbell_size;
13908 	int max_cos_est;
13909 	bool is_vf;
13910 	int cnic_cnt;
13911 
13912 	/* Management FW 'remembers' living interfaces. Allow it some time
13913 	 * to forget previously living interfaces, allowing a proper re-load.
13914 	 */
13915 	if (is_kdump_kernel()) {
13916 		ktime_t now = ktime_get_boottime();
13917 		ktime_t fw_ready_time = ktime_set(5, 0);
13918 
13919 		if (ktime_before(now, fw_ready_time))
13920 			msleep(ktime_ms_delta(fw_ready_time, now));
13921 	}
13922 
13923 	/* An estimated maximum supported CoS number according to the chip
13924 	 * version.
13925 	 * We will try to roughly estimate the maximum number of CoSes this chip
13926 	 * may support in order to minimize the memory allocated for Tx
13927 	 * netdev_queue's. This number will be accurately calculated during the
13928 	 * initialization of bp->max_cos based on the chip versions AND chip
13929 	 * revision in the bnx2x_init_bp().
13930 	 */
13931 	max_cos_est = set_max_cos_est(ent->driver_data);
13932 	if (max_cos_est < 0)
13933 		return max_cos_est;
13934 	is_vf = set_is_vf(ent->driver_data);
13935 	cnic_cnt = is_vf ? 0 : 1;
13936 
13937 	max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13938 
13939 	/* add another SB for VF as it has no default SB */
13940 	max_non_def_sbs += is_vf ? 1 : 0;
13941 
13942 	/* Maximum number of RSS queues: one IGU SB goes to CNIC */
13943 	rss_count = max_non_def_sbs - cnic_cnt;
13944 
13945 	if (rss_count < 1)
13946 		return -EINVAL;
13947 
13948 	/* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13949 	rx_count = rss_count + cnic_cnt;
13950 
13951 	/* Maximum number of netdev Tx queues:
13952 	 * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13953 	 */
13954 	tx_count = rss_count * max_cos_est + cnic_cnt;
13955 
13956 	/* dev zeroed in init_etherdev */
13957 	dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13958 	if (!dev)
13959 		return -ENOMEM;
13960 
13961 	bp = netdev_priv(dev);
13962 
13963 	bp->flags = 0;
13964 	if (is_vf)
13965 		bp->flags |= IS_VF_FLAG;
13966 
13967 	bp->igu_sb_cnt = max_non_def_sbs;
13968 	bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13969 	bp->msg_enable = debug;
13970 	bp->cnic_support = cnic_cnt;
13971 	bp->cnic_probe = bnx2x_cnic_probe;
13972 
13973 	pci_set_drvdata(pdev, dev);
13974 
13975 	rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13976 	if (rc < 0) {
13977 		free_netdev(dev);
13978 		return rc;
13979 	}
13980 
13981 	BNX2X_DEV_INFO("This is a %s function\n",
13982 		       IS_PF(bp) ? "physical" : "virtual");
13983 	BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13984 	BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13985 	BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13986 		       tx_count, rx_count);
13987 
13988 	rc = bnx2x_init_bp(bp);
13989 	if (rc)
13990 		goto init_one_exit;
13991 
13992 	/* Map doorbells here as we need the real value of bp->max_cos which
13993 	 * is initialized in bnx2x_init_bp() to determine the number of
13994 	 * l2 connections.
13995 	 */
13996 	if (IS_VF(bp)) {
13997 		bp->doorbells = bnx2x_vf_doorbells(bp);
13998 		rc = bnx2x_vf_pci_alloc(bp);
13999 		if (rc)
14000 			goto init_one_freemem;
14001 	} else {
14002 		doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14003 		if (doorbell_size > pci_resource_len(pdev, 2)) {
14004 			dev_err(&bp->pdev->dev,
14005 				"Cannot map doorbells, bar size too small, aborting\n");
14006 			rc = -ENOMEM;
14007 			goto init_one_freemem;
14008 		}
14009 		bp->doorbells = ioremap(pci_resource_start(pdev, 2),
14010 						doorbell_size);
14011 	}
14012 	if (!bp->doorbells) {
14013 		dev_err(&bp->pdev->dev,
14014 			"Cannot map doorbell space, aborting\n");
14015 		rc = -ENOMEM;
14016 		goto init_one_freemem;
14017 	}
14018 
14019 	if (IS_VF(bp)) {
14020 		rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14021 		if (rc)
14022 			goto init_one_freemem;
14023 
14024 #ifdef CONFIG_BNX2X_SRIOV
14025 		/* VF with OLD Hypervisor or old PF do not support filtering */
14026 		if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14027 			dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14028 			dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14029 		}
14030 #endif
14031 	}
14032 
14033 	/* Enable SRIOV if capability found in configuration space */
14034 	rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14035 	if (rc)
14036 		goto init_one_freemem;
14037 
14038 	/* calc qm_cid_count */
14039 	bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14040 	BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14041 
14042 	/* disable FCOE L2 queue for E1x*/
14043 	if (CHIP_IS_E1x(bp))
14044 		bp->flags |= NO_FCOE_FLAG;
14045 
14046 	/* Set bp->num_queues for MSI-X mode*/
14047 	bnx2x_set_num_queues(bp);
14048 
14049 	/* Configure interrupt mode: try to enable MSI-X/MSI if
14050 	 * needed.
14051 	 */
14052 	rc = bnx2x_set_int_mode(bp);
14053 	if (rc) {
14054 		dev_err(&pdev->dev, "Cannot set interrupts\n");
14055 		goto init_one_freemem;
14056 	}
14057 	BNX2X_DEV_INFO("set interrupts successfully\n");
14058 
14059 	/* register the net device */
14060 	rc = register_netdev(dev);
14061 	if (rc) {
14062 		dev_err(&pdev->dev, "Cannot register net device\n");
14063 		goto init_one_freemem;
14064 	}
14065 	BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14066 
14067 	if (!NO_FCOE(bp)) {
14068 		/* Add storage MAC address */
14069 		rtnl_lock();
14070 		dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14071 		rtnl_unlock();
14072 	}
14073 	BNX2X_DEV_INFO(
14074 	       "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14075 	       board_info[ent->driver_data].name,
14076 	       (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14077 	       dev->base_addr, bp->pdev->irq, dev->dev_addr);
14078 	pcie_print_link_status(bp->pdev);
14079 
14080 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14081 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14082 
14083 	return 0;
14084 
14085 init_one_freemem:
14086 	bnx2x_release_firmware(bp);
14087 	bnx2x_free_mem_bp(bp);
14088 
14089 init_one_exit:
14090 	bnx2x_disable_pcie_error_reporting(bp);
14091 
14092 	if (bp->regview)
14093 		iounmap(bp->regview);
14094 
14095 	if (IS_PF(bp) && bp->doorbells)
14096 		iounmap(bp->doorbells);
14097 
14098 	free_netdev(dev);
14099 
14100 	if (atomic_read(&pdev->enable_cnt) == 1)
14101 		pci_release_regions(pdev);
14102 
14103 	pci_disable_device(pdev);
14104 
14105 	return rc;
14106 }
14107 
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14108 static void __bnx2x_remove(struct pci_dev *pdev,
14109 			   struct net_device *dev,
14110 			   struct bnx2x *bp,
14111 			   bool remove_netdev)
14112 {
14113 	/* Delete storage MAC address */
14114 	if (!NO_FCOE(bp)) {
14115 		rtnl_lock();
14116 		dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14117 		rtnl_unlock();
14118 	}
14119 
14120 #ifdef BCM_DCBNL
14121 	/* Delete app tlvs from dcbnl */
14122 	bnx2x_dcbnl_update_applist(bp, true);
14123 #endif
14124 
14125 	if (IS_PF(bp) &&
14126 	    !BP_NOMCP(bp) &&
14127 	    (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14128 		bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14129 
14130 	/* Close the interface - either directly or implicitly */
14131 	if (remove_netdev) {
14132 		unregister_netdev(dev);
14133 	} else {
14134 		rtnl_lock();
14135 		dev_close(dev);
14136 		rtnl_unlock();
14137 	}
14138 
14139 	bnx2x_iov_remove_one(bp);
14140 
14141 	/* Power on: we can't let PCI layer write to us while we are in D3 */
14142 	if (IS_PF(bp)) {
14143 		bnx2x_set_power_state(bp, PCI_D0);
14144 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14145 
14146 		/* Set endianity registers to reset values in case next driver
14147 		 * boots in different endianty environment.
14148 		 */
14149 		bnx2x_reset_endianity(bp);
14150 	}
14151 
14152 	/* Disable MSI/MSI-X */
14153 	bnx2x_disable_msi(bp);
14154 
14155 	/* Power off */
14156 	if (IS_PF(bp))
14157 		bnx2x_set_power_state(bp, PCI_D3hot);
14158 
14159 	/* Make sure RESET task is not scheduled before continuing */
14160 	cancel_delayed_work_sync(&bp->sp_rtnl_task);
14161 
14162 	/* send message via vfpf channel to release the resources of this vf */
14163 	if (IS_VF(bp))
14164 		bnx2x_vfpf_release(bp);
14165 
14166 	/* Assumes no further PCIe PM changes will occur */
14167 	if (system_state == SYSTEM_POWER_OFF) {
14168 		pci_wake_from_d3(pdev, bp->wol);
14169 		pci_set_power_state(pdev, PCI_D3hot);
14170 	}
14171 
14172 	bnx2x_disable_pcie_error_reporting(bp);
14173 	if (remove_netdev) {
14174 		if (bp->regview)
14175 			iounmap(bp->regview);
14176 
14177 		/* For vfs, doorbells are part of the regview and were unmapped
14178 		 * along with it. FW is only loaded by PF.
14179 		 */
14180 		if (IS_PF(bp)) {
14181 			if (bp->doorbells)
14182 				iounmap(bp->doorbells);
14183 
14184 			bnx2x_release_firmware(bp);
14185 		} else {
14186 			bnx2x_vf_pci_dealloc(bp);
14187 		}
14188 		bnx2x_free_mem_bp(bp);
14189 
14190 		free_netdev(dev);
14191 
14192 		if (atomic_read(&pdev->enable_cnt) == 1)
14193 			pci_release_regions(pdev);
14194 
14195 		pci_disable_device(pdev);
14196 	}
14197 }
14198 
bnx2x_remove_one(struct pci_dev * pdev)14199 static void bnx2x_remove_one(struct pci_dev *pdev)
14200 {
14201 	struct net_device *dev = pci_get_drvdata(pdev);
14202 	struct bnx2x *bp;
14203 
14204 	if (!dev) {
14205 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14206 		return;
14207 	}
14208 	bp = netdev_priv(dev);
14209 
14210 	__bnx2x_remove(pdev, dev, bp, true);
14211 }
14212 
bnx2x_eeh_nic_unload(struct bnx2x * bp)14213 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14214 {
14215 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14216 
14217 	bp->rx_mode = BNX2X_RX_MODE_NONE;
14218 
14219 	if (CNIC_LOADED(bp))
14220 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14221 
14222 	/* Stop Tx */
14223 	bnx2x_tx_disable(bp);
14224 	/* Delete all NAPI objects */
14225 	bnx2x_del_all_napi(bp);
14226 	if (CNIC_LOADED(bp))
14227 		bnx2x_del_all_napi_cnic(bp);
14228 	netdev_reset_tc(bp->dev);
14229 
14230 	del_timer_sync(&bp->timer);
14231 	cancel_delayed_work_sync(&bp->sp_task);
14232 	cancel_delayed_work_sync(&bp->period_task);
14233 
14234 	if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14235 		bp->stats_state = STATS_STATE_DISABLED;
14236 		up(&bp->stats_lock);
14237 	}
14238 
14239 	bnx2x_save_statistics(bp);
14240 
14241 	netif_carrier_off(bp->dev);
14242 
14243 	return 0;
14244 }
14245 
14246 /**
14247  * bnx2x_io_error_detected - called when PCI error is detected
14248  * @pdev: Pointer to PCI device
14249  * @state: The current pci connection state
14250  *
14251  * This function is called after a PCI bus error affecting
14252  * this device has been detected.
14253  */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14254 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14255 						pci_channel_state_t state)
14256 {
14257 	struct net_device *dev = pci_get_drvdata(pdev);
14258 	struct bnx2x *bp = netdev_priv(dev);
14259 
14260 	rtnl_lock();
14261 
14262 	BNX2X_ERR("IO error detected\n");
14263 
14264 	netif_device_detach(dev);
14265 
14266 	if (state == pci_channel_io_perm_failure) {
14267 		rtnl_unlock();
14268 		return PCI_ERS_RESULT_DISCONNECT;
14269 	}
14270 
14271 	if (netif_running(dev))
14272 		bnx2x_eeh_nic_unload(bp);
14273 
14274 	bnx2x_prev_path_mark_eeh(bp);
14275 
14276 	pci_disable_device(pdev);
14277 
14278 	rtnl_unlock();
14279 
14280 	/* Request a slot reset */
14281 	return PCI_ERS_RESULT_NEED_RESET;
14282 }
14283 
14284 /**
14285  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14286  * @pdev: Pointer to PCI device
14287  *
14288  * Restart the card from scratch, as if from a cold-boot.
14289  */
bnx2x_io_slot_reset(struct pci_dev * pdev)14290 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14291 {
14292 	struct net_device *dev = pci_get_drvdata(pdev);
14293 	struct bnx2x *bp = netdev_priv(dev);
14294 	int i;
14295 
14296 	rtnl_lock();
14297 	BNX2X_ERR("IO slot reset initializing...\n");
14298 	if (pci_enable_device(pdev)) {
14299 		dev_err(&pdev->dev,
14300 			"Cannot re-enable PCI device after reset\n");
14301 		rtnl_unlock();
14302 		return PCI_ERS_RESULT_DISCONNECT;
14303 	}
14304 
14305 	pci_set_master(pdev);
14306 	pci_restore_state(pdev);
14307 	pci_save_state(pdev);
14308 
14309 	if (netif_running(dev))
14310 		bnx2x_set_power_state(bp, PCI_D0);
14311 
14312 	if (netif_running(dev)) {
14313 		BNX2X_ERR("IO slot reset --> driver unload\n");
14314 
14315 		/* MCP should have been reset; Need to wait for validity */
14316 		if (bnx2x_init_shmem(bp)) {
14317 			rtnl_unlock();
14318 			return PCI_ERS_RESULT_DISCONNECT;
14319 		}
14320 
14321 		if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14322 			u32 v;
14323 
14324 			v = SHMEM2_RD(bp,
14325 				      drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14326 			SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14327 				  v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14328 		}
14329 		bnx2x_drain_tx_queues(bp);
14330 		bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14331 		bnx2x_netif_stop(bp, 1);
14332 		bnx2x_free_irq(bp);
14333 
14334 		/* Report UNLOAD_DONE to MCP */
14335 		bnx2x_send_unload_done(bp, true);
14336 
14337 		bp->sp_state = 0;
14338 		bp->port.pmf = 0;
14339 
14340 		bnx2x_prev_unload(bp);
14341 
14342 		/* We should have reseted the engine, so It's fair to
14343 		 * assume the FW will no longer write to the bnx2x driver.
14344 		 */
14345 		bnx2x_squeeze_objects(bp);
14346 		bnx2x_free_skbs(bp);
14347 		for_each_rx_queue(bp, i)
14348 			bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14349 		bnx2x_free_fp_mem(bp);
14350 		bnx2x_free_mem(bp);
14351 
14352 		bp->state = BNX2X_STATE_CLOSED;
14353 	}
14354 
14355 	rtnl_unlock();
14356 
14357 	return PCI_ERS_RESULT_RECOVERED;
14358 }
14359 
14360 /**
14361  * bnx2x_io_resume - called when traffic can start flowing again
14362  * @pdev: Pointer to PCI device
14363  *
14364  * This callback is called when the error recovery driver tells us that
14365  * its OK to resume normal operation.
14366  */
bnx2x_io_resume(struct pci_dev * pdev)14367 static void bnx2x_io_resume(struct pci_dev *pdev)
14368 {
14369 	struct net_device *dev = pci_get_drvdata(pdev);
14370 	struct bnx2x *bp = netdev_priv(dev);
14371 
14372 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14373 		netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14374 		return;
14375 	}
14376 
14377 	rtnl_lock();
14378 
14379 	bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14380 							DRV_MSG_SEQ_NUMBER_MASK;
14381 
14382 	if (netif_running(dev))
14383 		bnx2x_nic_load(bp, LOAD_NORMAL);
14384 
14385 	netif_device_attach(dev);
14386 
14387 	rtnl_unlock();
14388 }
14389 
14390 static const struct pci_error_handlers bnx2x_err_handler = {
14391 	.error_detected = bnx2x_io_error_detected,
14392 	.slot_reset     = bnx2x_io_slot_reset,
14393 	.resume         = bnx2x_io_resume,
14394 };
14395 
bnx2x_shutdown(struct pci_dev * pdev)14396 static void bnx2x_shutdown(struct pci_dev *pdev)
14397 {
14398 	struct net_device *dev = pci_get_drvdata(pdev);
14399 	struct bnx2x *bp;
14400 
14401 	if (!dev)
14402 		return;
14403 
14404 	bp = netdev_priv(dev);
14405 	if (!bp)
14406 		return;
14407 
14408 	rtnl_lock();
14409 	netif_device_detach(dev);
14410 	rtnl_unlock();
14411 
14412 	/* Don't remove the netdevice, as there are scenarios which will cause
14413 	 * the kernel to hang, e.g., when trying to remove bnx2i while the
14414 	 * rootfs is mounted from SAN.
14415 	 */
14416 	__bnx2x_remove(pdev, dev, bp, false);
14417 }
14418 
14419 static struct pci_driver bnx2x_pci_driver = {
14420 	.name        = DRV_MODULE_NAME,
14421 	.id_table    = bnx2x_pci_tbl,
14422 	.probe       = bnx2x_init_one,
14423 	.remove      = bnx2x_remove_one,
14424 	.driver.pm   = &bnx2x_pm_ops,
14425 	.err_handler = &bnx2x_err_handler,
14426 #ifdef CONFIG_BNX2X_SRIOV
14427 	.sriov_configure = bnx2x_sriov_configure,
14428 #endif
14429 	.shutdown    = bnx2x_shutdown,
14430 };
14431 
bnx2x_init(void)14432 static int __init bnx2x_init(void)
14433 {
14434 	int ret;
14435 
14436 	bnx2x_wq = create_singlethread_workqueue("bnx2x");
14437 	if (bnx2x_wq == NULL) {
14438 		pr_err("Cannot create workqueue\n");
14439 		return -ENOMEM;
14440 	}
14441 	bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14442 	if (!bnx2x_iov_wq) {
14443 		pr_err("Cannot create iov workqueue\n");
14444 		destroy_workqueue(bnx2x_wq);
14445 		return -ENOMEM;
14446 	}
14447 
14448 	ret = pci_register_driver(&bnx2x_pci_driver);
14449 	if (ret) {
14450 		pr_err("Cannot register driver\n");
14451 		destroy_workqueue(bnx2x_wq);
14452 		destroy_workqueue(bnx2x_iov_wq);
14453 	}
14454 	return ret;
14455 }
14456 
bnx2x_cleanup(void)14457 static void __exit bnx2x_cleanup(void)
14458 {
14459 	struct list_head *pos, *q;
14460 
14461 	pci_unregister_driver(&bnx2x_pci_driver);
14462 
14463 	destroy_workqueue(bnx2x_wq);
14464 	destroy_workqueue(bnx2x_iov_wq);
14465 
14466 	/* Free globally allocated resources */
14467 	list_for_each_safe(pos, q, &bnx2x_prev_list) {
14468 		struct bnx2x_prev_path_list *tmp =
14469 			list_entry(pos, struct bnx2x_prev_path_list, list);
14470 		list_del(pos);
14471 		kfree(tmp);
14472 	}
14473 }
14474 
bnx2x_notify_link_changed(struct bnx2x * bp)14475 void bnx2x_notify_link_changed(struct bnx2x *bp)
14476 {
14477 	REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14478 }
14479 
14480 module_init(bnx2x_init);
14481 module_exit(bnx2x_cleanup);
14482 
14483 /**
14484  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14485  * @bp:		driver handle
14486  *
14487  * This function will wait until the ramrod completion returns.
14488  * Return 0 if success, -ENODEV if ramrod doesn't return.
14489  */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14490 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14491 {
14492 	unsigned long ramrod_flags = 0;
14493 
14494 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14495 	return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14496 				 &bp->iscsi_l2_mac_obj, true,
14497 				 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14498 }
14499 
14500 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14501 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14502 {
14503 	struct eth_spe *spe;
14504 	int cxt_index, cxt_offset;
14505 
14506 #ifdef BNX2X_STOP_ON_ERROR
14507 	if (unlikely(bp->panic))
14508 		return;
14509 #endif
14510 
14511 	spin_lock_bh(&bp->spq_lock);
14512 	BUG_ON(bp->cnic_spq_pending < count);
14513 	bp->cnic_spq_pending -= count;
14514 
14515 	for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14516 		u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14517 				& SPE_HDR_CONN_TYPE) >>
14518 				SPE_HDR_CONN_TYPE_SHIFT;
14519 		u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14520 				>> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14521 
14522 		/* Set validation for iSCSI L2 client before sending SETUP
14523 		 *  ramrod
14524 		 */
14525 		if (type == ETH_CONNECTION_TYPE) {
14526 			if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14527 				cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14528 					ILT_PAGE_CIDS;
14529 				cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14530 					(cxt_index * ILT_PAGE_CIDS);
14531 				bnx2x_set_ctx_validation(bp,
14532 					&bp->context[cxt_index].
14533 							 vcxt[cxt_offset].eth,
14534 					BNX2X_ISCSI_ETH_CID(bp));
14535 			}
14536 		}
14537 
14538 		/*
14539 		 * There may be not more than 8 L2, not more than 8 L5 SPEs
14540 		 * and in the air. We also check that number of outstanding
14541 		 * COMMON ramrods is not more than the EQ and SPQ can
14542 		 * accommodate.
14543 		 */
14544 		if (type == ETH_CONNECTION_TYPE) {
14545 			if (!atomic_read(&bp->cq_spq_left))
14546 				break;
14547 			else
14548 				atomic_dec(&bp->cq_spq_left);
14549 		} else if (type == NONE_CONNECTION_TYPE) {
14550 			if (!atomic_read(&bp->eq_spq_left))
14551 				break;
14552 			else
14553 				atomic_dec(&bp->eq_spq_left);
14554 		} else if ((type == ISCSI_CONNECTION_TYPE) ||
14555 			   (type == FCOE_CONNECTION_TYPE)) {
14556 			if (bp->cnic_spq_pending >=
14557 			    bp->cnic_eth_dev.max_kwqe_pending)
14558 				break;
14559 			else
14560 				bp->cnic_spq_pending++;
14561 		} else {
14562 			BNX2X_ERR("Unknown SPE type: %d\n", type);
14563 			bnx2x_panic();
14564 			break;
14565 		}
14566 
14567 		spe = bnx2x_sp_get_next(bp);
14568 		*spe = *bp->cnic_kwq_cons;
14569 
14570 		DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14571 		   bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14572 
14573 		if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14574 			bp->cnic_kwq_cons = bp->cnic_kwq;
14575 		else
14576 			bp->cnic_kwq_cons++;
14577 	}
14578 	bnx2x_sp_prod_update(bp);
14579 	spin_unlock_bh(&bp->spq_lock);
14580 }
14581 
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14582 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14583 			       struct kwqe_16 *kwqes[], u32 count)
14584 {
14585 	struct bnx2x *bp = netdev_priv(dev);
14586 	int i;
14587 
14588 #ifdef BNX2X_STOP_ON_ERROR
14589 	if (unlikely(bp->panic)) {
14590 		BNX2X_ERR("Can't post to SP queue while panic\n");
14591 		return -EIO;
14592 	}
14593 #endif
14594 
14595 	if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14596 	    (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14597 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
14598 		return -EAGAIN;
14599 	}
14600 
14601 	spin_lock_bh(&bp->spq_lock);
14602 
14603 	for (i = 0; i < count; i++) {
14604 		struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14605 
14606 		if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14607 			break;
14608 
14609 		*bp->cnic_kwq_prod = *spe;
14610 
14611 		bp->cnic_kwq_pending++;
14612 
14613 		DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14614 		   spe->hdr.conn_and_cmd_data, spe->hdr.type,
14615 		   spe->data.update_data_addr.hi,
14616 		   spe->data.update_data_addr.lo,
14617 		   bp->cnic_kwq_pending);
14618 
14619 		if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14620 			bp->cnic_kwq_prod = bp->cnic_kwq;
14621 		else
14622 			bp->cnic_kwq_prod++;
14623 	}
14624 
14625 	spin_unlock_bh(&bp->spq_lock);
14626 
14627 	if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14628 		bnx2x_cnic_sp_post(bp, 0);
14629 
14630 	return i;
14631 }
14632 
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14633 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14634 {
14635 	struct cnic_ops *c_ops;
14636 	int rc = 0;
14637 
14638 	mutex_lock(&bp->cnic_mutex);
14639 	c_ops = rcu_dereference_protected(bp->cnic_ops,
14640 					  lockdep_is_held(&bp->cnic_mutex));
14641 	if (c_ops)
14642 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14643 	mutex_unlock(&bp->cnic_mutex);
14644 
14645 	return rc;
14646 }
14647 
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14648 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14649 {
14650 	struct cnic_ops *c_ops;
14651 	int rc = 0;
14652 
14653 	rcu_read_lock();
14654 	c_ops = rcu_dereference(bp->cnic_ops);
14655 	if (c_ops)
14656 		rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14657 	rcu_read_unlock();
14658 
14659 	return rc;
14660 }
14661 
14662 /*
14663  * for commands that have no data
14664  */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14665 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14666 {
14667 	struct cnic_ctl_info ctl = {0};
14668 
14669 	ctl.cmd = cmd;
14670 
14671 	return bnx2x_cnic_ctl_send(bp, &ctl);
14672 }
14673 
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14674 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14675 {
14676 	struct cnic_ctl_info ctl = {0};
14677 
14678 	/* first we tell CNIC and only then we count this as a completion */
14679 	ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14680 	ctl.data.comp.cid = cid;
14681 	ctl.data.comp.error = err;
14682 
14683 	bnx2x_cnic_ctl_send_bh(bp, &ctl);
14684 	bnx2x_cnic_sp_post(bp, 0);
14685 }
14686 
14687 /* Called with netif_addr_lock_bh() taken.
14688  * Sets an rx_mode config for an iSCSI ETH client.
14689  * Doesn't block.
14690  * Completion should be checked outside.
14691  */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14692 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14693 {
14694 	unsigned long accept_flags = 0, ramrod_flags = 0;
14695 	u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14696 	int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14697 
14698 	if (start) {
14699 		/* Start accepting on iSCSI L2 ring. Accept all multicasts
14700 		 * because it's the only way for UIO Queue to accept
14701 		 * multicasts (in non-promiscuous mode only one Queue per
14702 		 * function will receive multicast packets (leading in our
14703 		 * case).
14704 		 */
14705 		__set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14706 		__set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14707 		__set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14708 		__set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14709 
14710 		/* Clear STOP_PENDING bit if START is requested */
14711 		clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14712 
14713 		sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14714 	} else
14715 		/* Clear START_PENDING bit if STOP is requested */
14716 		clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14717 
14718 	if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14719 		set_bit(sched_state, &bp->sp_state);
14720 	else {
14721 		__set_bit(RAMROD_RX, &ramrod_flags);
14722 		bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14723 				    ramrod_flags);
14724 	}
14725 }
14726 
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14727 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14728 {
14729 	struct bnx2x *bp = netdev_priv(dev);
14730 	int rc = 0;
14731 
14732 	switch (ctl->cmd) {
14733 	case DRV_CTL_CTXTBL_WR_CMD: {
14734 		u32 index = ctl->data.io.offset;
14735 		dma_addr_t addr = ctl->data.io.dma_addr;
14736 
14737 		bnx2x_ilt_wr(bp, index, addr);
14738 		break;
14739 	}
14740 
14741 	case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14742 		int count = ctl->data.credit.credit_count;
14743 
14744 		bnx2x_cnic_sp_post(bp, count);
14745 		break;
14746 	}
14747 
14748 	/* rtnl_lock is held.  */
14749 	case DRV_CTL_START_L2_CMD: {
14750 		struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14751 		unsigned long sp_bits = 0;
14752 
14753 		/* Configure the iSCSI classification object */
14754 		bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14755 				   cp->iscsi_l2_client_id,
14756 				   cp->iscsi_l2_cid, BP_FUNC(bp),
14757 				   bnx2x_sp(bp, mac_rdata),
14758 				   bnx2x_sp_mapping(bp, mac_rdata),
14759 				   BNX2X_FILTER_MAC_PENDING,
14760 				   &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14761 				   &bp->macs_pool);
14762 
14763 		/* Set iSCSI MAC address */
14764 		rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14765 		if (rc)
14766 			break;
14767 
14768 		barrier();
14769 
14770 		/* Start accepting on iSCSI L2 ring */
14771 
14772 		netif_addr_lock_bh(dev);
14773 		bnx2x_set_iscsi_eth_rx_mode(bp, true);
14774 		netif_addr_unlock_bh(dev);
14775 
14776 		/* bits to wait on */
14777 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14778 		__set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14779 
14780 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14781 			BNX2X_ERR("rx_mode completion timed out!\n");
14782 
14783 		break;
14784 	}
14785 
14786 	/* rtnl_lock is held.  */
14787 	case DRV_CTL_STOP_L2_CMD: {
14788 		unsigned long sp_bits = 0;
14789 
14790 		/* Stop accepting on iSCSI L2 ring */
14791 		netif_addr_lock_bh(dev);
14792 		bnx2x_set_iscsi_eth_rx_mode(bp, false);
14793 		netif_addr_unlock_bh(dev);
14794 
14795 		/* bits to wait on */
14796 		__set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14797 		__set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14798 
14799 		if (!bnx2x_wait_sp_comp(bp, sp_bits))
14800 			BNX2X_ERR("rx_mode completion timed out!\n");
14801 
14802 		barrier();
14803 
14804 		/* Unset iSCSI L2 MAC */
14805 		rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14806 					BNX2X_ISCSI_ETH_MAC, true);
14807 		break;
14808 	}
14809 	case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14810 		int count = ctl->data.credit.credit_count;
14811 
14812 		smp_mb__before_atomic();
14813 		atomic_add(count, &bp->cq_spq_left);
14814 		smp_mb__after_atomic();
14815 		break;
14816 	}
14817 	case DRV_CTL_ULP_REGISTER_CMD: {
14818 		int ulp_type = ctl->data.register_data.ulp_type;
14819 
14820 		if (CHIP_IS_E3(bp)) {
14821 			int idx = BP_FW_MB_IDX(bp);
14822 			u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14823 			int path = BP_PATH(bp);
14824 			int port = BP_PORT(bp);
14825 			int i;
14826 			u32 scratch_offset;
14827 			u32 *host_addr;
14828 
14829 			/* first write capability to shmem2 */
14830 			if (ulp_type == CNIC_ULP_ISCSI)
14831 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14832 			else if (ulp_type == CNIC_ULP_FCOE)
14833 				cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14834 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14835 
14836 			if ((ulp_type != CNIC_ULP_FCOE) ||
14837 			    (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14838 			    (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14839 				break;
14840 
14841 			/* if reached here - should write fcoe capabilities */
14842 			scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14843 			if (!scratch_offset)
14844 				break;
14845 			scratch_offset += offsetof(struct glob_ncsi_oem_data,
14846 						   fcoe_features[path][port]);
14847 			host_addr = (u32 *) &(ctl->data.register_data.
14848 					      fcoe_features);
14849 			for (i = 0; i < sizeof(struct fcoe_capabilities);
14850 			     i += 4)
14851 				REG_WR(bp, scratch_offset + i,
14852 				       *(host_addr + i/4));
14853 		}
14854 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14855 		break;
14856 	}
14857 
14858 	case DRV_CTL_ULP_UNREGISTER_CMD: {
14859 		int ulp_type = ctl->data.ulp_type;
14860 
14861 		if (CHIP_IS_E3(bp)) {
14862 			int idx = BP_FW_MB_IDX(bp);
14863 			u32 cap;
14864 
14865 			cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14866 			if (ulp_type == CNIC_ULP_ISCSI)
14867 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14868 			else if (ulp_type == CNIC_ULP_FCOE)
14869 				cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14870 			SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14871 		}
14872 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14873 		break;
14874 	}
14875 
14876 	default:
14877 		BNX2X_ERR("unknown command %x\n", ctl->cmd);
14878 		rc = -EINVAL;
14879 	}
14880 
14881 	/* For storage-only interfaces, change driver state */
14882 	if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14883 		switch (ctl->drv_state) {
14884 		case DRV_NOP:
14885 			break;
14886 		case DRV_ACTIVE:
14887 			bnx2x_set_os_driver_state(bp,
14888 						  OS_DRIVER_STATE_ACTIVE);
14889 			break;
14890 		case DRV_INACTIVE:
14891 			bnx2x_set_os_driver_state(bp,
14892 						  OS_DRIVER_STATE_DISABLED);
14893 			break;
14894 		case DRV_UNLOADED:
14895 			bnx2x_set_os_driver_state(bp,
14896 						  OS_DRIVER_STATE_NOT_LOADED);
14897 			break;
14898 		default:
14899 		BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14900 		}
14901 	}
14902 
14903 	return rc;
14904 }
14905 
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14906 static int bnx2x_get_fc_npiv(struct net_device *dev,
14907 			     struct cnic_fc_npiv_tbl *cnic_tbl)
14908 {
14909 	struct bnx2x *bp = netdev_priv(dev);
14910 	struct bdn_fc_npiv_tbl *tbl = NULL;
14911 	u32 offset, entries;
14912 	int rc = -EINVAL;
14913 	int i;
14914 
14915 	if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14916 		goto out;
14917 
14918 	DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14919 
14920 	tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14921 	if (!tbl) {
14922 		BNX2X_ERR("Failed to allocate fc_npiv table\n");
14923 		goto out;
14924 	}
14925 
14926 	offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14927 	if (!offset) {
14928 		DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14929 		goto out;
14930 	}
14931 	DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14932 
14933 	/* Read the table contents from nvram */
14934 	if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14935 		BNX2X_ERR("Failed to read FC-NPIV table\n");
14936 		goto out;
14937 	}
14938 
14939 	/* Since bnx2x_nvram_read() returns data in be32, we need to convert
14940 	 * the number of entries back to cpu endianness.
14941 	 */
14942 	entries = tbl->fc_npiv_cfg.num_of_npiv;
14943 	entries = (__force u32)be32_to_cpu((__force __be32)entries);
14944 	tbl->fc_npiv_cfg.num_of_npiv = entries;
14945 
14946 	if (!tbl->fc_npiv_cfg.num_of_npiv) {
14947 		DP(BNX2X_MSG_MCP,
14948 		   "No FC-NPIV table [valid, simply not present]\n");
14949 		goto out;
14950 	} else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14951 		BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14952 			  tbl->fc_npiv_cfg.num_of_npiv);
14953 		goto out;
14954 	} else {
14955 		DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14956 		   tbl->fc_npiv_cfg.num_of_npiv);
14957 	}
14958 
14959 	/* Copy the data into cnic-provided struct */
14960 	cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14961 	for (i = 0; i < cnic_tbl->count; i++) {
14962 		memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14963 		memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14964 	}
14965 
14966 	rc = 0;
14967 out:
14968 	kfree(tbl);
14969 	return rc;
14970 }
14971 
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)14972 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14973 {
14974 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14975 
14976 	if (bp->flags & USING_MSIX_FLAG) {
14977 		cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14978 		cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14979 		cp->irq_arr[0].vector = bp->msix_table[1].vector;
14980 	} else {
14981 		cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14982 		cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14983 	}
14984 	if (!CHIP_IS_E1x(bp))
14985 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14986 	else
14987 		cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14988 
14989 	cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14990 	cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14991 	cp->irq_arr[1].status_blk = bp->def_status_blk;
14992 	cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14993 	cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14994 
14995 	cp->num_irq = 2;
14996 }
14997 
bnx2x_setup_cnic_info(struct bnx2x * bp)14998 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14999 {
15000 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15001 
15002 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15003 			     bnx2x_cid_ilt_lines(bp);
15004 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15005 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15006 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15007 
15008 	DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15009 	   BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15010 	   cp->iscsi_l2_cid);
15011 
15012 	if (NO_ISCSI_OOO(bp))
15013 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15014 }
15015 
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15016 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15017 			       void *data)
15018 {
15019 	struct bnx2x *bp = netdev_priv(dev);
15020 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15021 	int rc;
15022 
15023 	DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15024 
15025 	if (ops == NULL) {
15026 		BNX2X_ERR("NULL ops received\n");
15027 		return -EINVAL;
15028 	}
15029 
15030 	if (!CNIC_SUPPORT(bp)) {
15031 		BNX2X_ERR("Can't register CNIC when not supported\n");
15032 		return -EOPNOTSUPP;
15033 	}
15034 
15035 	if (!CNIC_LOADED(bp)) {
15036 		rc = bnx2x_load_cnic(bp);
15037 		if (rc) {
15038 			BNX2X_ERR("CNIC-related load failed\n");
15039 			return rc;
15040 		}
15041 	}
15042 
15043 	bp->cnic_enabled = true;
15044 
15045 	bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15046 	if (!bp->cnic_kwq)
15047 		return -ENOMEM;
15048 
15049 	bp->cnic_kwq_cons = bp->cnic_kwq;
15050 	bp->cnic_kwq_prod = bp->cnic_kwq;
15051 	bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15052 
15053 	bp->cnic_spq_pending = 0;
15054 	bp->cnic_kwq_pending = 0;
15055 
15056 	bp->cnic_data = data;
15057 
15058 	cp->num_irq = 0;
15059 	cp->drv_state |= CNIC_DRV_STATE_REGD;
15060 	cp->iro_arr = bp->iro_arr;
15061 
15062 	bnx2x_setup_cnic_irq_info(bp);
15063 
15064 	rcu_assign_pointer(bp->cnic_ops, ops);
15065 
15066 	/* Schedule driver to read CNIC driver versions */
15067 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15068 
15069 	return 0;
15070 }
15071 
bnx2x_unregister_cnic(struct net_device * dev)15072 static int bnx2x_unregister_cnic(struct net_device *dev)
15073 {
15074 	struct bnx2x *bp = netdev_priv(dev);
15075 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15076 
15077 	mutex_lock(&bp->cnic_mutex);
15078 	cp->drv_state = 0;
15079 	RCU_INIT_POINTER(bp->cnic_ops, NULL);
15080 	mutex_unlock(&bp->cnic_mutex);
15081 	synchronize_rcu();
15082 	bp->cnic_enabled = false;
15083 	kfree(bp->cnic_kwq);
15084 	bp->cnic_kwq = NULL;
15085 
15086 	return 0;
15087 }
15088 
bnx2x_cnic_probe(struct net_device * dev)15089 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15090 {
15091 	struct bnx2x *bp = netdev_priv(dev);
15092 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15093 
15094 	/* If both iSCSI and FCoE are disabled - return NULL in
15095 	 * order to indicate CNIC that it should not try to work
15096 	 * with this device.
15097 	 */
15098 	if (NO_ISCSI(bp) && NO_FCOE(bp))
15099 		return NULL;
15100 
15101 	cp->drv_owner = THIS_MODULE;
15102 	cp->chip_id = CHIP_ID(bp);
15103 	cp->pdev = bp->pdev;
15104 	cp->io_base = bp->regview;
15105 	cp->io_base2 = bp->doorbells;
15106 	cp->max_kwqe_pending = 8;
15107 	cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15108 	cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15109 			     bnx2x_cid_ilt_lines(bp);
15110 	cp->ctx_tbl_len = CNIC_ILT_LINES;
15111 	cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15112 	cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15113 	cp->drv_ctl = bnx2x_drv_ctl;
15114 	cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15115 	cp->drv_register_cnic = bnx2x_register_cnic;
15116 	cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15117 	cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15118 	cp->iscsi_l2_client_id =
15119 		bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15120 	cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15121 
15122 	if (NO_ISCSI_OOO(bp))
15123 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15124 
15125 	if (NO_ISCSI(bp))
15126 		cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15127 
15128 	if (NO_FCOE(bp))
15129 		cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15130 
15131 	BNX2X_DEV_INFO(
15132 		"page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15133 	   cp->ctx_blk_size,
15134 	   cp->ctx_tbl_offset,
15135 	   cp->ctx_tbl_len,
15136 	   cp->starting_cid);
15137 	return cp;
15138 }
15139 
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15140 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15141 {
15142 	struct bnx2x *bp = fp->bp;
15143 	u32 offset = BAR_USTRORM_INTMEM;
15144 
15145 	if (IS_VF(bp))
15146 		return bnx2x_vf_ustorm_prods_offset(bp, fp);
15147 	else if (!CHIP_IS_E1x(bp))
15148 		offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15149 	else
15150 		offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15151 
15152 	return offset;
15153 }
15154 
15155 /* called only on E1H or E2.
15156  * When pretending to be PF, the pretend value is the function number 0...7
15157  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15158  * combination
15159  */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15160 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15161 {
15162 	u32 pretend_reg;
15163 
15164 	if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15165 		return -1;
15166 
15167 	/* get my own pretend register */
15168 	pretend_reg = bnx2x_get_pretend_reg(bp);
15169 	REG_WR(bp, pretend_reg, pretend_func_val);
15170 	REG_RD(bp, pretend_reg);
15171 	return 0;
15172 }
15173 
bnx2x_ptp_task(struct work_struct * work)15174 static void bnx2x_ptp_task(struct work_struct *work)
15175 {
15176 	struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15177 	int port = BP_PORT(bp);
15178 	u32 val_seq;
15179 	u64 timestamp, ns;
15180 	struct skb_shared_hwtstamps shhwtstamps;
15181 	bool bail = true;
15182 	int i;
15183 
15184 	/* FW may take a while to complete timestamping; try a bit and if it's
15185 	 * still not complete, may indicate an error state - bail out then.
15186 	 */
15187 	for (i = 0; i < 10; i++) {
15188 		/* Read Tx timestamp registers */
15189 		val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15190 				 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15191 		if (val_seq & 0x10000) {
15192 			bail = false;
15193 			break;
15194 		}
15195 		msleep(1 << i);
15196 	}
15197 
15198 	if (!bail) {
15199 		/* There is a valid timestamp value */
15200 		timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15201 				   NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15202 		timestamp <<= 32;
15203 		timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15204 				    NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15205 		/* Reset timestamp register to allow new timestamp */
15206 		REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15207 		       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15208 		ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15209 
15210 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15211 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
15212 		skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15213 
15214 		DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15215 		   timestamp, ns);
15216 	} else {
15217 		DP(BNX2X_MSG_PTP,
15218 		   "Tx timestamp is not recorded (register read=%u)\n",
15219 		   val_seq);
15220 		bp->eth_stats.ptp_skip_tx_ts++;
15221 	}
15222 
15223 	dev_kfree_skb_any(bp->ptp_tx_skb);
15224 	bp->ptp_tx_skb = NULL;
15225 }
15226 
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15227 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15228 {
15229 	int port = BP_PORT(bp);
15230 	u64 timestamp, ns;
15231 
15232 	timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15233 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15234 	timestamp <<= 32;
15235 	timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15236 			    NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15237 
15238 	/* Reset timestamp register to allow new timestamp */
15239 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15240 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15241 
15242 	ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15243 
15244 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15245 
15246 	DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15247 	   timestamp, ns);
15248 }
15249 
15250 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15251 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15252 {
15253 	struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15254 	int port = BP_PORT(bp);
15255 	u32 wb_data[2];
15256 	u64 phc_cycles;
15257 
15258 	REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15259 		    NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15260 	phc_cycles = wb_data[1];
15261 	phc_cycles = (phc_cycles << 32) + wb_data[0];
15262 
15263 	DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15264 
15265 	return phc_cycles;
15266 }
15267 
bnx2x_init_cyclecounter(struct bnx2x * bp)15268 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15269 {
15270 	memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15271 	bp->cyclecounter.read = bnx2x_cyclecounter_read;
15272 	bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15273 	bp->cyclecounter.shift = 0;
15274 	bp->cyclecounter.mult = 1;
15275 }
15276 
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15277 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15278 {
15279 	struct bnx2x_func_state_params func_params = {NULL};
15280 	struct bnx2x_func_set_timesync_params *set_timesync_params =
15281 		&func_params.params.set_timesync;
15282 
15283 	/* Prepare parameters for function state transitions */
15284 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15285 	__set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15286 
15287 	func_params.f_obj = &bp->func_obj;
15288 	func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15289 
15290 	/* Function parameters */
15291 	set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15292 	set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15293 
15294 	return bnx2x_func_state_change(bp, &func_params);
15295 }
15296 
bnx2x_enable_ptp_packets(struct bnx2x * bp)15297 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15298 {
15299 	struct bnx2x_queue_state_params q_params;
15300 	int rc, i;
15301 
15302 	/* send queue update ramrod to enable PTP packets */
15303 	memset(&q_params, 0, sizeof(q_params));
15304 	__set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15305 	q_params.cmd = BNX2X_Q_CMD_UPDATE;
15306 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15307 		  &q_params.params.update.update_flags);
15308 	__set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15309 		  &q_params.params.update.update_flags);
15310 
15311 	/* send the ramrod on all the queues of the PF */
15312 	for_each_eth_queue(bp, i) {
15313 		struct bnx2x_fastpath *fp = &bp->fp[i];
15314 
15315 		/* Set the appropriate Queue object */
15316 		q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15317 
15318 		/* Update the Queue state */
15319 		rc = bnx2x_queue_state_change(bp, &q_params);
15320 		if (rc) {
15321 			BNX2X_ERR("Failed to enable PTP packets\n");
15322 			return rc;
15323 		}
15324 	}
15325 
15326 	return 0;
15327 }
15328 
15329 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15330 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15331 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15332 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15333 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15334 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15335 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15336 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15337 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15338 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15339 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15340 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15341 
bnx2x_configure_ptp_filters(struct bnx2x * bp)15342 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15343 {
15344 	int port = BP_PORT(bp);
15345 	u32 param, rule;
15346 	int rc;
15347 
15348 	if (!bp->hwtstamp_ioctl_called)
15349 		return 0;
15350 
15351 	param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15352 		NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15353 	rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15354 		NIG_REG_P0_TLLH_PTP_RULE_MASK;
15355 	switch (bp->tx_type) {
15356 	case HWTSTAMP_TX_ON:
15357 		bp->flags |= TX_TIMESTAMPING_EN;
15358 		REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15359 		REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15360 		break;
15361 	case HWTSTAMP_TX_ONESTEP_SYNC:
15362 	case HWTSTAMP_TX_ONESTEP_P2P:
15363 		BNX2X_ERR("One-step timestamping is not supported\n");
15364 		return -ERANGE;
15365 	}
15366 
15367 	param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15368 		NIG_REG_P0_LLH_PTP_PARAM_MASK;
15369 	rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15370 		NIG_REG_P0_LLH_PTP_RULE_MASK;
15371 	switch (bp->rx_filter) {
15372 	case HWTSTAMP_FILTER_NONE:
15373 		break;
15374 	case HWTSTAMP_FILTER_ALL:
15375 	case HWTSTAMP_FILTER_SOME:
15376 	case HWTSTAMP_FILTER_NTP_ALL:
15377 		bp->rx_filter = HWTSTAMP_FILTER_NONE;
15378 		break;
15379 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15380 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15381 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15382 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15383 		/* Initialize PTP detection for UDP/IPv4 events */
15384 		REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15385 		REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15386 		break;
15387 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15388 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15389 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15390 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15391 		/* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15392 		REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15393 		REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15394 		break;
15395 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15396 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15397 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15398 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15399 		/* Initialize PTP detection L2 events */
15400 		REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15401 		REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15402 
15403 		break;
15404 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
15405 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
15406 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15407 		bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15408 		/* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15409 		REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15410 		REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15411 		break;
15412 	}
15413 
15414 	/* Indicate to FW that this PF expects recorded PTP packets */
15415 	rc = bnx2x_enable_ptp_packets(bp);
15416 	if (rc)
15417 		return rc;
15418 
15419 	/* Enable sending PTP packets to host */
15420 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15421 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15422 
15423 	return 0;
15424 }
15425 
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15426 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15427 {
15428 	struct hwtstamp_config config;
15429 	int rc;
15430 
15431 	DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15432 
15433 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15434 		return -EFAULT;
15435 
15436 	DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15437 	   config.tx_type, config.rx_filter);
15438 
15439 	if (config.flags) {
15440 		BNX2X_ERR("config.flags is reserved for future use\n");
15441 		return -EINVAL;
15442 	}
15443 
15444 	bp->hwtstamp_ioctl_called = true;
15445 	bp->tx_type = config.tx_type;
15446 	bp->rx_filter = config.rx_filter;
15447 
15448 	rc = bnx2x_configure_ptp_filters(bp);
15449 	if (rc)
15450 		return rc;
15451 
15452 	config.rx_filter = bp->rx_filter;
15453 
15454 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15455 		-EFAULT : 0;
15456 }
15457 
15458 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15459 static int bnx2x_configure_ptp(struct bnx2x *bp)
15460 {
15461 	int rc, port = BP_PORT(bp);
15462 	u32 wb_data[2];
15463 
15464 	/* Reset PTP event detection rules - will be configured in the IOCTL */
15465 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15466 	       NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15467 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15468 	       NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15469 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15470 	       NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15471 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15472 	       NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15473 
15474 	/* Disable PTP packets to host - will be configured in the IOCTL*/
15475 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15476 	       NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15477 
15478 	/* Enable the PTP feature */
15479 	REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15480 	       NIG_REG_P0_PTP_EN, 0x3F);
15481 
15482 	/* Enable the free-running counter */
15483 	wb_data[0] = 0;
15484 	wb_data[1] = 0;
15485 	REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15486 
15487 	/* Reset drift register (offset register is not reset) */
15488 	rc = bnx2x_send_reset_timesync_ramrod(bp);
15489 	if (rc) {
15490 		BNX2X_ERR("Failed to reset PHC drift register\n");
15491 		return -EFAULT;
15492 	}
15493 
15494 	/* Reset possibly old timestamps */
15495 	REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15496 	       NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15497 	REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15498 	       NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15499 
15500 	return 0;
15501 }
15502 
15503 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15504 void bnx2x_init_ptp(struct bnx2x *bp)
15505 {
15506 	int rc;
15507 
15508 	/* Configure PTP in HW */
15509 	rc = bnx2x_configure_ptp(bp);
15510 	if (rc) {
15511 		BNX2X_ERR("Stopping PTP initialization\n");
15512 		return;
15513 	}
15514 
15515 	/* Init work queue for Tx timestamping */
15516 	INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15517 
15518 	/* Init cyclecounter and timecounter. This is done only in the first
15519 	 * load. If done in every load, PTP application will fail when doing
15520 	 * unload / load (e.g. MTU change) while it is running.
15521 	 */
15522 	if (!bp->timecounter_init_done) {
15523 		bnx2x_init_cyclecounter(bp);
15524 		timecounter_init(&bp->timecounter, &bp->cyclecounter,
15525 				 ktime_to_ns(ktime_get_real()));
15526 		bp->timecounter_init_done = true;
15527 	}
15528 
15529 	DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15530 }
15531