1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77
78 #define FW_FILE_VERSION_V15 \
79 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
80 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
81 __stringify(BCM_5710_FW_REVISION_VERSION_V15) "." \
82 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
83
84 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
85 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
86 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
87 #define FW_FILE_NAME_E1_V15 "bnx2x/bnx2x-e1-" FW_FILE_VERSION_V15 ".fw"
88 #define FW_FILE_NAME_E1H_V15 "bnx2x/bnx2x-e1h-" FW_FILE_VERSION_V15 ".fw"
89 #define FW_FILE_NAME_E2_V15 "bnx2x/bnx2x-e2-" FW_FILE_VERSION_V15 ".fw"
90
91 /* Time in jiffies before concluding the transmitter is hung */
92 #define TX_TIMEOUT (5*HZ)
93
94 MODULE_AUTHOR("Eliezer Tamir");
95 MODULE_DESCRIPTION("QLogic "
96 "BCM57710/57711/57711E/"
97 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
98 "57840/57840_MF Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_FIRMWARE(FW_FILE_NAME_E1);
101 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
102 MODULE_FIRMWARE(FW_FILE_NAME_E2);
103
104 int bnx2x_num_queues;
105 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
106 MODULE_PARM_DESC(num_queues,
107 " Set number of queues (default is as a number of CPUs)");
108
109 static int disable_tpa;
110 module_param(disable_tpa, int, 0444);
111 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
112
113 static int int_mode;
114 module_param(int_mode, int, 0444);
115 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
116 "(1 INT#x; 2 MSI)");
117
118 static int dropless_fc;
119 module_param(dropless_fc, int, 0444);
120 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
121
122 static int mrrs = -1;
123 module_param(mrrs, int, 0444);
124 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
125
126 static int debug;
127 module_param(debug, int, 0444);
128 MODULE_PARM_DESC(debug, " Default debug msglevel");
129
130 static struct workqueue_struct *bnx2x_wq;
131 struct workqueue_struct *bnx2x_iov_wq;
132
133 struct bnx2x_mac_vals {
134 u32 xmac_addr;
135 u32 xmac_val;
136 u32 emac_addr;
137 u32 emac_val;
138 u32 umac_addr[2];
139 u32 umac_val[2];
140 u32 bmac_addr;
141 u32 bmac_val[2];
142 };
143
144 enum bnx2x_board_type {
145 BCM57710 = 0,
146 BCM57711,
147 BCM57711E,
148 BCM57712,
149 BCM57712_MF,
150 BCM57712_VF,
151 BCM57800,
152 BCM57800_MF,
153 BCM57800_VF,
154 BCM57810,
155 BCM57810_MF,
156 BCM57810_VF,
157 BCM57840_4_10,
158 BCM57840_2_20,
159 BCM57840_MF,
160 BCM57840_VF,
161 BCM57811,
162 BCM57811_MF,
163 BCM57840_O,
164 BCM57840_MFO,
165 BCM57811_VF
166 };
167
168 /* indexed by board_type, above */
169 static struct {
170 char *name;
171 } board_info[] = {
172 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
173 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
174 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
175 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
176 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
177 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
178 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
179 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
180 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
181 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
182 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
183 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
184 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
185 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
186 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
188 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
189 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
190 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
191 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
192 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
193 };
194
195 #ifndef PCI_DEVICE_ID_NX2_57710
196 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57711
199 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57711E
202 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57712
205 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57712_MF
208 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57712_VF
211 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57800
214 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57800_MF
217 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
218 #endif
219 #ifndef PCI_DEVICE_ID_NX2_57800_VF
220 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
221 #endif
222 #ifndef PCI_DEVICE_ID_NX2_57810
223 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
224 #endif
225 #ifndef PCI_DEVICE_ID_NX2_57810_MF
226 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
227 #endif
228 #ifndef PCI_DEVICE_ID_NX2_57840_O
229 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
230 #endif
231 #ifndef PCI_DEVICE_ID_NX2_57810_VF
232 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
233 #endif
234 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
235 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
236 #endif
237 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
238 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
239 #endif
240 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
241 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
242 #endif
243 #ifndef PCI_DEVICE_ID_NX2_57840_MF
244 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
245 #endif
246 #ifndef PCI_DEVICE_ID_NX2_57840_VF
247 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
248 #endif
249 #ifndef PCI_DEVICE_ID_NX2_57811
250 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
251 #endif
252 #ifndef PCI_DEVICE_ID_NX2_57811_MF
253 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
254 #endif
255 #ifndef PCI_DEVICE_ID_NX2_57811_VF
256 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
257 #endif
258
259 static const struct pci_device_id bnx2x_pci_tbl[] = {
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
268 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
275 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
278 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
279 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
280 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
281 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
282 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
283 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
284 { 0 }
285 };
286
287 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
288
289 const u32 dmae_reg_go_c[] = {
290 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
291 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
292 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
293 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
294 };
295
296 /* Global resources for unloading a previously loaded device */
297 #define BNX2X_PREV_WAIT_NEEDED 1
298 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
299 static LIST_HEAD(bnx2x_prev_list);
300
301 /* Forward declaration */
302 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
303 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
304 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
305
306 /****************************************************************************
307 * General service functions
308 ****************************************************************************/
309
310 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
311
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)312 static void __storm_memset_dma_mapping(struct bnx2x *bp,
313 u32 addr, dma_addr_t mapping)
314 {
315 REG_WR(bp, addr, U64_LO(mapping));
316 REG_WR(bp, addr + 4, U64_HI(mapping));
317 }
318
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)319 static void storm_memset_spq_addr(struct bnx2x *bp,
320 dma_addr_t mapping, u16 abs_fid)
321 {
322 u32 addr = XSEM_REG_FAST_MEMORY +
323 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
324
325 __storm_memset_dma_mapping(bp, addr, mapping);
326 }
327
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)328 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
329 u16 pf_id)
330 {
331 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
332 pf_id);
333 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
334 pf_id);
335 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
336 pf_id);
337 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
338 pf_id);
339 }
340
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)341 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
342 u8 enable)
343 {
344 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
345 enable);
346 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
347 enable);
348 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
349 enable);
350 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
351 enable);
352 }
353
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)354 static void storm_memset_eq_data(struct bnx2x *bp,
355 struct event_ring_data *eq_data,
356 u16 pfid)
357 {
358 size_t size = sizeof(struct event_ring_data);
359
360 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
361
362 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
363 }
364
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)365 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
366 u16 pfid)
367 {
368 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
369 REG_WR16(bp, addr, eq_prod);
370 }
371
372 /* used only at init
373 * locking is done by mcp
374 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)375 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
376 {
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
378 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
379 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
380 PCICFG_VENDOR_ID_OFFSET);
381 }
382
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)383 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
384 {
385 u32 val;
386
387 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
388 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
389 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
390 PCICFG_VENDOR_ID_OFFSET);
391
392 return val;
393 }
394
395 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
396 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
397 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
398 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
399 #define DMAE_DP_DST_NONE "dst_addr [none]"
400
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)401 static void bnx2x_dp_dmae(struct bnx2x *bp,
402 struct dmae_command *dmae, int msglvl)
403 {
404 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
405 int i;
406
407 switch (dmae->opcode & DMAE_COMMAND_DST) {
408 case DMAE_CMD_DST_PCI:
409 if (src_type == DMAE_CMD_SRC_PCI)
410 DP(msglvl, "DMAE: opcode 0x%08x\n"
411 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
412 "comp_addr [%x:%08x], comp_val 0x%08x\n",
413 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
414 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
415 dmae->comp_addr_hi, dmae->comp_addr_lo,
416 dmae->comp_val);
417 else
418 DP(msglvl, "DMAE: opcode 0x%08x\n"
419 "src [%08x], len [%d*4], dst [%x:%08x]\n"
420 "comp_addr [%x:%08x], comp_val 0x%08x\n",
421 dmae->opcode, dmae->src_addr_lo >> 2,
422 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
423 dmae->comp_addr_hi, dmae->comp_addr_lo,
424 dmae->comp_val);
425 break;
426 case DMAE_CMD_DST_GRC:
427 if (src_type == DMAE_CMD_SRC_PCI)
428 DP(msglvl, "DMAE: opcode 0x%08x\n"
429 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
430 "comp_addr [%x:%08x], comp_val 0x%08x\n",
431 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
432 dmae->len, dmae->dst_addr_lo >> 2,
433 dmae->comp_addr_hi, dmae->comp_addr_lo,
434 dmae->comp_val);
435 else
436 DP(msglvl, "DMAE: opcode 0x%08x\n"
437 "src [%08x], len [%d*4], dst [%08x]\n"
438 "comp_addr [%x:%08x], comp_val 0x%08x\n",
439 dmae->opcode, dmae->src_addr_lo >> 2,
440 dmae->len, dmae->dst_addr_lo >> 2,
441 dmae->comp_addr_hi, dmae->comp_addr_lo,
442 dmae->comp_val);
443 break;
444 default:
445 if (src_type == DMAE_CMD_SRC_PCI)
446 DP(msglvl, "DMAE: opcode 0x%08x\n"
447 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
448 "comp_addr [%x:%08x] comp_val 0x%08x\n",
449 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
450 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
451 dmae->comp_val);
452 else
453 DP(msglvl, "DMAE: opcode 0x%08x\n"
454 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
455 "comp_addr [%x:%08x] comp_val 0x%08x\n",
456 dmae->opcode, dmae->src_addr_lo >> 2,
457 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
458 dmae->comp_val);
459 break;
460 }
461
462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
463 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
464 i, *(((u32 *)dmae) + i));
465 }
466
467 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)468 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
469 {
470 u32 cmd_offset;
471 int i;
472
473 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
474 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
475 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
476 }
477 REG_WR(bp, dmae_reg_go_c[idx], 1);
478 }
479
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)480 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
481 {
482 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
483 DMAE_CMD_C_ENABLE);
484 }
485
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)486 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
487 {
488 return opcode & ~DMAE_CMD_SRC_RESET;
489 }
490
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)491 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
492 bool with_comp, u8 comp_type)
493 {
494 u32 opcode = 0;
495
496 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
497 (dst_type << DMAE_COMMAND_DST_SHIFT));
498
499 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
500
501 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
502 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
503 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
504 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
505
506 #ifdef __BIG_ENDIAN
507 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
508 #else
509 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
510 #endif
511 if (with_comp)
512 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
513 return opcode;
514 }
515
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)516 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
517 struct dmae_command *dmae,
518 u8 src_type, u8 dst_type)
519 {
520 memset(dmae, 0, sizeof(struct dmae_command));
521
522 /* set the opcode */
523 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
524 true, DMAE_COMP_PCI);
525
526 /* fill in the completion parameters */
527 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
528 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
529 dmae->comp_val = DMAE_COMP_VAL;
530 }
531
532 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)533 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
534 u32 *comp)
535 {
536 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
537 int rc = 0;
538
539 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
540
541 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
542 * as long as this code is called both from syscall context and
543 * from ndo_set_rx_mode() flow that may be called from BH.
544 */
545
546 spin_lock_bh(&bp->dmae_lock);
547
548 /* reset completion */
549 *comp = 0;
550
551 /* post the command on the channel used for initializations */
552 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
553
554 /* wait for completion */
555 udelay(5);
556 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
557
558 if (!cnt ||
559 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
560 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
561 BNX2X_ERR("DMAE timeout!\n");
562 rc = DMAE_TIMEOUT;
563 goto unlock;
564 }
565 cnt--;
566 udelay(50);
567 }
568 if (*comp & DMAE_PCI_ERR_FLAG) {
569 BNX2X_ERR("DMAE PCI error!\n");
570 rc = DMAE_PCI_ERROR;
571 }
572
573 unlock:
574
575 spin_unlock_bh(&bp->dmae_lock);
576
577 return rc;
578 }
579
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)580 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
581 u32 len32)
582 {
583 int rc;
584 struct dmae_command dmae;
585
586 if (!bp->dmae_ready) {
587 u32 *data = bnx2x_sp(bp, wb_data[0]);
588
589 if (CHIP_IS_E1(bp))
590 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
591 else
592 bnx2x_init_str_wr(bp, dst_addr, data, len32);
593 return;
594 }
595
596 /* set opcode and fixed command fields */
597 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
598
599 /* fill in addresses and len */
600 dmae.src_addr_lo = U64_LO(dma_addr);
601 dmae.src_addr_hi = U64_HI(dma_addr);
602 dmae.dst_addr_lo = dst_addr >> 2;
603 dmae.dst_addr_hi = 0;
604 dmae.len = len32;
605
606 /* issue the command and wait for completion */
607 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
608 if (rc) {
609 BNX2X_ERR("DMAE returned failure %d\n", rc);
610 #ifdef BNX2X_STOP_ON_ERROR
611 bnx2x_panic();
612 #endif
613 }
614 }
615
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)616 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
617 {
618 int rc;
619 struct dmae_command dmae;
620
621 if (!bp->dmae_ready) {
622 u32 *data = bnx2x_sp(bp, wb_data[0]);
623 int i;
624
625 if (CHIP_IS_E1(bp))
626 for (i = 0; i < len32; i++)
627 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
628 else
629 for (i = 0; i < len32; i++)
630 data[i] = REG_RD(bp, src_addr + i*4);
631
632 return;
633 }
634
635 /* set opcode and fixed command fields */
636 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
637
638 /* fill in addresses and len */
639 dmae.src_addr_lo = src_addr >> 2;
640 dmae.src_addr_hi = 0;
641 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
642 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
643 dmae.len = len32;
644
645 /* issue the command and wait for completion */
646 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
647 if (rc) {
648 BNX2X_ERR("DMAE returned failure %d\n", rc);
649 #ifdef BNX2X_STOP_ON_ERROR
650 bnx2x_panic();
651 #endif
652 }
653 }
654
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)655 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
656 u32 addr, u32 len)
657 {
658 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
659 int offset = 0;
660
661 while (len > dmae_wr_max) {
662 bnx2x_write_dmae(bp, phys_addr + offset,
663 addr + offset, dmae_wr_max);
664 offset += dmae_wr_max * 4;
665 len -= dmae_wr_max;
666 }
667
668 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
669 }
670
671 enum storms {
672 XSTORM,
673 TSTORM,
674 CSTORM,
675 USTORM,
676 MAX_STORMS
677 };
678
679 #define STORMS_NUM 4
680 #define REGS_IN_ENTRY 4
681
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)682 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
683 enum storms storm,
684 int entry)
685 {
686 switch (storm) {
687 case XSTORM:
688 return XSTORM_ASSERT_LIST_OFFSET(entry);
689 case TSTORM:
690 return TSTORM_ASSERT_LIST_OFFSET(entry);
691 case CSTORM:
692 return CSTORM_ASSERT_LIST_OFFSET(entry);
693 case USTORM:
694 return USTORM_ASSERT_LIST_OFFSET(entry);
695 case MAX_STORMS:
696 default:
697 BNX2X_ERR("unknown storm\n");
698 }
699 return -EINVAL;
700 }
701
bnx2x_mc_assert(struct bnx2x * bp)702 static int bnx2x_mc_assert(struct bnx2x *bp)
703 {
704 char last_idx;
705 int i, j, rc = 0;
706 enum storms storm;
707 u32 regs[REGS_IN_ENTRY];
708 u32 bar_storm_intmem[STORMS_NUM] = {
709 BAR_XSTRORM_INTMEM,
710 BAR_TSTRORM_INTMEM,
711 BAR_CSTRORM_INTMEM,
712 BAR_USTRORM_INTMEM
713 };
714 u32 storm_assert_list_index[STORMS_NUM] = {
715 XSTORM_ASSERT_LIST_INDEX_OFFSET,
716 TSTORM_ASSERT_LIST_INDEX_OFFSET,
717 CSTORM_ASSERT_LIST_INDEX_OFFSET,
718 USTORM_ASSERT_LIST_INDEX_OFFSET
719 };
720 char *storms_string[STORMS_NUM] = {
721 "XSTORM",
722 "TSTORM",
723 "CSTORM",
724 "USTORM"
725 };
726
727 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
728 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
729 storm_assert_list_index[storm]);
730 if (last_idx)
731 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
732 storms_string[storm], last_idx);
733
734 /* print the asserts */
735 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
736 /* read a single assert entry */
737 for (j = 0; j < REGS_IN_ENTRY; j++)
738 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
739 bnx2x_get_assert_list_entry(bp,
740 storm,
741 i) +
742 sizeof(u32) * j);
743
744 /* log entry if it contains a valid assert */
745 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
746 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
747 storms_string[storm], i, regs[3],
748 regs[2], regs[1], regs[0]);
749 rc++;
750 } else {
751 break;
752 }
753 }
754 }
755
756 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
757 CHIP_IS_E1(bp) ? "everest1" :
758 CHIP_IS_E1H(bp) ? "everest1h" :
759 CHIP_IS_E2(bp) ? "everest2" : "everest3",
760 bp->fw_major, bp->fw_minor, bp->fw_rev);
761
762 return rc;
763 }
764
765 #define MCPR_TRACE_BUFFER_SIZE (0x800)
766 #define SCRATCH_BUFFER_SIZE(bp) \
767 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
768
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)769 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
770 {
771 u32 addr, val;
772 u32 mark, offset;
773 __be32 data[9];
774 int word;
775 u32 trace_shmem_base;
776 if (BP_NOMCP(bp)) {
777 BNX2X_ERR("NO MCP - can not dump\n");
778 return;
779 }
780 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
781 (bp->common.bc_ver & 0xff0000) >> 16,
782 (bp->common.bc_ver & 0xff00) >> 8,
783 (bp->common.bc_ver & 0xff));
784
785 if (pci_channel_offline(bp->pdev)) {
786 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
787 return;
788 }
789
790 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
791 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
792 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
793
794 if (BP_PATH(bp) == 0)
795 trace_shmem_base = bp->common.shmem_base;
796 else
797 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
798
799 /* sanity */
800 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
801 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
802 SCRATCH_BUFFER_SIZE(bp)) {
803 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
804 trace_shmem_base);
805 return;
806 }
807
808 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
809
810 /* validate TRCB signature */
811 mark = REG_RD(bp, addr);
812 if (mark != MFW_TRACE_SIGNATURE) {
813 BNX2X_ERR("Trace buffer signature is missing.");
814 return ;
815 }
816
817 /* read cyclic buffer pointer */
818 addr += 4;
819 mark = REG_RD(bp, addr);
820 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
821 if (mark >= trace_shmem_base || mark < addr + 4) {
822 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
823 return;
824 }
825 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
826
827 printk("%s", lvl);
828
829 /* dump buffer after the mark */
830 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
831 for (word = 0; word < 8; word++)
832 data[word] = htonl(REG_RD(bp, offset + 4*word));
833 data[8] = 0x0;
834 pr_cont("%s", (char *)data);
835 }
836
837 /* dump buffer before the mark */
838 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
839 for (word = 0; word < 8; word++)
840 data[word] = htonl(REG_RD(bp, offset + 4*word));
841 data[8] = 0x0;
842 pr_cont("%s", (char *)data);
843 }
844 printk("%s" "end of fw dump\n", lvl);
845 }
846
bnx2x_fw_dump(struct bnx2x * bp)847 static void bnx2x_fw_dump(struct bnx2x *bp)
848 {
849 bnx2x_fw_dump_lvl(bp, KERN_ERR);
850 }
851
bnx2x_hc_int_disable(struct bnx2x * bp)852 static void bnx2x_hc_int_disable(struct bnx2x *bp)
853 {
854 int port = BP_PORT(bp);
855 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
856 u32 val = REG_RD(bp, addr);
857
858 /* in E1 we must use only PCI configuration space to disable
859 * MSI/MSIX capability
860 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
861 */
862 if (CHIP_IS_E1(bp)) {
863 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
864 * Use mask register to prevent from HC sending interrupts
865 * after we exit the function
866 */
867 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
868
869 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870 HC_CONFIG_0_REG_INT_LINE_EN_0 |
871 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
872 } else
873 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
874 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
875 HC_CONFIG_0_REG_INT_LINE_EN_0 |
876 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
877
878 DP(NETIF_MSG_IFDOWN,
879 "write %x to HC %d (addr 0x%x)\n",
880 val, port, addr);
881
882 REG_WR(bp, addr, val);
883 if (REG_RD(bp, addr) != val)
884 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
885 }
886
bnx2x_igu_int_disable(struct bnx2x * bp)887 static void bnx2x_igu_int_disable(struct bnx2x *bp)
888 {
889 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
890
891 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
892 IGU_PF_CONF_INT_LINE_EN |
893 IGU_PF_CONF_ATTN_BIT_EN);
894
895 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
896
897 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
898 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
899 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
900 }
901
bnx2x_int_disable(struct bnx2x * bp)902 static void bnx2x_int_disable(struct bnx2x *bp)
903 {
904 if (bp->common.int_block == INT_BLOCK_HC)
905 bnx2x_hc_int_disable(bp);
906 else
907 bnx2x_igu_int_disable(bp);
908 }
909
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)910 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
911 {
912 int i;
913 u16 j;
914 struct hc_sp_status_block_data sp_sb_data;
915 int func = BP_FUNC(bp);
916 #ifdef BNX2X_STOP_ON_ERROR
917 u16 start = 0, end = 0;
918 u8 cos;
919 #endif
920 if (IS_PF(bp) && disable_int)
921 bnx2x_int_disable(bp);
922
923 bp->stats_state = STATS_STATE_DISABLED;
924 bp->eth_stats.unrecoverable_error++;
925 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
926
927 BNX2X_ERR("begin crash dump -----------------\n");
928
929 /* Indices */
930 /* Common */
931 if (IS_PF(bp)) {
932 struct host_sp_status_block *def_sb = bp->def_status_blk;
933 int data_size, cstorm_offset;
934
935 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
936 bp->def_idx, bp->def_att_idx, bp->attn_state,
937 bp->spq_prod_idx, bp->stats_counter);
938 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
939 def_sb->atten_status_block.attn_bits,
940 def_sb->atten_status_block.attn_bits_ack,
941 def_sb->atten_status_block.status_block_id,
942 def_sb->atten_status_block.attn_bits_index);
943 BNX2X_ERR(" def (");
944 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
945 pr_cont("0x%x%s",
946 def_sb->sp_sb.index_values[i],
947 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
948
949 data_size = sizeof(struct hc_sp_status_block_data) /
950 sizeof(u32);
951 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
952 for (i = 0; i < data_size; i++)
953 *((u32 *)&sp_sb_data + i) =
954 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
955 i * sizeof(u32));
956
957 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
958 sp_sb_data.igu_sb_id,
959 sp_sb_data.igu_seg_id,
960 sp_sb_data.p_func.pf_id,
961 sp_sb_data.p_func.vnic_id,
962 sp_sb_data.p_func.vf_id,
963 sp_sb_data.p_func.vf_valid,
964 sp_sb_data.state);
965 }
966
967 for_each_eth_queue(bp, i) {
968 struct bnx2x_fastpath *fp = &bp->fp[i];
969 int loop;
970 struct hc_status_block_data_e2 sb_data_e2;
971 struct hc_status_block_data_e1x sb_data_e1x;
972 struct hc_status_block_sm *hc_sm_p =
973 CHIP_IS_E1x(bp) ?
974 sb_data_e1x.common.state_machine :
975 sb_data_e2.common.state_machine;
976 struct hc_index_data *hc_index_p =
977 CHIP_IS_E1x(bp) ?
978 sb_data_e1x.index_data :
979 sb_data_e2.index_data;
980 u8 data_size, cos;
981 u32 *sb_data_p;
982 struct bnx2x_fp_txdata txdata;
983
984 if (!bp->fp)
985 break;
986
987 if (!fp->rx_cons_sb)
988 continue;
989
990 /* Rx */
991 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
992 i, fp->rx_bd_prod, fp->rx_bd_cons,
993 fp->rx_comp_prod,
994 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
995 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
996 fp->rx_sge_prod, fp->last_max_sge,
997 le16_to_cpu(fp->fp_hc_idx));
998
999 /* Tx */
1000 for_each_cos_in_tx_queue(fp, cos)
1001 {
1002 if (!fp->txdata_ptr[cos])
1003 break;
1004
1005 txdata = *fp->txdata_ptr[cos];
1006
1007 if (!txdata.tx_cons_sb)
1008 continue;
1009
1010 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1011 i, txdata.tx_pkt_prod,
1012 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1013 txdata.tx_bd_cons,
1014 le16_to_cpu(*txdata.tx_cons_sb));
1015 }
1016
1017 loop = CHIP_IS_E1x(bp) ?
1018 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1019
1020 /* host sb data */
1021
1022 if (IS_FCOE_FP(fp))
1023 continue;
1024
1025 BNX2X_ERR(" run indexes (");
1026 for (j = 0; j < HC_SB_MAX_SM; j++)
1027 pr_cont("0x%x%s",
1028 fp->sb_running_index[j],
1029 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1030
1031 BNX2X_ERR(" indexes (");
1032 for (j = 0; j < loop; j++)
1033 pr_cont("0x%x%s",
1034 fp->sb_index_values[j],
1035 (j == loop - 1) ? ")" : " ");
1036
1037 /* VF cannot access FW refelection for status block */
1038 if (IS_VF(bp))
1039 continue;
1040
1041 /* fw sb data */
1042 data_size = CHIP_IS_E1x(bp) ?
1043 sizeof(struct hc_status_block_data_e1x) :
1044 sizeof(struct hc_status_block_data_e2);
1045 data_size /= sizeof(u32);
1046 sb_data_p = CHIP_IS_E1x(bp) ?
1047 (u32 *)&sb_data_e1x :
1048 (u32 *)&sb_data_e2;
1049 /* copy sb data in here */
1050 for (j = 0; j < data_size; j++)
1051 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1052 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1053 j * sizeof(u32));
1054
1055 if (!CHIP_IS_E1x(bp)) {
1056 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1057 sb_data_e2.common.p_func.pf_id,
1058 sb_data_e2.common.p_func.vf_id,
1059 sb_data_e2.common.p_func.vf_valid,
1060 sb_data_e2.common.p_func.vnic_id,
1061 sb_data_e2.common.same_igu_sb_1b,
1062 sb_data_e2.common.state);
1063 } else {
1064 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1065 sb_data_e1x.common.p_func.pf_id,
1066 sb_data_e1x.common.p_func.vf_id,
1067 sb_data_e1x.common.p_func.vf_valid,
1068 sb_data_e1x.common.p_func.vnic_id,
1069 sb_data_e1x.common.same_igu_sb_1b,
1070 sb_data_e1x.common.state);
1071 }
1072
1073 /* SB_SMs data */
1074 for (j = 0; j < HC_SB_MAX_SM; j++) {
1075 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1076 j, hc_sm_p[j].__flags,
1077 hc_sm_p[j].igu_sb_id,
1078 hc_sm_p[j].igu_seg_id,
1079 hc_sm_p[j].time_to_expire,
1080 hc_sm_p[j].timer_value);
1081 }
1082
1083 /* Indices data */
1084 for (j = 0; j < loop; j++) {
1085 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1086 hc_index_p[j].flags,
1087 hc_index_p[j].timeout);
1088 }
1089 }
1090
1091 #ifdef BNX2X_STOP_ON_ERROR
1092 if (IS_PF(bp)) {
1093 /* event queue */
1094 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1095 for (i = 0; i < NUM_EQ_DESC; i++) {
1096 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1097
1098 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1099 i, bp->eq_ring[i].message.opcode,
1100 bp->eq_ring[i].message.error);
1101 BNX2X_ERR("data: %x %x %x\n",
1102 data[0], data[1], data[2]);
1103 }
1104 }
1105
1106 /* Rings */
1107 /* Rx */
1108 for_each_valid_rx_queue(bp, i) {
1109 struct bnx2x_fastpath *fp = &bp->fp[i];
1110
1111 if (!bp->fp)
1112 break;
1113
1114 if (!fp->rx_cons_sb)
1115 continue;
1116
1117 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1118 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1119 for (j = start; j != end; j = RX_BD(j + 1)) {
1120 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1121 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1122
1123 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1124 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1125 }
1126
1127 start = RX_SGE(fp->rx_sge_prod);
1128 end = RX_SGE(fp->last_max_sge);
1129 for (j = start; j != end; j = RX_SGE(j + 1)) {
1130 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1131 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1132
1133 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1134 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1135 }
1136
1137 start = RCQ_BD(fp->rx_comp_cons - 10);
1138 end = RCQ_BD(fp->rx_comp_cons + 503);
1139 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1140 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1141
1142 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1143 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1144 }
1145 }
1146
1147 /* Tx */
1148 for_each_valid_tx_queue(bp, i) {
1149 struct bnx2x_fastpath *fp = &bp->fp[i];
1150
1151 if (!bp->fp)
1152 break;
1153
1154 for_each_cos_in_tx_queue(fp, cos) {
1155 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1156
1157 if (!fp->txdata_ptr[cos])
1158 break;
1159
1160 if (!txdata->tx_cons_sb)
1161 continue;
1162
1163 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1164 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1165 for (j = start; j != end; j = TX_BD(j + 1)) {
1166 struct sw_tx_bd *sw_bd =
1167 &txdata->tx_buf_ring[j];
1168
1169 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1170 i, cos, j, sw_bd->skb,
1171 sw_bd->first_bd);
1172 }
1173
1174 start = TX_BD(txdata->tx_bd_cons - 10);
1175 end = TX_BD(txdata->tx_bd_cons + 254);
1176 for (j = start; j != end; j = TX_BD(j + 1)) {
1177 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1178
1179 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1180 i, cos, j, tx_bd[0], tx_bd[1],
1181 tx_bd[2], tx_bd[3]);
1182 }
1183 }
1184 }
1185 #endif
1186 if (IS_PF(bp)) {
1187 int tmp_msg_en = bp->msg_enable;
1188
1189 bnx2x_fw_dump(bp);
1190 bp->msg_enable |= NETIF_MSG_HW;
1191 BNX2X_ERR("Idle check (1st round) ----------\n");
1192 bnx2x_idle_chk(bp);
1193 BNX2X_ERR("Idle check (2nd round) ----------\n");
1194 bnx2x_idle_chk(bp);
1195 bp->msg_enable = tmp_msg_en;
1196 bnx2x_mc_assert(bp);
1197 }
1198
1199 BNX2X_ERR("end crash dump -----------------\n");
1200 }
1201
1202 /*
1203 * FLR Support for E2
1204 *
1205 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1206 * initialization.
1207 */
1208 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1209 #define FLR_WAIT_INTERVAL 50 /* usec */
1210 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1211
1212 struct pbf_pN_buf_regs {
1213 int pN;
1214 u32 init_crd;
1215 u32 crd;
1216 u32 crd_freed;
1217 };
1218
1219 struct pbf_pN_cmd_regs {
1220 int pN;
1221 u32 lines_occup;
1222 u32 lines_freed;
1223 };
1224
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1225 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1226 struct pbf_pN_buf_regs *regs,
1227 u32 poll_count)
1228 {
1229 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1230 u32 cur_cnt = poll_count;
1231
1232 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1233 crd = crd_start = REG_RD(bp, regs->crd);
1234 init_crd = REG_RD(bp, regs->init_crd);
1235
1236 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1237 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1238 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1239
1240 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1241 (init_crd - crd_start))) {
1242 if (cur_cnt--) {
1243 udelay(FLR_WAIT_INTERVAL);
1244 crd = REG_RD(bp, regs->crd);
1245 crd_freed = REG_RD(bp, regs->crd_freed);
1246 } else {
1247 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1248 regs->pN);
1249 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1250 regs->pN, crd);
1251 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1252 regs->pN, crd_freed);
1253 break;
1254 }
1255 }
1256 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1257 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1258 }
1259
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1260 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1261 struct pbf_pN_cmd_regs *regs,
1262 u32 poll_count)
1263 {
1264 u32 occup, to_free, freed, freed_start;
1265 u32 cur_cnt = poll_count;
1266
1267 occup = to_free = REG_RD(bp, regs->lines_occup);
1268 freed = freed_start = REG_RD(bp, regs->lines_freed);
1269
1270 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1271 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1272
1273 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1274 if (cur_cnt--) {
1275 udelay(FLR_WAIT_INTERVAL);
1276 occup = REG_RD(bp, regs->lines_occup);
1277 freed = REG_RD(bp, regs->lines_freed);
1278 } else {
1279 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1280 regs->pN);
1281 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1282 regs->pN, occup);
1283 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1284 regs->pN, freed);
1285 break;
1286 }
1287 }
1288 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1289 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1290 }
1291
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1292 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1293 u32 expected, u32 poll_count)
1294 {
1295 u32 cur_cnt = poll_count;
1296 u32 val;
1297
1298 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1299 udelay(FLR_WAIT_INTERVAL);
1300
1301 return val;
1302 }
1303
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1304 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1305 char *msg, u32 poll_cnt)
1306 {
1307 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1308 if (val != 0) {
1309 BNX2X_ERR("%s usage count=%d\n", msg, val);
1310 return 1;
1311 }
1312 return 0;
1313 }
1314
1315 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1316 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1317 {
1318 /* adjust polling timeout */
1319 if (CHIP_REV_IS_EMUL(bp))
1320 return FLR_POLL_CNT * 2000;
1321
1322 if (CHIP_REV_IS_FPGA(bp))
1323 return FLR_POLL_CNT * 120;
1324
1325 return FLR_POLL_CNT;
1326 }
1327
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1328 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1329 {
1330 struct pbf_pN_cmd_regs cmd_regs[] = {
1331 {0, (CHIP_IS_E3B0(bp)) ?
1332 PBF_REG_TQ_OCCUPANCY_Q0 :
1333 PBF_REG_P0_TQ_OCCUPANCY,
1334 (CHIP_IS_E3B0(bp)) ?
1335 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1336 PBF_REG_P0_TQ_LINES_FREED_CNT},
1337 {1, (CHIP_IS_E3B0(bp)) ?
1338 PBF_REG_TQ_OCCUPANCY_Q1 :
1339 PBF_REG_P1_TQ_OCCUPANCY,
1340 (CHIP_IS_E3B0(bp)) ?
1341 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1342 PBF_REG_P1_TQ_LINES_FREED_CNT},
1343 {4, (CHIP_IS_E3B0(bp)) ?
1344 PBF_REG_TQ_OCCUPANCY_LB_Q :
1345 PBF_REG_P4_TQ_OCCUPANCY,
1346 (CHIP_IS_E3B0(bp)) ?
1347 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1348 PBF_REG_P4_TQ_LINES_FREED_CNT}
1349 };
1350
1351 struct pbf_pN_buf_regs buf_regs[] = {
1352 {0, (CHIP_IS_E3B0(bp)) ?
1353 PBF_REG_INIT_CRD_Q0 :
1354 PBF_REG_P0_INIT_CRD ,
1355 (CHIP_IS_E3B0(bp)) ?
1356 PBF_REG_CREDIT_Q0 :
1357 PBF_REG_P0_CREDIT,
1358 (CHIP_IS_E3B0(bp)) ?
1359 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1360 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1361 {1, (CHIP_IS_E3B0(bp)) ?
1362 PBF_REG_INIT_CRD_Q1 :
1363 PBF_REG_P1_INIT_CRD,
1364 (CHIP_IS_E3B0(bp)) ?
1365 PBF_REG_CREDIT_Q1 :
1366 PBF_REG_P1_CREDIT,
1367 (CHIP_IS_E3B0(bp)) ?
1368 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1369 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1370 {4, (CHIP_IS_E3B0(bp)) ?
1371 PBF_REG_INIT_CRD_LB_Q :
1372 PBF_REG_P4_INIT_CRD,
1373 (CHIP_IS_E3B0(bp)) ?
1374 PBF_REG_CREDIT_LB_Q :
1375 PBF_REG_P4_CREDIT,
1376 (CHIP_IS_E3B0(bp)) ?
1377 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1378 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1379 };
1380
1381 int i;
1382
1383 /* Verify the command queues are flushed P0, P1, P4 */
1384 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1385 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1386
1387 /* Verify the transmission buffers are flushed P0, P1, P4 */
1388 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1389 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1390 }
1391
1392 #define OP_GEN_PARAM(param) \
1393 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1394
1395 #define OP_GEN_TYPE(type) \
1396 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1397
1398 #define OP_GEN_AGG_VECT(index) \
1399 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1400
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1401 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1402 {
1403 u32 op_gen_command = 0;
1404 u32 comp_addr = BAR_CSTRORM_INTMEM +
1405 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1406 int ret = 0;
1407
1408 if (REG_RD(bp, comp_addr)) {
1409 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1410 return 1;
1411 }
1412
1413 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1414 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1415 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1416 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1417
1418 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1419 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1420
1421 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1422 BNX2X_ERR("FW final cleanup did not succeed\n");
1423 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1424 (REG_RD(bp, comp_addr)));
1425 bnx2x_panic();
1426 return 1;
1427 }
1428 /* Zero completion for next FLR */
1429 REG_WR(bp, comp_addr, 0);
1430
1431 return ret;
1432 }
1433
bnx2x_is_pcie_pending(struct pci_dev * dev)1434 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1435 {
1436 u16 status;
1437
1438 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1439 return status & PCI_EXP_DEVSTA_TRPND;
1440 }
1441
1442 /* PF FLR specific routines
1443 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1444 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1445 {
1446 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1447 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1448 CFC_REG_NUM_LCIDS_INSIDE_PF,
1449 "CFC PF usage counter timed out",
1450 poll_cnt))
1451 return 1;
1452
1453 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1454 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1455 DORQ_REG_PF_USAGE_CNT,
1456 "DQ PF usage counter timed out",
1457 poll_cnt))
1458 return 1;
1459
1460 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1461 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1462 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1463 "QM PF usage counter timed out",
1464 poll_cnt))
1465 return 1;
1466
1467 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1468 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1469 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1470 "Timers VNIC usage counter timed out",
1471 poll_cnt))
1472 return 1;
1473 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1474 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1475 "Timers NUM_SCANS usage counter timed out",
1476 poll_cnt))
1477 return 1;
1478
1479 /* Wait DMAE PF usage counter to zero */
1480 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1481 dmae_reg_go_c[INIT_DMAE_C(bp)],
1482 "DMAE command register timed out",
1483 poll_cnt))
1484 return 1;
1485
1486 return 0;
1487 }
1488
bnx2x_hw_enable_status(struct bnx2x * bp)1489 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1490 {
1491 u32 val;
1492
1493 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1494 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1495
1496 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1497 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1498
1499 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1500 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1501
1502 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1503 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1504
1505 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1506 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1507
1508 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1509 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1510
1511 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1512 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1513
1514 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1515 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1516 val);
1517 }
1518
bnx2x_pf_flr_clnup(struct bnx2x * bp)1519 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1520 {
1521 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1522
1523 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1524
1525 /* Re-enable PF target read access */
1526 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1527
1528 /* Poll HW usage counters */
1529 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1530 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1531 return -EBUSY;
1532
1533 /* Zero the igu 'trailing edge' and 'leading edge' */
1534
1535 /* Send the FW cleanup command */
1536 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1537 return -EBUSY;
1538
1539 /* ATC cleanup */
1540
1541 /* Verify TX hw is flushed */
1542 bnx2x_tx_hw_flushed(bp, poll_cnt);
1543
1544 /* Wait 100ms (not adjusted according to platform) */
1545 msleep(100);
1546
1547 /* Verify no pending pci transactions */
1548 if (bnx2x_is_pcie_pending(bp->pdev))
1549 BNX2X_ERR("PCIE Transactions still pending\n");
1550
1551 /* Debug */
1552 bnx2x_hw_enable_status(bp);
1553
1554 /*
1555 * Master enable - Due to WB DMAE writes performed before this
1556 * register is re-initialized as part of the regular function init
1557 */
1558 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1559
1560 return 0;
1561 }
1562
bnx2x_hc_int_enable(struct bnx2x * bp)1563 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1564 {
1565 int port = BP_PORT(bp);
1566 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1567 u32 val = REG_RD(bp, addr);
1568 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1569 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1570 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1571
1572 if (msix) {
1573 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1574 HC_CONFIG_0_REG_INT_LINE_EN_0);
1575 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1576 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1577 if (single_msix)
1578 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1579 } else if (msi) {
1580 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1581 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1582 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1583 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1584 } else {
1585 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1586 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1587 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1588 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1589
1590 if (!CHIP_IS_E1(bp)) {
1591 DP(NETIF_MSG_IFUP,
1592 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1593
1594 REG_WR(bp, addr, val);
1595
1596 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1597 }
1598 }
1599
1600 if (CHIP_IS_E1(bp))
1601 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1602
1603 DP(NETIF_MSG_IFUP,
1604 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1605 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1606
1607 REG_WR(bp, addr, val);
1608 /*
1609 * Ensure that HC_CONFIG is written before leading/trailing edge config
1610 */
1611 barrier();
1612
1613 if (!CHIP_IS_E1(bp)) {
1614 /* init leading/trailing edge */
1615 if (IS_MF(bp)) {
1616 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1617 if (bp->port.pmf)
1618 /* enable nig and gpio3 attention */
1619 val |= 0x1100;
1620 } else
1621 val = 0xffff;
1622
1623 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1624 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1625 }
1626 }
1627
bnx2x_igu_int_enable(struct bnx2x * bp)1628 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1629 {
1630 u32 val;
1631 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1632 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1633 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1634
1635 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1636
1637 if (msix) {
1638 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1639 IGU_PF_CONF_SINGLE_ISR_EN);
1640 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1641 IGU_PF_CONF_ATTN_BIT_EN);
1642
1643 if (single_msix)
1644 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1645 } else if (msi) {
1646 val &= ~IGU_PF_CONF_INT_LINE_EN;
1647 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1648 IGU_PF_CONF_ATTN_BIT_EN |
1649 IGU_PF_CONF_SINGLE_ISR_EN);
1650 } else {
1651 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1652 val |= (IGU_PF_CONF_INT_LINE_EN |
1653 IGU_PF_CONF_ATTN_BIT_EN |
1654 IGU_PF_CONF_SINGLE_ISR_EN);
1655 }
1656
1657 /* Clean previous status - need to configure igu prior to ack*/
1658 if ((!msix) || single_msix) {
1659 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1660 bnx2x_ack_int(bp);
1661 }
1662
1663 val |= IGU_PF_CONF_FUNC_EN;
1664
1665 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1666 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1667
1668 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1669
1670 if (val & IGU_PF_CONF_INT_LINE_EN)
1671 pci_intx(bp->pdev, true);
1672
1673 barrier();
1674
1675 /* init leading/trailing edge */
1676 if (IS_MF(bp)) {
1677 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1678 if (bp->port.pmf)
1679 /* enable nig and gpio3 attention */
1680 val |= 0x1100;
1681 } else
1682 val = 0xffff;
1683
1684 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1685 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1686 }
1687
bnx2x_int_enable(struct bnx2x * bp)1688 void bnx2x_int_enable(struct bnx2x *bp)
1689 {
1690 if (bp->common.int_block == INT_BLOCK_HC)
1691 bnx2x_hc_int_enable(bp);
1692 else
1693 bnx2x_igu_int_enable(bp);
1694 }
1695
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1696 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1697 {
1698 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1699 int i, offset;
1700
1701 if (disable_hw)
1702 /* prevent the HW from sending interrupts */
1703 bnx2x_int_disable(bp);
1704
1705 /* make sure all ISRs are done */
1706 if (msix) {
1707 synchronize_irq(bp->msix_table[0].vector);
1708 offset = 1;
1709 if (CNIC_SUPPORT(bp))
1710 offset++;
1711 for_each_eth_queue(bp, i)
1712 synchronize_irq(bp->msix_table[offset++].vector);
1713 } else
1714 synchronize_irq(bp->pdev->irq);
1715
1716 /* make sure sp_task is not running */
1717 cancel_delayed_work(&bp->sp_task);
1718 cancel_delayed_work(&bp->period_task);
1719 flush_workqueue(bnx2x_wq);
1720 }
1721
1722 /* fast path */
1723
1724 /*
1725 * General service functions
1726 */
1727
1728 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1729 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1730 {
1731 u32 lock_status;
1732 u32 resource_bit = (1 << resource);
1733 int func = BP_FUNC(bp);
1734 u32 hw_lock_control_reg;
1735
1736 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1737 "Trying to take a lock on resource %d\n", resource);
1738
1739 /* Validating that the resource is within range */
1740 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1741 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1742 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1743 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1744 return false;
1745 }
1746
1747 if (func <= 5)
1748 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1749 else
1750 hw_lock_control_reg =
1751 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1752
1753 /* Try to acquire the lock */
1754 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1755 lock_status = REG_RD(bp, hw_lock_control_reg);
1756 if (lock_status & resource_bit)
1757 return true;
1758
1759 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1760 "Failed to get a lock on resource %d\n", resource);
1761 return false;
1762 }
1763
1764 /**
1765 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1766 *
1767 * @bp: driver handle
1768 *
1769 * Returns the recovery leader resource id according to the engine this function
1770 * belongs to. Currently only only 2 engines is supported.
1771 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1772 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1773 {
1774 if (BP_PATH(bp))
1775 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1776 else
1777 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1778 }
1779
1780 /**
1781 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1782 *
1783 * @bp: driver handle
1784 *
1785 * Tries to acquire a leader lock for current engine.
1786 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1787 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1788 {
1789 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1790 }
1791
1792 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1793
1794 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1795 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1796 {
1797 /* Set the interrupt occurred bit for the sp-task to recognize it
1798 * must ack the interrupt and transition according to the IGU
1799 * state machine.
1800 */
1801 atomic_set(&bp->interrupt_occurred, 1);
1802
1803 /* The sp_task must execute only after this bit
1804 * is set, otherwise we will get out of sync and miss all
1805 * further interrupts. Hence, the barrier.
1806 */
1807 smp_wmb();
1808
1809 /* schedule sp_task to workqueue */
1810 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1811 }
1812
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1813 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1814 {
1815 struct bnx2x *bp = fp->bp;
1816 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1817 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1818 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1819 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1820
1821 DP(BNX2X_MSG_SP,
1822 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1823 fp->index, cid, command, bp->state,
1824 rr_cqe->ramrod_cqe.ramrod_type);
1825
1826 /* If cid is within VF range, replace the slowpath object with the
1827 * one corresponding to this VF
1828 */
1829 if (cid >= BNX2X_FIRST_VF_CID &&
1830 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1831 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1832
1833 switch (command) {
1834 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1835 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1836 drv_cmd = BNX2X_Q_CMD_UPDATE;
1837 break;
1838
1839 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1840 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1841 drv_cmd = BNX2X_Q_CMD_SETUP;
1842 break;
1843
1844 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1845 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1846 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1847 break;
1848
1849 case (RAMROD_CMD_ID_ETH_HALT):
1850 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1851 drv_cmd = BNX2X_Q_CMD_HALT;
1852 break;
1853
1854 case (RAMROD_CMD_ID_ETH_TERMINATE):
1855 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1856 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1857 break;
1858
1859 case (RAMROD_CMD_ID_ETH_EMPTY):
1860 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1861 drv_cmd = BNX2X_Q_CMD_EMPTY;
1862 break;
1863
1864 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1865 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1866 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1867 break;
1868
1869 default:
1870 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1871 command, fp->index);
1872 return;
1873 }
1874
1875 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1876 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1877 /* q_obj->complete_cmd() failure means that this was
1878 * an unexpected completion.
1879 *
1880 * In this case we don't want to increase the bp->spq_left
1881 * because apparently we haven't sent this command the first
1882 * place.
1883 */
1884 #ifdef BNX2X_STOP_ON_ERROR
1885 bnx2x_panic();
1886 #else
1887 return;
1888 #endif
1889
1890 smp_mb__before_atomic();
1891 atomic_inc(&bp->cq_spq_left);
1892 /* push the change in bp->spq_left and towards the memory */
1893 smp_mb__after_atomic();
1894
1895 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1896
1897 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1898 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1899 /* if Q update ramrod is completed for last Q in AFEX vif set
1900 * flow, then ACK MCP at the end
1901 *
1902 * mark pending ACK to MCP bit.
1903 * prevent case that both bits are cleared.
1904 * At the end of load/unload driver checks that
1905 * sp_state is cleared, and this order prevents
1906 * races
1907 */
1908 smp_mb__before_atomic();
1909 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1910 wmb();
1911 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1912 smp_mb__after_atomic();
1913
1914 /* schedule the sp task as mcp ack is required */
1915 bnx2x_schedule_sp_task(bp);
1916 }
1917
1918 return;
1919 }
1920
bnx2x_interrupt(int irq,void * dev_instance)1921 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1922 {
1923 struct bnx2x *bp = netdev_priv(dev_instance);
1924 u16 status = bnx2x_ack_int(bp);
1925 u16 mask;
1926 int i;
1927 u8 cos;
1928
1929 /* Return here if interrupt is shared and it's not for us */
1930 if (unlikely(status == 0)) {
1931 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1932 return IRQ_NONE;
1933 }
1934 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1935
1936 #ifdef BNX2X_STOP_ON_ERROR
1937 if (unlikely(bp->panic))
1938 return IRQ_HANDLED;
1939 #endif
1940
1941 for_each_eth_queue(bp, i) {
1942 struct bnx2x_fastpath *fp = &bp->fp[i];
1943
1944 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1945 if (status & mask) {
1946 /* Handle Rx or Tx according to SB id */
1947 for_each_cos_in_tx_queue(fp, cos)
1948 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1949 prefetch(&fp->sb_running_index[SM_RX_ID]);
1950 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1951 status &= ~mask;
1952 }
1953 }
1954
1955 if (CNIC_SUPPORT(bp)) {
1956 mask = 0x2;
1957 if (status & (mask | 0x1)) {
1958 struct cnic_ops *c_ops = NULL;
1959
1960 rcu_read_lock();
1961 c_ops = rcu_dereference(bp->cnic_ops);
1962 if (c_ops && (bp->cnic_eth_dev.drv_state &
1963 CNIC_DRV_STATE_HANDLES_IRQ))
1964 c_ops->cnic_handler(bp->cnic_data, NULL);
1965 rcu_read_unlock();
1966
1967 status &= ~mask;
1968 }
1969 }
1970
1971 if (unlikely(status & 0x1)) {
1972
1973 /* schedule sp task to perform default status block work, ack
1974 * attentions and enable interrupts.
1975 */
1976 bnx2x_schedule_sp_task(bp);
1977
1978 status &= ~0x1;
1979 if (!status)
1980 return IRQ_HANDLED;
1981 }
1982
1983 if (unlikely(status))
1984 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1985 status);
1986
1987 return IRQ_HANDLED;
1988 }
1989
1990 /* Link */
1991
1992 /*
1993 * General service functions
1994 */
1995
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1996 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1997 {
1998 u32 lock_status;
1999 u32 resource_bit = (1 << resource);
2000 int func = BP_FUNC(bp);
2001 u32 hw_lock_control_reg;
2002 int cnt;
2003
2004 /* Validating that the resource is within range */
2005 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2006 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2007 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2008 return -EINVAL;
2009 }
2010
2011 if (func <= 5) {
2012 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2013 } else {
2014 hw_lock_control_reg =
2015 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2016 }
2017
2018 /* Validating that the resource is not already taken */
2019 lock_status = REG_RD(bp, hw_lock_control_reg);
2020 if (lock_status & resource_bit) {
2021 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2022 lock_status, resource_bit);
2023 return -EEXIST;
2024 }
2025
2026 /* Try for 5 second every 5ms */
2027 for (cnt = 0; cnt < 1000; cnt++) {
2028 /* Try to acquire the lock */
2029 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2030 lock_status = REG_RD(bp, hw_lock_control_reg);
2031 if (lock_status & resource_bit)
2032 return 0;
2033
2034 usleep_range(5000, 10000);
2035 }
2036 BNX2X_ERR("Timeout\n");
2037 return -EAGAIN;
2038 }
2039
bnx2x_release_leader_lock(struct bnx2x * bp)2040 int bnx2x_release_leader_lock(struct bnx2x *bp)
2041 {
2042 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2043 }
2044
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2045 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2046 {
2047 u32 lock_status;
2048 u32 resource_bit = (1 << resource);
2049 int func = BP_FUNC(bp);
2050 u32 hw_lock_control_reg;
2051
2052 /* Validating that the resource is within range */
2053 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2054 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2055 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2056 return -EINVAL;
2057 }
2058
2059 if (func <= 5) {
2060 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2061 } else {
2062 hw_lock_control_reg =
2063 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2064 }
2065
2066 /* Validating that the resource is currently taken */
2067 lock_status = REG_RD(bp, hw_lock_control_reg);
2068 if (!(lock_status & resource_bit)) {
2069 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2070 lock_status, resource_bit);
2071 return -EFAULT;
2072 }
2073
2074 REG_WR(bp, hw_lock_control_reg, resource_bit);
2075 return 0;
2076 }
2077
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2078 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2079 {
2080 /* The GPIO should be swapped if swap register is set and active */
2081 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2082 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2083 int gpio_shift = gpio_num +
2084 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2085 u32 gpio_mask = (1 << gpio_shift);
2086 u32 gpio_reg;
2087 int value;
2088
2089 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091 return -EINVAL;
2092 }
2093
2094 /* read GPIO value */
2095 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2096
2097 /* get the requested pin value */
2098 if ((gpio_reg & gpio_mask) == gpio_mask)
2099 value = 1;
2100 else
2101 value = 0;
2102
2103 return value;
2104 }
2105
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2106 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2107 {
2108 /* The GPIO should be swapped if swap register is set and active */
2109 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2110 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2111 int gpio_shift = gpio_num +
2112 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2113 u32 gpio_mask = (1 << gpio_shift);
2114 u32 gpio_reg;
2115
2116 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2117 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2118 return -EINVAL;
2119 }
2120
2121 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2122 /* read GPIO and mask except the float bits */
2123 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2124
2125 switch (mode) {
2126 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2127 DP(NETIF_MSG_LINK,
2128 "Set GPIO %d (shift %d) -> output low\n",
2129 gpio_num, gpio_shift);
2130 /* clear FLOAT and set CLR */
2131 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2132 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2133 break;
2134
2135 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2136 DP(NETIF_MSG_LINK,
2137 "Set GPIO %d (shift %d) -> output high\n",
2138 gpio_num, gpio_shift);
2139 /* clear FLOAT and set SET */
2140 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2141 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2142 break;
2143
2144 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2145 DP(NETIF_MSG_LINK,
2146 "Set GPIO %d (shift %d) -> input\n",
2147 gpio_num, gpio_shift);
2148 /* set FLOAT */
2149 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2150 break;
2151
2152 default:
2153 break;
2154 }
2155
2156 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2157 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2158
2159 return 0;
2160 }
2161
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2162 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2163 {
2164 u32 gpio_reg = 0;
2165 int rc = 0;
2166
2167 /* Any port swapping should be handled by caller. */
2168
2169 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2170 /* read GPIO and mask except the float bits */
2171 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2172 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2173 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2174 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2175
2176 switch (mode) {
2177 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2178 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2179 /* set CLR */
2180 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2181 break;
2182
2183 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2184 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2185 /* set SET */
2186 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2187 break;
2188
2189 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2190 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2191 /* set FLOAT */
2192 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2193 break;
2194
2195 default:
2196 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2197 rc = -EINVAL;
2198 break;
2199 }
2200
2201 if (rc == 0)
2202 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2203
2204 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2205
2206 return rc;
2207 }
2208
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2209 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2210 {
2211 /* The GPIO should be swapped if swap register is set and active */
2212 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2213 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2214 int gpio_shift = gpio_num +
2215 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2216 u32 gpio_mask = (1 << gpio_shift);
2217 u32 gpio_reg;
2218
2219 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2220 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2221 return -EINVAL;
2222 }
2223
2224 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2225 /* read GPIO int */
2226 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2227
2228 switch (mode) {
2229 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2230 DP(NETIF_MSG_LINK,
2231 "Clear GPIO INT %d (shift %d) -> output low\n",
2232 gpio_num, gpio_shift);
2233 /* clear SET and set CLR */
2234 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2236 break;
2237
2238 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2239 DP(NETIF_MSG_LINK,
2240 "Set GPIO INT %d (shift %d) -> output high\n",
2241 gpio_num, gpio_shift);
2242 /* clear CLR and set SET */
2243 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2244 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2245 break;
2246
2247 default:
2248 break;
2249 }
2250
2251 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2252 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2253
2254 return 0;
2255 }
2256
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2257 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2258 {
2259 u32 spio_reg;
2260
2261 /* Only 2 SPIOs are configurable */
2262 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2263 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2264 return -EINVAL;
2265 }
2266
2267 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2268 /* read SPIO and mask except the float bits */
2269 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2270
2271 switch (mode) {
2272 case MISC_SPIO_OUTPUT_LOW:
2273 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2274 /* clear FLOAT and set CLR */
2275 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2276 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2277 break;
2278
2279 case MISC_SPIO_OUTPUT_HIGH:
2280 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2281 /* clear FLOAT and set SET */
2282 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2283 spio_reg |= (spio << MISC_SPIO_SET_POS);
2284 break;
2285
2286 case MISC_SPIO_INPUT_HI_Z:
2287 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2288 /* set FLOAT */
2289 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2290 break;
2291
2292 default:
2293 break;
2294 }
2295
2296 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2297 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2298
2299 return 0;
2300 }
2301
bnx2x_calc_fc_adv(struct bnx2x * bp)2302 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2303 {
2304 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2305
2306 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2307 ADVERTISED_Pause);
2308 switch (bp->link_vars.ieee_fc &
2309 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2310 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2311 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2312 ADVERTISED_Pause);
2313 break;
2314
2315 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2316 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2317 break;
2318
2319 default:
2320 break;
2321 }
2322 }
2323
bnx2x_set_requested_fc(struct bnx2x * bp)2324 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2325 {
2326 /* Initialize link parameters structure variables
2327 * It is recommended to turn off RX FC for jumbo frames
2328 * for better performance
2329 */
2330 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2331 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2332 else
2333 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2334 }
2335
bnx2x_init_dropless_fc(struct bnx2x * bp)2336 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2337 {
2338 u32 pause_enabled = 0;
2339
2340 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2341 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2342 pause_enabled = 1;
2343
2344 REG_WR(bp, BAR_USTRORM_INTMEM +
2345 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2346 pause_enabled);
2347 }
2348
2349 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2350 pause_enabled ? "enabled" : "disabled");
2351 }
2352
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2353 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2354 {
2355 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2356 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2357
2358 if (!BP_NOMCP(bp)) {
2359 bnx2x_set_requested_fc(bp);
2360 bnx2x_acquire_phy_lock(bp);
2361
2362 if (load_mode == LOAD_DIAG) {
2363 struct link_params *lp = &bp->link_params;
2364 lp->loopback_mode = LOOPBACK_XGXS;
2365 /* Prefer doing PHY loopback at highest speed */
2366 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2367 if (lp->speed_cap_mask[cfx_idx] &
2368 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2369 lp->req_line_speed[cfx_idx] =
2370 SPEED_20000;
2371 else if (lp->speed_cap_mask[cfx_idx] &
2372 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2373 lp->req_line_speed[cfx_idx] =
2374 SPEED_10000;
2375 else
2376 lp->req_line_speed[cfx_idx] =
2377 SPEED_1000;
2378 }
2379 }
2380
2381 if (load_mode == LOAD_LOOPBACK_EXT) {
2382 struct link_params *lp = &bp->link_params;
2383 lp->loopback_mode = LOOPBACK_EXT;
2384 }
2385
2386 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2387
2388 bnx2x_release_phy_lock(bp);
2389
2390 bnx2x_init_dropless_fc(bp);
2391
2392 bnx2x_calc_fc_adv(bp);
2393
2394 if (bp->link_vars.link_up) {
2395 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2396 bnx2x_link_report(bp);
2397 }
2398 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2399 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2400 return rc;
2401 }
2402 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2403 return -EINVAL;
2404 }
2405
bnx2x_link_set(struct bnx2x * bp)2406 void bnx2x_link_set(struct bnx2x *bp)
2407 {
2408 if (!BP_NOMCP(bp)) {
2409 bnx2x_acquire_phy_lock(bp);
2410 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2411 bnx2x_release_phy_lock(bp);
2412
2413 bnx2x_init_dropless_fc(bp);
2414
2415 bnx2x_calc_fc_adv(bp);
2416 } else
2417 BNX2X_ERR("Bootcode is missing - can not set link\n");
2418 }
2419
bnx2x__link_reset(struct bnx2x * bp)2420 static void bnx2x__link_reset(struct bnx2x *bp)
2421 {
2422 if (!BP_NOMCP(bp)) {
2423 bnx2x_acquire_phy_lock(bp);
2424 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2425 bnx2x_release_phy_lock(bp);
2426 } else
2427 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2428 }
2429
bnx2x_force_link_reset(struct bnx2x * bp)2430 void bnx2x_force_link_reset(struct bnx2x *bp)
2431 {
2432 bnx2x_acquire_phy_lock(bp);
2433 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2434 bnx2x_release_phy_lock(bp);
2435 }
2436
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2437 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2438 {
2439 u8 rc = 0;
2440
2441 if (!BP_NOMCP(bp)) {
2442 bnx2x_acquire_phy_lock(bp);
2443 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2444 is_serdes);
2445 bnx2x_release_phy_lock(bp);
2446 } else
2447 BNX2X_ERR("Bootcode is missing - can not test link\n");
2448
2449 return rc;
2450 }
2451
2452 /* Calculates the sum of vn_min_rates.
2453 It's needed for further normalizing of the min_rates.
2454 Returns:
2455 sum of vn_min_rates.
2456 or
2457 0 - if all the min_rates are 0.
2458 In the later case fairness algorithm should be deactivated.
2459 If not all min_rates are zero then those that are zeroes will be set to 1.
2460 */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2461 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2462 struct cmng_init_input *input)
2463 {
2464 int all_zero = 1;
2465 int vn;
2466
2467 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2468 u32 vn_cfg = bp->mf_config[vn];
2469 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2470 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2471
2472 /* Skip hidden vns */
2473 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2474 vn_min_rate = 0;
2475 /* If min rate is zero - set it to 1 */
2476 else if (!vn_min_rate)
2477 vn_min_rate = DEF_MIN_RATE;
2478 else
2479 all_zero = 0;
2480
2481 input->vnic_min_rate[vn] = vn_min_rate;
2482 }
2483
2484 /* if ETS or all min rates are zeros - disable fairness */
2485 if (BNX2X_IS_ETS_ENABLED(bp)) {
2486 input->flags.cmng_enables &=
2487 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2488 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2489 } else if (all_zero) {
2490 input->flags.cmng_enables &=
2491 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2492 DP(NETIF_MSG_IFUP,
2493 "All MIN values are zeroes fairness will be disabled\n");
2494 } else
2495 input->flags.cmng_enables |=
2496 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2497 }
2498
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2499 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2500 struct cmng_init_input *input)
2501 {
2502 u16 vn_max_rate;
2503 u32 vn_cfg = bp->mf_config[vn];
2504
2505 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2506 vn_max_rate = 0;
2507 else {
2508 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2509
2510 if (IS_MF_PERCENT_BW(bp)) {
2511 /* maxCfg in percents of linkspeed */
2512 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2513 } else /* SD modes */
2514 /* maxCfg is absolute in 100Mb units */
2515 vn_max_rate = maxCfg * 100;
2516 }
2517
2518 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2519
2520 input->vnic_max_rate[vn] = vn_max_rate;
2521 }
2522
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2523 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2524 {
2525 if (CHIP_REV_IS_SLOW(bp))
2526 return CMNG_FNS_NONE;
2527 if (IS_MF(bp))
2528 return CMNG_FNS_MINMAX;
2529
2530 return CMNG_FNS_NONE;
2531 }
2532
bnx2x_read_mf_cfg(struct bnx2x * bp)2533 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2534 {
2535 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2536
2537 if (BP_NOMCP(bp))
2538 return; /* what should be the default value in this case */
2539
2540 /* For 2 port configuration the absolute function number formula
2541 * is:
2542 * abs_func = 2 * vn + BP_PORT + BP_PATH
2543 *
2544 * and there are 4 functions per port
2545 *
2546 * For 4 port configuration it is
2547 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2548 *
2549 * and there are 2 functions per port
2550 */
2551 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2552 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2553
2554 if (func >= E1H_FUNC_MAX)
2555 break;
2556
2557 bp->mf_config[vn] =
2558 MF_CFG_RD(bp, func_mf_config[func].config);
2559 }
2560 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2561 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2562 bp->flags |= MF_FUNC_DIS;
2563 } else {
2564 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2565 bp->flags &= ~MF_FUNC_DIS;
2566 }
2567 }
2568
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2569 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2570 {
2571 struct cmng_init_input input;
2572 memset(&input, 0, sizeof(struct cmng_init_input));
2573
2574 input.port_rate = bp->link_vars.line_speed;
2575
2576 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2577 int vn;
2578
2579 /* read mf conf from shmem */
2580 if (read_cfg)
2581 bnx2x_read_mf_cfg(bp);
2582
2583 /* vn_weight_sum and enable fairness if not 0 */
2584 bnx2x_calc_vn_min(bp, &input);
2585
2586 /* calculate and set min-max rate for each vn */
2587 if (bp->port.pmf)
2588 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2589 bnx2x_calc_vn_max(bp, vn, &input);
2590
2591 /* always enable rate shaping and fairness */
2592 input.flags.cmng_enables |=
2593 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2594
2595 bnx2x_init_cmng(&input, &bp->cmng);
2596 return;
2597 }
2598
2599 /* rate shaping and fairness are disabled */
2600 DP(NETIF_MSG_IFUP,
2601 "rate shaping and fairness are disabled\n");
2602 }
2603
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2604 static void storm_memset_cmng(struct bnx2x *bp,
2605 struct cmng_init *cmng,
2606 u8 port)
2607 {
2608 int vn;
2609 size_t size = sizeof(struct cmng_struct_per_port);
2610
2611 u32 addr = BAR_XSTRORM_INTMEM +
2612 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2613
2614 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2615
2616 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2617 int func = func_by_vn(bp, vn);
2618
2619 addr = BAR_XSTRORM_INTMEM +
2620 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2621 size = sizeof(struct rate_shaping_vars_per_vn);
2622 __storm_memset_struct(bp, addr, size,
2623 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2624
2625 addr = BAR_XSTRORM_INTMEM +
2626 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2627 size = sizeof(struct fairness_vars_per_vn);
2628 __storm_memset_struct(bp, addr, size,
2629 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2630 }
2631 }
2632
2633 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2634 void bnx2x_set_local_cmng(struct bnx2x *bp)
2635 {
2636 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2637
2638 if (cmng_fns != CMNG_FNS_NONE) {
2639 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2640 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2641 } else {
2642 /* rate shaping and fairness are disabled */
2643 DP(NETIF_MSG_IFUP,
2644 "single function mode without fairness\n");
2645 }
2646 }
2647
2648 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2649 static void bnx2x_link_attn(struct bnx2x *bp)
2650 {
2651 /* Make sure that we are synced with the current statistics */
2652 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2653
2654 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2655
2656 bnx2x_init_dropless_fc(bp);
2657
2658 if (bp->link_vars.link_up) {
2659
2660 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2661 struct host_port_stats *pstats;
2662
2663 pstats = bnx2x_sp(bp, port_stats);
2664 /* reset old mac stats */
2665 memset(&(pstats->mac_stx[0]), 0,
2666 sizeof(struct mac_stx));
2667 }
2668 if (bp->state == BNX2X_STATE_OPEN)
2669 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2670 }
2671
2672 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2673 bnx2x_set_local_cmng(bp);
2674
2675 __bnx2x_link_report(bp);
2676
2677 if (IS_MF(bp))
2678 bnx2x_link_sync_notify(bp);
2679 }
2680
bnx2x__link_status_update(struct bnx2x * bp)2681 void bnx2x__link_status_update(struct bnx2x *bp)
2682 {
2683 if (bp->state != BNX2X_STATE_OPEN)
2684 return;
2685
2686 /* read updated dcb configuration */
2687 if (IS_PF(bp)) {
2688 bnx2x_dcbx_pmf_update(bp);
2689 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2690 if (bp->link_vars.link_up)
2691 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2692 else
2693 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2694 /* indicate link status */
2695 bnx2x_link_report(bp);
2696
2697 } else { /* VF */
2698 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2699 SUPPORTED_10baseT_Full |
2700 SUPPORTED_100baseT_Half |
2701 SUPPORTED_100baseT_Full |
2702 SUPPORTED_1000baseT_Full |
2703 SUPPORTED_2500baseX_Full |
2704 SUPPORTED_10000baseT_Full |
2705 SUPPORTED_TP |
2706 SUPPORTED_FIBRE |
2707 SUPPORTED_Autoneg |
2708 SUPPORTED_Pause |
2709 SUPPORTED_Asym_Pause);
2710 bp->port.advertising[0] = bp->port.supported[0];
2711
2712 bp->link_params.bp = bp;
2713 bp->link_params.port = BP_PORT(bp);
2714 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2715 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2716 bp->link_params.req_line_speed[0] = SPEED_10000;
2717 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2718 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2719 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2720 bp->link_vars.line_speed = SPEED_10000;
2721 bp->link_vars.link_status =
2722 (LINK_STATUS_LINK_UP |
2723 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2724 bp->link_vars.link_up = 1;
2725 bp->link_vars.duplex = DUPLEX_FULL;
2726 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2727 __bnx2x_link_report(bp);
2728
2729 bnx2x_sample_bulletin(bp);
2730
2731 /* if bulletin board did not have an update for link status
2732 * __bnx2x_link_report will report current status
2733 * but it will NOT duplicate report in case of already reported
2734 * during sampling bulletin board.
2735 */
2736 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2737 }
2738 }
2739
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2740 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2741 u16 vlan_val, u8 allowed_prio)
2742 {
2743 struct bnx2x_func_state_params func_params = {NULL};
2744 struct bnx2x_func_afex_update_params *f_update_params =
2745 &func_params.params.afex_update;
2746
2747 func_params.f_obj = &bp->func_obj;
2748 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2749
2750 /* no need to wait for RAMROD completion, so don't
2751 * set RAMROD_COMP_WAIT flag
2752 */
2753
2754 f_update_params->vif_id = vifid;
2755 f_update_params->afex_default_vlan = vlan_val;
2756 f_update_params->allowed_priorities = allowed_prio;
2757
2758 /* if ramrod can not be sent, response to MCP immediately */
2759 if (bnx2x_func_state_change(bp, &func_params) < 0)
2760 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2761
2762 return 0;
2763 }
2764
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2765 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2766 u16 vif_index, u8 func_bit_map)
2767 {
2768 struct bnx2x_func_state_params func_params = {NULL};
2769 struct bnx2x_func_afex_viflists_params *update_params =
2770 &func_params.params.afex_viflists;
2771 int rc;
2772 u32 drv_msg_code;
2773
2774 /* validate only LIST_SET and LIST_GET are received from switch */
2775 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2776 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2777 cmd_type);
2778
2779 func_params.f_obj = &bp->func_obj;
2780 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2781
2782 /* set parameters according to cmd_type */
2783 update_params->afex_vif_list_command = cmd_type;
2784 update_params->vif_list_index = vif_index;
2785 update_params->func_bit_map =
2786 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2787 update_params->func_to_clear = 0;
2788 drv_msg_code =
2789 (cmd_type == VIF_LIST_RULE_GET) ?
2790 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2791 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2792
2793 /* if ramrod can not be sent, respond to MCP immediately for
2794 * SET and GET requests (other are not triggered from MCP)
2795 */
2796 rc = bnx2x_func_state_change(bp, &func_params);
2797 if (rc < 0)
2798 bnx2x_fw_command(bp, drv_msg_code, 0);
2799
2800 return 0;
2801 }
2802
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2803 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2804 {
2805 struct afex_stats afex_stats;
2806 u32 func = BP_ABS_FUNC(bp);
2807 u32 mf_config;
2808 u16 vlan_val;
2809 u32 vlan_prio;
2810 u16 vif_id;
2811 u8 allowed_prio;
2812 u8 vlan_mode;
2813 u32 addr_to_write, vifid, addrs, stats_type, i;
2814
2815 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2816 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2817 DP(BNX2X_MSG_MCP,
2818 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2819 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2820 }
2821
2822 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2823 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2824 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2825 DP(BNX2X_MSG_MCP,
2826 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2827 vifid, addrs);
2828 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2829 addrs);
2830 }
2831
2832 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2833 addr_to_write = SHMEM2_RD(bp,
2834 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2835 stats_type = SHMEM2_RD(bp,
2836 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2837
2838 DP(BNX2X_MSG_MCP,
2839 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2840 addr_to_write);
2841
2842 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2843
2844 /* write response to scratchpad, for MCP */
2845 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2846 REG_WR(bp, addr_to_write + i*sizeof(u32),
2847 *(((u32 *)(&afex_stats))+i));
2848
2849 /* send ack message to MCP */
2850 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2851 }
2852
2853 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2854 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2855 bp->mf_config[BP_VN(bp)] = mf_config;
2856 DP(BNX2X_MSG_MCP,
2857 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2858 mf_config);
2859
2860 /* if VIF_SET is "enabled" */
2861 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2862 /* set rate limit directly to internal RAM */
2863 struct cmng_init_input cmng_input;
2864 struct rate_shaping_vars_per_vn m_rs_vn;
2865 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2866 u32 addr = BAR_XSTRORM_INTMEM +
2867 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2868
2869 bp->mf_config[BP_VN(bp)] = mf_config;
2870
2871 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2872 m_rs_vn.vn_counter.rate =
2873 cmng_input.vnic_max_rate[BP_VN(bp)];
2874 m_rs_vn.vn_counter.quota =
2875 (m_rs_vn.vn_counter.rate *
2876 RS_PERIODIC_TIMEOUT_USEC) / 8;
2877
2878 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2879
2880 /* read relevant values from mf_cfg struct in shmem */
2881 vif_id =
2882 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2883 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2884 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2885 vlan_val =
2886 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2887 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2888 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2889 vlan_prio = (mf_config &
2890 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2891 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2892 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2893 vlan_mode =
2894 (MF_CFG_RD(bp,
2895 func_mf_config[func].afex_config) &
2896 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2897 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2898 allowed_prio =
2899 (MF_CFG_RD(bp,
2900 func_mf_config[func].afex_config) &
2901 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2902 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2903
2904 /* send ramrod to FW, return in case of failure */
2905 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2906 allowed_prio))
2907 return;
2908
2909 bp->afex_def_vlan_tag = vlan_val;
2910 bp->afex_vlan_mode = vlan_mode;
2911 } else {
2912 /* notify link down because BP->flags is disabled */
2913 bnx2x_link_report(bp);
2914
2915 /* send INVALID VIF ramrod to FW */
2916 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2917
2918 /* Reset the default afex VLAN */
2919 bp->afex_def_vlan_tag = -1;
2920 }
2921 }
2922 }
2923
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2924 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2925 {
2926 struct bnx2x_func_switch_update_params *switch_update_params;
2927 struct bnx2x_func_state_params func_params;
2928
2929 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2930 switch_update_params = &func_params.params.switch_update;
2931 func_params.f_obj = &bp->func_obj;
2932 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2933
2934 /* Prepare parameters for function state transitions */
2935 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2936 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2937
2938 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2939 int func = BP_ABS_FUNC(bp);
2940 u32 val;
2941
2942 /* Re-learn the S-tag from shmem */
2943 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2944 FUNC_MF_CFG_E1HOV_TAG_MASK;
2945 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2946 bp->mf_ov = val;
2947 } else {
2948 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2949 goto fail;
2950 }
2951
2952 /* Configure new S-tag in LLH */
2953 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2954 bp->mf_ov);
2955
2956 /* Send Ramrod to update FW of change */
2957 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2958 &switch_update_params->changes);
2959 switch_update_params->vlan = bp->mf_ov;
2960
2961 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2962 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2963 bp->mf_ov);
2964 goto fail;
2965 } else {
2966 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2967 bp->mf_ov);
2968 }
2969 } else {
2970 goto fail;
2971 }
2972
2973 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2974 return;
2975 fail:
2976 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2977 }
2978
bnx2x_pmf_update(struct bnx2x * bp)2979 static void bnx2x_pmf_update(struct bnx2x *bp)
2980 {
2981 int port = BP_PORT(bp);
2982 u32 val;
2983
2984 bp->port.pmf = 1;
2985 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2986
2987 /*
2988 * We need the mb() to ensure the ordering between the writing to
2989 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2990 */
2991 smp_mb();
2992
2993 /* queue a periodic task */
2994 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2995
2996 bnx2x_dcbx_pmf_update(bp);
2997
2998 /* enable nig attention */
2999 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
3000 if (bp->common.int_block == INT_BLOCK_HC) {
3001 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
3002 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
3003 } else if (!CHIP_IS_E1x(bp)) {
3004 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
3005 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
3006 }
3007
3008 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
3009 }
3010
3011 /* end of Link */
3012
3013 /* slow path */
3014
3015 /*
3016 * General service functions
3017 */
3018
3019 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3020 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3021 {
3022 int mb_idx = BP_FW_MB_IDX(bp);
3023 u32 seq;
3024 u32 rc = 0;
3025 u32 cnt = 1;
3026 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3027
3028 mutex_lock(&bp->fw_mb_mutex);
3029 seq = ++bp->fw_seq;
3030 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3031 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3032
3033 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3034 (command | seq), param);
3035
3036 do {
3037 /* let the FW do it's magic ... */
3038 msleep(delay);
3039
3040 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3041
3042 /* Give the FW up to 5 second (500*10ms) */
3043 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3044
3045 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3046 cnt*delay, rc, seq);
3047
3048 /* is this a reply to our command? */
3049 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3050 rc &= FW_MSG_CODE_MASK;
3051 else {
3052 /* FW BUG! */
3053 BNX2X_ERR("FW failed to respond!\n");
3054 bnx2x_fw_dump(bp);
3055 rc = 0;
3056 }
3057 mutex_unlock(&bp->fw_mb_mutex);
3058
3059 return rc;
3060 }
3061
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3062 static void storm_memset_func_cfg(struct bnx2x *bp,
3063 struct tstorm_eth_function_common_config *tcfg,
3064 u16 abs_fid)
3065 {
3066 size_t size = sizeof(struct tstorm_eth_function_common_config);
3067
3068 u32 addr = BAR_TSTRORM_INTMEM +
3069 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3070
3071 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3072 }
3073
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3074 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3075 {
3076 if (CHIP_IS_E1x(bp)) {
3077 struct tstorm_eth_function_common_config tcfg = {0};
3078
3079 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3080 }
3081
3082 /* Enable the function in the FW */
3083 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3084 storm_memset_func_en(bp, p->func_id, 1);
3085
3086 /* spq */
3087 if (p->spq_active) {
3088 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3089 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3090 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3091 }
3092 }
3093
3094 /**
3095 * bnx2x_get_common_flags - Return common flags
3096 *
3097 * @bp: device handle
3098 * @fp: queue handle
3099 * @zero_stats: TRUE if statistics zeroing is needed
3100 *
3101 * Return the flags that are common for the Tx-only and not normal connections.
3102 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3103 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3104 struct bnx2x_fastpath *fp,
3105 bool zero_stats)
3106 {
3107 unsigned long flags = 0;
3108
3109 /* PF driver will always initialize the Queue to an ACTIVE state */
3110 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3111
3112 /* tx only connections collect statistics (on the same index as the
3113 * parent connection). The statistics are zeroed when the parent
3114 * connection is initialized.
3115 */
3116
3117 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3118 if (zero_stats)
3119 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3120
3121 if (bp->flags & TX_SWITCHING)
3122 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3123
3124 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3125 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3126
3127 #ifdef BNX2X_STOP_ON_ERROR
3128 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3129 #endif
3130
3131 return flags;
3132 }
3133
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3134 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3135 struct bnx2x_fastpath *fp,
3136 bool leading)
3137 {
3138 unsigned long flags = 0;
3139
3140 /* calculate other queue flags */
3141 if (IS_MF_SD(bp))
3142 __set_bit(BNX2X_Q_FLG_OV, &flags);
3143
3144 if (IS_FCOE_FP(fp)) {
3145 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3146 /* For FCoE - force usage of default priority (for afex) */
3147 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3148 }
3149
3150 if (fp->mode != TPA_MODE_DISABLED) {
3151 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3152 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3153 if (fp->mode == TPA_MODE_GRO)
3154 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3155 }
3156
3157 if (leading) {
3158 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3159 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3160 }
3161
3162 /* Always set HW VLAN stripping */
3163 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3164
3165 /* configure silent vlan removal */
3166 if (IS_MF_AFEX(bp))
3167 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3168
3169 return flags | bnx2x_get_common_flags(bp, fp, true);
3170 }
3171
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3172 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3173 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3174 u8 cos)
3175 {
3176 gen_init->stat_id = bnx2x_stats_id(fp);
3177 gen_init->spcl_id = fp->cl_id;
3178
3179 /* Always use mini-jumbo MTU for FCoE L2 ring */
3180 if (IS_FCOE_FP(fp))
3181 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3182 else
3183 gen_init->mtu = bp->dev->mtu;
3184
3185 gen_init->cos = cos;
3186
3187 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3188 }
3189
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3190 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3191 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3192 struct bnx2x_rxq_setup_params *rxq_init)
3193 {
3194 u8 max_sge = 0;
3195 u16 sge_sz = 0;
3196 u16 tpa_agg_size = 0;
3197
3198 if (fp->mode != TPA_MODE_DISABLED) {
3199 pause->sge_th_lo = SGE_TH_LO(bp);
3200 pause->sge_th_hi = SGE_TH_HI(bp);
3201
3202 /* validate SGE ring has enough to cross high threshold */
3203 WARN_ON(bp->dropless_fc &&
3204 pause->sge_th_hi + FW_PREFETCH_CNT >
3205 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3206
3207 tpa_agg_size = TPA_AGG_SIZE;
3208 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3209 SGE_PAGE_SHIFT;
3210 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3211 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3212 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3213 }
3214
3215 /* pause - not for e1 */
3216 if (!CHIP_IS_E1(bp)) {
3217 pause->bd_th_lo = BD_TH_LO(bp);
3218 pause->bd_th_hi = BD_TH_HI(bp);
3219
3220 pause->rcq_th_lo = RCQ_TH_LO(bp);
3221 pause->rcq_th_hi = RCQ_TH_HI(bp);
3222 /*
3223 * validate that rings have enough entries to cross
3224 * high thresholds
3225 */
3226 WARN_ON(bp->dropless_fc &&
3227 pause->bd_th_hi + FW_PREFETCH_CNT >
3228 bp->rx_ring_size);
3229 WARN_ON(bp->dropless_fc &&
3230 pause->rcq_th_hi + FW_PREFETCH_CNT >
3231 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3232
3233 pause->pri_map = 1;
3234 }
3235
3236 /* rxq setup */
3237 rxq_init->dscr_map = fp->rx_desc_mapping;
3238 rxq_init->sge_map = fp->rx_sge_mapping;
3239 rxq_init->rcq_map = fp->rx_comp_mapping;
3240 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3241
3242 /* This should be a maximum number of data bytes that may be
3243 * placed on the BD (not including paddings).
3244 */
3245 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3246 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3247
3248 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3249 rxq_init->tpa_agg_sz = tpa_agg_size;
3250 rxq_init->sge_buf_sz = sge_sz;
3251 rxq_init->max_sges_pkt = max_sge;
3252 rxq_init->rss_engine_id = BP_FUNC(bp);
3253 rxq_init->mcast_engine_id = BP_FUNC(bp);
3254
3255 /* Maximum number or simultaneous TPA aggregation for this Queue.
3256 *
3257 * For PF Clients it should be the maximum available number.
3258 * VF driver(s) may want to define it to a smaller value.
3259 */
3260 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3261
3262 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3263 rxq_init->fw_sb_id = fp->fw_sb_id;
3264
3265 if (IS_FCOE_FP(fp))
3266 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3267 else
3268 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3269 /* configure silent vlan removal
3270 * if multi function mode is afex, then mask default vlan
3271 */
3272 if (IS_MF_AFEX(bp)) {
3273 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3274 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3275 }
3276 }
3277
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3278 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3279 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3280 u8 cos)
3281 {
3282 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3283 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3284 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3285 txq_init->fw_sb_id = fp->fw_sb_id;
3286
3287 /*
3288 * set the tss leading client id for TX classification ==
3289 * leading RSS client id
3290 */
3291 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3292
3293 if (IS_FCOE_FP(fp)) {
3294 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3295 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3296 }
3297 }
3298
bnx2x_pf_init(struct bnx2x * bp)3299 static void bnx2x_pf_init(struct bnx2x *bp)
3300 {
3301 struct bnx2x_func_init_params func_init = {0};
3302 struct event_ring_data eq_data = { {0} };
3303
3304 if (!CHIP_IS_E1x(bp)) {
3305 /* reset IGU PF statistics: MSIX + ATTN */
3306 /* PF */
3307 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3308 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3309 (CHIP_MODE_IS_4_PORT(bp) ?
3310 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3311 /* ATTN */
3312 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3313 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3314 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3315 (CHIP_MODE_IS_4_PORT(bp) ?
3316 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3317 }
3318
3319 func_init.spq_active = true;
3320 func_init.pf_id = BP_FUNC(bp);
3321 func_init.func_id = BP_FUNC(bp);
3322 func_init.spq_map = bp->spq_mapping;
3323 func_init.spq_prod = bp->spq_prod_idx;
3324
3325 bnx2x_func_init(bp, &func_init);
3326
3327 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3328
3329 /*
3330 * Congestion management values depend on the link rate
3331 * There is no active link so initial link rate is set to 10 Gbps.
3332 * When the link comes up The congestion management values are
3333 * re-calculated according to the actual link rate.
3334 */
3335 bp->link_vars.line_speed = SPEED_10000;
3336 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3337
3338 /* Only the PMF sets the HW */
3339 if (bp->port.pmf)
3340 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3341
3342 /* init Event Queue - PCI bus guarantees correct endianity*/
3343 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3344 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3345 eq_data.producer = bp->eq_prod;
3346 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3347 eq_data.sb_id = DEF_SB_ID;
3348 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3349 }
3350
bnx2x_e1h_disable(struct bnx2x * bp)3351 static void bnx2x_e1h_disable(struct bnx2x *bp)
3352 {
3353 int port = BP_PORT(bp);
3354
3355 bnx2x_tx_disable(bp);
3356
3357 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3358 }
3359
bnx2x_e1h_enable(struct bnx2x * bp)3360 static void bnx2x_e1h_enable(struct bnx2x *bp)
3361 {
3362 int port = BP_PORT(bp);
3363
3364 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3365 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3366
3367 /* Tx queue should be only re-enabled */
3368 netif_tx_wake_all_queues(bp->dev);
3369
3370 /*
3371 * Should not call netif_carrier_on since it will be called if the link
3372 * is up when checking for link state
3373 */
3374 }
3375
3376 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3377
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3378 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3379 {
3380 struct eth_stats_info *ether_stat =
3381 &bp->slowpath->drv_info_to_mcp.ether_stat;
3382 struct bnx2x_vlan_mac_obj *mac_obj =
3383 &bp->sp_objs->mac_obj;
3384 int i;
3385
3386 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3387 ETH_STAT_INFO_VERSION_LEN);
3388
3389 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3390 * mac_local field in ether_stat struct. The base address is offset by 2
3391 * bytes to account for the field being 8 bytes but a mac address is
3392 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3393 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3394 * allocated by the ether_stat struct, so the macs will land in their
3395 * proper positions.
3396 */
3397 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3398 memset(ether_stat->mac_local + i, 0,
3399 sizeof(ether_stat->mac_local[0]));
3400 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3401 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3402 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3403 ETH_ALEN);
3404 ether_stat->mtu_size = bp->dev->mtu;
3405 if (bp->dev->features & NETIF_F_RXCSUM)
3406 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3407 if (bp->dev->features & NETIF_F_TSO)
3408 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3409 ether_stat->feature_flags |= bp->common.boot_mode;
3410
3411 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3412
3413 ether_stat->txq_size = bp->tx_ring_size;
3414 ether_stat->rxq_size = bp->rx_ring_size;
3415
3416 #ifdef CONFIG_BNX2X_SRIOV
3417 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3418 #endif
3419 }
3420
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3421 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3422 {
3423 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3424 struct fcoe_stats_info *fcoe_stat =
3425 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3426
3427 if (!CNIC_LOADED(bp))
3428 return;
3429
3430 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3431
3432 fcoe_stat->qos_priority =
3433 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3434
3435 /* insert FCoE stats from ramrod response */
3436 if (!NO_FCOE(bp)) {
3437 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3438 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3439 tstorm_queue_statistics;
3440
3441 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3442 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3443 xstorm_queue_statistics;
3444
3445 struct fcoe_statistics_params *fw_fcoe_stat =
3446 &bp->fw_stats_data->fcoe;
3447
3448 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3449 fcoe_stat->rx_bytes_lo,
3450 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3451
3452 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3453 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3454 fcoe_stat->rx_bytes_lo,
3455 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3456
3457 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3458 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3459 fcoe_stat->rx_bytes_lo,
3460 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3461
3462 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3463 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3464 fcoe_stat->rx_bytes_lo,
3465 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3466
3467 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3468 fcoe_stat->rx_frames_lo,
3469 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3470
3471 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3472 fcoe_stat->rx_frames_lo,
3473 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3474
3475 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3476 fcoe_stat->rx_frames_lo,
3477 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3478
3479 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3480 fcoe_stat->rx_frames_lo,
3481 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3482
3483 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3484 fcoe_stat->tx_bytes_lo,
3485 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3486
3487 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3488 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3489 fcoe_stat->tx_bytes_lo,
3490 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3491
3492 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3493 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3494 fcoe_stat->tx_bytes_lo,
3495 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3496
3497 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3498 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3499 fcoe_stat->tx_bytes_lo,
3500 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3501
3502 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3503 fcoe_stat->tx_frames_lo,
3504 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3505
3506 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3507 fcoe_stat->tx_frames_lo,
3508 fcoe_q_xstorm_stats->ucast_pkts_sent);
3509
3510 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3511 fcoe_stat->tx_frames_lo,
3512 fcoe_q_xstorm_stats->bcast_pkts_sent);
3513
3514 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3515 fcoe_stat->tx_frames_lo,
3516 fcoe_q_xstorm_stats->mcast_pkts_sent);
3517 }
3518
3519 /* ask L5 driver to add data to the struct */
3520 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3521 }
3522
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3523 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3524 {
3525 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3526 struct iscsi_stats_info *iscsi_stat =
3527 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3528
3529 if (!CNIC_LOADED(bp))
3530 return;
3531
3532 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3533 ETH_ALEN);
3534
3535 iscsi_stat->qos_priority =
3536 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3537
3538 /* ask L5 driver to add data to the struct */
3539 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3540 }
3541
3542 /* called due to MCP event (on pmf):
3543 * reread new bandwidth configuration
3544 * configure FW
3545 * notify others function about the change
3546 */
bnx2x_config_mf_bw(struct bnx2x * bp)3547 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3548 {
3549 /* Workaround for MFW bug.
3550 * MFW is not supposed to generate BW attention in
3551 * single function mode.
3552 */
3553 if (!IS_MF(bp)) {
3554 DP(BNX2X_MSG_MCP,
3555 "Ignoring MF BW config in single function mode\n");
3556 return;
3557 }
3558
3559 if (bp->link_vars.link_up) {
3560 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3561 bnx2x_link_sync_notify(bp);
3562 }
3563 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3564 }
3565
bnx2x_set_mf_bw(struct bnx2x * bp)3566 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3567 {
3568 bnx2x_config_mf_bw(bp);
3569 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3570 }
3571
bnx2x_handle_eee_event(struct bnx2x * bp)3572 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3573 {
3574 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3575 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3576 }
3577
3578 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3579 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3580
bnx2x_handle_drv_info_req(struct bnx2x * bp)3581 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3582 {
3583 enum drv_info_opcode op_code;
3584 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3585 bool release = false;
3586 int wait;
3587
3588 /* if drv_info version supported by MFW doesn't match - send NACK */
3589 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3590 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3591 return;
3592 }
3593
3594 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3595 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3596
3597 /* Must prevent other flows from accessing drv_info_to_mcp */
3598 mutex_lock(&bp->drv_info_mutex);
3599
3600 memset(&bp->slowpath->drv_info_to_mcp, 0,
3601 sizeof(union drv_info_to_mcp));
3602
3603 switch (op_code) {
3604 case ETH_STATS_OPCODE:
3605 bnx2x_drv_info_ether_stat(bp);
3606 break;
3607 case FCOE_STATS_OPCODE:
3608 bnx2x_drv_info_fcoe_stat(bp);
3609 break;
3610 case ISCSI_STATS_OPCODE:
3611 bnx2x_drv_info_iscsi_stat(bp);
3612 break;
3613 default:
3614 /* if op code isn't supported - send NACK */
3615 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3616 goto out;
3617 }
3618
3619 /* if we got drv_info attn from MFW then these fields are defined in
3620 * shmem2 for sure
3621 */
3622 SHMEM2_WR(bp, drv_info_host_addr_lo,
3623 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3624 SHMEM2_WR(bp, drv_info_host_addr_hi,
3625 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3626
3627 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3628
3629 /* Since possible management wants both this and get_driver_version
3630 * need to wait until management notifies us it finished utilizing
3631 * the buffer.
3632 */
3633 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3634 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3635 } else if (!bp->drv_info_mng_owner) {
3636 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3637
3638 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3639 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3640
3641 /* Management is done; need to clear indication */
3642 if (indication & bit) {
3643 SHMEM2_WR(bp, mfw_drv_indication,
3644 indication & ~bit);
3645 release = true;
3646 break;
3647 }
3648
3649 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3650 }
3651 }
3652 if (!release) {
3653 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3654 bp->drv_info_mng_owner = true;
3655 }
3656
3657 out:
3658 mutex_unlock(&bp->drv_info_mutex);
3659 }
3660
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3661 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3662 {
3663 u8 vals[4];
3664 int i = 0;
3665
3666 if (bnx2x_format) {
3667 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3668 &vals[0], &vals[1], &vals[2], &vals[3]);
3669 if (i > 0)
3670 vals[0] -= '0';
3671 } else {
3672 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3673 &vals[0], &vals[1], &vals[2], &vals[3]);
3674 }
3675
3676 while (i < 4)
3677 vals[i++] = 0;
3678
3679 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3680 }
3681
bnx2x_update_mng_version(struct bnx2x * bp)3682 void bnx2x_update_mng_version(struct bnx2x *bp)
3683 {
3684 u32 iscsiver = DRV_VER_NOT_LOADED;
3685 u32 fcoever = DRV_VER_NOT_LOADED;
3686 u32 ethver = DRV_VER_NOT_LOADED;
3687 int idx = BP_FW_MB_IDX(bp);
3688 u8 *version;
3689
3690 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3691 return;
3692
3693 mutex_lock(&bp->drv_info_mutex);
3694 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3695 if (bp->drv_info_mng_owner)
3696 goto out;
3697
3698 if (bp->state != BNX2X_STATE_OPEN)
3699 goto out;
3700
3701 /* Parse ethernet driver version */
3702 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3703 if (!CNIC_LOADED(bp))
3704 goto out;
3705
3706 /* Try getting storage driver version via cnic */
3707 memset(&bp->slowpath->drv_info_to_mcp, 0,
3708 sizeof(union drv_info_to_mcp));
3709 bnx2x_drv_info_iscsi_stat(bp);
3710 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3711 iscsiver = bnx2x_update_mng_version_utility(version, false);
3712
3713 memset(&bp->slowpath->drv_info_to_mcp, 0,
3714 sizeof(union drv_info_to_mcp));
3715 bnx2x_drv_info_fcoe_stat(bp);
3716 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3717 fcoever = bnx2x_update_mng_version_utility(version, false);
3718
3719 out:
3720 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3721 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3722 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3723
3724 mutex_unlock(&bp->drv_info_mutex);
3725
3726 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3727 ethver, iscsiver, fcoever);
3728 }
3729
bnx2x_update_mfw_dump(struct bnx2x * bp)3730 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3731 {
3732 u32 drv_ver;
3733 u32 valid_dump;
3734
3735 if (!SHMEM2_HAS(bp, drv_info))
3736 return;
3737
3738 /* Update Driver load time, possibly broken in y2038 */
3739 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3740
3741 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3742 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3743
3744 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3745
3746 /* Check & notify On-Chip dump. */
3747 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3748
3749 if (valid_dump & FIRST_DUMP_VALID)
3750 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3751
3752 if (valid_dump & SECOND_DUMP_VALID)
3753 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3754 }
3755
bnx2x_oem_event(struct bnx2x * bp,u32 event)3756 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3757 {
3758 u32 cmd_ok, cmd_fail;
3759
3760 /* sanity */
3761 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3762 event & DRV_STATUS_OEM_EVENT_MASK) {
3763 BNX2X_ERR("Received simultaneous events %08x\n", event);
3764 return;
3765 }
3766
3767 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3768 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3769 cmd_ok = DRV_MSG_CODE_DCC_OK;
3770 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3771 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3772 cmd_ok = DRV_MSG_CODE_OEM_OK;
3773 }
3774
3775 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3776
3777 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3778 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3779 /* This is the only place besides the function initialization
3780 * where the bp->flags can change so it is done without any
3781 * locks
3782 */
3783 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3784 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3785 bp->flags |= MF_FUNC_DIS;
3786
3787 bnx2x_e1h_disable(bp);
3788 } else {
3789 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3790 bp->flags &= ~MF_FUNC_DIS;
3791
3792 bnx2x_e1h_enable(bp);
3793 }
3794 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3795 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3796 }
3797
3798 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3799 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3800 bnx2x_config_mf_bw(bp);
3801 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3802 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3803 }
3804
3805 /* Report results to MCP */
3806 if (event)
3807 bnx2x_fw_command(bp, cmd_fail, 0);
3808 else
3809 bnx2x_fw_command(bp, cmd_ok, 0);
3810 }
3811
3812 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3813 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3814 {
3815 struct eth_spe *next_spe = bp->spq_prod_bd;
3816
3817 if (bp->spq_prod_bd == bp->spq_last_bd) {
3818 bp->spq_prod_bd = bp->spq;
3819 bp->spq_prod_idx = 0;
3820 DP(BNX2X_MSG_SP, "end of spq\n");
3821 } else {
3822 bp->spq_prod_bd++;
3823 bp->spq_prod_idx++;
3824 }
3825 return next_spe;
3826 }
3827
3828 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3829 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3830 {
3831 int func = BP_FUNC(bp);
3832
3833 /*
3834 * Make sure that BD data is updated before writing the producer:
3835 * BD data is written to the memory, the producer is read from the
3836 * memory, thus we need a full memory barrier to ensure the ordering.
3837 */
3838 mb();
3839
3840 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3841 bp->spq_prod_idx);
3842 }
3843
3844 /**
3845 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3846 *
3847 * @cmd: command to check
3848 * @cmd_type: command type
3849 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3850 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3851 {
3852 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3853 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3854 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3855 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3856 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3857 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3858 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3859 return true;
3860 else
3861 return false;
3862 }
3863
3864 /**
3865 * bnx2x_sp_post - place a single command on an SP ring
3866 *
3867 * @bp: driver handle
3868 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3869 * @cid: SW CID the command is related to
3870 * @data_hi: command private data address (high 32 bits)
3871 * @data_lo: command private data address (low 32 bits)
3872 * @cmd_type: command type (e.g. NONE, ETH)
3873 *
3874 * SP data is handled as if it's always an address pair, thus data fields are
3875 * not swapped to little endian in upper functions. Instead this function swaps
3876 * data as if it's two u32 fields.
3877 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3878 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3879 u32 data_hi, u32 data_lo, int cmd_type)
3880 {
3881 struct eth_spe *spe;
3882 u16 type;
3883 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3884
3885 #ifdef BNX2X_STOP_ON_ERROR
3886 if (unlikely(bp->panic)) {
3887 BNX2X_ERR("Can't post SP when there is panic\n");
3888 return -EIO;
3889 }
3890 #endif
3891
3892 spin_lock_bh(&bp->spq_lock);
3893
3894 if (common) {
3895 if (!atomic_read(&bp->eq_spq_left)) {
3896 BNX2X_ERR("BUG! EQ ring full!\n");
3897 spin_unlock_bh(&bp->spq_lock);
3898 bnx2x_panic();
3899 return -EBUSY;
3900 }
3901 } else if (!atomic_read(&bp->cq_spq_left)) {
3902 BNX2X_ERR("BUG! SPQ ring full!\n");
3903 spin_unlock_bh(&bp->spq_lock);
3904 bnx2x_panic();
3905 return -EBUSY;
3906 }
3907
3908 spe = bnx2x_sp_get_next(bp);
3909
3910 /* CID needs port number to be encoded int it */
3911 spe->hdr.conn_and_cmd_data =
3912 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3913 HW_CID(bp, cid));
3914
3915 /* In some cases, type may already contain the func-id
3916 * mainly in SRIOV related use cases, so we add it here only
3917 * if it's not already set.
3918 */
3919 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3920 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3921 SPE_HDR_CONN_TYPE;
3922 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3923 SPE_HDR_FUNCTION_ID);
3924 } else {
3925 type = cmd_type;
3926 }
3927
3928 spe->hdr.type = cpu_to_le16(type);
3929
3930 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3931 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3932
3933 /*
3934 * It's ok if the actual decrement is issued towards the memory
3935 * somewhere between the spin_lock and spin_unlock. Thus no
3936 * more explicit memory barrier is needed.
3937 */
3938 if (common)
3939 atomic_dec(&bp->eq_spq_left);
3940 else
3941 atomic_dec(&bp->cq_spq_left);
3942
3943 DP(BNX2X_MSG_SP,
3944 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3945 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3946 (u32)(U64_LO(bp->spq_mapping) +
3947 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3948 HW_CID(bp, cid), data_hi, data_lo, type,
3949 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3950
3951 bnx2x_sp_prod_update(bp);
3952 spin_unlock_bh(&bp->spq_lock);
3953 return 0;
3954 }
3955
3956 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3957 static int bnx2x_acquire_alr(struct bnx2x *bp)
3958 {
3959 u32 j, val;
3960 int rc = 0;
3961
3962 might_sleep();
3963 for (j = 0; j < 1000; j++) {
3964 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3965 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3966 if (val & MCPR_ACCESS_LOCK_LOCK)
3967 break;
3968
3969 usleep_range(5000, 10000);
3970 }
3971 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3972 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3973 rc = -EBUSY;
3974 }
3975
3976 return rc;
3977 }
3978
3979 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3980 static void bnx2x_release_alr(struct bnx2x *bp)
3981 {
3982 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3983 }
3984
3985 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3986 #define BNX2X_DEF_SB_IDX 0x0002
3987
bnx2x_update_dsb_idx(struct bnx2x * bp)3988 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3989 {
3990 struct host_sp_status_block *def_sb = bp->def_status_blk;
3991 u16 rc = 0;
3992
3993 barrier(); /* status block is written to by the chip */
3994 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3995 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3996 rc |= BNX2X_DEF_SB_ATT_IDX;
3997 }
3998
3999 if (bp->def_idx != def_sb->sp_sb.running_index) {
4000 bp->def_idx = def_sb->sp_sb.running_index;
4001 rc |= BNX2X_DEF_SB_IDX;
4002 }
4003
4004 /* Do not reorder: indices reading should complete before handling */
4005 barrier();
4006 return rc;
4007 }
4008
4009 /*
4010 * slow path service functions
4011 */
4012
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)4013 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
4014 {
4015 int port = BP_PORT(bp);
4016 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4017 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4018 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4019 NIG_REG_MASK_INTERRUPT_PORT0;
4020 u32 aeu_mask;
4021 u32 nig_mask = 0;
4022 u32 reg_addr;
4023
4024 if (bp->attn_state & asserted)
4025 BNX2X_ERR("IGU ERROR\n");
4026
4027 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4028 aeu_mask = REG_RD(bp, aeu_addr);
4029
4030 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4031 aeu_mask, asserted);
4032 aeu_mask &= ~(asserted & 0x3ff);
4033 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4034
4035 REG_WR(bp, aeu_addr, aeu_mask);
4036 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4037
4038 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4039 bp->attn_state |= asserted;
4040 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4041
4042 if (asserted & ATTN_HARD_WIRED_MASK) {
4043 if (asserted & ATTN_NIG_FOR_FUNC) {
4044
4045 bnx2x_acquire_phy_lock(bp);
4046
4047 /* save nig interrupt mask */
4048 nig_mask = REG_RD(bp, nig_int_mask_addr);
4049
4050 /* If nig_mask is not set, no need to call the update
4051 * function.
4052 */
4053 if (nig_mask) {
4054 REG_WR(bp, nig_int_mask_addr, 0);
4055
4056 bnx2x_link_attn(bp);
4057 }
4058
4059 /* handle unicore attn? */
4060 }
4061 if (asserted & ATTN_SW_TIMER_4_FUNC)
4062 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4063
4064 if (asserted & GPIO_2_FUNC)
4065 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4066
4067 if (asserted & GPIO_3_FUNC)
4068 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4069
4070 if (asserted & GPIO_4_FUNC)
4071 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4072
4073 if (port == 0) {
4074 if (asserted & ATTN_GENERAL_ATTN_1) {
4075 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4076 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4077 }
4078 if (asserted & ATTN_GENERAL_ATTN_2) {
4079 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4080 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4081 }
4082 if (asserted & ATTN_GENERAL_ATTN_3) {
4083 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4084 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4085 }
4086 } else {
4087 if (asserted & ATTN_GENERAL_ATTN_4) {
4088 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4089 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4090 }
4091 if (asserted & ATTN_GENERAL_ATTN_5) {
4092 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4093 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4094 }
4095 if (asserted & ATTN_GENERAL_ATTN_6) {
4096 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4097 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4098 }
4099 }
4100
4101 } /* if hardwired */
4102
4103 if (bp->common.int_block == INT_BLOCK_HC)
4104 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4105 COMMAND_REG_ATTN_BITS_SET);
4106 else
4107 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4108
4109 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4110 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4111 REG_WR(bp, reg_addr, asserted);
4112
4113 /* now set back the mask */
4114 if (asserted & ATTN_NIG_FOR_FUNC) {
4115 /* Verify that IGU ack through BAR was written before restoring
4116 * NIG mask. This loop should exit after 2-3 iterations max.
4117 */
4118 if (bp->common.int_block != INT_BLOCK_HC) {
4119 u32 cnt = 0, igu_acked;
4120 do {
4121 igu_acked = REG_RD(bp,
4122 IGU_REG_ATTENTION_ACK_BITS);
4123 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4124 (++cnt < MAX_IGU_ATTN_ACK_TO));
4125 if (!igu_acked)
4126 DP(NETIF_MSG_HW,
4127 "Failed to verify IGU ack on time\n");
4128 barrier();
4129 }
4130 REG_WR(bp, nig_int_mask_addr, nig_mask);
4131 bnx2x_release_phy_lock(bp);
4132 }
4133 }
4134
bnx2x_fan_failure(struct bnx2x * bp)4135 static void bnx2x_fan_failure(struct bnx2x *bp)
4136 {
4137 int port = BP_PORT(bp);
4138 u32 ext_phy_config;
4139 /* mark the failure */
4140 ext_phy_config =
4141 SHMEM_RD(bp,
4142 dev_info.port_hw_config[port].external_phy_config);
4143
4144 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4145 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4146 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4147 ext_phy_config);
4148
4149 /* log the failure */
4150 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4151 "Please contact OEM Support for assistance\n");
4152
4153 /* Schedule device reset (unload)
4154 * This is due to some boards consuming sufficient power when driver is
4155 * up to overheat if fan fails.
4156 */
4157 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4158 }
4159
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4160 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4161 {
4162 int port = BP_PORT(bp);
4163 int reg_offset;
4164 u32 val;
4165
4166 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4167 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4168
4169 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4170
4171 val = REG_RD(bp, reg_offset);
4172 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4173 REG_WR(bp, reg_offset, val);
4174
4175 BNX2X_ERR("SPIO5 hw attention\n");
4176
4177 /* Fan failure attention */
4178 bnx2x_hw_reset_phy(&bp->link_params);
4179 bnx2x_fan_failure(bp);
4180 }
4181
4182 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4183 bnx2x_acquire_phy_lock(bp);
4184 bnx2x_handle_module_detect_int(&bp->link_params);
4185 bnx2x_release_phy_lock(bp);
4186 }
4187
4188 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4189
4190 val = REG_RD(bp, reg_offset);
4191 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4192 REG_WR(bp, reg_offset, val);
4193
4194 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4195 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4196 bnx2x_panic();
4197 }
4198 }
4199
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4200 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4201 {
4202 u32 val;
4203
4204 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4205
4206 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4207 BNX2X_ERR("DB hw attention 0x%x\n", val);
4208 /* DORQ discard attention */
4209 if (val & 0x2)
4210 BNX2X_ERR("FATAL error from DORQ\n");
4211 }
4212
4213 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4214
4215 int port = BP_PORT(bp);
4216 int reg_offset;
4217
4218 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4219 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4220
4221 val = REG_RD(bp, reg_offset);
4222 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4223 REG_WR(bp, reg_offset, val);
4224
4225 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4226 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4227 bnx2x_panic();
4228 }
4229 }
4230
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4231 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4232 {
4233 u32 val;
4234
4235 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4236
4237 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4238 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4239 /* CFC error attention */
4240 if (val & 0x2)
4241 BNX2X_ERR("FATAL error from CFC\n");
4242 }
4243
4244 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4245 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4246 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4247 /* RQ_USDMDP_FIFO_OVERFLOW */
4248 if (val & 0x18000)
4249 BNX2X_ERR("FATAL error from PXP\n");
4250
4251 if (!CHIP_IS_E1x(bp)) {
4252 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4253 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4254 }
4255 }
4256
4257 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4258
4259 int port = BP_PORT(bp);
4260 int reg_offset;
4261
4262 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4263 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4264
4265 val = REG_RD(bp, reg_offset);
4266 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4267 REG_WR(bp, reg_offset, val);
4268
4269 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4270 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4271 bnx2x_panic();
4272 }
4273 }
4274
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4275 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4276 {
4277 u32 val;
4278
4279 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4280
4281 if (attn & BNX2X_PMF_LINK_ASSERT) {
4282 int func = BP_FUNC(bp);
4283
4284 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4285 bnx2x_read_mf_cfg(bp);
4286 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4287 func_mf_config[BP_ABS_FUNC(bp)].config);
4288 val = SHMEM_RD(bp,
4289 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4290
4291 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4292 DRV_STATUS_OEM_EVENT_MASK))
4293 bnx2x_oem_event(bp,
4294 (val & (DRV_STATUS_DCC_EVENT_MASK |
4295 DRV_STATUS_OEM_EVENT_MASK)));
4296
4297 if (val & DRV_STATUS_SET_MF_BW)
4298 bnx2x_set_mf_bw(bp);
4299
4300 if (val & DRV_STATUS_DRV_INFO_REQ)
4301 bnx2x_handle_drv_info_req(bp);
4302
4303 if (val & DRV_STATUS_VF_DISABLED)
4304 bnx2x_schedule_iov_task(bp,
4305 BNX2X_IOV_HANDLE_FLR);
4306
4307 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4308 bnx2x_pmf_update(bp);
4309
4310 if (bp->port.pmf &&
4311 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4312 bp->dcbx_enabled > 0)
4313 /* start dcbx state machine */
4314 bnx2x_dcbx_set_params(bp,
4315 BNX2X_DCBX_STATE_NEG_RECEIVED);
4316 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4317 bnx2x_handle_afex_cmd(bp,
4318 val & DRV_STATUS_AFEX_EVENT_MASK);
4319 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4320 bnx2x_handle_eee_event(bp);
4321
4322 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4323 bnx2x_schedule_sp_rtnl(bp,
4324 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4325
4326 if (bp->link_vars.periodic_flags &
4327 PERIODIC_FLAGS_LINK_EVENT) {
4328 /* sync with link */
4329 bnx2x_acquire_phy_lock(bp);
4330 bp->link_vars.periodic_flags &=
4331 ~PERIODIC_FLAGS_LINK_EVENT;
4332 bnx2x_release_phy_lock(bp);
4333 if (IS_MF(bp))
4334 bnx2x_link_sync_notify(bp);
4335 bnx2x_link_report(bp);
4336 }
4337 /* Always call it here: bnx2x_link_report() will
4338 * prevent the link indication duplication.
4339 */
4340 bnx2x__link_status_update(bp);
4341 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4342
4343 BNX2X_ERR("MC assert!\n");
4344 bnx2x_mc_assert(bp);
4345 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4346 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4347 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4348 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4349 bnx2x_panic();
4350
4351 } else if (attn & BNX2X_MCP_ASSERT) {
4352
4353 BNX2X_ERR("MCP assert!\n");
4354 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4355 bnx2x_fw_dump(bp);
4356
4357 } else
4358 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4359 }
4360
4361 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4362 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4363 if (attn & BNX2X_GRC_TIMEOUT) {
4364 val = CHIP_IS_E1(bp) ? 0 :
4365 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4366 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4367 }
4368 if (attn & BNX2X_GRC_RSV) {
4369 val = CHIP_IS_E1(bp) ? 0 :
4370 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4371 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4372 }
4373 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4374 }
4375 }
4376
4377 /*
4378 * Bits map:
4379 * 0-7 - Engine0 load counter.
4380 * 8-15 - Engine1 load counter.
4381 * 16 - Engine0 RESET_IN_PROGRESS bit.
4382 * 17 - Engine1 RESET_IN_PROGRESS bit.
4383 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4384 * on the engine
4385 * 19 - Engine1 ONE_IS_LOADED.
4386 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4387 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4388 * just the one belonging to its engine).
4389 *
4390 */
4391 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4392
4393 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4394 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4395 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4396 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4397 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4398 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4399 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4400
4401 /*
4402 * Set the GLOBAL_RESET bit.
4403 *
4404 * Should be run under rtnl lock
4405 */
bnx2x_set_reset_global(struct bnx2x * bp)4406 void bnx2x_set_reset_global(struct bnx2x *bp)
4407 {
4408 u32 val;
4409 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4410 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4411 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4412 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4413 }
4414
4415 /*
4416 * Clear the GLOBAL_RESET bit.
4417 *
4418 * Should be run under rtnl lock
4419 */
bnx2x_clear_reset_global(struct bnx2x * bp)4420 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4421 {
4422 u32 val;
4423 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4424 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4425 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4426 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4427 }
4428
4429 /*
4430 * Checks the GLOBAL_RESET bit.
4431 *
4432 * should be run under rtnl lock
4433 */
bnx2x_reset_is_global(struct bnx2x * bp)4434 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4435 {
4436 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4437
4438 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4439 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4440 }
4441
4442 /*
4443 * Clear RESET_IN_PROGRESS bit for the current engine.
4444 *
4445 * Should be run under rtnl lock
4446 */
bnx2x_set_reset_done(struct bnx2x * bp)4447 static void bnx2x_set_reset_done(struct bnx2x *bp)
4448 {
4449 u32 val;
4450 u32 bit = BP_PATH(bp) ?
4451 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4452 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4453 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4454
4455 /* Clear the bit */
4456 val &= ~bit;
4457 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4458
4459 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460 }
4461
4462 /*
4463 * Set RESET_IN_PROGRESS for the current engine.
4464 *
4465 * should be run under rtnl lock
4466 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4467 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4468 {
4469 u32 val;
4470 u32 bit = BP_PATH(bp) ?
4471 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4472 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4473 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4474
4475 /* Set the bit */
4476 val |= bit;
4477 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4478 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4479 }
4480
4481 /*
4482 * Checks the RESET_IN_PROGRESS bit for the given engine.
4483 * should be run under rtnl lock
4484 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4485 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4486 {
4487 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4488 u32 bit = engine ?
4489 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4490
4491 /* return false if bit is set */
4492 return (val & bit) ? false : true;
4493 }
4494
4495 /*
4496 * set pf load for the current pf.
4497 *
4498 * should be run under rtnl lock
4499 */
bnx2x_set_pf_load(struct bnx2x * bp)4500 void bnx2x_set_pf_load(struct bnx2x *bp)
4501 {
4502 u32 val1, val;
4503 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4504 BNX2X_PATH0_LOAD_CNT_MASK;
4505 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4506 BNX2X_PATH0_LOAD_CNT_SHIFT;
4507
4508 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4509 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4510
4511 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4512
4513 /* get the current counter value */
4514 val1 = (val & mask) >> shift;
4515
4516 /* set bit of that PF */
4517 val1 |= (1 << bp->pf_num);
4518
4519 /* clear the old value */
4520 val &= ~mask;
4521
4522 /* set the new one */
4523 val |= ((val1 << shift) & mask);
4524
4525 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4526 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4527 }
4528
4529 /**
4530 * bnx2x_clear_pf_load - clear pf load mark
4531 *
4532 * @bp: driver handle
4533 *
4534 * Should be run under rtnl lock.
4535 * Decrements the load counter for the current engine. Returns
4536 * whether other functions are still loaded
4537 */
bnx2x_clear_pf_load(struct bnx2x * bp)4538 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4539 {
4540 u32 val1, val;
4541 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4542 BNX2X_PATH0_LOAD_CNT_MASK;
4543 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4544 BNX2X_PATH0_LOAD_CNT_SHIFT;
4545
4546 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4547 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4548 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4549
4550 /* get the current counter value */
4551 val1 = (val & mask) >> shift;
4552
4553 /* clear bit of that PF */
4554 val1 &= ~(1 << bp->pf_num);
4555
4556 /* clear the old value */
4557 val &= ~mask;
4558
4559 /* set the new one */
4560 val |= ((val1 << shift) & mask);
4561
4562 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4563 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4564 return val1 != 0;
4565 }
4566
4567 /*
4568 * Read the load status for the current engine.
4569 *
4570 * should be run under rtnl lock
4571 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4572 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4573 {
4574 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4575 BNX2X_PATH0_LOAD_CNT_MASK);
4576 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4577 BNX2X_PATH0_LOAD_CNT_SHIFT);
4578 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4579
4580 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4581
4582 val = (val & mask) >> shift;
4583
4584 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4585 engine, val);
4586
4587 return val != 0;
4588 }
4589
_print_parity(struct bnx2x * bp,u32 reg)4590 static void _print_parity(struct bnx2x *bp, u32 reg)
4591 {
4592 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4593 }
4594
_print_next_block(int idx,const char * blk)4595 static void _print_next_block(int idx, const char *blk)
4596 {
4597 pr_cont("%s%s", idx ? ", " : "", blk);
4598 }
4599
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4600 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4601 int *par_num, bool print)
4602 {
4603 u32 cur_bit;
4604 bool res;
4605 int i;
4606
4607 res = false;
4608
4609 for (i = 0; sig; i++) {
4610 cur_bit = (0x1UL << i);
4611 if (sig & cur_bit) {
4612 res |= true; /* Each bit is real error! */
4613
4614 if (print) {
4615 switch (cur_bit) {
4616 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4617 _print_next_block((*par_num)++, "BRB");
4618 _print_parity(bp,
4619 BRB1_REG_BRB1_PRTY_STS);
4620 break;
4621 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4622 _print_next_block((*par_num)++,
4623 "PARSER");
4624 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4625 break;
4626 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4627 _print_next_block((*par_num)++, "TSDM");
4628 _print_parity(bp,
4629 TSDM_REG_TSDM_PRTY_STS);
4630 break;
4631 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4632 _print_next_block((*par_num)++,
4633 "SEARCHER");
4634 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4635 break;
4636 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4637 _print_next_block((*par_num)++, "TCM");
4638 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4639 break;
4640 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4641 _print_next_block((*par_num)++,
4642 "TSEMI");
4643 _print_parity(bp,
4644 TSEM_REG_TSEM_PRTY_STS_0);
4645 _print_parity(bp,
4646 TSEM_REG_TSEM_PRTY_STS_1);
4647 break;
4648 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4649 _print_next_block((*par_num)++, "XPB");
4650 _print_parity(bp, GRCBASE_XPB +
4651 PB_REG_PB_PRTY_STS);
4652 break;
4653 }
4654 }
4655
4656 /* Clear the bit */
4657 sig &= ~cur_bit;
4658 }
4659 }
4660
4661 return res;
4662 }
4663
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4664 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4665 int *par_num, bool *global,
4666 bool print)
4667 {
4668 u32 cur_bit;
4669 bool res;
4670 int i;
4671
4672 res = false;
4673
4674 for (i = 0; sig; i++) {
4675 cur_bit = (0x1UL << i);
4676 if (sig & cur_bit) {
4677 res |= true; /* Each bit is real error! */
4678 switch (cur_bit) {
4679 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4680 if (print) {
4681 _print_next_block((*par_num)++, "PBF");
4682 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4683 }
4684 break;
4685 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4686 if (print) {
4687 _print_next_block((*par_num)++, "QM");
4688 _print_parity(bp, QM_REG_QM_PRTY_STS);
4689 }
4690 break;
4691 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4692 if (print) {
4693 _print_next_block((*par_num)++, "TM");
4694 _print_parity(bp, TM_REG_TM_PRTY_STS);
4695 }
4696 break;
4697 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4698 if (print) {
4699 _print_next_block((*par_num)++, "XSDM");
4700 _print_parity(bp,
4701 XSDM_REG_XSDM_PRTY_STS);
4702 }
4703 break;
4704 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4705 if (print) {
4706 _print_next_block((*par_num)++, "XCM");
4707 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4708 }
4709 break;
4710 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4711 if (print) {
4712 _print_next_block((*par_num)++,
4713 "XSEMI");
4714 _print_parity(bp,
4715 XSEM_REG_XSEM_PRTY_STS_0);
4716 _print_parity(bp,
4717 XSEM_REG_XSEM_PRTY_STS_1);
4718 }
4719 break;
4720 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4721 if (print) {
4722 _print_next_block((*par_num)++,
4723 "DOORBELLQ");
4724 _print_parity(bp,
4725 DORQ_REG_DORQ_PRTY_STS);
4726 }
4727 break;
4728 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4729 if (print) {
4730 _print_next_block((*par_num)++, "NIG");
4731 if (CHIP_IS_E1x(bp)) {
4732 _print_parity(bp,
4733 NIG_REG_NIG_PRTY_STS);
4734 } else {
4735 _print_parity(bp,
4736 NIG_REG_NIG_PRTY_STS_0);
4737 _print_parity(bp,
4738 NIG_REG_NIG_PRTY_STS_1);
4739 }
4740 }
4741 break;
4742 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4743 if (print)
4744 _print_next_block((*par_num)++,
4745 "VAUX PCI CORE");
4746 *global = true;
4747 break;
4748 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4749 if (print) {
4750 _print_next_block((*par_num)++,
4751 "DEBUG");
4752 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4753 }
4754 break;
4755 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4756 if (print) {
4757 _print_next_block((*par_num)++, "USDM");
4758 _print_parity(bp,
4759 USDM_REG_USDM_PRTY_STS);
4760 }
4761 break;
4762 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4763 if (print) {
4764 _print_next_block((*par_num)++, "UCM");
4765 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4766 }
4767 break;
4768 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4769 if (print) {
4770 _print_next_block((*par_num)++,
4771 "USEMI");
4772 _print_parity(bp,
4773 USEM_REG_USEM_PRTY_STS_0);
4774 _print_parity(bp,
4775 USEM_REG_USEM_PRTY_STS_1);
4776 }
4777 break;
4778 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4779 if (print) {
4780 _print_next_block((*par_num)++, "UPB");
4781 _print_parity(bp, GRCBASE_UPB +
4782 PB_REG_PB_PRTY_STS);
4783 }
4784 break;
4785 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4786 if (print) {
4787 _print_next_block((*par_num)++, "CSDM");
4788 _print_parity(bp,
4789 CSDM_REG_CSDM_PRTY_STS);
4790 }
4791 break;
4792 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4793 if (print) {
4794 _print_next_block((*par_num)++, "CCM");
4795 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4796 }
4797 break;
4798 }
4799
4800 /* Clear the bit */
4801 sig &= ~cur_bit;
4802 }
4803 }
4804
4805 return res;
4806 }
4807
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4808 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4809 int *par_num, bool print)
4810 {
4811 u32 cur_bit;
4812 bool res;
4813 int i;
4814
4815 res = false;
4816
4817 for (i = 0; sig; i++) {
4818 cur_bit = (0x1UL << i);
4819 if (sig & cur_bit) {
4820 res = true; /* Each bit is real error! */
4821 if (print) {
4822 switch (cur_bit) {
4823 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4824 _print_next_block((*par_num)++,
4825 "CSEMI");
4826 _print_parity(bp,
4827 CSEM_REG_CSEM_PRTY_STS_0);
4828 _print_parity(bp,
4829 CSEM_REG_CSEM_PRTY_STS_1);
4830 break;
4831 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4832 _print_next_block((*par_num)++, "PXP");
4833 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4834 _print_parity(bp,
4835 PXP2_REG_PXP2_PRTY_STS_0);
4836 _print_parity(bp,
4837 PXP2_REG_PXP2_PRTY_STS_1);
4838 break;
4839 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4840 _print_next_block((*par_num)++,
4841 "PXPPCICLOCKCLIENT");
4842 break;
4843 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4844 _print_next_block((*par_num)++, "CFC");
4845 _print_parity(bp,
4846 CFC_REG_CFC_PRTY_STS);
4847 break;
4848 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4849 _print_next_block((*par_num)++, "CDU");
4850 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4851 break;
4852 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4853 _print_next_block((*par_num)++, "DMAE");
4854 _print_parity(bp,
4855 DMAE_REG_DMAE_PRTY_STS);
4856 break;
4857 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4858 _print_next_block((*par_num)++, "IGU");
4859 if (CHIP_IS_E1x(bp))
4860 _print_parity(bp,
4861 HC_REG_HC_PRTY_STS);
4862 else
4863 _print_parity(bp,
4864 IGU_REG_IGU_PRTY_STS);
4865 break;
4866 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4867 _print_next_block((*par_num)++, "MISC");
4868 _print_parity(bp,
4869 MISC_REG_MISC_PRTY_STS);
4870 break;
4871 }
4872 }
4873
4874 /* Clear the bit */
4875 sig &= ~cur_bit;
4876 }
4877 }
4878
4879 return res;
4880 }
4881
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4882 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4883 int *par_num, bool *global,
4884 bool print)
4885 {
4886 bool res = false;
4887 u32 cur_bit;
4888 int i;
4889
4890 for (i = 0; sig; i++) {
4891 cur_bit = (0x1UL << i);
4892 if (sig & cur_bit) {
4893 switch (cur_bit) {
4894 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4895 if (print)
4896 _print_next_block((*par_num)++,
4897 "MCP ROM");
4898 *global = true;
4899 res = true;
4900 break;
4901 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4902 if (print)
4903 _print_next_block((*par_num)++,
4904 "MCP UMP RX");
4905 *global = true;
4906 res = true;
4907 break;
4908 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4909 if (print)
4910 _print_next_block((*par_num)++,
4911 "MCP UMP TX");
4912 *global = true;
4913 res = true;
4914 break;
4915 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4916 (*par_num)++;
4917 /* clear latched SCPAD PATIRY from MCP */
4918 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4919 1UL << 10);
4920 break;
4921 }
4922
4923 /* Clear the bit */
4924 sig &= ~cur_bit;
4925 }
4926 }
4927
4928 return res;
4929 }
4930
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4931 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4932 int *par_num, bool print)
4933 {
4934 u32 cur_bit;
4935 bool res;
4936 int i;
4937
4938 res = false;
4939
4940 for (i = 0; sig; i++) {
4941 cur_bit = (0x1UL << i);
4942 if (sig & cur_bit) {
4943 res = true; /* Each bit is real error! */
4944 if (print) {
4945 switch (cur_bit) {
4946 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4947 _print_next_block((*par_num)++,
4948 "PGLUE_B");
4949 _print_parity(bp,
4950 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4951 break;
4952 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4953 _print_next_block((*par_num)++, "ATC");
4954 _print_parity(bp,
4955 ATC_REG_ATC_PRTY_STS);
4956 break;
4957 }
4958 }
4959 /* Clear the bit */
4960 sig &= ~cur_bit;
4961 }
4962 }
4963
4964 return res;
4965 }
4966
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4967 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4968 u32 *sig)
4969 {
4970 bool res = false;
4971
4972 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4973 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4974 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4975 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4976 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4977 int par_num = 0;
4978
4979 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4980 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4981 sig[0] & HW_PRTY_ASSERT_SET_0,
4982 sig[1] & HW_PRTY_ASSERT_SET_1,
4983 sig[2] & HW_PRTY_ASSERT_SET_2,
4984 sig[3] & HW_PRTY_ASSERT_SET_3,
4985 sig[4] & HW_PRTY_ASSERT_SET_4);
4986 if (print) {
4987 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4988 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4989 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4990 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4991 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4992 netdev_err(bp->dev,
4993 "Parity errors detected in blocks: ");
4994 } else {
4995 print = false;
4996 }
4997 }
4998 res |= bnx2x_check_blocks_with_parity0(bp,
4999 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
5000 res |= bnx2x_check_blocks_with_parity1(bp,
5001 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
5002 res |= bnx2x_check_blocks_with_parity2(bp,
5003 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
5004 res |= bnx2x_check_blocks_with_parity3(bp,
5005 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
5006 res |= bnx2x_check_blocks_with_parity4(bp,
5007 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
5008
5009 if (print)
5010 pr_cont("\n");
5011 }
5012
5013 return res;
5014 }
5015
5016 /**
5017 * bnx2x_chk_parity_attn - checks for parity attentions.
5018 *
5019 * @bp: driver handle
5020 * @global: true if there was a global attention
5021 * @print: show parity attention in syslog
5022 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5023 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5024 {
5025 struct attn_route attn = { {0} };
5026 int port = BP_PORT(bp);
5027
5028 attn.sig[0] = REG_RD(bp,
5029 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5030 port*4);
5031 attn.sig[1] = REG_RD(bp,
5032 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5033 port*4);
5034 attn.sig[2] = REG_RD(bp,
5035 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5036 port*4);
5037 attn.sig[3] = REG_RD(bp,
5038 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5039 port*4);
5040 /* Since MCP attentions can't be disabled inside the block, we need to
5041 * read AEU registers to see whether they're currently disabled
5042 */
5043 attn.sig[3] &= ((REG_RD(bp,
5044 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5045 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5046 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5047 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5048
5049 if (!CHIP_IS_E1x(bp))
5050 attn.sig[4] = REG_RD(bp,
5051 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5052 port*4);
5053
5054 return bnx2x_parity_attn(bp, global, print, attn.sig);
5055 }
5056
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5057 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5058 {
5059 u32 val;
5060 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5061
5062 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5063 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5064 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5065 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5066 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5067 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5068 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5069 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5070 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5071 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5072 if (val &
5073 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5074 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5075 if (val &
5076 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5077 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5078 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5079 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5080 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5081 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5082 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5083 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5084 }
5085 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5086 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5087 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5088 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5089 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5090 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5091 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5092 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5093 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5094 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5095 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5096 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5097 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5098 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5099 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5100 }
5101
5102 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5103 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5104 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5105 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5106 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5107 }
5108 }
5109
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5110 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5111 {
5112 struct attn_route attn, *group_mask;
5113 int port = BP_PORT(bp);
5114 int index;
5115 u32 reg_addr;
5116 u32 val;
5117 u32 aeu_mask;
5118 bool global = false;
5119
5120 /* need to take HW lock because MCP or other port might also
5121 try to handle this event */
5122 bnx2x_acquire_alr(bp);
5123
5124 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5125 #ifndef BNX2X_STOP_ON_ERROR
5126 bp->recovery_state = BNX2X_RECOVERY_INIT;
5127 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5128 /* Disable HW interrupts */
5129 bnx2x_int_disable(bp);
5130 /* In case of parity errors don't handle attentions so that
5131 * other function would "see" parity errors.
5132 */
5133 #else
5134 bnx2x_panic();
5135 #endif
5136 bnx2x_release_alr(bp);
5137 return;
5138 }
5139
5140 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5141 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5142 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5143 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5144 if (!CHIP_IS_E1x(bp))
5145 attn.sig[4] =
5146 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5147 else
5148 attn.sig[4] = 0;
5149
5150 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5151 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5152
5153 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5154 if (deasserted & (1 << index)) {
5155 group_mask = &bp->attn_group[index];
5156
5157 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5158 index,
5159 group_mask->sig[0], group_mask->sig[1],
5160 group_mask->sig[2], group_mask->sig[3],
5161 group_mask->sig[4]);
5162
5163 bnx2x_attn_int_deasserted4(bp,
5164 attn.sig[4] & group_mask->sig[4]);
5165 bnx2x_attn_int_deasserted3(bp,
5166 attn.sig[3] & group_mask->sig[3]);
5167 bnx2x_attn_int_deasserted1(bp,
5168 attn.sig[1] & group_mask->sig[1]);
5169 bnx2x_attn_int_deasserted2(bp,
5170 attn.sig[2] & group_mask->sig[2]);
5171 bnx2x_attn_int_deasserted0(bp,
5172 attn.sig[0] & group_mask->sig[0]);
5173 }
5174 }
5175
5176 bnx2x_release_alr(bp);
5177
5178 if (bp->common.int_block == INT_BLOCK_HC)
5179 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5180 COMMAND_REG_ATTN_BITS_CLR);
5181 else
5182 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5183
5184 val = ~deasserted;
5185 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5186 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5187 REG_WR(bp, reg_addr, val);
5188
5189 if (~bp->attn_state & deasserted)
5190 BNX2X_ERR("IGU ERROR\n");
5191
5192 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5193 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5194
5195 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5196 aeu_mask = REG_RD(bp, reg_addr);
5197
5198 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5199 aeu_mask, deasserted);
5200 aeu_mask |= (deasserted & 0x3ff);
5201 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5202
5203 REG_WR(bp, reg_addr, aeu_mask);
5204 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5205
5206 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5207 bp->attn_state &= ~deasserted;
5208 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5209 }
5210
bnx2x_attn_int(struct bnx2x * bp)5211 static void bnx2x_attn_int(struct bnx2x *bp)
5212 {
5213 /* read local copy of bits */
5214 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5215 attn_bits);
5216 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5217 attn_bits_ack);
5218 u32 attn_state = bp->attn_state;
5219
5220 /* look for changed bits */
5221 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5222 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5223
5224 DP(NETIF_MSG_HW,
5225 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5226 attn_bits, attn_ack, asserted, deasserted);
5227
5228 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5229 BNX2X_ERR("BAD attention state\n");
5230
5231 /* handle bits that were raised */
5232 if (asserted)
5233 bnx2x_attn_int_asserted(bp, asserted);
5234
5235 if (deasserted)
5236 bnx2x_attn_int_deasserted(bp, deasserted);
5237 }
5238
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5239 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5240 u16 index, u8 op, u8 update)
5241 {
5242 u32 igu_addr = bp->igu_base_addr;
5243 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5244 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5245 igu_addr);
5246 }
5247
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5248 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5249 {
5250 /* No memory barriers */
5251 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5252 }
5253
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5254 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5255 union event_ring_elem *elem)
5256 {
5257 u8 err = elem->message.error;
5258
5259 if (!bp->cnic_eth_dev.starting_cid ||
5260 (cid < bp->cnic_eth_dev.starting_cid &&
5261 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5262 return 1;
5263
5264 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5265
5266 if (unlikely(err)) {
5267
5268 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5269 cid);
5270 bnx2x_panic_dump(bp, false);
5271 }
5272 bnx2x_cnic_cfc_comp(bp, cid, err);
5273 return 0;
5274 }
5275
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5276 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5277 {
5278 struct bnx2x_mcast_ramrod_params rparam;
5279 int rc;
5280
5281 memset(&rparam, 0, sizeof(rparam));
5282
5283 rparam.mcast_obj = &bp->mcast_obj;
5284
5285 netif_addr_lock_bh(bp->dev);
5286
5287 /* Clear pending state for the last command */
5288 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5289
5290 /* If there are pending mcast commands - send them */
5291 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5292 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5293 if (rc < 0)
5294 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5295 rc);
5296 }
5297
5298 netif_addr_unlock_bh(bp->dev);
5299 }
5300
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5301 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5302 union event_ring_elem *elem)
5303 {
5304 unsigned long ramrod_flags = 0;
5305 int rc = 0;
5306 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5307 u32 cid = echo & BNX2X_SWCID_MASK;
5308 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5309
5310 /* Always push next commands out, don't wait here */
5311 __set_bit(RAMROD_CONT, &ramrod_flags);
5312
5313 switch (echo >> BNX2X_SWCID_SHIFT) {
5314 case BNX2X_FILTER_MAC_PENDING:
5315 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5316 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5317 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5318 else
5319 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5320
5321 break;
5322 case BNX2X_FILTER_VLAN_PENDING:
5323 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5324 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5325 break;
5326 case BNX2X_FILTER_MCAST_PENDING:
5327 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5328 /* This is only relevant for 57710 where multicast MACs are
5329 * configured as unicast MACs using the same ramrod.
5330 */
5331 bnx2x_handle_mcast_eqe(bp);
5332 return;
5333 default:
5334 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5335 return;
5336 }
5337
5338 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5339
5340 if (rc < 0)
5341 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5342 else if (rc > 0)
5343 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5344 }
5345
5346 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5347
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5348 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5349 {
5350 netif_addr_lock_bh(bp->dev);
5351
5352 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5353
5354 /* Send rx_mode command again if was requested */
5355 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5356 bnx2x_set_storm_rx_mode(bp);
5357 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5358 &bp->sp_state))
5359 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5360 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5361 &bp->sp_state))
5362 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5363
5364 netif_addr_unlock_bh(bp->dev);
5365 }
5366
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5367 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5368 union event_ring_elem *elem)
5369 {
5370 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5371 DP(BNX2X_MSG_SP,
5372 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5373 elem->message.data.vif_list_event.func_bit_map);
5374 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5375 elem->message.data.vif_list_event.func_bit_map);
5376 } else if (elem->message.data.vif_list_event.echo ==
5377 VIF_LIST_RULE_SET) {
5378 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5379 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5380 }
5381 }
5382
5383 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5384 static void bnx2x_after_function_update(struct bnx2x *bp)
5385 {
5386 int q, rc;
5387 struct bnx2x_fastpath *fp;
5388 struct bnx2x_queue_state_params queue_params = {NULL};
5389 struct bnx2x_queue_update_params *q_update_params =
5390 &queue_params.params.update;
5391
5392 /* Send Q update command with afex vlan removal values for all Qs */
5393 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5394
5395 /* set silent vlan removal values according to vlan mode */
5396 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5397 &q_update_params->update_flags);
5398 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5399 &q_update_params->update_flags);
5400 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5401
5402 /* in access mode mark mask and value are 0 to strip all vlans */
5403 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5404 q_update_params->silent_removal_value = 0;
5405 q_update_params->silent_removal_mask = 0;
5406 } else {
5407 q_update_params->silent_removal_value =
5408 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5409 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5410 }
5411
5412 for_each_eth_queue(bp, q) {
5413 /* Set the appropriate Queue object */
5414 fp = &bp->fp[q];
5415 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5416
5417 /* send the ramrod */
5418 rc = bnx2x_queue_state_change(bp, &queue_params);
5419 if (rc < 0)
5420 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 q);
5422 }
5423
5424 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5425 fp = &bp->fp[FCOE_IDX(bp)];
5426 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5427
5428 /* clear pending completion bit */
5429 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5430
5431 /* mark latest Q bit */
5432 smp_mb__before_atomic();
5433 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5434 smp_mb__after_atomic();
5435
5436 /* send Q update ramrod for FCoE Q */
5437 rc = bnx2x_queue_state_change(bp, &queue_params);
5438 if (rc < 0)
5439 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5440 q);
5441 } else {
5442 /* If no FCoE ring - ACK MCP now */
5443 bnx2x_link_report(bp);
5444 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5445 }
5446 }
5447
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5448 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5449 struct bnx2x *bp, u32 cid)
5450 {
5451 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5452
5453 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5454 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5455 else
5456 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5457 }
5458
bnx2x_eq_int(struct bnx2x * bp)5459 static void bnx2x_eq_int(struct bnx2x *bp)
5460 {
5461 u16 hw_cons, sw_cons, sw_prod;
5462 union event_ring_elem *elem;
5463 u8 echo;
5464 u32 cid;
5465 u8 opcode;
5466 int rc, spqe_cnt = 0;
5467 struct bnx2x_queue_sp_obj *q_obj;
5468 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5469 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5470
5471 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5472
5473 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5474 * when we get the next-page we need to adjust so the loop
5475 * condition below will be met. The next element is the size of a
5476 * regular element and hence incrementing by 1
5477 */
5478 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5479 hw_cons++;
5480
5481 /* This function may never run in parallel with itself for a
5482 * specific bp, thus there is no need in "paired" read memory
5483 * barrier here.
5484 */
5485 sw_cons = bp->eq_cons;
5486 sw_prod = bp->eq_prod;
5487
5488 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5489 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5490
5491 for (; sw_cons != hw_cons;
5492 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5493
5494 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5495
5496 rc = bnx2x_iov_eq_sp_event(bp, elem);
5497 if (!rc) {
5498 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5499 rc);
5500 goto next_spqe;
5501 }
5502
5503 opcode = elem->message.opcode;
5504
5505 /* handle eq element */
5506 switch (opcode) {
5507 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5508 bnx2x_vf_mbx_schedule(bp,
5509 &elem->message.data.vf_pf_event);
5510 continue;
5511
5512 case EVENT_RING_OPCODE_STAT_QUERY:
5513 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5514 "got statistics comp event %d\n",
5515 bp->stats_comp++);
5516 /* nothing to do with stats comp */
5517 goto next_spqe;
5518
5519 case EVENT_RING_OPCODE_CFC_DEL:
5520 /* handle according to cid range */
5521 /*
5522 * we may want to verify here that the bp state is
5523 * HALTING
5524 */
5525
5526 /* elem CID originates from FW; actually LE */
5527 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5528
5529 DP(BNX2X_MSG_SP,
5530 "got delete ramrod for MULTI[%d]\n", cid);
5531
5532 if (CNIC_LOADED(bp) &&
5533 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5534 goto next_spqe;
5535
5536 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5537
5538 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5539 break;
5540
5541 goto next_spqe;
5542
5543 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5544 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5545 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5546 if (f_obj->complete_cmd(bp, f_obj,
5547 BNX2X_F_CMD_TX_STOP))
5548 break;
5549 goto next_spqe;
5550
5551 case EVENT_RING_OPCODE_START_TRAFFIC:
5552 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5553 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5554 if (f_obj->complete_cmd(bp, f_obj,
5555 BNX2X_F_CMD_TX_START))
5556 break;
5557 goto next_spqe;
5558
5559 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5560 echo = elem->message.data.function_update_event.echo;
5561 if (echo == SWITCH_UPDATE) {
5562 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5563 "got FUNC_SWITCH_UPDATE ramrod\n");
5564 if (f_obj->complete_cmd(
5565 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5566 break;
5567
5568 } else {
5569 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5570
5571 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5572 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5573 f_obj->complete_cmd(bp, f_obj,
5574 BNX2X_F_CMD_AFEX_UPDATE);
5575
5576 /* We will perform the Queues update from
5577 * sp_rtnl task as all Queue SP operations
5578 * should run under rtnl_lock.
5579 */
5580 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5581 }
5582
5583 goto next_spqe;
5584
5585 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5586 f_obj->complete_cmd(bp, f_obj,
5587 BNX2X_F_CMD_AFEX_VIFLISTS);
5588 bnx2x_after_afex_vif_lists(bp, elem);
5589 goto next_spqe;
5590 case EVENT_RING_OPCODE_FUNCTION_START:
5591 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5592 "got FUNC_START ramrod\n");
5593 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5594 break;
5595
5596 goto next_spqe;
5597
5598 case EVENT_RING_OPCODE_FUNCTION_STOP:
5599 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5600 "got FUNC_STOP ramrod\n");
5601 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5602 break;
5603
5604 goto next_spqe;
5605
5606 case EVENT_RING_OPCODE_SET_TIMESYNC:
5607 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5608 "got set_timesync ramrod completion\n");
5609 if (f_obj->complete_cmd(bp, f_obj,
5610 BNX2X_F_CMD_SET_TIMESYNC))
5611 break;
5612 goto next_spqe;
5613 }
5614
5615 switch (opcode | bp->state) {
5616 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5617 BNX2X_STATE_OPEN):
5618 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5619 BNX2X_STATE_OPENING_WAIT4_PORT):
5620 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5621 BNX2X_STATE_CLOSING_WAIT4_HALT):
5622 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5623 SW_CID(elem->message.data.eth_event.echo));
5624 rss_raw->clear_pending(rss_raw);
5625 break;
5626
5627 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5628 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5629 case (EVENT_RING_OPCODE_SET_MAC |
5630 BNX2X_STATE_CLOSING_WAIT4_HALT):
5631 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5632 BNX2X_STATE_OPEN):
5633 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5634 BNX2X_STATE_DIAG):
5635 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5636 BNX2X_STATE_CLOSING_WAIT4_HALT):
5637 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5638 bnx2x_handle_classification_eqe(bp, elem);
5639 break;
5640
5641 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5642 BNX2X_STATE_OPEN):
5643 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5644 BNX2X_STATE_DIAG):
5645 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5646 BNX2X_STATE_CLOSING_WAIT4_HALT):
5647 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5648 bnx2x_handle_mcast_eqe(bp);
5649 break;
5650
5651 case (EVENT_RING_OPCODE_FILTERS_RULES |
5652 BNX2X_STATE_OPEN):
5653 case (EVENT_RING_OPCODE_FILTERS_RULES |
5654 BNX2X_STATE_DIAG):
5655 case (EVENT_RING_OPCODE_FILTERS_RULES |
5656 BNX2X_STATE_CLOSING_WAIT4_HALT):
5657 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5658 bnx2x_handle_rx_mode_eqe(bp);
5659 break;
5660 default:
5661 /* unknown event log error and continue */
5662 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5663 elem->message.opcode, bp->state);
5664 }
5665 next_spqe:
5666 spqe_cnt++;
5667 } /* for */
5668
5669 smp_mb__before_atomic();
5670 atomic_add(spqe_cnt, &bp->eq_spq_left);
5671
5672 bp->eq_cons = sw_cons;
5673 bp->eq_prod = sw_prod;
5674 /* Make sure that above mem writes were issued towards the memory */
5675 smp_wmb();
5676
5677 /* update producer */
5678 bnx2x_update_eq_prod(bp, bp->eq_prod);
5679 }
5680
bnx2x_sp_task(struct work_struct * work)5681 static void bnx2x_sp_task(struct work_struct *work)
5682 {
5683 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5684
5685 DP(BNX2X_MSG_SP, "sp task invoked\n");
5686
5687 /* make sure the atomic interrupt_occurred has been written */
5688 smp_rmb();
5689 if (atomic_read(&bp->interrupt_occurred)) {
5690
5691 /* what work needs to be performed? */
5692 u16 status = bnx2x_update_dsb_idx(bp);
5693
5694 DP(BNX2X_MSG_SP, "status %x\n", status);
5695 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5696 atomic_set(&bp->interrupt_occurred, 0);
5697
5698 /* HW attentions */
5699 if (status & BNX2X_DEF_SB_ATT_IDX) {
5700 bnx2x_attn_int(bp);
5701 status &= ~BNX2X_DEF_SB_ATT_IDX;
5702 }
5703
5704 /* SP events: STAT_QUERY and others */
5705 if (status & BNX2X_DEF_SB_IDX) {
5706 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5707
5708 if (FCOE_INIT(bp) &&
5709 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5710 /* Prevent local bottom-halves from running as
5711 * we are going to change the local NAPI list.
5712 */
5713 local_bh_disable();
5714 napi_schedule(&bnx2x_fcoe(bp, napi));
5715 local_bh_enable();
5716 }
5717
5718 /* Handle EQ completions */
5719 bnx2x_eq_int(bp);
5720 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5721 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5722
5723 status &= ~BNX2X_DEF_SB_IDX;
5724 }
5725
5726 /* if status is non zero then perhaps something went wrong */
5727 if (unlikely(status))
5728 DP(BNX2X_MSG_SP,
5729 "got an unknown interrupt! (status 0x%x)\n", status);
5730
5731 /* ack status block only if something was actually handled */
5732 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5733 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5734 }
5735
5736 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5737 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5738 &bp->sp_state)) {
5739 bnx2x_link_report(bp);
5740 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5741 }
5742 }
5743
bnx2x_msix_sp_int(int irq,void * dev_instance)5744 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5745 {
5746 struct net_device *dev = dev_instance;
5747 struct bnx2x *bp = netdev_priv(dev);
5748
5749 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5750 IGU_INT_DISABLE, 0);
5751
5752 #ifdef BNX2X_STOP_ON_ERROR
5753 if (unlikely(bp->panic))
5754 return IRQ_HANDLED;
5755 #endif
5756
5757 if (CNIC_LOADED(bp)) {
5758 struct cnic_ops *c_ops;
5759
5760 rcu_read_lock();
5761 c_ops = rcu_dereference(bp->cnic_ops);
5762 if (c_ops)
5763 c_ops->cnic_handler(bp->cnic_data, NULL);
5764 rcu_read_unlock();
5765 }
5766
5767 /* schedule sp task to perform default status block work, ack
5768 * attentions and enable interrupts.
5769 */
5770 bnx2x_schedule_sp_task(bp);
5771
5772 return IRQ_HANDLED;
5773 }
5774
5775 /* end of slow path */
5776
bnx2x_drv_pulse(struct bnx2x * bp)5777 void bnx2x_drv_pulse(struct bnx2x *bp)
5778 {
5779 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5780 bp->fw_drv_pulse_wr_seq);
5781 }
5782
bnx2x_timer(struct timer_list * t)5783 static void bnx2x_timer(struct timer_list *t)
5784 {
5785 struct bnx2x *bp = from_timer(bp, t, timer);
5786
5787 if (!netif_running(bp->dev))
5788 return;
5789
5790 if (IS_PF(bp) &&
5791 !BP_NOMCP(bp)) {
5792 int mb_idx = BP_FW_MB_IDX(bp);
5793 u16 drv_pulse;
5794 u16 mcp_pulse;
5795
5796 ++bp->fw_drv_pulse_wr_seq;
5797 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5798 drv_pulse = bp->fw_drv_pulse_wr_seq;
5799 bnx2x_drv_pulse(bp);
5800
5801 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5802 MCP_PULSE_SEQ_MASK);
5803 /* The delta between driver pulse and mcp response
5804 * should not get too big. If the MFW is more than 5 pulses
5805 * behind, we should worry about it enough to generate an error
5806 * log.
5807 */
5808 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5809 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5810 drv_pulse, mcp_pulse);
5811 }
5812
5813 if (bp->state == BNX2X_STATE_OPEN)
5814 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5815
5816 /* sample pf vf bulletin board for new posts from pf */
5817 if (IS_VF(bp))
5818 bnx2x_timer_sriov(bp);
5819
5820 mod_timer(&bp->timer, jiffies + bp->current_interval);
5821 }
5822
5823 /* end of Statistics */
5824
5825 /* nic init */
5826
5827 /*
5828 * nic init service functions
5829 */
5830
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5831 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5832 {
5833 u32 i;
5834 if (!(len%4) && !(addr%4))
5835 for (i = 0; i < len; i += 4)
5836 REG_WR(bp, addr + i, fill);
5837 else
5838 for (i = 0; i < len; i++)
5839 REG_WR8(bp, addr + i, fill);
5840 }
5841
5842 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5843 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5844 int fw_sb_id,
5845 u32 *sb_data_p,
5846 u32 data_size)
5847 {
5848 int index;
5849 for (index = 0; index < data_size; index++)
5850 REG_WR(bp, BAR_CSTRORM_INTMEM +
5851 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5852 sizeof(u32)*index,
5853 *(sb_data_p + index));
5854 }
5855
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5856 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5857 {
5858 u32 *sb_data_p;
5859 u32 data_size = 0;
5860 struct hc_status_block_data_e2 sb_data_e2;
5861 struct hc_status_block_data_e1x sb_data_e1x;
5862
5863 /* disable the function first */
5864 if (!CHIP_IS_E1x(bp)) {
5865 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5866 sb_data_e2.common.state = SB_DISABLED;
5867 sb_data_e2.common.p_func.vf_valid = false;
5868 sb_data_p = (u32 *)&sb_data_e2;
5869 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5870 } else {
5871 memset(&sb_data_e1x, 0,
5872 sizeof(struct hc_status_block_data_e1x));
5873 sb_data_e1x.common.state = SB_DISABLED;
5874 sb_data_e1x.common.p_func.vf_valid = false;
5875 sb_data_p = (u32 *)&sb_data_e1x;
5876 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5877 }
5878 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5879
5880 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5881 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5882 CSTORM_STATUS_BLOCK_SIZE);
5883 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5884 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5885 CSTORM_SYNC_BLOCK_SIZE);
5886 }
5887
5888 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5889 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5890 struct hc_sp_status_block_data *sp_sb_data)
5891 {
5892 int func = BP_FUNC(bp);
5893 int i;
5894 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5895 REG_WR(bp, BAR_CSTRORM_INTMEM +
5896 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5897 i*sizeof(u32),
5898 *((u32 *)sp_sb_data + i));
5899 }
5900
bnx2x_zero_sp_sb(struct bnx2x * bp)5901 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5902 {
5903 int func = BP_FUNC(bp);
5904 struct hc_sp_status_block_data sp_sb_data;
5905 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5906
5907 sp_sb_data.state = SB_DISABLED;
5908 sp_sb_data.p_func.vf_valid = false;
5909
5910 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5911
5912 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5913 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5914 CSTORM_SP_STATUS_BLOCK_SIZE);
5915 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5916 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5917 CSTORM_SP_SYNC_BLOCK_SIZE);
5918 }
5919
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5920 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5921 int igu_sb_id, int igu_seg_id)
5922 {
5923 hc_sm->igu_sb_id = igu_sb_id;
5924 hc_sm->igu_seg_id = igu_seg_id;
5925 hc_sm->timer_value = 0xFF;
5926 hc_sm->time_to_expire = 0xFFFFFFFF;
5927 }
5928
5929 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5930 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5931 {
5932 /* zero out state machine indices */
5933 /* rx indices */
5934 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5935
5936 /* tx indices */
5937 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5938 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5939 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5940 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5941
5942 /* map indices */
5943 /* rx indices */
5944 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5945 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5946
5947 /* tx indices */
5948 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5949 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5950 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5951 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5952 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5953 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5954 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5955 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5956 }
5957
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5958 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5959 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5960 {
5961 int igu_seg_id;
5962
5963 struct hc_status_block_data_e2 sb_data_e2;
5964 struct hc_status_block_data_e1x sb_data_e1x;
5965 struct hc_status_block_sm *hc_sm_p;
5966 int data_size;
5967 u32 *sb_data_p;
5968
5969 if (CHIP_INT_MODE_IS_BC(bp))
5970 igu_seg_id = HC_SEG_ACCESS_NORM;
5971 else
5972 igu_seg_id = IGU_SEG_ACCESS_NORM;
5973
5974 bnx2x_zero_fp_sb(bp, fw_sb_id);
5975
5976 if (!CHIP_IS_E1x(bp)) {
5977 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5978 sb_data_e2.common.state = SB_ENABLED;
5979 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5980 sb_data_e2.common.p_func.vf_id = vfid;
5981 sb_data_e2.common.p_func.vf_valid = vf_valid;
5982 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5983 sb_data_e2.common.same_igu_sb_1b = true;
5984 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5985 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5986 hc_sm_p = sb_data_e2.common.state_machine;
5987 sb_data_p = (u32 *)&sb_data_e2;
5988 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5989 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5990 } else {
5991 memset(&sb_data_e1x, 0,
5992 sizeof(struct hc_status_block_data_e1x));
5993 sb_data_e1x.common.state = SB_ENABLED;
5994 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5995 sb_data_e1x.common.p_func.vf_id = 0xff;
5996 sb_data_e1x.common.p_func.vf_valid = false;
5997 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5998 sb_data_e1x.common.same_igu_sb_1b = true;
5999 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
6000 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
6001 hc_sm_p = sb_data_e1x.common.state_machine;
6002 sb_data_p = (u32 *)&sb_data_e1x;
6003 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
6004 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
6005 }
6006
6007 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
6008 igu_sb_id, igu_seg_id);
6009 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
6010 igu_sb_id, igu_seg_id);
6011
6012 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
6013
6014 /* write indices to HW - PCI guarantees endianity of regpairs */
6015 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
6016 }
6017
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)6018 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6019 u16 tx_usec, u16 rx_usec)
6020 {
6021 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6022 false, rx_usec);
6023 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6024 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6025 tx_usec);
6026 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6027 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6028 tx_usec);
6029 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6030 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6031 tx_usec);
6032 }
6033
bnx2x_init_def_sb(struct bnx2x * bp)6034 static void bnx2x_init_def_sb(struct bnx2x *bp)
6035 {
6036 struct host_sp_status_block *def_sb = bp->def_status_blk;
6037 dma_addr_t mapping = bp->def_status_blk_mapping;
6038 int igu_sp_sb_index;
6039 int igu_seg_id;
6040 int port = BP_PORT(bp);
6041 int func = BP_FUNC(bp);
6042 int reg_offset, reg_offset_en5;
6043 u64 section;
6044 int index;
6045 struct hc_sp_status_block_data sp_sb_data;
6046 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6047
6048 if (CHIP_INT_MODE_IS_BC(bp)) {
6049 igu_sp_sb_index = DEF_SB_IGU_ID;
6050 igu_seg_id = HC_SEG_ACCESS_DEF;
6051 } else {
6052 igu_sp_sb_index = bp->igu_dsb_id;
6053 igu_seg_id = IGU_SEG_ACCESS_DEF;
6054 }
6055
6056 /* ATTN */
6057 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6058 atten_status_block);
6059 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6060
6061 bp->attn_state = 0;
6062
6063 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6064 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6065 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6066 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6067 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6068 int sindex;
6069 /* take care of sig[0]..sig[4] */
6070 for (sindex = 0; sindex < 4; sindex++)
6071 bp->attn_group[index].sig[sindex] =
6072 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6073
6074 if (!CHIP_IS_E1x(bp))
6075 /*
6076 * enable5 is separate from the rest of the registers,
6077 * and therefore the address skip is 4
6078 * and not 16 between the different groups
6079 */
6080 bp->attn_group[index].sig[4] = REG_RD(bp,
6081 reg_offset_en5 + 0x4*index);
6082 else
6083 bp->attn_group[index].sig[4] = 0;
6084 }
6085
6086 if (bp->common.int_block == INT_BLOCK_HC) {
6087 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6088 HC_REG_ATTN_MSG0_ADDR_L);
6089
6090 REG_WR(bp, reg_offset, U64_LO(section));
6091 REG_WR(bp, reg_offset + 4, U64_HI(section));
6092 } else if (!CHIP_IS_E1x(bp)) {
6093 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6094 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6095 }
6096
6097 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6098 sp_sb);
6099
6100 bnx2x_zero_sp_sb(bp);
6101
6102 /* PCI guarantees endianity of regpairs */
6103 sp_sb_data.state = SB_ENABLED;
6104 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6105 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6106 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6107 sp_sb_data.igu_seg_id = igu_seg_id;
6108 sp_sb_data.p_func.pf_id = func;
6109 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6110 sp_sb_data.p_func.vf_id = 0xff;
6111
6112 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6113
6114 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6115 }
6116
bnx2x_update_coalesce(struct bnx2x * bp)6117 void bnx2x_update_coalesce(struct bnx2x *bp)
6118 {
6119 int i;
6120
6121 for_each_eth_queue(bp, i)
6122 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6123 bp->tx_ticks, bp->rx_ticks);
6124 }
6125
bnx2x_init_sp_ring(struct bnx2x * bp)6126 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6127 {
6128 spin_lock_init(&bp->spq_lock);
6129 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6130
6131 bp->spq_prod_idx = 0;
6132 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6133 bp->spq_prod_bd = bp->spq;
6134 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6135 }
6136
bnx2x_init_eq_ring(struct bnx2x * bp)6137 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6138 {
6139 int i;
6140 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6141 union event_ring_elem *elem =
6142 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6143
6144 elem->next_page.addr.hi =
6145 cpu_to_le32(U64_HI(bp->eq_mapping +
6146 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6147 elem->next_page.addr.lo =
6148 cpu_to_le32(U64_LO(bp->eq_mapping +
6149 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6150 }
6151 bp->eq_cons = 0;
6152 bp->eq_prod = NUM_EQ_DESC;
6153 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6154 /* we want a warning message before it gets wrought... */
6155 atomic_set(&bp->eq_spq_left,
6156 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6157 }
6158
6159 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6160 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6161 unsigned long rx_mode_flags,
6162 unsigned long rx_accept_flags,
6163 unsigned long tx_accept_flags,
6164 unsigned long ramrod_flags)
6165 {
6166 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6167 int rc;
6168
6169 memset(&ramrod_param, 0, sizeof(ramrod_param));
6170
6171 /* Prepare ramrod parameters */
6172 ramrod_param.cid = 0;
6173 ramrod_param.cl_id = cl_id;
6174 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6175 ramrod_param.func_id = BP_FUNC(bp);
6176
6177 ramrod_param.pstate = &bp->sp_state;
6178 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6179
6180 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6181 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6182
6183 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6184
6185 ramrod_param.ramrod_flags = ramrod_flags;
6186 ramrod_param.rx_mode_flags = rx_mode_flags;
6187
6188 ramrod_param.rx_accept_flags = rx_accept_flags;
6189 ramrod_param.tx_accept_flags = tx_accept_flags;
6190
6191 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6192 if (rc < 0) {
6193 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6194 return rc;
6195 }
6196
6197 return 0;
6198 }
6199
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6200 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6201 unsigned long *rx_accept_flags,
6202 unsigned long *tx_accept_flags)
6203 {
6204 /* Clear the flags first */
6205 *rx_accept_flags = 0;
6206 *tx_accept_flags = 0;
6207
6208 switch (rx_mode) {
6209 case BNX2X_RX_MODE_NONE:
6210 /*
6211 * 'drop all' supersedes any accept flags that may have been
6212 * passed to the function.
6213 */
6214 break;
6215 case BNX2X_RX_MODE_NORMAL:
6216 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6217 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6218 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6219
6220 /* internal switching mode */
6221 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6222 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6223 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6224
6225 if (bp->accept_any_vlan) {
6226 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6227 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6228 }
6229
6230 break;
6231 case BNX2X_RX_MODE_ALLMULTI:
6232 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235
6236 /* internal switching mode */
6237 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6238 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6239 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6240
6241 if (bp->accept_any_vlan) {
6242 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6243 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6244 }
6245
6246 break;
6247 case BNX2X_RX_MODE_PROMISC:
6248 /* According to definition of SI mode, iface in promisc mode
6249 * should receive matched and unmatched (in resolution of port)
6250 * unicast packets.
6251 */
6252 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6253 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6254 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6255 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6256
6257 /* internal switching mode */
6258 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6259 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6260
6261 if (IS_MF_SI(bp))
6262 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6263 else
6264 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6265
6266 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6267 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6268
6269 break;
6270 default:
6271 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6272 return -EINVAL;
6273 }
6274
6275 return 0;
6276 }
6277
6278 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6279 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6280 {
6281 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6282 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6283 int rc;
6284
6285 if (!NO_FCOE(bp))
6286 /* Configure rx_mode of FCoE Queue */
6287 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6288
6289 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6290 &tx_accept_flags);
6291 if (rc)
6292 return rc;
6293
6294 __set_bit(RAMROD_RX, &ramrod_flags);
6295 __set_bit(RAMROD_TX, &ramrod_flags);
6296
6297 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6298 rx_accept_flags, tx_accept_flags,
6299 ramrod_flags);
6300 }
6301
bnx2x_init_internal_common(struct bnx2x * bp)6302 static void bnx2x_init_internal_common(struct bnx2x *bp)
6303 {
6304 int i;
6305
6306 /* Zero this manually as its initialization is
6307 currently missing in the initTool */
6308 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6309 REG_WR(bp, BAR_USTRORM_INTMEM +
6310 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6311 if (!CHIP_IS_E1x(bp)) {
6312 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6313 CHIP_INT_MODE_IS_BC(bp) ?
6314 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6315 }
6316 }
6317
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6318 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6319 {
6320 switch (load_code) {
6321 case FW_MSG_CODE_DRV_LOAD_COMMON:
6322 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6323 bnx2x_init_internal_common(bp);
6324 fallthrough;
6325
6326 case FW_MSG_CODE_DRV_LOAD_PORT:
6327 /* nothing to do */
6328 fallthrough;
6329
6330 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6331 /* internal memory per function is
6332 initialized inside bnx2x_pf_init */
6333 break;
6334
6335 default:
6336 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6337 break;
6338 }
6339 }
6340
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6341 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6342 {
6343 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6344 }
6345
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6346 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6347 {
6348 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6349 }
6350
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6351 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6352 {
6353 if (CHIP_IS_E1x(fp->bp))
6354 return BP_L_ID(fp->bp) + fp->index;
6355 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6356 return bnx2x_fp_igu_sb_id(fp);
6357 }
6358
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6359 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6360 {
6361 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6362 u8 cos;
6363 unsigned long q_type = 0;
6364 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6365 fp->rx_queue = fp_idx;
6366 fp->cid = fp_idx;
6367 fp->cl_id = bnx2x_fp_cl_id(fp);
6368 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6369 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6370 /* qZone id equals to FW (per path) client id */
6371 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6372
6373 /* init shortcut */
6374 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6375
6376 /* Setup SB indices */
6377 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6378
6379 /* Configure Queue State object */
6380 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6381 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6382
6383 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6384
6385 /* init tx data */
6386 for_each_cos_in_tx_queue(fp, cos) {
6387 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6388 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6389 FP_COS_TO_TXQ(fp, cos, bp),
6390 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6391 cids[cos] = fp->txdata_ptr[cos]->cid;
6392 }
6393
6394 /* nothing more for vf to do here */
6395 if (IS_VF(bp))
6396 return;
6397
6398 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6399 fp->fw_sb_id, fp->igu_sb_id);
6400 bnx2x_update_fpsb_idx(fp);
6401 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6402 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6403 bnx2x_sp_mapping(bp, q_rdata), q_type);
6404
6405 /**
6406 * Configure classification DBs: Always enable Tx switching
6407 */
6408 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6409
6410 DP(NETIF_MSG_IFUP,
6411 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6412 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6413 fp->igu_sb_id);
6414 }
6415
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6416 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6417 {
6418 int i;
6419
6420 for (i = 1; i <= NUM_TX_RINGS; i++) {
6421 struct eth_tx_next_bd *tx_next_bd =
6422 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6423
6424 tx_next_bd->addr_hi =
6425 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6426 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6427 tx_next_bd->addr_lo =
6428 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6429 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6430 }
6431
6432 *txdata->tx_cons_sb = cpu_to_le16(0);
6433
6434 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6435 txdata->tx_db.data.zero_fill1 = 0;
6436 txdata->tx_db.data.prod = 0;
6437
6438 txdata->tx_pkt_prod = 0;
6439 txdata->tx_pkt_cons = 0;
6440 txdata->tx_bd_prod = 0;
6441 txdata->tx_bd_cons = 0;
6442 txdata->tx_pkt = 0;
6443 }
6444
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6445 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6446 {
6447 int i;
6448
6449 for_each_tx_queue_cnic(bp, i)
6450 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6451 }
6452
bnx2x_init_tx_rings(struct bnx2x * bp)6453 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6454 {
6455 int i;
6456 u8 cos;
6457
6458 for_each_eth_queue(bp, i)
6459 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6460 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6461 }
6462
bnx2x_init_fcoe_fp(struct bnx2x * bp)6463 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6464 {
6465 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6466 unsigned long q_type = 0;
6467
6468 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6469 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6470 BNX2X_FCOE_ETH_CL_ID_IDX);
6471 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6472 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6473 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6474 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6475 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6476 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6477 fp);
6478
6479 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6480
6481 /* qZone id equals to FW (per path) client id */
6482 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6483 /* init shortcut */
6484 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6485 bnx2x_rx_ustorm_prods_offset(fp);
6486
6487 /* Configure Queue State object */
6488 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6489 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6490
6491 /* No multi-CoS for FCoE L2 client */
6492 BUG_ON(fp->max_cos != 1);
6493
6494 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6495 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6496 bnx2x_sp_mapping(bp, q_rdata), q_type);
6497
6498 DP(NETIF_MSG_IFUP,
6499 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6500 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6501 fp->igu_sb_id);
6502 }
6503
bnx2x_nic_init_cnic(struct bnx2x * bp)6504 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6505 {
6506 if (!NO_FCOE(bp))
6507 bnx2x_init_fcoe_fp(bp);
6508
6509 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6510 BNX2X_VF_ID_INVALID, false,
6511 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6512
6513 /* ensure status block indices were read */
6514 rmb();
6515 bnx2x_init_rx_rings_cnic(bp);
6516 bnx2x_init_tx_rings_cnic(bp);
6517
6518 /* flush all */
6519 mb();
6520 }
6521
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6522 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6523 {
6524 int i;
6525
6526 /* Setup NIC internals and enable interrupts */
6527 for_each_eth_queue(bp, i)
6528 bnx2x_init_eth_fp(bp, i);
6529
6530 /* ensure status block indices were read */
6531 rmb();
6532 bnx2x_init_rx_rings(bp);
6533 bnx2x_init_tx_rings(bp);
6534
6535 if (IS_PF(bp)) {
6536 /* Initialize MOD_ABS interrupts */
6537 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6538 bp->common.shmem_base,
6539 bp->common.shmem2_base, BP_PORT(bp));
6540
6541 /* initialize the default status block and sp ring */
6542 bnx2x_init_def_sb(bp);
6543 bnx2x_update_dsb_idx(bp);
6544 bnx2x_init_sp_ring(bp);
6545 } else {
6546 bnx2x_memset_stats(bp);
6547 }
6548 }
6549
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6550 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6551 {
6552 bnx2x_init_eq_ring(bp);
6553 bnx2x_init_internal(bp, load_code);
6554 bnx2x_pf_init(bp);
6555 bnx2x_stats_init(bp);
6556
6557 /* flush all before enabling interrupts */
6558 mb();
6559
6560 bnx2x_int_enable(bp);
6561
6562 /* Check for SPIO5 */
6563 bnx2x_attn_int_deasserted0(bp,
6564 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6565 AEU_INPUTS_ATTN_BITS_SPIO5);
6566 }
6567
6568 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6569 static int bnx2x_gunzip_init(struct bnx2x *bp)
6570 {
6571 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6572 &bp->gunzip_mapping, GFP_KERNEL);
6573 if (bp->gunzip_buf == NULL)
6574 goto gunzip_nomem1;
6575
6576 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6577 if (bp->strm == NULL)
6578 goto gunzip_nomem2;
6579
6580 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6581 if (bp->strm->workspace == NULL)
6582 goto gunzip_nomem3;
6583
6584 return 0;
6585
6586 gunzip_nomem3:
6587 kfree(bp->strm);
6588 bp->strm = NULL;
6589
6590 gunzip_nomem2:
6591 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6592 bp->gunzip_mapping);
6593 bp->gunzip_buf = NULL;
6594
6595 gunzip_nomem1:
6596 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6597 return -ENOMEM;
6598 }
6599
bnx2x_gunzip_end(struct bnx2x * bp)6600 static void bnx2x_gunzip_end(struct bnx2x *bp)
6601 {
6602 if (bp->strm) {
6603 vfree(bp->strm->workspace);
6604 kfree(bp->strm);
6605 bp->strm = NULL;
6606 }
6607
6608 if (bp->gunzip_buf) {
6609 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6610 bp->gunzip_mapping);
6611 bp->gunzip_buf = NULL;
6612 }
6613 }
6614
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6615 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6616 {
6617 int n, rc;
6618
6619 /* check gzip header */
6620 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6621 BNX2X_ERR("Bad gzip header\n");
6622 return -EINVAL;
6623 }
6624
6625 n = 10;
6626
6627 #define FNAME 0x8
6628
6629 if (zbuf[3] & FNAME)
6630 while ((zbuf[n++] != 0) && (n < len));
6631
6632 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6633 bp->strm->avail_in = len - n;
6634 bp->strm->next_out = bp->gunzip_buf;
6635 bp->strm->avail_out = FW_BUF_SIZE;
6636
6637 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6638 if (rc != Z_OK)
6639 return rc;
6640
6641 rc = zlib_inflate(bp->strm, Z_FINISH);
6642 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6643 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6644 bp->strm->msg);
6645
6646 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6647 if (bp->gunzip_outlen & 0x3)
6648 netdev_err(bp->dev,
6649 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6650 bp->gunzip_outlen);
6651 bp->gunzip_outlen >>= 2;
6652
6653 zlib_inflateEnd(bp->strm);
6654
6655 if (rc == Z_STREAM_END)
6656 return 0;
6657
6658 return rc;
6659 }
6660
6661 /* nic load/unload */
6662
6663 /*
6664 * General service functions
6665 */
6666
6667 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6668 static void bnx2x_lb_pckt(struct bnx2x *bp)
6669 {
6670 u32 wb_write[3];
6671
6672 /* Ethernet source and destination addresses */
6673 wb_write[0] = 0x55555555;
6674 wb_write[1] = 0x55555555;
6675 wb_write[2] = 0x20; /* SOP */
6676 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6677
6678 /* NON-IP protocol */
6679 wb_write[0] = 0x09000000;
6680 wb_write[1] = 0x55555555;
6681 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6682 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6683 }
6684
6685 /* some of the internal memories
6686 * are not directly readable from the driver
6687 * to test them we send debug packets
6688 */
bnx2x_int_mem_test(struct bnx2x * bp)6689 static int bnx2x_int_mem_test(struct bnx2x *bp)
6690 {
6691 int factor;
6692 int count, i;
6693 u32 val = 0;
6694
6695 if (CHIP_REV_IS_FPGA(bp))
6696 factor = 120;
6697 else if (CHIP_REV_IS_EMUL(bp))
6698 factor = 200;
6699 else
6700 factor = 1;
6701
6702 /* Disable inputs of parser neighbor blocks */
6703 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6704 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6705 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6706 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6707
6708 /* Write 0 to parser credits for CFC search request */
6709 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6710
6711 /* send Ethernet packet */
6712 bnx2x_lb_pckt(bp);
6713
6714 /* TODO do i reset NIG statistic? */
6715 /* Wait until NIG register shows 1 packet of size 0x10 */
6716 count = 1000 * factor;
6717 while (count) {
6718
6719 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6720 val = *bnx2x_sp(bp, wb_data[0]);
6721 if (val == 0x10)
6722 break;
6723
6724 usleep_range(10000, 20000);
6725 count--;
6726 }
6727 if (val != 0x10) {
6728 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6729 return -1;
6730 }
6731
6732 /* Wait until PRS register shows 1 packet */
6733 count = 1000 * factor;
6734 while (count) {
6735 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6736 if (val == 1)
6737 break;
6738
6739 usleep_range(10000, 20000);
6740 count--;
6741 }
6742 if (val != 0x1) {
6743 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6744 return -2;
6745 }
6746
6747 /* Reset and init BRB, PRS */
6748 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6749 msleep(50);
6750 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6751 msleep(50);
6752 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6753 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6754
6755 DP(NETIF_MSG_HW, "part2\n");
6756
6757 /* Disable inputs of parser neighbor blocks */
6758 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6759 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6760 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6761 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6762
6763 /* Write 0 to parser credits for CFC search request */
6764 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6765
6766 /* send 10 Ethernet packets */
6767 for (i = 0; i < 10; i++)
6768 bnx2x_lb_pckt(bp);
6769
6770 /* Wait until NIG register shows 10 + 1
6771 packets of size 11*0x10 = 0xb0 */
6772 count = 1000 * factor;
6773 while (count) {
6774
6775 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6776 val = *bnx2x_sp(bp, wb_data[0]);
6777 if (val == 0xb0)
6778 break;
6779
6780 usleep_range(10000, 20000);
6781 count--;
6782 }
6783 if (val != 0xb0) {
6784 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6785 return -3;
6786 }
6787
6788 /* Wait until PRS register shows 2 packets */
6789 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6790 if (val != 2)
6791 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6792
6793 /* Write 1 to parser credits for CFC search request */
6794 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6795
6796 /* Wait until PRS register shows 3 packets */
6797 msleep(10 * factor);
6798 /* Wait until NIG register shows 1 packet of size 0x10 */
6799 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6800 if (val != 3)
6801 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6802
6803 /* clear NIG EOP FIFO */
6804 for (i = 0; i < 11; i++)
6805 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6806 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6807 if (val != 1) {
6808 BNX2X_ERR("clear of NIG failed\n");
6809 return -4;
6810 }
6811
6812 /* Reset and init BRB, PRS, NIG */
6813 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6814 msleep(50);
6815 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6816 msleep(50);
6817 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6818 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6819 if (!CNIC_SUPPORT(bp))
6820 /* set NIC mode */
6821 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6822
6823 /* Enable inputs of parser neighbor blocks */
6824 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6825 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6826 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6827 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6828
6829 DP(NETIF_MSG_HW, "done\n");
6830
6831 return 0; /* OK */
6832 }
6833
bnx2x_enable_blocks_attention(struct bnx2x * bp)6834 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6835 {
6836 u32 val;
6837
6838 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6839 if (!CHIP_IS_E1x(bp))
6840 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6841 else
6842 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6843 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6844 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6845 /*
6846 * mask read length error interrupts in brb for parser
6847 * (parsing unit and 'checksum and crc' unit)
6848 * these errors are legal (PU reads fixed length and CAC can cause
6849 * read length error on truncated packets)
6850 */
6851 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6852 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6853 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6854 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6855 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6856 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6857 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6858 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6859 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6860 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6861 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6862 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6863 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6864 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6865 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6866 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6867 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6868 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6869 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6870
6871 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6872 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6873 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6874 if (!CHIP_IS_E1x(bp))
6875 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6876 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6877 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6878
6879 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6880 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6881 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6882 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6883
6884 if (!CHIP_IS_E1x(bp))
6885 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6886 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6887
6888 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6889 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6890 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6891 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6892 }
6893
bnx2x_reset_common(struct bnx2x * bp)6894 static void bnx2x_reset_common(struct bnx2x *bp)
6895 {
6896 u32 val = 0x1400;
6897
6898 /* reset_common */
6899 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6900 0xd3ffff7f);
6901
6902 if (CHIP_IS_E3(bp)) {
6903 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6904 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6905 }
6906
6907 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6908 }
6909
bnx2x_setup_dmae(struct bnx2x * bp)6910 static void bnx2x_setup_dmae(struct bnx2x *bp)
6911 {
6912 bp->dmae_ready = 0;
6913 spin_lock_init(&bp->dmae_lock);
6914 }
6915
bnx2x_init_pxp(struct bnx2x * bp)6916 static void bnx2x_init_pxp(struct bnx2x *bp)
6917 {
6918 u16 devctl;
6919 int r_order, w_order;
6920
6921 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6922 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6923 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6924 if (bp->mrrs == -1)
6925 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6926 else {
6927 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6928 r_order = bp->mrrs;
6929 }
6930
6931 bnx2x_init_pxp_arb(bp, r_order, w_order);
6932 }
6933
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6934 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6935 {
6936 int is_required;
6937 u32 val;
6938 int port;
6939
6940 if (BP_NOMCP(bp))
6941 return;
6942
6943 is_required = 0;
6944 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6945 SHARED_HW_CFG_FAN_FAILURE_MASK;
6946
6947 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6948 is_required = 1;
6949
6950 /*
6951 * The fan failure mechanism is usually related to the PHY type since
6952 * the power consumption of the board is affected by the PHY. Currently,
6953 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6954 */
6955 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6956 for (port = PORT_0; port < PORT_MAX; port++) {
6957 is_required |=
6958 bnx2x_fan_failure_det_req(
6959 bp,
6960 bp->common.shmem_base,
6961 bp->common.shmem2_base,
6962 port);
6963 }
6964
6965 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6966
6967 if (is_required == 0)
6968 return;
6969
6970 /* Fan failure is indicated by SPIO 5 */
6971 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6972
6973 /* set to active low mode */
6974 val = REG_RD(bp, MISC_REG_SPIO_INT);
6975 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6976 REG_WR(bp, MISC_REG_SPIO_INT, val);
6977
6978 /* enable interrupt to signal the IGU */
6979 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6980 val |= MISC_SPIO_SPIO5;
6981 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6982 }
6983
bnx2x_pf_disable(struct bnx2x * bp)6984 void bnx2x_pf_disable(struct bnx2x *bp)
6985 {
6986 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6987 val &= ~IGU_PF_CONF_FUNC_EN;
6988
6989 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6990 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6991 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6992 }
6993
bnx2x__common_init_phy(struct bnx2x * bp)6994 static void bnx2x__common_init_phy(struct bnx2x *bp)
6995 {
6996 u32 shmem_base[2], shmem2_base[2];
6997 /* Avoid common init in case MFW supports LFA */
6998 if (SHMEM2_RD(bp, size) >
6999 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
7000 return;
7001 shmem_base[0] = bp->common.shmem_base;
7002 shmem2_base[0] = bp->common.shmem2_base;
7003 if (!CHIP_IS_E1x(bp)) {
7004 shmem_base[1] =
7005 SHMEM2_RD(bp, other_shmem_base_addr);
7006 shmem2_base[1] =
7007 SHMEM2_RD(bp, other_shmem2_base_addr);
7008 }
7009 bnx2x_acquire_phy_lock(bp);
7010 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
7011 bp->common.chip_id);
7012 bnx2x_release_phy_lock(bp);
7013 }
7014
bnx2x_config_endianity(struct bnx2x * bp,u32 val)7015 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
7016 {
7017 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
7018 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7019 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7020 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7021 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7022
7023 /* make sure this value is 0 */
7024 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7025
7026 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7027 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7028 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7029 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7030 }
7031
bnx2x_set_endianity(struct bnx2x * bp)7032 static void bnx2x_set_endianity(struct bnx2x *bp)
7033 {
7034 #ifdef __BIG_ENDIAN
7035 bnx2x_config_endianity(bp, 1);
7036 #else
7037 bnx2x_config_endianity(bp, 0);
7038 #endif
7039 }
7040
bnx2x_reset_endianity(struct bnx2x * bp)7041 static void bnx2x_reset_endianity(struct bnx2x *bp)
7042 {
7043 bnx2x_config_endianity(bp, 0);
7044 }
7045
7046 /**
7047 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7048 *
7049 * @bp: driver handle
7050 */
bnx2x_init_hw_common(struct bnx2x * bp)7051 static int bnx2x_init_hw_common(struct bnx2x *bp)
7052 {
7053 u32 val;
7054
7055 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7056
7057 /*
7058 * take the RESET lock to protect undi_unload flow from accessing
7059 * registers while we're resetting the chip
7060 */
7061 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7062
7063 bnx2x_reset_common(bp);
7064 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7065
7066 val = 0xfffc;
7067 if (CHIP_IS_E3(bp)) {
7068 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7069 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7070 }
7071 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7072
7073 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7074
7075 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7076
7077 if (!CHIP_IS_E1x(bp)) {
7078 u8 abs_func_id;
7079
7080 /**
7081 * 4-port mode or 2-port mode we need to turn of master-enable
7082 * for everyone, after that, turn it back on for self.
7083 * so, we disregard multi-function or not, and always disable
7084 * for all functions on the given path, this means 0,2,4,6 for
7085 * path 0 and 1,3,5,7 for path 1
7086 */
7087 for (abs_func_id = BP_PATH(bp);
7088 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7089 if (abs_func_id == BP_ABS_FUNC(bp)) {
7090 REG_WR(bp,
7091 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7092 1);
7093 continue;
7094 }
7095
7096 bnx2x_pretend_func(bp, abs_func_id);
7097 /* clear pf enable */
7098 bnx2x_pf_disable(bp);
7099 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7100 }
7101 }
7102
7103 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7104 if (CHIP_IS_E1(bp)) {
7105 /* enable HW interrupt from PXP on USDM overflow
7106 bit 16 on INT_MASK_0 */
7107 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7108 }
7109
7110 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7111 bnx2x_init_pxp(bp);
7112 bnx2x_set_endianity(bp);
7113 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7114
7115 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7116 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7117
7118 /* let the HW do it's magic ... */
7119 msleep(100);
7120 /* finish PXP init */
7121 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7122 if (val != 1) {
7123 BNX2X_ERR("PXP2 CFG failed\n");
7124 return -EBUSY;
7125 }
7126 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7127 if (val != 1) {
7128 BNX2X_ERR("PXP2 RD_INIT failed\n");
7129 return -EBUSY;
7130 }
7131
7132 /* Timers bug workaround E2 only. We need to set the entire ILT to
7133 * have entries with value "0" and valid bit on.
7134 * This needs to be done by the first PF that is loaded in a path
7135 * (i.e. common phase)
7136 */
7137 if (!CHIP_IS_E1x(bp)) {
7138 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7139 * (i.e. vnic3) to start even if it is marked as "scan-off".
7140 * This occurs when a different function (func2,3) is being marked
7141 * as "scan-off". Real-life scenario for example: if a driver is being
7142 * load-unloaded while func6,7 are down. This will cause the timer to access
7143 * the ilt, translate to a logical address and send a request to read/write.
7144 * Since the ilt for the function that is down is not valid, this will cause
7145 * a translation error which is unrecoverable.
7146 * The Workaround is intended to make sure that when this happens nothing fatal
7147 * will occur. The workaround:
7148 * 1. First PF driver which loads on a path will:
7149 * a. After taking the chip out of reset, by using pretend,
7150 * it will write "0" to the following registers of
7151 * the other vnics.
7152 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7153 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7154 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7155 * And for itself it will write '1' to
7156 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7157 * dmae-operations (writing to pram for example.)
7158 * note: can be done for only function 6,7 but cleaner this
7159 * way.
7160 * b. Write zero+valid to the entire ILT.
7161 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7162 * VNIC3 (of that port). The range allocated will be the
7163 * entire ILT. This is needed to prevent ILT range error.
7164 * 2. Any PF driver load flow:
7165 * a. ILT update with the physical addresses of the allocated
7166 * logical pages.
7167 * b. Wait 20msec. - note that this timeout is needed to make
7168 * sure there are no requests in one of the PXP internal
7169 * queues with "old" ILT addresses.
7170 * c. PF enable in the PGLC.
7171 * d. Clear the was_error of the PF in the PGLC. (could have
7172 * occurred while driver was down)
7173 * e. PF enable in the CFC (WEAK + STRONG)
7174 * f. Timers scan enable
7175 * 3. PF driver unload flow:
7176 * a. Clear the Timers scan_en.
7177 * b. Polling for scan_on=0 for that PF.
7178 * c. Clear the PF enable bit in the PXP.
7179 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7180 * e. Write zero+valid to all ILT entries (The valid bit must
7181 * stay set)
7182 * f. If this is VNIC 3 of a port then also init
7183 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7184 * to the last entry in the ILT.
7185 *
7186 * Notes:
7187 * Currently the PF error in the PGLC is non recoverable.
7188 * In the future the there will be a recovery routine for this error.
7189 * Currently attention is masked.
7190 * Having an MCP lock on the load/unload process does not guarantee that
7191 * there is no Timer disable during Func6/7 enable. This is because the
7192 * Timers scan is currently being cleared by the MCP on FLR.
7193 * Step 2.d can be done only for PF6/7 and the driver can also check if
7194 * there is error before clearing it. But the flow above is simpler and
7195 * more general.
7196 * All ILT entries are written by zero+valid and not just PF6/7
7197 * ILT entries since in the future the ILT entries allocation for
7198 * PF-s might be dynamic.
7199 */
7200 struct ilt_client_info ilt_cli;
7201 struct bnx2x_ilt ilt;
7202 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7203 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7204
7205 /* initialize dummy TM client */
7206 ilt_cli.start = 0;
7207 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7208 ilt_cli.client_num = ILT_CLIENT_TM;
7209
7210 /* Step 1: set zeroes to all ilt page entries with valid bit on
7211 * Step 2: set the timers first/last ilt entry to point
7212 * to the entire range to prevent ILT range error for 3rd/4th
7213 * vnic (this code assumes existence of the vnic)
7214 *
7215 * both steps performed by call to bnx2x_ilt_client_init_op()
7216 * with dummy TM client
7217 *
7218 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7219 * and his brother are split registers
7220 */
7221 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7222 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7223 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7224
7225 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7226 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7227 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7228 }
7229
7230 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7231 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7232
7233 if (!CHIP_IS_E1x(bp)) {
7234 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7235 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7236 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7237
7238 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7239
7240 /* let the HW do it's magic ... */
7241 do {
7242 msleep(200);
7243 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7244 } while (factor-- && (val != 1));
7245
7246 if (val != 1) {
7247 BNX2X_ERR("ATC_INIT failed\n");
7248 return -EBUSY;
7249 }
7250 }
7251
7252 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7253
7254 bnx2x_iov_init_dmae(bp);
7255
7256 /* clean the DMAE memory */
7257 bp->dmae_ready = 1;
7258 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7259
7260 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7261
7262 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7263
7264 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7265
7266 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7267
7268 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7269 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7270 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7271 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7272
7273 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7274
7275 /* QM queues pointers table */
7276 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7277
7278 /* soft reset pulse */
7279 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7280 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7281
7282 if (CNIC_SUPPORT(bp))
7283 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7284
7285 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7286
7287 if (!CHIP_REV_IS_SLOW(bp))
7288 /* enable hw interrupt from doorbell Q */
7289 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7290
7291 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7292
7293 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7294 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7295
7296 if (!CHIP_IS_E1(bp))
7297 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7298
7299 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7300 if (IS_MF_AFEX(bp)) {
7301 /* configure that VNTag and VLAN headers must be
7302 * received in afex mode
7303 */
7304 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7305 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7306 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7307 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7308 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7309 } else {
7310 /* Bit-map indicating which L2 hdrs may appear
7311 * after the basic Ethernet header
7312 */
7313 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7314 bp->path_has_ovlan ? 7 : 6);
7315 }
7316 }
7317
7318 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7319 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7320 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7321 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7322
7323 if (!CHIP_IS_E1x(bp)) {
7324 /* reset VFC memories */
7325 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7326 VFC_MEMORIES_RST_REG_CAM_RST |
7327 VFC_MEMORIES_RST_REG_RAM_RST);
7328 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7329 VFC_MEMORIES_RST_REG_CAM_RST |
7330 VFC_MEMORIES_RST_REG_RAM_RST);
7331
7332 msleep(20);
7333 }
7334
7335 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7336 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7337 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7338 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7339
7340 /* sync semi rtc */
7341 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7342 0x80000000);
7343 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7344 0x80000000);
7345
7346 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7347 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7348 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7349
7350 if (!CHIP_IS_E1x(bp)) {
7351 if (IS_MF_AFEX(bp)) {
7352 /* configure that VNTag and VLAN headers must be
7353 * sent in afex mode
7354 */
7355 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7356 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7357 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7358 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7359 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7360 } else {
7361 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7362 bp->path_has_ovlan ? 7 : 6);
7363 }
7364 }
7365
7366 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7367
7368 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7369
7370 if (CNIC_SUPPORT(bp)) {
7371 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7372 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7373 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7374 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7375 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7376 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7377 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7378 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7379 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7380 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7381 }
7382 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7383
7384 if (sizeof(union cdu_context) != 1024)
7385 /* we currently assume that a context is 1024 bytes */
7386 dev_alert(&bp->pdev->dev,
7387 "please adjust the size of cdu_context(%ld)\n",
7388 (long)sizeof(union cdu_context));
7389
7390 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7391 val = (4 << 24) + (0 << 12) + 1024;
7392 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7393
7394 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7395 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7396 /* enable context validation interrupt from CFC */
7397 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7398
7399 /* set the thresholds to prevent CFC/CDU race */
7400 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7401
7402 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7403
7404 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7405 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7406
7407 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7408 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7409
7410 /* Reset PCIE errors for debug */
7411 REG_WR(bp, 0x2814, 0xffffffff);
7412 REG_WR(bp, 0x3820, 0xffffffff);
7413
7414 if (!CHIP_IS_E1x(bp)) {
7415 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7416 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7417 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7418 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7419 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7420 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7421 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7422 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7423 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7424 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7425 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7426 }
7427
7428 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7429 if (!CHIP_IS_E1(bp)) {
7430 /* in E3 this done in per-port section */
7431 if (!CHIP_IS_E3(bp))
7432 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7433 }
7434 if (CHIP_IS_E1H(bp))
7435 /* not applicable for E2 (and above ...) */
7436 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7437
7438 if (CHIP_REV_IS_SLOW(bp))
7439 msleep(200);
7440
7441 /* finish CFC init */
7442 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7443 if (val != 1) {
7444 BNX2X_ERR("CFC LL_INIT failed\n");
7445 return -EBUSY;
7446 }
7447 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7448 if (val != 1) {
7449 BNX2X_ERR("CFC AC_INIT failed\n");
7450 return -EBUSY;
7451 }
7452 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7453 if (val != 1) {
7454 BNX2X_ERR("CFC CAM_INIT failed\n");
7455 return -EBUSY;
7456 }
7457 REG_WR(bp, CFC_REG_DEBUG0, 0);
7458
7459 if (CHIP_IS_E1(bp)) {
7460 /* read NIG statistic
7461 to see if this is our first up since powerup */
7462 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7463 val = *bnx2x_sp(bp, wb_data[0]);
7464
7465 /* do internal memory self test */
7466 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7467 BNX2X_ERR("internal mem self test failed\n");
7468 return -EBUSY;
7469 }
7470 }
7471
7472 bnx2x_setup_fan_failure_detection(bp);
7473
7474 /* clear PXP2 attentions */
7475 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7476
7477 bnx2x_enable_blocks_attention(bp);
7478 bnx2x_enable_blocks_parity(bp);
7479
7480 if (!BP_NOMCP(bp)) {
7481 if (CHIP_IS_E1x(bp))
7482 bnx2x__common_init_phy(bp);
7483 } else
7484 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7485
7486 if (SHMEM2_HAS(bp, netproc_fw_ver))
7487 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7488
7489 return 0;
7490 }
7491
7492 /**
7493 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7494 *
7495 * @bp: driver handle
7496 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7497 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7498 {
7499 int rc = bnx2x_init_hw_common(bp);
7500
7501 if (rc)
7502 return rc;
7503
7504 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7505 if (!BP_NOMCP(bp))
7506 bnx2x__common_init_phy(bp);
7507
7508 return 0;
7509 }
7510
bnx2x_init_hw_port(struct bnx2x * bp)7511 static int bnx2x_init_hw_port(struct bnx2x *bp)
7512 {
7513 int port = BP_PORT(bp);
7514 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7515 u32 low, high;
7516 u32 val, reg;
7517
7518 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7519
7520 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7521
7522 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7523 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7524 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7525
7526 /* Timers bug workaround: disables the pf_master bit in pglue at
7527 * common phase, we need to enable it here before any dmae access are
7528 * attempted. Therefore we manually added the enable-master to the
7529 * port phase (it also happens in the function phase)
7530 */
7531 if (!CHIP_IS_E1x(bp))
7532 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7533
7534 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7535 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7536 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7537 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7538
7539 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7540 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7541 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7542 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7543
7544 /* QM cid (connection) count */
7545 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7546
7547 if (CNIC_SUPPORT(bp)) {
7548 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7549 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7550 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7551 }
7552
7553 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7554
7555 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7556
7557 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7558
7559 if (IS_MF(bp))
7560 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7561 else if (bp->dev->mtu > 4096) {
7562 if (bp->flags & ONE_PORT_FLAG)
7563 low = 160;
7564 else {
7565 val = bp->dev->mtu;
7566 /* (24*1024 + val*4)/256 */
7567 low = 96 + (val/64) +
7568 ((val % 64) ? 1 : 0);
7569 }
7570 } else
7571 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7572 high = low + 56; /* 14*1024/256 */
7573 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7574 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7575 }
7576
7577 if (CHIP_MODE_IS_4_PORT(bp))
7578 REG_WR(bp, (BP_PORT(bp) ?
7579 BRB1_REG_MAC_GUARANTIED_1 :
7580 BRB1_REG_MAC_GUARANTIED_0), 40);
7581
7582 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7583 if (CHIP_IS_E3B0(bp)) {
7584 if (IS_MF_AFEX(bp)) {
7585 /* configure headers for AFEX mode */
7586 REG_WR(bp, BP_PORT(bp) ?
7587 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7588 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7589 REG_WR(bp, BP_PORT(bp) ?
7590 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7591 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7592 REG_WR(bp, BP_PORT(bp) ?
7593 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7594 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7595 } else {
7596 /* Ovlan exists only if we are in multi-function +
7597 * switch-dependent mode, in switch-independent there
7598 * is no ovlan headers
7599 */
7600 REG_WR(bp, BP_PORT(bp) ?
7601 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7602 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7603 (bp->path_has_ovlan ? 7 : 6));
7604 }
7605 }
7606
7607 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7608 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7609 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7610 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7611
7612 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7613 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7614 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7615 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7616
7617 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7618 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7619
7620 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7621
7622 if (CHIP_IS_E1x(bp)) {
7623 /* configure PBF to work without PAUSE mtu 9000 */
7624 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7625
7626 /* update threshold */
7627 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7628 /* update init credit */
7629 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7630
7631 /* probe changes */
7632 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7633 udelay(50);
7634 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7635 }
7636
7637 if (CNIC_SUPPORT(bp))
7638 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7639
7640 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7641 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7642
7643 if (CHIP_IS_E1(bp)) {
7644 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7645 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7646 }
7647 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7648
7649 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7650
7651 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7652 /* init aeu_mask_attn_func_0/1:
7653 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7654 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7655 * bits 4-7 are used for "per vn group attention" */
7656 val = IS_MF(bp) ? 0xF7 : 0x7;
7657 /* Enable DCBX attention for all but E1 */
7658 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7659 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7660
7661 /* SCPAD_PARITY should NOT trigger close the gates */
7662 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7663 REG_WR(bp, reg,
7664 REG_RD(bp, reg) &
7665 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7666
7667 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7668 REG_WR(bp, reg,
7669 REG_RD(bp, reg) &
7670 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7671
7672 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7673
7674 if (!CHIP_IS_E1x(bp)) {
7675 /* Bit-map indicating which L2 hdrs may appear after the
7676 * basic Ethernet header
7677 */
7678 if (IS_MF_AFEX(bp))
7679 REG_WR(bp, BP_PORT(bp) ?
7680 NIG_REG_P1_HDRS_AFTER_BASIC :
7681 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7682 else
7683 REG_WR(bp, BP_PORT(bp) ?
7684 NIG_REG_P1_HDRS_AFTER_BASIC :
7685 NIG_REG_P0_HDRS_AFTER_BASIC,
7686 IS_MF_SD(bp) ? 7 : 6);
7687
7688 if (CHIP_IS_E3(bp))
7689 REG_WR(bp, BP_PORT(bp) ?
7690 NIG_REG_LLH1_MF_MODE :
7691 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7692 }
7693 if (!CHIP_IS_E3(bp))
7694 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7695
7696 if (!CHIP_IS_E1(bp)) {
7697 /* 0x2 disable mf_ov, 0x1 enable */
7698 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7699 (IS_MF_SD(bp) ? 0x1 : 0x2));
7700
7701 if (!CHIP_IS_E1x(bp)) {
7702 val = 0;
7703 switch (bp->mf_mode) {
7704 case MULTI_FUNCTION_SD:
7705 val = 1;
7706 break;
7707 case MULTI_FUNCTION_SI:
7708 case MULTI_FUNCTION_AFEX:
7709 val = 2;
7710 break;
7711 }
7712
7713 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7714 NIG_REG_LLH0_CLS_TYPE), val);
7715 }
7716 {
7717 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7718 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7719 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7720 }
7721 }
7722
7723 /* If SPIO5 is set to generate interrupts, enable it for this port */
7724 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7725 if (val & MISC_SPIO_SPIO5) {
7726 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7727 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7728 val = REG_RD(bp, reg_addr);
7729 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7730 REG_WR(bp, reg_addr, val);
7731 }
7732
7733 if (CHIP_IS_E3B0(bp))
7734 bp->flags |= PTP_SUPPORTED;
7735
7736 return 0;
7737 }
7738
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7739 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7740 {
7741 int reg;
7742 u32 wb_write[2];
7743
7744 if (CHIP_IS_E1(bp))
7745 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7746 else
7747 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7748
7749 wb_write[0] = ONCHIP_ADDR1(addr);
7750 wb_write[1] = ONCHIP_ADDR2(addr);
7751 REG_WR_DMAE(bp, reg, wb_write, 2);
7752 }
7753
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7754 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7755 {
7756 u32 data, ctl, cnt = 100;
7757 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7758 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7759 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7760 u32 sb_bit = 1 << (idu_sb_id%32);
7761 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7762 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7763
7764 /* Not supported in BC mode */
7765 if (CHIP_INT_MODE_IS_BC(bp))
7766 return;
7767
7768 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7769 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7770 IGU_REGULAR_CLEANUP_SET |
7771 IGU_REGULAR_BCLEANUP;
7772
7773 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7774 func_encode << IGU_CTRL_REG_FID_SHIFT |
7775 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7776
7777 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7778 data, igu_addr_data);
7779 REG_WR(bp, igu_addr_data, data);
7780 barrier();
7781 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7782 ctl, igu_addr_ctl);
7783 REG_WR(bp, igu_addr_ctl, ctl);
7784 barrier();
7785
7786 /* wait for clean up to finish */
7787 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7788 msleep(20);
7789
7790 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7791 DP(NETIF_MSG_HW,
7792 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7793 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7794 }
7795 }
7796
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7797 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7798 {
7799 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7800 }
7801
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7802 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7803 {
7804 u32 i, base = FUNC_ILT_BASE(func);
7805 for (i = base; i < base + ILT_PER_FUNC; i++)
7806 bnx2x_ilt_wr(bp, i, 0);
7807 }
7808
bnx2x_init_searcher(struct bnx2x * bp)7809 static void bnx2x_init_searcher(struct bnx2x *bp)
7810 {
7811 int port = BP_PORT(bp);
7812 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7813 /* T1 hash bits value determines the T1 number of entries */
7814 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7815 }
7816
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7817 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7818 {
7819 int rc;
7820 struct bnx2x_func_state_params func_params = {NULL};
7821 struct bnx2x_func_switch_update_params *switch_update_params =
7822 &func_params.params.switch_update;
7823
7824 /* Prepare parameters for function state transitions */
7825 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7826 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7827
7828 func_params.f_obj = &bp->func_obj;
7829 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7830
7831 /* Function parameters */
7832 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7833 &switch_update_params->changes);
7834 if (suspend)
7835 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7836 &switch_update_params->changes);
7837
7838 rc = bnx2x_func_state_change(bp, &func_params);
7839
7840 return rc;
7841 }
7842
bnx2x_reset_nic_mode(struct bnx2x * bp)7843 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7844 {
7845 int rc, i, port = BP_PORT(bp);
7846 int vlan_en = 0, mac_en[NUM_MACS];
7847
7848 /* Close input from network */
7849 if (bp->mf_mode == SINGLE_FUNCTION) {
7850 bnx2x_set_rx_filter(&bp->link_params, 0);
7851 } else {
7852 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7853 NIG_REG_LLH0_FUNC_EN);
7854 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7855 NIG_REG_LLH0_FUNC_EN, 0);
7856 for (i = 0; i < NUM_MACS; i++) {
7857 mac_en[i] = REG_RD(bp, port ?
7858 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7859 4 * i) :
7860 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7861 4 * i));
7862 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7863 4 * i) :
7864 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7865 }
7866 }
7867
7868 /* Close BMC to host */
7869 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7870 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7871
7872 /* Suspend Tx switching to the PF. Completion of this ramrod
7873 * further guarantees that all the packets of that PF / child
7874 * VFs in BRB were processed by the Parser, so it is safe to
7875 * change the NIC_MODE register.
7876 */
7877 rc = bnx2x_func_switch_update(bp, 1);
7878 if (rc) {
7879 BNX2X_ERR("Can't suspend tx-switching!\n");
7880 return rc;
7881 }
7882
7883 /* Change NIC_MODE register */
7884 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7885
7886 /* Open input from network */
7887 if (bp->mf_mode == SINGLE_FUNCTION) {
7888 bnx2x_set_rx_filter(&bp->link_params, 1);
7889 } else {
7890 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7891 NIG_REG_LLH0_FUNC_EN, vlan_en);
7892 for (i = 0; i < NUM_MACS; i++) {
7893 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7894 4 * i) :
7895 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7896 mac_en[i]);
7897 }
7898 }
7899
7900 /* Enable BMC to host */
7901 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7902 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7903
7904 /* Resume Tx switching to the PF */
7905 rc = bnx2x_func_switch_update(bp, 0);
7906 if (rc) {
7907 BNX2X_ERR("Can't resume tx-switching!\n");
7908 return rc;
7909 }
7910
7911 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7912 return 0;
7913 }
7914
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7915 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7916 {
7917 int rc;
7918
7919 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7920
7921 if (CONFIGURE_NIC_MODE(bp)) {
7922 /* Configure searcher as part of function hw init */
7923 bnx2x_init_searcher(bp);
7924
7925 /* Reset NIC mode */
7926 rc = bnx2x_reset_nic_mode(bp);
7927 if (rc)
7928 BNX2X_ERR("Can't change NIC mode!\n");
7929 return rc;
7930 }
7931
7932 return 0;
7933 }
7934
7935 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7936 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7937 * the addresses of the transaction, resulting in was-error bit set in the pci
7938 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7939 * to clear the interrupt which detected this from the pglueb and the was done
7940 * bit
7941 */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7942 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7943 {
7944 if (!CHIP_IS_E1x(bp))
7945 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7946 1 << BP_ABS_FUNC(bp));
7947 }
7948
bnx2x_init_hw_func(struct bnx2x * bp)7949 static int bnx2x_init_hw_func(struct bnx2x *bp)
7950 {
7951 int port = BP_PORT(bp);
7952 int func = BP_FUNC(bp);
7953 int init_phase = PHASE_PF0 + func;
7954 struct bnx2x_ilt *ilt = BP_ILT(bp);
7955 u16 cdu_ilt_start;
7956 u32 addr, val;
7957 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7958 int i, main_mem_width, rc;
7959
7960 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7961
7962 /* FLR cleanup - hmmm */
7963 if (!CHIP_IS_E1x(bp)) {
7964 rc = bnx2x_pf_flr_clnup(bp);
7965 if (rc) {
7966 bnx2x_fw_dump(bp);
7967 return rc;
7968 }
7969 }
7970
7971 /* set MSI reconfigure capability */
7972 if (bp->common.int_block == INT_BLOCK_HC) {
7973 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7974 val = REG_RD(bp, addr);
7975 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7976 REG_WR(bp, addr, val);
7977 }
7978
7979 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7980 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7981
7982 ilt = BP_ILT(bp);
7983 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7984
7985 if (IS_SRIOV(bp))
7986 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7987 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7988
7989 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7990 * those of the VFs, so start line should be reset
7991 */
7992 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7993 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7994 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7995 ilt->lines[cdu_ilt_start + i].page_mapping =
7996 bp->context[i].cxt_mapping;
7997 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7998 }
7999
8000 bnx2x_ilt_init_op(bp, INITOP_SET);
8001
8002 if (!CONFIGURE_NIC_MODE(bp)) {
8003 bnx2x_init_searcher(bp);
8004 REG_WR(bp, PRS_REG_NIC_MODE, 0);
8005 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
8006 } else {
8007 /* Set NIC mode */
8008 REG_WR(bp, PRS_REG_NIC_MODE, 1);
8009 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
8010 }
8011
8012 if (!CHIP_IS_E1x(bp)) {
8013 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
8014
8015 /* Turn on a single ISR mode in IGU if driver is going to use
8016 * INT#x or MSI
8017 */
8018 if (!(bp->flags & USING_MSIX_FLAG))
8019 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8020 /*
8021 * Timers workaround bug: function init part.
8022 * Need to wait 20msec after initializing ILT,
8023 * needed to make sure there are no requests in
8024 * one of the PXP internal queues with "old" ILT addresses
8025 */
8026 msleep(20);
8027 /*
8028 * Master enable - Due to WB DMAE writes performed before this
8029 * register is re-initialized as part of the regular function
8030 * init
8031 */
8032 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8033 /* Enable the function in IGU */
8034 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8035 }
8036
8037 bp->dmae_ready = 1;
8038
8039 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8040
8041 bnx2x_clean_pglue_errors(bp);
8042
8043 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8044 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8045 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8046 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8047 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8048 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8049 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8050 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8051 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8052 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8053 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8054 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8055 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8056
8057 if (!CHIP_IS_E1x(bp))
8058 REG_WR(bp, QM_REG_PF_EN, 1);
8059
8060 if (!CHIP_IS_E1x(bp)) {
8061 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8062 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8063 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8064 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8065 }
8066 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8067
8068 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8069 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8070 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8071
8072 bnx2x_iov_init_dq(bp);
8073
8074 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8075 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8076 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8077 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8078 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8079 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8080 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8081 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8082 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8083 if (!CHIP_IS_E1x(bp))
8084 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8085
8086 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8087
8088 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8089
8090 if (!CHIP_IS_E1x(bp))
8091 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8092
8093 if (IS_MF(bp)) {
8094 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8095 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8096 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8097 bp->mf_ov);
8098 }
8099 }
8100
8101 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8102
8103 /* HC init per function */
8104 if (bp->common.int_block == INT_BLOCK_HC) {
8105 if (CHIP_IS_E1H(bp)) {
8106 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8107
8108 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8109 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8110 }
8111 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8112
8113 } else {
8114 int num_segs, sb_idx, prod_offset;
8115
8116 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8117
8118 if (!CHIP_IS_E1x(bp)) {
8119 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8120 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8121 }
8122
8123 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8124
8125 if (!CHIP_IS_E1x(bp)) {
8126 int dsb_idx = 0;
8127 /**
8128 * Producer memory:
8129 * E2 mode: address 0-135 match to the mapping memory;
8130 * 136 - PF0 default prod; 137 - PF1 default prod;
8131 * 138 - PF2 default prod; 139 - PF3 default prod;
8132 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8133 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8134 * 144-147 reserved.
8135 *
8136 * E1.5 mode - In backward compatible mode;
8137 * for non default SB; each even line in the memory
8138 * holds the U producer and each odd line hold
8139 * the C producer. The first 128 producers are for
8140 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8141 * producers are for the DSB for each PF.
8142 * Each PF has five segments: (the order inside each
8143 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8144 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8145 * 144-147 attn prods;
8146 */
8147 /* non-default-status-blocks */
8148 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8150 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8151 prod_offset = (bp->igu_base_sb + sb_idx) *
8152 num_segs;
8153
8154 for (i = 0; i < num_segs; i++) {
8155 addr = IGU_REG_PROD_CONS_MEMORY +
8156 (prod_offset + i) * 4;
8157 REG_WR(bp, addr, 0);
8158 }
8159 /* send consumer update with value 0 */
8160 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8161 USTORM_ID, 0, IGU_INT_NOP, 1);
8162 bnx2x_igu_clear_sb(bp,
8163 bp->igu_base_sb + sb_idx);
8164 }
8165
8166 /* default-status-blocks */
8167 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8168 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8169
8170 if (CHIP_MODE_IS_4_PORT(bp))
8171 dsb_idx = BP_FUNC(bp);
8172 else
8173 dsb_idx = BP_VN(bp);
8174
8175 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8176 IGU_BC_BASE_DSB_PROD + dsb_idx :
8177 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8178
8179 /*
8180 * igu prods come in chunks of E1HVN_MAX (4) -
8181 * does not matters what is the current chip mode
8182 */
8183 for (i = 0; i < (num_segs * E1HVN_MAX);
8184 i += E1HVN_MAX) {
8185 addr = IGU_REG_PROD_CONS_MEMORY +
8186 (prod_offset + i)*4;
8187 REG_WR(bp, addr, 0);
8188 }
8189 /* send consumer update with 0 */
8190 if (CHIP_INT_MODE_IS_BC(bp)) {
8191 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8192 USTORM_ID, 0, IGU_INT_NOP, 1);
8193 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8194 CSTORM_ID, 0, IGU_INT_NOP, 1);
8195 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8196 XSTORM_ID, 0, IGU_INT_NOP, 1);
8197 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8198 TSTORM_ID, 0, IGU_INT_NOP, 1);
8199 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8200 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8201 } else {
8202 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8203 USTORM_ID, 0, IGU_INT_NOP, 1);
8204 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8205 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8206 }
8207 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8208
8209 /* !!! These should become driver const once
8210 rf-tool supports split-68 const */
8211 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8212 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8213 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8214 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8215 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8216 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8217 }
8218 }
8219
8220 /* Reset PCIE errors for debug */
8221 REG_WR(bp, 0x2114, 0xffffffff);
8222 REG_WR(bp, 0x2120, 0xffffffff);
8223
8224 if (CHIP_IS_E1x(bp)) {
8225 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8226 main_mem_base = HC_REG_MAIN_MEMORY +
8227 BP_PORT(bp) * (main_mem_size * 4);
8228 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8229 main_mem_width = 8;
8230
8231 val = REG_RD(bp, main_mem_prty_clr);
8232 if (val)
8233 DP(NETIF_MSG_HW,
8234 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8235 val);
8236
8237 /* Clear "false" parity errors in MSI-X table */
8238 for (i = main_mem_base;
8239 i < main_mem_base + main_mem_size * 4;
8240 i += main_mem_width) {
8241 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8242 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8243 i, main_mem_width / 4);
8244 }
8245 /* Clear HC parity attention */
8246 REG_RD(bp, main_mem_prty_clr);
8247 }
8248
8249 #ifdef BNX2X_STOP_ON_ERROR
8250 /* Enable STORMs SP logging */
8251 REG_WR8(bp, BAR_USTRORM_INTMEM +
8252 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8253 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8254 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8255 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8256 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8257 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8258 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8259 #endif
8260
8261 bnx2x_phy_probe(&bp->link_params);
8262
8263 return 0;
8264 }
8265
bnx2x_free_mem_cnic(struct bnx2x * bp)8266 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8267 {
8268 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8269
8270 if (!CHIP_IS_E1x(bp))
8271 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8272 sizeof(struct host_hc_status_block_e2));
8273 else
8274 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8275 sizeof(struct host_hc_status_block_e1x));
8276
8277 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8278 }
8279
bnx2x_free_mem(struct bnx2x * bp)8280 void bnx2x_free_mem(struct bnx2x *bp)
8281 {
8282 int i;
8283
8284 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8285 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8286
8287 if (IS_VF(bp))
8288 return;
8289
8290 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8291 sizeof(struct host_sp_status_block));
8292
8293 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8294 sizeof(struct bnx2x_slowpath));
8295
8296 for (i = 0; i < L2_ILT_LINES(bp); i++)
8297 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8298 bp->context[i].size);
8299 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8300
8301 BNX2X_FREE(bp->ilt->lines);
8302
8303 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8304
8305 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8306 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8307
8308 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8309
8310 bnx2x_iov_free_mem(bp);
8311 }
8312
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8313 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8314 {
8315 if (!CHIP_IS_E1x(bp)) {
8316 /* size = the status block + ramrod buffers */
8317 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8318 sizeof(struct host_hc_status_block_e2));
8319 if (!bp->cnic_sb.e2_sb)
8320 goto alloc_mem_err;
8321 } else {
8322 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8323 sizeof(struct host_hc_status_block_e1x));
8324 if (!bp->cnic_sb.e1x_sb)
8325 goto alloc_mem_err;
8326 }
8327
8328 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8329 /* allocate searcher T2 table, as it wasn't allocated before */
8330 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8331 if (!bp->t2)
8332 goto alloc_mem_err;
8333 }
8334
8335 /* write address to which L5 should insert its values */
8336 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8337 &bp->slowpath->drv_info_to_mcp;
8338
8339 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8340 goto alloc_mem_err;
8341
8342 return 0;
8343
8344 alloc_mem_err:
8345 bnx2x_free_mem_cnic(bp);
8346 BNX2X_ERR("Can't allocate memory\n");
8347 return -ENOMEM;
8348 }
8349
bnx2x_alloc_mem(struct bnx2x * bp)8350 int bnx2x_alloc_mem(struct bnx2x *bp)
8351 {
8352 int i, allocated, context_size;
8353
8354 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8355 /* allocate searcher T2 table */
8356 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8357 if (!bp->t2)
8358 goto alloc_mem_err;
8359 }
8360
8361 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8362 sizeof(struct host_sp_status_block));
8363 if (!bp->def_status_blk)
8364 goto alloc_mem_err;
8365
8366 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8367 sizeof(struct bnx2x_slowpath));
8368 if (!bp->slowpath)
8369 goto alloc_mem_err;
8370
8371 /* Allocate memory for CDU context:
8372 * This memory is allocated separately and not in the generic ILT
8373 * functions because CDU differs in few aspects:
8374 * 1. There are multiple entities allocating memory for context -
8375 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8376 * its own ILT lines.
8377 * 2. Since CDU page-size is not a single 4KB page (which is the case
8378 * for the other ILT clients), to be efficient we want to support
8379 * allocation of sub-page-size in the last entry.
8380 * 3. Context pointers are used by the driver to pass to FW / update
8381 * the context (for the other ILT clients the pointers are used just to
8382 * free the memory during unload).
8383 */
8384 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8385
8386 for (i = 0, allocated = 0; allocated < context_size; i++) {
8387 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8388 (context_size - allocated));
8389 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8390 bp->context[i].size);
8391 if (!bp->context[i].vcxt)
8392 goto alloc_mem_err;
8393 allocated += bp->context[i].size;
8394 }
8395 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8396 GFP_KERNEL);
8397 if (!bp->ilt->lines)
8398 goto alloc_mem_err;
8399
8400 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8401 goto alloc_mem_err;
8402
8403 if (bnx2x_iov_alloc_mem(bp))
8404 goto alloc_mem_err;
8405
8406 /* Slow path ring */
8407 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8408 if (!bp->spq)
8409 goto alloc_mem_err;
8410
8411 /* EQ */
8412 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8413 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8414 if (!bp->eq_ring)
8415 goto alloc_mem_err;
8416
8417 return 0;
8418
8419 alloc_mem_err:
8420 bnx2x_free_mem(bp);
8421 BNX2X_ERR("Can't allocate memory\n");
8422 return -ENOMEM;
8423 }
8424
8425 /*
8426 * Init service functions
8427 */
8428
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8429 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8430 struct bnx2x_vlan_mac_obj *obj, bool set,
8431 int mac_type, unsigned long *ramrod_flags)
8432 {
8433 int rc;
8434 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8435
8436 memset(&ramrod_param, 0, sizeof(ramrod_param));
8437
8438 /* Fill general parameters */
8439 ramrod_param.vlan_mac_obj = obj;
8440 ramrod_param.ramrod_flags = *ramrod_flags;
8441
8442 /* Fill a user request section if needed */
8443 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8444 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8445
8446 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8447
8448 /* Set the command: ADD or DEL */
8449 if (set)
8450 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8451 else
8452 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8453 }
8454
8455 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8456
8457 if (rc == -EEXIST) {
8458 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8459 /* do not treat adding same MAC as error */
8460 rc = 0;
8461 } else if (rc < 0)
8462 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8463
8464 return rc;
8465 }
8466
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8467 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8468 struct bnx2x_vlan_mac_obj *obj, bool set,
8469 unsigned long *ramrod_flags)
8470 {
8471 int rc;
8472 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8473
8474 memset(&ramrod_param, 0, sizeof(ramrod_param));
8475
8476 /* Fill general parameters */
8477 ramrod_param.vlan_mac_obj = obj;
8478 ramrod_param.ramrod_flags = *ramrod_flags;
8479
8480 /* Fill a user request section if needed */
8481 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8482 ramrod_param.user_req.u.vlan.vlan = vlan;
8483 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8484 /* Set the command: ADD or DEL */
8485 if (set)
8486 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8487 else
8488 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8489 }
8490
8491 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8492
8493 if (rc == -EEXIST) {
8494 /* Do not treat adding same vlan as error. */
8495 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8496 rc = 0;
8497 } else if (rc < 0) {
8498 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8499 }
8500
8501 return rc;
8502 }
8503
bnx2x_clear_vlan_info(struct bnx2x * bp)8504 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8505 {
8506 struct bnx2x_vlan_entry *vlan;
8507
8508 /* Mark that hw forgot all entries */
8509 list_for_each_entry(vlan, &bp->vlan_reg, link)
8510 vlan->hw = false;
8511
8512 bp->vlan_cnt = 0;
8513 }
8514
bnx2x_del_all_vlans(struct bnx2x * bp)8515 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8516 {
8517 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8518 unsigned long ramrod_flags = 0, vlan_flags = 0;
8519 int rc;
8520
8521 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8522 __set_bit(BNX2X_VLAN, &vlan_flags);
8523 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8524 if (rc)
8525 return rc;
8526
8527 bnx2x_clear_vlan_info(bp);
8528
8529 return 0;
8530 }
8531
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8532 int bnx2x_del_all_macs(struct bnx2x *bp,
8533 struct bnx2x_vlan_mac_obj *mac_obj,
8534 int mac_type, bool wait_for_comp)
8535 {
8536 int rc;
8537 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8538
8539 /* Wait for completion of requested */
8540 if (wait_for_comp)
8541 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8542
8543 /* Set the mac type of addresses we want to clear */
8544 __set_bit(mac_type, &vlan_mac_flags);
8545
8546 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8547 if (rc < 0)
8548 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8549
8550 return rc;
8551 }
8552
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8553 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8554 {
8555 if (IS_PF(bp)) {
8556 unsigned long ramrod_flags = 0;
8557
8558 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8559 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8560 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8561 &bp->sp_objs->mac_obj, set,
8562 BNX2X_ETH_MAC, &ramrod_flags);
8563 } else { /* vf */
8564 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8565 bp->fp->index, set);
8566 }
8567 }
8568
bnx2x_setup_leading(struct bnx2x * bp)8569 int bnx2x_setup_leading(struct bnx2x *bp)
8570 {
8571 if (IS_PF(bp))
8572 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8573 else /* VF */
8574 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8575 }
8576
8577 /**
8578 * bnx2x_set_int_mode - configure interrupt mode
8579 *
8580 * @bp: driver handle
8581 *
8582 * In case of MSI-X it will also try to enable MSI-X.
8583 */
bnx2x_set_int_mode(struct bnx2x * bp)8584 int bnx2x_set_int_mode(struct bnx2x *bp)
8585 {
8586 int rc = 0;
8587
8588 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8589 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8590 return -EINVAL;
8591 }
8592
8593 switch (int_mode) {
8594 case BNX2X_INT_MODE_MSIX:
8595 /* attempt to enable msix */
8596 rc = bnx2x_enable_msix(bp);
8597
8598 /* msix attained */
8599 if (!rc)
8600 return 0;
8601
8602 /* vfs use only msix */
8603 if (rc && IS_VF(bp))
8604 return rc;
8605
8606 /* failed to enable multiple MSI-X */
8607 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8608 bp->num_queues,
8609 1 + bp->num_cnic_queues);
8610
8611 fallthrough;
8612 case BNX2X_INT_MODE_MSI:
8613 bnx2x_enable_msi(bp);
8614
8615 fallthrough;
8616 case BNX2X_INT_MODE_INTX:
8617 bp->num_ethernet_queues = 1;
8618 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8619 BNX2X_DEV_INFO("set number of queues to 1\n");
8620 break;
8621 default:
8622 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8623 return -EINVAL;
8624 }
8625 return 0;
8626 }
8627
8628 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8629 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8630 {
8631 if (IS_SRIOV(bp))
8632 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8633 return L2_ILT_LINES(bp);
8634 }
8635
bnx2x_ilt_set_info(struct bnx2x * bp)8636 void bnx2x_ilt_set_info(struct bnx2x *bp)
8637 {
8638 struct ilt_client_info *ilt_client;
8639 struct bnx2x_ilt *ilt = BP_ILT(bp);
8640 u16 line = 0;
8641
8642 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8643 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8644
8645 /* CDU */
8646 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8647 ilt_client->client_num = ILT_CLIENT_CDU;
8648 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8649 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8650 ilt_client->start = line;
8651 line += bnx2x_cid_ilt_lines(bp);
8652
8653 if (CNIC_SUPPORT(bp))
8654 line += CNIC_ILT_LINES;
8655 ilt_client->end = line - 1;
8656
8657 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8658 ilt_client->start,
8659 ilt_client->end,
8660 ilt_client->page_size,
8661 ilt_client->flags,
8662 ilog2(ilt_client->page_size >> 12));
8663
8664 /* QM */
8665 if (QM_INIT(bp->qm_cid_count)) {
8666 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8667 ilt_client->client_num = ILT_CLIENT_QM;
8668 ilt_client->page_size = QM_ILT_PAGE_SZ;
8669 ilt_client->flags = 0;
8670 ilt_client->start = line;
8671
8672 /* 4 bytes for each cid */
8673 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8674 QM_ILT_PAGE_SZ);
8675
8676 ilt_client->end = line - 1;
8677
8678 DP(NETIF_MSG_IFUP,
8679 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8680 ilt_client->start,
8681 ilt_client->end,
8682 ilt_client->page_size,
8683 ilt_client->flags,
8684 ilog2(ilt_client->page_size >> 12));
8685 }
8686
8687 if (CNIC_SUPPORT(bp)) {
8688 /* SRC */
8689 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8690 ilt_client->client_num = ILT_CLIENT_SRC;
8691 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8692 ilt_client->flags = 0;
8693 ilt_client->start = line;
8694 line += SRC_ILT_LINES;
8695 ilt_client->end = line - 1;
8696
8697 DP(NETIF_MSG_IFUP,
8698 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8699 ilt_client->start,
8700 ilt_client->end,
8701 ilt_client->page_size,
8702 ilt_client->flags,
8703 ilog2(ilt_client->page_size >> 12));
8704
8705 /* TM */
8706 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8707 ilt_client->client_num = ILT_CLIENT_TM;
8708 ilt_client->page_size = TM_ILT_PAGE_SZ;
8709 ilt_client->flags = 0;
8710 ilt_client->start = line;
8711 line += TM_ILT_LINES;
8712 ilt_client->end = line - 1;
8713
8714 DP(NETIF_MSG_IFUP,
8715 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8716 ilt_client->start,
8717 ilt_client->end,
8718 ilt_client->page_size,
8719 ilt_client->flags,
8720 ilog2(ilt_client->page_size >> 12));
8721 }
8722
8723 BUG_ON(line > ILT_MAX_LINES);
8724 }
8725
8726 /**
8727 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8728 *
8729 * @bp: driver handle
8730 * @fp: pointer to fastpath
8731 * @init_params: pointer to parameters structure
8732 *
8733 * parameters configured:
8734 * - HC configuration
8735 * - Queue's CDU context
8736 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8737 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8738 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8739 {
8740 u8 cos;
8741 int cxt_index, cxt_offset;
8742
8743 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8744 if (!IS_FCOE_FP(fp)) {
8745 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8746 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8747
8748 /* If HC is supported, enable host coalescing in the transition
8749 * to INIT state.
8750 */
8751 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8752 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8753
8754 /* HC rate */
8755 init_params->rx.hc_rate = bp->rx_ticks ?
8756 (1000000 / bp->rx_ticks) : 0;
8757 init_params->tx.hc_rate = bp->tx_ticks ?
8758 (1000000 / bp->tx_ticks) : 0;
8759
8760 /* FW SB ID */
8761 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8762 fp->fw_sb_id;
8763
8764 /*
8765 * CQ index among the SB indices: FCoE clients uses the default
8766 * SB, therefore it's different.
8767 */
8768 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8769 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8770 }
8771
8772 /* set maximum number of COSs supported by this queue */
8773 init_params->max_cos = fp->max_cos;
8774
8775 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8776 fp->index, init_params->max_cos);
8777
8778 /* set the context pointers queue object */
8779 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8780 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8781 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8782 ILT_PAGE_CIDS);
8783 init_params->cxts[cos] =
8784 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8785 }
8786 }
8787
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8788 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8789 struct bnx2x_queue_state_params *q_params,
8790 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8791 int tx_index, bool leading)
8792 {
8793 memset(tx_only_params, 0, sizeof(*tx_only_params));
8794
8795 /* Set the command */
8796 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8797
8798 /* Set tx-only QUEUE flags: don't zero statistics */
8799 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8800
8801 /* choose the index of the cid to send the slow path on */
8802 tx_only_params->cid_index = tx_index;
8803
8804 /* Set general TX_ONLY_SETUP parameters */
8805 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8806
8807 /* Set Tx TX_ONLY_SETUP parameters */
8808 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8809
8810 DP(NETIF_MSG_IFUP,
8811 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8812 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8813 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8814 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8815
8816 /* send the ramrod */
8817 return bnx2x_queue_state_change(bp, q_params);
8818 }
8819
8820 /**
8821 * bnx2x_setup_queue - setup queue
8822 *
8823 * @bp: driver handle
8824 * @fp: pointer to fastpath
8825 * @leading: is leading
8826 *
8827 * This function performs 2 steps in a Queue state machine
8828 * actually: 1) RESET->INIT 2) INIT->SETUP
8829 */
8830
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8831 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8832 bool leading)
8833 {
8834 struct bnx2x_queue_state_params q_params = {NULL};
8835 struct bnx2x_queue_setup_params *setup_params =
8836 &q_params.params.setup;
8837 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8838 &q_params.params.tx_only;
8839 int rc;
8840 u8 tx_index;
8841
8842 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8843
8844 /* reset IGU state skip FCoE L2 queue */
8845 if (!IS_FCOE_FP(fp))
8846 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8847 IGU_INT_ENABLE, 0);
8848
8849 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8850 /* We want to wait for completion in this context */
8851 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8852
8853 /* Prepare the INIT parameters */
8854 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8855
8856 /* Set the command */
8857 q_params.cmd = BNX2X_Q_CMD_INIT;
8858
8859 /* Change the state to INIT */
8860 rc = bnx2x_queue_state_change(bp, &q_params);
8861 if (rc) {
8862 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8863 return rc;
8864 }
8865
8866 DP(NETIF_MSG_IFUP, "init complete\n");
8867
8868 /* Now move the Queue to the SETUP state... */
8869 memset(setup_params, 0, sizeof(*setup_params));
8870
8871 /* Set QUEUE flags */
8872 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8873
8874 /* Set general SETUP parameters */
8875 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8876 FIRST_TX_COS_INDEX);
8877
8878 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8879 &setup_params->rxq_params);
8880
8881 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8882 FIRST_TX_COS_INDEX);
8883
8884 /* Set the command */
8885 q_params.cmd = BNX2X_Q_CMD_SETUP;
8886
8887 if (IS_FCOE_FP(fp))
8888 bp->fcoe_init = true;
8889
8890 /* Change the state to SETUP */
8891 rc = bnx2x_queue_state_change(bp, &q_params);
8892 if (rc) {
8893 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8894 return rc;
8895 }
8896
8897 /* loop through the relevant tx-only indices */
8898 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8899 tx_index < fp->max_cos;
8900 tx_index++) {
8901
8902 /* prepare and send tx-only ramrod*/
8903 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8904 tx_only_params, tx_index, leading);
8905 if (rc) {
8906 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8907 fp->index, tx_index);
8908 return rc;
8909 }
8910 }
8911
8912 return rc;
8913 }
8914
bnx2x_stop_queue(struct bnx2x * bp,int index)8915 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8916 {
8917 struct bnx2x_fastpath *fp = &bp->fp[index];
8918 struct bnx2x_fp_txdata *txdata;
8919 struct bnx2x_queue_state_params q_params = {NULL};
8920 int rc, tx_index;
8921
8922 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8923
8924 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8925 /* We want to wait for completion in this context */
8926 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8927
8928 /* close tx-only connections */
8929 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8930 tx_index < fp->max_cos;
8931 tx_index++){
8932
8933 /* ascertain this is a normal queue*/
8934 txdata = fp->txdata_ptr[tx_index];
8935
8936 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8937 txdata->txq_index);
8938
8939 /* send halt terminate on tx-only connection */
8940 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8941 memset(&q_params.params.terminate, 0,
8942 sizeof(q_params.params.terminate));
8943 q_params.params.terminate.cid_index = tx_index;
8944
8945 rc = bnx2x_queue_state_change(bp, &q_params);
8946 if (rc)
8947 return rc;
8948
8949 /* send halt terminate on tx-only connection */
8950 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8951 memset(&q_params.params.cfc_del, 0,
8952 sizeof(q_params.params.cfc_del));
8953 q_params.params.cfc_del.cid_index = tx_index;
8954 rc = bnx2x_queue_state_change(bp, &q_params);
8955 if (rc)
8956 return rc;
8957 }
8958 /* Stop the primary connection: */
8959 /* ...halt the connection */
8960 q_params.cmd = BNX2X_Q_CMD_HALT;
8961 rc = bnx2x_queue_state_change(bp, &q_params);
8962 if (rc)
8963 return rc;
8964
8965 /* ...terminate the connection */
8966 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8967 memset(&q_params.params.terminate, 0,
8968 sizeof(q_params.params.terminate));
8969 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8970 rc = bnx2x_queue_state_change(bp, &q_params);
8971 if (rc)
8972 return rc;
8973 /* ...delete cfc entry */
8974 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8975 memset(&q_params.params.cfc_del, 0,
8976 sizeof(q_params.params.cfc_del));
8977 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8978 return bnx2x_queue_state_change(bp, &q_params);
8979 }
8980
bnx2x_reset_func(struct bnx2x * bp)8981 static void bnx2x_reset_func(struct bnx2x *bp)
8982 {
8983 int port = BP_PORT(bp);
8984 int func = BP_FUNC(bp);
8985 int i;
8986
8987 /* Disable the function in the FW */
8988 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8989 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8990 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8991 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8992
8993 /* FP SBs */
8994 for_each_eth_queue(bp, i) {
8995 struct bnx2x_fastpath *fp = &bp->fp[i];
8996 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8997 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8998 SB_DISABLED);
8999 }
9000
9001 if (CNIC_LOADED(bp))
9002 /* CNIC SB */
9003 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9004 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
9005 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
9006
9007 /* SP SB */
9008 REG_WR8(bp, BAR_CSTRORM_INTMEM +
9009 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
9010 SB_DISABLED);
9011
9012 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
9013 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
9014 0);
9015
9016 /* Configure IGU */
9017 if (bp->common.int_block == INT_BLOCK_HC) {
9018 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9019 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9020 } else {
9021 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9022 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9023 }
9024
9025 if (CNIC_LOADED(bp)) {
9026 /* Disable Timer scan */
9027 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9028 /*
9029 * Wait for at least 10ms and up to 2 second for the timers
9030 * scan to complete
9031 */
9032 for (i = 0; i < 200; i++) {
9033 usleep_range(10000, 20000);
9034 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9035 break;
9036 }
9037 }
9038 /* Clear ILT */
9039 bnx2x_clear_func_ilt(bp, func);
9040
9041 /* Timers workaround bug for E2: if this is vnic-3,
9042 * we need to set the entire ilt range for this timers.
9043 */
9044 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9045 struct ilt_client_info ilt_cli;
9046 /* use dummy TM client */
9047 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9048 ilt_cli.start = 0;
9049 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9050 ilt_cli.client_num = ILT_CLIENT_TM;
9051
9052 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9053 }
9054
9055 /* this assumes that reset_port() called before reset_func()*/
9056 if (!CHIP_IS_E1x(bp))
9057 bnx2x_pf_disable(bp);
9058
9059 bp->dmae_ready = 0;
9060 }
9061
bnx2x_reset_port(struct bnx2x * bp)9062 static void bnx2x_reset_port(struct bnx2x *bp)
9063 {
9064 int port = BP_PORT(bp);
9065 u32 val;
9066
9067 /* Reset physical Link */
9068 bnx2x__link_reset(bp);
9069
9070 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9071
9072 /* Do not rcv packets to BRB */
9073 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9074 /* Do not direct rcv packets that are not for MCP to the BRB */
9075 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9076 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9077
9078 /* Configure AEU */
9079 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9080
9081 msleep(100);
9082 /* Check for BRB port occupancy */
9083 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9084 if (val)
9085 DP(NETIF_MSG_IFDOWN,
9086 "BRB1 is not empty %d blocks are occupied\n", val);
9087
9088 /* TODO: Close Doorbell port? */
9089 }
9090
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9091 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9092 {
9093 struct bnx2x_func_state_params func_params = {NULL};
9094
9095 /* Prepare parameters for function state transitions */
9096 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9097
9098 func_params.f_obj = &bp->func_obj;
9099 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9100
9101 func_params.params.hw_init.load_phase = load_code;
9102
9103 return bnx2x_func_state_change(bp, &func_params);
9104 }
9105
bnx2x_func_stop(struct bnx2x * bp)9106 static int bnx2x_func_stop(struct bnx2x *bp)
9107 {
9108 struct bnx2x_func_state_params func_params = {NULL};
9109 int rc;
9110
9111 /* Prepare parameters for function state transitions */
9112 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9113 func_params.f_obj = &bp->func_obj;
9114 func_params.cmd = BNX2X_F_CMD_STOP;
9115
9116 /*
9117 * Try to stop the function the 'good way'. If fails (in case
9118 * of a parity error during bnx2x_chip_cleanup()) and we are
9119 * not in a debug mode, perform a state transaction in order to
9120 * enable further HW_RESET transaction.
9121 */
9122 rc = bnx2x_func_state_change(bp, &func_params);
9123 if (rc) {
9124 #ifdef BNX2X_STOP_ON_ERROR
9125 return rc;
9126 #else
9127 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9128 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9129 return bnx2x_func_state_change(bp, &func_params);
9130 #endif
9131 }
9132
9133 return 0;
9134 }
9135
9136 /**
9137 * bnx2x_send_unload_req - request unload mode from the MCP.
9138 *
9139 * @bp: driver handle
9140 * @unload_mode: requested function's unload mode
9141 *
9142 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9143 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9144 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9145 {
9146 u32 reset_code = 0;
9147 int port = BP_PORT(bp);
9148
9149 /* Select the UNLOAD request mode */
9150 if (unload_mode == UNLOAD_NORMAL)
9151 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9152
9153 else if (bp->flags & NO_WOL_FLAG)
9154 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9155
9156 else if (bp->wol) {
9157 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9158 u8 *mac_addr = bp->dev->dev_addr;
9159 struct pci_dev *pdev = bp->pdev;
9160 u32 val;
9161 u16 pmc;
9162
9163 /* The mac address is written to entries 1-4 to
9164 * preserve entry 0 which is used by the PMF
9165 */
9166 u8 entry = (BP_VN(bp) + 1)*8;
9167
9168 val = (mac_addr[0] << 8) | mac_addr[1];
9169 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9170
9171 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9172 (mac_addr[4] << 8) | mac_addr[5];
9173 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9174
9175 /* Enable the PME and clear the status */
9176 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9177 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9178 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9179
9180 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9181
9182 } else
9183 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9184
9185 /* Send the request to the MCP */
9186 if (!BP_NOMCP(bp))
9187 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9188 else {
9189 int path = BP_PATH(bp);
9190
9191 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9192 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9193 bnx2x_load_count[path][2]);
9194 bnx2x_load_count[path][0]--;
9195 bnx2x_load_count[path][1 + port]--;
9196 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9197 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9198 bnx2x_load_count[path][2]);
9199 if (bnx2x_load_count[path][0] == 0)
9200 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9201 else if (bnx2x_load_count[path][1 + port] == 0)
9202 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9203 else
9204 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9205 }
9206
9207 return reset_code;
9208 }
9209
9210 /**
9211 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9212 *
9213 * @bp: driver handle
9214 * @keep_link: true iff link should be kept up
9215 */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9216 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9217 {
9218 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9219
9220 /* Report UNLOAD_DONE to MCP */
9221 if (!BP_NOMCP(bp))
9222 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9223 }
9224
bnx2x_func_wait_started(struct bnx2x * bp)9225 static int bnx2x_func_wait_started(struct bnx2x *bp)
9226 {
9227 int tout = 50;
9228 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9229
9230 if (!bp->port.pmf)
9231 return 0;
9232
9233 /*
9234 * (assumption: No Attention from MCP at this stage)
9235 * PMF probably in the middle of TX disable/enable transaction
9236 * 1. Sync IRS for default SB
9237 * 2. Sync SP queue - this guarantees us that attention handling started
9238 * 3. Wait, that TX disable/enable transaction completes
9239 *
9240 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9241 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9242 * received completion for the transaction the state is TX_STOPPED.
9243 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9244 * transaction.
9245 */
9246
9247 /* make sure default SB ISR is done */
9248 if (msix)
9249 synchronize_irq(bp->msix_table[0].vector);
9250 else
9251 synchronize_irq(bp->pdev->irq);
9252
9253 flush_workqueue(bnx2x_wq);
9254 flush_workqueue(bnx2x_iov_wq);
9255
9256 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9257 BNX2X_F_STATE_STARTED && tout--)
9258 msleep(20);
9259
9260 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9261 BNX2X_F_STATE_STARTED) {
9262 #ifdef BNX2X_STOP_ON_ERROR
9263 BNX2X_ERR("Wrong function state\n");
9264 return -EBUSY;
9265 #else
9266 /*
9267 * Failed to complete the transaction in a "good way"
9268 * Force both transactions with CLR bit
9269 */
9270 struct bnx2x_func_state_params func_params = {NULL};
9271
9272 DP(NETIF_MSG_IFDOWN,
9273 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9274
9275 func_params.f_obj = &bp->func_obj;
9276 __set_bit(RAMROD_DRV_CLR_ONLY,
9277 &func_params.ramrod_flags);
9278
9279 /* STARTED-->TX_ST0PPED */
9280 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9281 bnx2x_func_state_change(bp, &func_params);
9282
9283 /* TX_ST0PPED-->STARTED */
9284 func_params.cmd = BNX2X_F_CMD_TX_START;
9285 return bnx2x_func_state_change(bp, &func_params);
9286 #endif
9287 }
9288
9289 return 0;
9290 }
9291
bnx2x_disable_ptp(struct bnx2x * bp)9292 static void bnx2x_disable_ptp(struct bnx2x *bp)
9293 {
9294 int port = BP_PORT(bp);
9295
9296 /* Disable sending PTP packets to host */
9297 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9298 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9299
9300 /* Reset PTP event detection rules */
9301 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9302 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9303 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9304 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9305 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9306 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9307 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9308 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9309
9310 /* Disable the PTP feature */
9311 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9312 NIG_REG_P0_PTP_EN, 0x0);
9313 }
9314
9315 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9316 static void bnx2x_stop_ptp(struct bnx2x *bp)
9317 {
9318 /* Cancel PTP work queue. Should be done after the Tx queues are
9319 * drained to prevent additional scheduling.
9320 */
9321 cancel_work_sync(&bp->ptp_task);
9322
9323 if (bp->ptp_tx_skb) {
9324 dev_kfree_skb_any(bp->ptp_tx_skb);
9325 bp->ptp_tx_skb = NULL;
9326 }
9327
9328 /* Disable PTP in HW */
9329 bnx2x_disable_ptp(bp);
9330
9331 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9332 }
9333
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9334 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9335 {
9336 int port = BP_PORT(bp);
9337 int i, rc = 0;
9338 u8 cos;
9339 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9340 u32 reset_code;
9341
9342 /* Wait until tx fastpath tasks complete */
9343 for_each_tx_queue(bp, i) {
9344 struct bnx2x_fastpath *fp = &bp->fp[i];
9345
9346 for_each_cos_in_tx_queue(fp, cos)
9347 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9348 #ifdef BNX2X_STOP_ON_ERROR
9349 if (rc)
9350 return;
9351 #endif
9352 }
9353
9354 /* Give HW time to discard old tx messages */
9355 usleep_range(1000, 2000);
9356
9357 /* Clean all ETH MACs */
9358 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9359 false);
9360 if (rc < 0)
9361 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9362
9363 /* Clean up UC list */
9364 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9365 true);
9366 if (rc < 0)
9367 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9368 rc);
9369
9370 /* The whole *vlan_obj structure may be not initialized if VLAN
9371 * filtering offload is not supported by hardware. Currently this is
9372 * true for all hardware covered by CHIP_IS_E1x().
9373 */
9374 if (!CHIP_IS_E1x(bp)) {
9375 /* Remove all currently configured VLANs */
9376 rc = bnx2x_del_all_vlans(bp);
9377 if (rc < 0)
9378 BNX2X_ERR("Failed to delete all VLANs\n");
9379 }
9380
9381 /* Disable LLH */
9382 if (!CHIP_IS_E1(bp))
9383 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9384
9385 /* Set "drop all" (stop Rx).
9386 * We need to take a netif_addr_lock() here in order to prevent
9387 * a race between the completion code and this code.
9388 */
9389 netif_addr_lock_bh(bp->dev);
9390 /* Schedule the rx_mode command */
9391 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9392 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9393 else if (bp->slowpath)
9394 bnx2x_set_storm_rx_mode(bp);
9395
9396 /* Cleanup multicast configuration */
9397 rparam.mcast_obj = &bp->mcast_obj;
9398 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9399 if (rc < 0)
9400 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9401
9402 netif_addr_unlock_bh(bp->dev);
9403
9404 bnx2x_iov_chip_cleanup(bp);
9405
9406 /*
9407 * Send the UNLOAD_REQUEST to the MCP. This will return if
9408 * this function should perform FUNC, PORT or COMMON HW
9409 * reset.
9410 */
9411 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9412
9413 /*
9414 * (assumption: No Attention from MCP at this stage)
9415 * PMF probably in the middle of TX disable/enable transaction
9416 */
9417 rc = bnx2x_func_wait_started(bp);
9418 if (rc) {
9419 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9420 #ifdef BNX2X_STOP_ON_ERROR
9421 return;
9422 #endif
9423 }
9424
9425 /* Close multi and leading connections
9426 * Completions for ramrods are collected in a synchronous way
9427 */
9428 for_each_eth_queue(bp, i)
9429 if (bnx2x_stop_queue(bp, i))
9430 #ifdef BNX2X_STOP_ON_ERROR
9431 return;
9432 #else
9433 goto unload_error;
9434 #endif
9435
9436 if (CNIC_LOADED(bp)) {
9437 for_each_cnic_queue(bp, i)
9438 if (bnx2x_stop_queue(bp, i))
9439 #ifdef BNX2X_STOP_ON_ERROR
9440 return;
9441 #else
9442 goto unload_error;
9443 #endif
9444 }
9445
9446 /* If SP settings didn't get completed so far - something
9447 * very wrong has happen.
9448 */
9449 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9450 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9451
9452 #ifndef BNX2X_STOP_ON_ERROR
9453 unload_error:
9454 #endif
9455 rc = bnx2x_func_stop(bp);
9456 if (rc) {
9457 BNX2X_ERR("Function stop failed!\n");
9458 #ifdef BNX2X_STOP_ON_ERROR
9459 return;
9460 #endif
9461 }
9462
9463 /* stop_ptp should be after the Tx queues are drained to prevent
9464 * scheduling to the cancelled PTP work queue. It should also be after
9465 * function stop ramrod is sent, since as part of this ramrod FW access
9466 * PTP registers.
9467 */
9468 if (bp->flags & PTP_SUPPORTED) {
9469 bnx2x_stop_ptp(bp);
9470 if (bp->ptp_clock) {
9471 ptp_clock_unregister(bp->ptp_clock);
9472 bp->ptp_clock = NULL;
9473 }
9474 }
9475
9476 /* Disable HW interrupts, NAPI */
9477 bnx2x_netif_stop(bp, 1);
9478 /* Delete all NAPI objects */
9479 bnx2x_del_all_napi(bp);
9480 if (CNIC_LOADED(bp))
9481 bnx2x_del_all_napi_cnic(bp);
9482
9483 /* Release IRQs */
9484 bnx2x_free_irq(bp);
9485
9486 /* Reset the chip, unless PCI function is offline. If we reach this
9487 * point following a PCI error handling, it means device is really
9488 * in a bad state and we're about to remove it, so reset the chip
9489 * is not a good idea.
9490 */
9491 if (!pci_channel_offline(bp->pdev)) {
9492 rc = bnx2x_reset_hw(bp, reset_code);
9493 if (rc)
9494 BNX2X_ERR("HW_RESET failed\n");
9495 }
9496
9497 /* Report UNLOAD_DONE to MCP */
9498 bnx2x_send_unload_done(bp, keep_link);
9499 }
9500
bnx2x_disable_close_the_gate(struct bnx2x * bp)9501 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9502 {
9503 u32 val;
9504
9505 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9506
9507 if (CHIP_IS_E1(bp)) {
9508 int port = BP_PORT(bp);
9509 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9510 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9511
9512 val = REG_RD(bp, addr);
9513 val &= ~(0x300);
9514 REG_WR(bp, addr, val);
9515 } else {
9516 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9517 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9518 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9519 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9520 }
9521 }
9522
9523 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9524 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9525 {
9526 u32 val;
9527
9528 /* Gates #2 and #4a are closed/opened for "not E1" only */
9529 if (!CHIP_IS_E1(bp)) {
9530 /* #4 */
9531 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9532 /* #2 */
9533 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9534 }
9535
9536 /* #3 */
9537 if (CHIP_IS_E1x(bp)) {
9538 /* Prevent interrupts from HC on both ports */
9539 val = REG_RD(bp, HC_REG_CONFIG_1);
9540 REG_WR(bp, HC_REG_CONFIG_1,
9541 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9542 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9543
9544 val = REG_RD(bp, HC_REG_CONFIG_0);
9545 REG_WR(bp, HC_REG_CONFIG_0,
9546 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9547 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9548 } else {
9549 /* Prevent incoming interrupts in IGU */
9550 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9551
9552 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9553 (!close) ?
9554 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9555 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9556 }
9557
9558 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9559 close ? "closing" : "opening");
9560 }
9561
9562 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9563
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9564 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9565 {
9566 /* Do some magic... */
9567 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9568 *magic_val = val & SHARED_MF_CLP_MAGIC;
9569 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9570 }
9571
9572 /**
9573 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9574 *
9575 * @bp: driver handle
9576 * @magic_val: old value of the `magic' bit.
9577 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9578 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9579 {
9580 /* Restore the `magic' bit value... */
9581 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9582 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9583 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9584 }
9585
9586 /**
9587 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9588 *
9589 * @bp: driver handle
9590 * @magic_val: old value of 'magic' bit.
9591 *
9592 * Takes care of CLP configurations.
9593 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9594 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9595 {
9596 u32 shmem;
9597 u32 validity_offset;
9598
9599 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9600
9601 /* Set `magic' bit in order to save MF config */
9602 if (!CHIP_IS_E1(bp))
9603 bnx2x_clp_reset_prep(bp, magic_val);
9604
9605 /* Get shmem offset */
9606 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9607 validity_offset =
9608 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9609
9610 /* Clear validity map flags */
9611 if (shmem > 0)
9612 REG_WR(bp, shmem + validity_offset, 0);
9613 }
9614
9615 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9616 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9617
9618 /**
9619 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9620 *
9621 * @bp: driver handle
9622 */
bnx2x_mcp_wait_one(struct bnx2x * bp)9623 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9624 {
9625 /* special handling for emulation and FPGA,
9626 wait 10 times longer */
9627 if (CHIP_REV_IS_SLOW(bp))
9628 msleep(MCP_ONE_TIMEOUT*10);
9629 else
9630 msleep(MCP_ONE_TIMEOUT);
9631 }
9632
9633 /*
9634 * initializes bp->common.shmem_base and waits for validity signature to appear
9635 */
bnx2x_init_shmem(struct bnx2x * bp)9636 static int bnx2x_init_shmem(struct bnx2x *bp)
9637 {
9638 int cnt = 0;
9639 u32 val = 0;
9640
9641 do {
9642 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9643
9644 /* If we read all 0xFFs, means we are in PCI error state and
9645 * should bail out to avoid crashes on adapter's FW reads.
9646 */
9647 if (bp->common.shmem_base == 0xFFFFFFFF) {
9648 bp->flags |= NO_MCP_FLAG;
9649 return -ENODEV;
9650 }
9651
9652 if (bp->common.shmem_base) {
9653 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9654 if (val & SHR_MEM_VALIDITY_MB)
9655 return 0;
9656 }
9657
9658 bnx2x_mcp_wait_one(bp);
9659
9660 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9661
9662 BNX2X_ERR("BAD MCP validity signature\n");
9663
9664 return -ENODEV;
9665 }
9666
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9667 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9668 {
9669 int rc = bnx2x_init_shmem(bp);
9670
9671 /* Restore the `magic' bit value */
9672 if (!CHIP_IS_E1(bp))
9673 bnx2x_clp_reset_done(bp, magic_val);
9674
9675 return rc;
9676 }
9677
bnx2x_pxp_prep(struct bnx2x * bp)9678 static void bnx2x_pxp_prep(struct bnx2x *bp)
9679 {
9680 if (!CHIP_IS_E1(bp)) {
9681 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9682 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9683 }
9684 }
9685
9686 /*
9687 * Reset the whole chip except for:
9688 * - PCIE core
9689 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9690 * one reset bit)
9691 * - IGU
9692 * - MISC (including AEU)
9693 * - GRC
9694 * - RBCN, RBCP
9695 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9696 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9697 {
9698 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9699 u32 global_bits2, stay_reset2;
9700
9701 /*
9702 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9703 * (per chip) blocks.
9704 */
9705 global_bits2 =
9706 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9707 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9708
9709 /* Don't reset the following blocks.
9710 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9711 * reset, as in 4 port device they might still be owned
9712 * by the MCP (there is only one leader per path).
9713 */
9714 not_reset_mask1 =
9715 MISC_REGISTERS_RESET_REG_1_RST_HC |
9716 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9717 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9718
9719 not_reset_mask2 =
9720 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9721 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9722 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9723 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9724 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9725 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9726 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9727 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9728 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9729 MISC_REGISTERS_RESET_REG_2_PGLC |
9730 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9731 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9732 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9733 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9734 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9735 MISC_REGISTERS_RESET_REG_2_UMAC1;
9736
9737 /*
9738 * Keep the following blocks in reset:
9739 * - all xxMACs are handled by the bnx2x_link code.
9740 */
9741 stay_reset2 =
9742 MISC_REGISTERS_RESET_REG_2_XMAC |
9743 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9744
9745 /* Full reset masks according to the chip */
9746 reset_mask1 = 0xffffffff;
9747
9748 if (CHIP_IS_E1(bp))
9749 reset_mask2 = 0xffff;
9750 else if (CHIP_IS_E1H(bp))
9751 reset_mask2 = 0x1ffff;
9752 else if (CHIP_IS_E2(bp))
9753 reset_mask2 = 0xfffff;
9754 else /* CHIP_IS_E3 */
9755 reset_mask2 = 0x3ffffff;
9756
9757 /* Don't reset global blocks unless we need to */
9758 if (!global)
9759 reset_mask2 &= ~global_bits2;
9760
9761 /*
9762 * In case of attention in the QM, we need to reset PXP
9763 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9764 * because otherwise QM reset would release 'close the gates' shortly
9765 * before resetting the PXP, then the PSWRQ would send a write
9766 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9767 * read the payload data from PSWWR, but PSWWR would not
9768 * respond. The write queue in PGLUE would stuck, dmae commands
9769 * would not return. Therefore it's important to reset the second
9770 * reset register (containing the
9771 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9772 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9773 * bit).
9774 */
9775 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9776 reset_mask2 & (~not_reset_mask2));
9777
9778 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9779 reset_mask1 & (~not_reset_mask1));
9780
9781 barrier();
9782
9783 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9784 reset_mask2 & (~stay_reset2));
9785
9786 barrier();
9787
9788 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9789 }
9790
9791 /**
9792 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9793 * It should get cleared in no more than 1s.
9794 *
9795 * @bp: driver handle
9796 *
9797 * It should get cleared in no more than 1s. Returns 0 if
9798 * pending writes bit gets cleared.
9799 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9800 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9801 {
9802 u32 cnt = 1000;
9803 u32 pend_bits = 0;
9804
9805 do {
9806 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9807
9808 if (pend_bits == 0)
9809 break;
9810
9811 usleep_range(1000, 2000);
9812 } while (cnt-- > 0);
9813
9814 if (cnt <= 0) {
9815 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9816 pend_bits);
9817 return -EBUSY;
9818 }
9819
9820 return 0;
9821 }
9822
bnx2x_process_kill(struct bnx2x * bp,bool global)9823 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9824 {
9825 int cnt = 1000;
9826 u32 val = 0;
9827 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9828 u32 tags_63_32 = 0;
9829
9830 /* Empty the Tetris buffer, wait for 1s */
9831 do {
9832 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9833 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9834 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9835 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9836 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9837 if (CHIP_IS_E3(bp))
9838 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9839
9840 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9841 ((port_is_idle_0 & 0x1) == 0x1) &&
9842 ((port_is_idle_1 & 0x1) == 0x1) &&
9843 (pgl_exp_rom2 == 0xffffffff) &&
9844 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9845 break;
9846 usleep_range(1000, 2000);
9847 } while (cnt-- > 0);
9848
9849 if (cnt <= 0) {
9850 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9851 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9852 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9853 pgl_exp_rom2);
9854 return -EAGAIN;
9855 }
9856
9857 barrier();
9858
9859 /* Close gates #2, #3 and #4 */
9860 bnx2x_set_234_gates(bp, true);
9861
9862 /* Poll for IGU VQs for 57712 and newer chips */
9863 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9864 return -EAGAIN;
9865
9866 /* TBD: Indicate that "process kill" is in progress to MCP */
9867
9868 /* Clear "unprepared" bit */
9869 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9870 barrier();
9871
9872 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9873 * PSWHST, GRC and PSWRD Tetris buffer.
9874 */
9875 usleep_range(1000, 2000);
9876
9877 /* Prepare to chip reset: */
9878 /* MCP */
9879 if (global)
9880 bnx2x_reset_mcp_prep(bp, &val);
9881
9882 /* PXP */
9883 bnx2x_pxp_prep(bp);
9884 barrier();
9885
9886 /* reset the chip */
9887 bnx2x_process_kill_chip_reset(bp, global);
9888 barrier();
9889
9890 /* clear errors in PGB */
9891 if (!CHIP_IS_E1x(bp))
9892 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9893
9894 /* Recover after reset: */
9895 /* MCP */
9896 if (global && bnx2x_reset_mcp_comp(bp, val))
9897 return -EAGAIN;
9898
9899 /* TBD: Add resetting the NO_MCP mode DB here */
9900
9901 /* Open the gates #2, #3 and #4 */
9902 bnx2x_set_234_gates(bp, false);
9903
9904 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9905 * reset state, re-enable attentions. */
9906
9907 return 0;
9908 }
9909
bnx2x_leader_reset(struct bnx2x * bp)9910 static int bnx2x_leader_reset(struct bnx2x *bp)
9911 {
9912 int rc = 0;
9913 bool global = bnx2x_reset_is_global(bp);
9914 u32 load_code;
9915
9916 /* if not going to reset MCP - load "fake" driver to reset HW while
9917 * driver is owner of the HW
9918 */
9919 if (!global && !BP_NOMCP(bp)) {
9920 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9921 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9922 if (!load_code) {
9923 BNX2X_ERR("MCP response failure, aborting\n");
9924 rc = -EAGAIN;
9925 goto exit_leader_reset;
9926 }
9927 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9928 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9929 BNX2X_ERR("MCP unexpected resp, aborting\n");
9930 rc = -EAGAIN;
9931 goto exit_leader_reset2;
9932 }
9933 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9934 if (!load_code) {
9935 BNX2X_ERR("MCP response failure, aborting\n");
9936 rc = -EAGAIN;
9937 goto exit_leader_reset2;
9938 }
9939 }
9940
9941 /* Try to recover after the failure */
9942 if (bnx2x_process_kill(bp, global)) {
9943 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9944 BP_PATH(bp));
9945 rc = -EAGAIN;
9946 goto exit_leader_reset2;
9947 }
9948
9949 /*
9950 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9951 * state.
9952 */
9953 bnx2x_set_reset_done(bp);
9954 if (global)
9955 bnx2x_clear_reset_global(bp);
9956
9957 exit_leader_reset2:
9958 /* unload "fake driver" if it was loaded */
9959 if (!global && !BP_NOMCP(bp)) {
9960 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9961 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9962 }
9963 exit_leader_reset:
9964 bp->is_leader = 0;
9965 bnx2x_release_leader_lock(bp);
9966 smp_mb();
9967 return rc;
9968 }
9969
bnx2x_recovery_failed(struct bnx2x * bp)9970 static void bnx2x_recovery_failed(struct bnx2x *bp)
9971 {
9972 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9973
9974 /* Disconnect this device */
9975 netif_device_detach(bp->dev);
9976
9977 /*
9978 * Block ifup for all function on this engine until "process kill"
9979 * or power cycle.
9980 */
9981 bnx2x_set_reset_in_progress(bp);
9982
9983 /* Shut down the power */
9984 bnx2x_set_power_state(bp, PCI_D3hot);
9985
9986 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9987
9988 smp_mb();
9989 }
9990
9991 /*
9992 * Assumption: runs under rtnl lock. This together with the fact
9993 * that it's called only from bnx2x_sp_rtnl() ensure that it
9994 * will never be called when netif_running(bp->dev) is false.
9995 */
bnx2x_parity_recover(struct bnx2x * bp)9996 static void bnx2x_parity_recover(struct bnx2x *bp)
9997 {
9998 u32 error_recovered, error_unrecovered;
9999 bool is_parity, global = false;
10000 #ifdef CONFIG_BNX2X_SRIOV
10001 int vf_idx;
10002
10003 for (vf_idx = 0; vf_idx < bp->requested_nr_virtfn; vf_idx++) {
10004 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
10005
10006 if (vf)
10007 vf->state = VF_LOST;
10008 }
10009 #endif
10010 DP(NETIF_MSG_HW, "Handling parity\n");
10011 while (1) {
10012 switch (bp->recovery_state) {
10013 case BNX2X_RECOVERY_INIT:
10014 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
10015 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
10016 WARN_ON(!is_parity);
10017
10018 /* Try to get a LEADER_LOCK HW lock */
10019 if (bnx2x_trylock_leader_lock(bp)) {
10020 bnx2x_set_reset_in_progress(bp);
10021 /*
10022 * Check if there is a global attention and if
10023 * there was a global attention, set the global
10024 * reset bit.
10025 */
10026
10027 if (global)
10028 bnx2x_set_reset_global(bp);
10029
10030 bp->is_leader = 1;
10031 }
10032
10033 /* Stop the driver */
10034 /* If interface has been removed - break */
10035 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10036 return;
10037
10038 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10039
10040 /* Ensure "is_leader", MCP command sequence and
10041 * "recovery_state" update values are seen on other
10042 * CPUs.
10043 */
10044 smp_mb();
10045 break;
10046
10047 case BNX2X_RECOVERY_WAIT:
10048 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10049 if (bp->is_leader) {
10050 int other_engine = BP_PATH(bp) ? 0 : 1;
10051 bool other_load_status =
10052 bnx2x_get_load_status(bp, other_engine);
10053 bool load_status =
10054 bnx2x_get_load_status(bp, BP_PATH(bp));
10055 global = bnx2x_reset_is_global(bp);
10056
10057 /*
10058 * In case of a parity in a global block, let
10059 * the first leader that performs a
10060 * leader_reset() reset the global blocks in
10061 * order to clear global attentions. Otherwise
10062 * the gates will remain closed for that
10063 * engine.
10064 */
10065 if (load_status ||
10066 (global && other_load_status)) {
10067 /* Wait until all other functions get
10068 * down.
10069 */
10070 schedule_delayed_work(&bp->sp_rtnl_task,
10071 HZ/10);
10072 return;
10073 } else {
10074 /* If all other functions got down -
10075 * try to bring the chip back to
10076 * normal. In any case it's an exit
10077 * point for a leader.
10078 */
10079 if (bnx2x_leader_reset(bp)) {
10080 bnx2x_recovery_failed(bp);
10081 return;
10082 }
10083
10084 /* If we are here, means that the
10085 * leader has succeeded and doesn't
10086 * want to be a leader any more. Try
10087 * to continue as a none-leader.
10088 */
10089 break;
10090 }
10091 } else { /* non-leader */
10092 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10093 /* Try to get a LEADER_LOCK HW lock as
10094 * long as a former leader may have
10095 * been unloaded by the user or
10096 * released a leadership by another
10097 * reason.
10098 */
10099 if (bnx2x_trylock_leader_lock(bp)) {
10100 /* I'm a leader now! Restart a
10101 * switch case.
10102 */
10103 bp->is_leader = 1;
10104 break;
10105 }
10106
10107 schedule_delayed_work(&bp->sp_rtnl_task,
10108 HZ/10);
10109 return;
10110
10111 } else {
10112 /*
10113 * If there was a global attention, wait
10114 * for it to be cleared.
10115 */
10116 if (bnx2x_reset_is_global(bp)) {
10117 schedule_delayed_work(
10118 &bp->sp_rtnl_task,
10119 HZ/10);
10120 return;
10121 }
10122
10123 error_recovered =
10124 bp->eth_stats.recoverable_error;
10125 error_unrecovered =
10126 bp->eth_stats.unrecoverable_error;
10127 bp->recovery_state =
10128 BNX2X_RECOVERY_NIC_LOADING;
10129 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10130 error_unrecovered++;
10131 netdev_err(bp->dev,
10132 "Recovery failed. Power cycle needed\n");
10133 /* Disconnect this device */
10134 netif_device_detach(bp->dev);
10135 /* Shut down the power */
10136 bnx2x_set_power_state(
10137 bp, PCI_D3hot);
10138 smp_mb();
10139 } else {
10140 bp->recovery_state =
10141 BNX2X_RECOVERY_DONE;
10142 error_recovered++;
10143 smp_mb();
10144 }
10145 bp->eth_stats.recoverable_error =
10146 error_recovered;
10147 bp->eth_stats.unrecoverable_error =
10148 error_unrecovered;
10149
10150 return;
10151 }
10152 }
10153 default:
10154 return;
10155 }
10156 }
10157 }
10158
bnx2x_udp_port_update(struct bnx2x * bp)10159 static int bnx2x_udp_port_update(struct bnx2x *bp)
10160 {
10161 struct bnx2x_func_switch_update_params *switch_update_params;
10162 struct bnx2x_func_state_params func_params = {NULL};
10163 u16 vxlan_port = 0, geneve_port = 0;
10164 int rc;
10165
10166 switch_update_params = &func_params.params.switch_update;
10167
10168 /* Prepare parameters for function state transitions */
10169 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10170 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10171
10172 func_params.f_obj = &bp->func_obj;
10173 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10174
10175 /* Function parameters */
10176 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10177 &switch_update_params->changes);
10178
10179 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE]) {
10180 geneve_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10181 switch_update_params->geneve_dst_port = geneve_port;
10182 }
10183
10184 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN]) {
10185 vxlan_port = bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10186 switch_update_params->vxlan_dst_port = vxlan_port;
10187 }
10188
10189 /* Re-enable inner-rss for the offloaded UDP tunnels */
10190 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10191 &switch_update_params->changes);
10192
10193 rc = bnx2x_func_state_change(bp, &func_params);
10194 if (rc)
10195 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10196 vxlan_port, geneve_port, rc);
10197 else
10198 DP(BNX2X_MSG_SP,
10199 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10200 vxlan_port, geneve_port);
10201
10202 return rc;
10203 }
10204
bnx2x_udp_tunnel_sync(struct net_device * netdev,unsigned int table)10205 static int bnx2x_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
10206 {
10207 struct bnx2x *bp = netdev_priv(netdev);
10208 struct udp_tunnel_info ti;
10209
10210 udp_tunnel_nic_get_port(netdev, table, 0, &ti);
10211 bp->udp_tunnel_ports[table] = be16_to_cpu(ti.port);
10212
10213 return bnx2x_udp_port_update(bp);
10214 }
10215
10216 static const struct udp_tunnel_nic_info bnx2x_udp_tunnels = {
10217 .sync_table = bnx2x_udp_tunnel_sync,
10218 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
10219 UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
10220 .tables = {
10221 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
10222 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
10223 },
10224 };
10225
10226 static int bnx2x_close(struct net_device *dev);
10227
10228 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10229 * scheduled on a general queue in order to prevent a dead lock.
10230 */
bnx2x_sp_rtnl_task(struct work_struct * work)10231 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10232 {
10233 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10234
10235 rtnl_lock();
10236
10237 if (!netif_running(bp->dev)) {
10238 rtnl_unlock();
10239 return;
10240 }
10241
10242 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10243 #ifdef BNX2X_STOP_ON_ERROR
10244 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10245 "you will need to reboot when done\n");
10246 goto sp_rtnl_not_reset;
10247 #endif
10248 /*
10249 * Clear all pending SP commands as we are going to reset the
10250 * function anyway.
10251 */
10252 bp->sp_rtnl_state = 0;
10253 smp_mb();
10254
10255 bnx2x_parity_recover(bp);
10256
10257 rtnl_unlock();
10258 return;
10259 }
10260
10261 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10262 #ifdef BNX2X_STOP_ON_ERROR
10263 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10264 "you will need to reboot when done\n");
10265 goto sp_rtnl_not_reset;
10266 #endif
10267
10268 /*
10269 * Clear all pending SP commands as we are going to reset the
10270 * function anyway.
10271 */
10272 bp->sp_rtnl_state = 0;
10273 smp_mb();
10274
10275 /* Immediately indicate link as down */
10276 bp->link_vars.link_up = 0;
10277 bp->force_link_down = true;
10278 netif_carrier_off(bp->dev);
10279 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10280
10281 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10282 /* When ret value shows failure of allocation failure,
10283 * the nic is rebooted again. If open still fails, a error
10284 * message to notify the user.
10285 */
10286 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10287 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10288 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10289 BNX2X_ERR("Open the NIC fails again!\n");
10290 }
10291 rtnl_unlock();
10292 return;
10293 }
10294 #ifdef BNX2X_STOP_ON_ERROR
10295 sp_rtnl_not_reset:
10296 #endif
10297 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10298 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10299 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10300 bnx2x_after_function_update(bp);
10301 /*
10302 * in case of fan failure we need to reset id if the "stop on error"
10303 * debug flag is set, since we trying to prevent permanent overheating
10304 * damage
10305 */
10306 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10307 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10308 netif_device_detach(bp->dev);
10309 bnx2x_close(bp->dev);
10310 rtnl_unlock();
10311 return;
10312 }
10313
10314 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10315 DP(BNX2X_MSG_SP,
10316 "sending set mcast vf pf channel message from rtnl sp-task\n");
10317 bnx2x_vfpf_set_mcast(bp->dev);
10318 }
10319 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10320 &bp->sp_rtnl_state)){
10321 if (netif_carrier_ok(bp->dev)) {
10322 bnx2x_tx_disable(bp);
10323 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10324 }
10325 }
10326
10327 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10328 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10329 bnx2x_set_rx_mode_inner(bp);
10330 }
10331
10332 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10333 &bp->sp_rtnl_state))
10334 bnx2x_pf_set_vfs_vlan(bp);
10335
10336 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10337 bnx2x_dcbx_stop_hw_tx(bp);
10338 bnx2x_dcbx_resume_hw_tx(bp);
10339 }
10340
10341 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10342 &bp->sp_rtnl_state))
10343 bnx2x_update_mng_version(bp);
10344
10345 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10346 bnx2x_handle_update_svid_cmd(bp);
10347
10348 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10349 * can be called from other contexts as well)
10350 */
10351 rtnl_unlock();
10352
10353 /* enable SR-IOV if applicable */
10354 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10355 &bp->sp_rtnl_state)) {
10356 bnx2x_disable_sriov(bp);
10357 bnx2x_enable_sriov(bp);
10358 }
10359 }
10360
bnx2x_period_task(struct work_struct * work)10361 static void bnx2x_period_task(struct work_struct *work)
10362 {
10363 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10364
10365 if (!netif_running(bp->dev))
10366 goto period_task_exit;
10367
10368 if (CHIP_REV_IS_SLOW(bp)) {
10369 BNX2X_ERR("period task called on emulation, ignoring\n");
10370 goto period_task_exit;
10371 }
10372
10373 bnx2x_acquire_phy_lock(bp);
10374 /*
10375 * The barrier is needed to ensure the ordering between the writing to
10376 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10377 * the reading here.
10378 */
10379 smp_mb();
10380 if (bp->port.pmf) {
10381 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10382
10383 /* Re-queue task in 1 sec */
10384 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10385 }
10386
10387 bnx2x_release_phy_lock(bp);
10388 period_task_exit:
10389 return;
10390 }
10391
10392 /*
10393 * Init service functions
10394 */
10395
bnx2x_get_pretend_reg(struct bnx2x * bp)10396 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10397 {
10398 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10399 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10400 return base + (BP_ABS_FUNC(bp)) * stride;
10401 }
10402
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10403 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10404 u8 port, u32 reset_reg,
10405 struct bnx2x_mac_vals *vals)
10406 {
10407 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10408 u32 base_addr;
10409
10410 if (!(mask & reset_reg))
10411 return false;
10412
10413 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10414 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10415 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10416 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10417 REG_WR(bp, vals->umac_addr[port], 0);
10418
10419 return true;
10420 }
10421
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10422 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10423 struct bnx2x_mac_vals *vals)
10424 {
10425 u32 val, base_addr, offset, mask, reset_reg;
10426 bool mac_stopped = false;
10427 u8 port = BP_PORT(bp);
10428
10429 /* reset addresses as they also mark which values were changed */
10430 memset(vals, 0, sizeof(*vals));
10431
10432 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10433
10434 if (!CHIP_IS_E3(bp)) {
10435 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10436 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10437 if ((mask & reset_reg) && val) {
10438 u32 wb_data[2];
10439 BNX2X_DEV_INFO("Disable bmac Rx\n");
10440 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10441 : NIG_REG_INGRESS_BMAC0_MEM;
10442 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10443 : BIGMAC_REGISTER_BMAC_CONTROL;
10444
10445 /*
10446 * use rd/wr since we cannot use dmae. This is safe
10447 * since MCP won't access the bus due to the request
10448 * to unload, and no function on the path can be
10449 * loaded at this time.
10450 */
10451 wb_data[0] = REG_RD(bp, base_addr + offset);
10452 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10453 vals->bmac_addr = base_addr + offset;
10454 vals->bmac_val[0] = wb_data[0];
10455 vals->bmac_val[1] = wb_data[1];
10456 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10457 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10458 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10459 }
10460 BNX2X_DEV_INFO("Disable emac Rx\n");
10461 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10462 vals->emac_val = REG_RD(bp, vals->emac_addr);
10463 REG_WR(bp, vals->emac_addr, 0);
10464 mac_stopped = true;
10465 } else {
10466 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10467 BNX2X_DEV_INFO("Disable xmac Rx\n");
10468 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10469 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10470 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10471 val & ~(1 << 1));
10472 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10473 val | (1 << 1));
10474 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10475 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10476 REG_WR(bp, vals->xmac_addr, 0);
10477 mac_stopped = true;
10478 }
10479
10480 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10481 reset_reg, vals);
10482 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10483 reset_reg, vals);
10484 }
10485
10486 if (mac_stopped)
10487 msleep(20);
10488 }
10489
10490 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10491 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10492 0x1848 + ((f) << 4))
10493 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10494 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10495 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10496
10497 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10498 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10499 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10500
bnx2x_prev_is_after_undi(struct bnx2x * bp)10501 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10502 {
10503 /* UNDI marks its presence in DORQ -
10504 * it initializes CID offset for normal bell to 0x7
10505 */
10506 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10507 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10508 return false;
10509
10510 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10511 BNX2X_DEV_INFO("UNDI previously loaded\n");
10512 return true;
10513 }
10514
10515 return false;
10516 }
10517
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10518 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10519 {
10520 u16 rcq, bd;
10521 u32 addr, tmp_reg;
10522
10523 if (BP_FUNC(bp) < 2)
10524 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10525 else
10526 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10527
10528 tmp_reg = REG_RD(bp, addr);
10529 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10530 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10531
10532 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10533 REG_WR(bp, addr, tmp_reg);
10534
10535 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10536 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10537 }
10538
bnx2x_prev_mcp_done(struct bnx2x * bp)10539 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10540 {
10541 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10542 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10543 if (!rc) {
10544 BNX2X_ERR("MCP response failure, aborting\n");
10545 return -EBUSY;
10546 }
10547
10548 return 0;
10549 }
10550
10551 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10552 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10553 {
10554 struct bnx2x_prev_path_list *tmp_list;
10555
10556 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10557 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10558 bp->pdev->bus->number == tmp_list->bus &&
10559 BP_PATH(bp) == tmp_list->path)
10560 return tmp_list;
10561
10562 return NULL;
10563 }
10564
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10565 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10566 {
10567 struct bnx2x_prev_path_list *tmp_list;
10568 int rc;
10569
10570 rc = down_interruptible(&bnx2x_prev_sem);
10571 if (rc) {
10572 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10573 return rc;
10574 }
10575
10576 tmp_list = bnx2x_prev_path_get_entry(bp);
10577 if (tmp_list) {
10578 tmp_list->aer = 1;
10579 rc = 0;
10580 } else {
10581 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10582 BP_PATH(bp));
10583 }
10584
10585 up(&bnx2x_prev_sem);
10586
10587 return rc;
10588 }
10589
bnx2x_prev_is_path_marked(struct bnx2x * bp)10590 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10591 {
10592 struct bnx2x_prev_path_list *tmp_list;
10593 bool rc = false;
10594
10595 if (down_trylock(&bnx2x_prev_sem))
10596 return false;
10597
10598 tmp_list = bnx2x_prev_path_get_entry(bp);
10599 if (tmp_list) {
10600 if (tmp_list->aer) {
10601 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10602 BP_PATH(bp));
10603 } else {
10604 rc = true;
10605 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10606 BP_PATH(bp));
10607 }
10608 }
10609
10610 up(&bnx2x_prev_sem);
10611
10612 return rc;
10613 }
10614
bnx2x_port_after_undi(struct bnx2x * bp)10615 bool bnx2x_port_after_undi(struct bnx2x *bp)
10616 {
10617 struct bnx2x_prev_path_list *entry;
10618 bool val;
10619
10620 down(&bnx2x_prev_sem);
10621
10622 entry = bnx2x_prev_path_get_entry(bp);
10623 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10624
10625 up(&bnx2x_prev_sem);
10626
10627 return val;
10628 }
10629
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10630 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10631 {
10632 struct bnx2x_prev_path_list *tmp_list;
10633 int rc;
10634
10635 rc = down_interruptible(&bnx2x_prev_sem);
10636 if (rc) {
10637 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10638 return rc;
10639 }
10640
10641 /* Check whether the entry for this path already exists */
10642 tmp_list = bnx2x_prev_path_get_entry(bp);
10643 if (tmp_list) {
10644 if (!tmp_list->aer) {
10645 BNX2X_ERR("Re-Marking the path.\n");
10646 } else {
10647 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10648 BP_PATH(bp));
10649 tmp_list->aer = 0;
10650 }
10651 up(&bnx2x_prev_sem);
10652 return 0;
10653 }
10654 up(&bnx2x_prev_sem);
10655
10656 /* Create an entry for this path and add it */
10657 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10658 if (!tmp_list) {
10659 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10660 return -ENOMEM;
10661 }
10662
10663 tmp_list->bus = bp->pdev->bus->number;
10664 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10665 tmp_list->path = BP_PATH(bp);
10666 tmp_list->aer = 0;
10667 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10668
10669 rc = down_interruptible(&bnx2x_prev_sem);
10670 if (rc) {
10671 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10672 kfree(tmp_list);
10673 } else {
10674 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10675 BP_PATH(bp));
10676 list_add(&tmp_list->list, &bnx2x_prev_list);
10677 up(&bnx2x_prev_sem);
10678 }
10679
10680 return rc;
10681 }
10682
bnx2x_do_flr(struct bnx2x * bp)10683 static int bnx2x_do_flr(struct bnx2x *bp)
10684 {
10685 struct pci_dev *dev = bp->pdev;
10686
10687 if (CHIP_IS_E1x(bp)) {
10688 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10689 return -EINVAL;
10690 }
10691
10692 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10693 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10694 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10695 bp->common.bc_ver);
10696 return -EINVAL;
10697 }
10698
10699 if (!pci_wait_for_pending_transaction(dev))
10700 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10701
10702 BNX2X_DEV_INFO("Initiating FLR\n");
10703 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10704
10705 return 0;
10706 }
10707
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10708 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10709 {
10710 int rc;
10711
10712 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10713
10714 /* Test if previous unload process was already finished for this path */
10715 if (bnx2x_prev_is_path_marked(bp))
10716 return bnx2x_prev_mcp_done(bp);
10717
10718 BNX2X_DEV_INFO("Path is unmarked\n");
10719
10720 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10721 if (bnx2x_prev_is_after_undi(bp))
10722 goto out;
10723
10724 /* If function has FLR capabilities, and existing FW version matches
10725 * the one required, then FLR will be sufficient to clean any residue
10726 * left by previous driver
10727 */
10728 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10729
10730 if (!rc) {
10731 /* fw version is good */
10732 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10733 rc = bnx2x_do_flr(bp);
10734 }
10735
10736 if (!rc) {
10737 /* FLR was performed */
10738 BNX2X_DEV_INFO("FLR successful\n");
10739 return 0;
10740 }
10741
10742 BNX2X_DEV_INFO("Could not FLR\n");
10743
10744 out:
10745 /* Close the MCP request, return failure*/
10746 rc = bnx2x_prev_mcp_done(bp);
10747 if (!rc)
10748 rc = BNX2X_PREV_WAIT_NEEDED;
10749
10750 return rc;
10751 }
10752
bnx2x_prev_unload_common(struct bnx2x * bp)10753 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10754 {
10755 u32 reset_reg, tmp_reg = 0, rc;
10756 bool prev_undi = false;
10757 struct bnx2x_mac_vals mac_vals;
10758
10759 /* It is possible a previous function received 'common' answer,
10760 * but hasn't loaded yet, therefore creating a scenario of
10761 * multiple functions receiving 'common' on the same path.
10762 */
10763 BNX2X_DEV_INFO("Common unload Flow\n");
10764
10765 memset(&mac_vals, 0, sizeof(mac_vals));
10766
10767 if (bnx2x_prev_is_path_marked(bp))
10768 return bnx2x_prev_mcp_done(bp);
10769
10770 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10771
10772 /* Reset should be performed after BRB is emptied */
10773 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10774 u32 timer_count = 1000;
10775
10776 /* Close the MAC Rx to prevent BRB from filling up */
10777 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10778
10779 /* close LLH filters for both ports towards the BRB */
10780 bnx2x_set_rx_filter(&bp->link_params, 0);
10781 bp->link_params.port ^= 1;
10782 bnx2x_set_rx_filter(&bp->link_params, 0);
10783 bp->link_params.port ^= 1;
10784
10785 /* Check if the UNDI driver was previously loaded */
10786 if (bnx2x_prev_is_after_undi(bp)) {
10787 prev_undi = true;
10788 /* clear the UNDI indication */
10789 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10790 /* clear possible idle check errors */
10791 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10792 }
10793 if (!CHIP_IS_E1x(bp))
10794 /* block FW from writing to host */
10795 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10796
10797 /* wait until BRB is empty */
10798 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10799 while (timer_count) {
10800 u32 prev_brb = tmp_reg;
10801
10802 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10803 if (!tmp_reg)
10804 break;
10805
10806 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10807
10808 /* reset timer as long as BRB actually gets emptied */
10809 if (prev_brb > tmp_reg)
10810 timer_count = 1000;
10811 else
10812 timer_count--;
10813
10814 /* If UNDI resides in memory, manually increment it */
10815 if (prev_undi)
10816 bnx2x_prev_unload_undi_inc(bp, 1);
10817
10818 udelay(10);
10819 }
10820
10821 if (!timer_count)
10822 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10823 }
10824
10825 /* No packets are in the pipeline, path is ready for reset */
10826 bnx2x_reset_common(bp);
10827
10828 if (mac_vals.xmac_addr)
10829 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10830 if (mac_vals.umac_addr[0])
10831 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10832 if (mac_vals.umac_addr[1])
10833 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10834 if (mac_vals.emac_addr)
10835 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10836 if (mac_vals.bmac_addr) {
10837 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10838 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10839 }
10840
10841 rc = bnx2x_prev_mark_path(bp, prev_undi);
10842 if (rc) {
10843 bnx2x_prev_mcp_done(bp);
10844 return rc;
10845 }
10846
10847 return bnx2x_prev_mcp_done(bp);
10848 }
10849
bnx2x_prev_unload(struct bnx2x * bp)10850 static int bnx2x_prev_unload(struct bnx2x *bp)
10851 {
10852 int time_counter = 10;
10853 u32 rc, fw, hw_lock_reg, hw_lock_val;
10854 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10855
10856 /* clear hw from errors which may have resulted from an interrupted
10857 * dmae transaction.
10858 */
10859 bnx2x_clean_pglue_errors(bp);
10860
10861 /* Release previously held locks */
10862 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10863 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10864 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10865
10866 hw_lock_val = REG_RD(bp, hw_lock_reg);
10867 if (hw_lock_val) {
10868 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10869 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10870 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10871 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10872 }
10873
10874 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10875 REG_WR(bp, hw_lock_reg, 0xffffffff);
10876 } else
10877 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10878
10879 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10880 BNX2X_DEV_INFO("Release previously held alr\n");
10881 bnx2x_release_alr(bp);
10882 }
10883
10884 do {
10885 int aer = 0;
10886 /* Lock MCP using an unload request */
10887 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10888 if (!fw) {
10889 BNX2X_ERR("MCP response failure, aborting\n");
10890 rc = -EBUSY;
10891 break;
10892 }
10893
10894 rc = down_interruptible(&bnx2x_prev_sem);
10895 if (rc) {
10896 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10897 rc);
10898 } else {
10899 /* If Path is marked by EEH, ignore unload status */
10900 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10901 bnx2x_prev_path_get_entry(bp)->aer);
10902 up(&bnx2x_prev_sem);
10903 }
10904
10905 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10906 rc = bnx2x_prev_unload_common(bp);
10907 break;
10908 }
10909
10910 /* non-common reply from MCP might require looping */
10911 rc = bnx2x_prev_unload_uncommon(bp);
10912 if (rc != BNX2X_PREV_WAIT_NEEDED)
10913 break;
10914
10915 msleep(20);
10916 } while (--time_counter);
10917
10918 if (!time_counter || rc) {
10919 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10920 rc = -EPROBE_DEFER;
10921 }
10922
10923 /* Mark function if its port was used to boot from SAN */
10924 if (bnx2x_port_after_undi(bp))
10925 bp->link_params.feature_config_flags |=
10926 FEATURE_CONFIG_BOOT_FROM_SAN;
10927
10928 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10929
10930 return rc;
10931 }
10932
bnx2x_get_common_hwinfo(struct bnx2x * bp)10933 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10934 {
10935 u32 val, val2, val3, val4, id, boot_mode;
10936 u16 pmc;
10937
10938 /* Get the chip revision id and number. */
10939 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10940 val = REG_RD(bp, MISC_REG_CHIP_NUM);
10941 id = ((val & 0xffff) << 16);
10942 val = REG_RD(bp, MISC_REG_CHIP_REV);
10943 id |= ((val & 0xf) << 12);
10944
10945 /* Metal is read from PCI regs, but we can't access >=0x400 from
10946 * the configuration space (so we need to reg_rd)
10947 */
10948 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10949 id |= (((val >> 24) & 0xf) << 4);
10950 val = REG_RD(bp, MISC_REG_BOND_ID);
10951 id |= (val & 0xf);
10952 bp->common.chip_id = id;
10953
10954 /* force 57811 according to MISC register */
10955 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10956 if (CHIP_IS_57810(bp))
10957 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10958 (bp->common.chip_id & 0x0000FFFF);
10959 else if (CHIP_IS_57810_MF(bp))
10960 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10961 (bp->common.chip_id & 0x0000FFFF);
10962 bp->common.chip_id |= 0x1;
10963 }
10964
10965 /* Set doorbell size */
10966 bp->db_size = (1 << BNX2X_DB_SHIFT);
10967
10968 if (!CHIP_IS_E1x(bp)) {
10969 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10970 if ((val & 1) == 0)
10971 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10972 else
10973 val = (val >> 1) & 1;
10974 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10975 "2_PORT_MODE");
10976 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10977 CHIP_2_PORT_MODE;
10978
10979 if (CHIP_MODE_IS_4_PORT(bp))
10980 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
10981 else
10982 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
10983 } else {
10984 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10985 bp->pfid = bp->pf_num; /* 0..7 */
10986 }
10987
10988 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10989
10990 bp->link_params.chip_id = bp->common.chip_id;
10991 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10992
10993 val = (REG_RD(bp, 0x2874) & 0x55);
10994 if ((bp->common.chip_id & 0x1) ||
10995 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10996 bp->flags |= ONE_PORT_FLAG;
10997 BNX2X_DEV_INFO("single port device\n");
10998 }
10999
11000 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11001 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11002 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11003 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11004 bp->common.flash_size, bp->common.flash_size);
11005
11006 bnx2x_init_shmem(bp);
11007
11008 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11009 MISC_REG_GENERIC_CR_1 :
11010 MISC_REG_GENERIC_CR_0));
11011
11012 bp->link_params.shmem_base = bp->common.shmem_base;
11013 bp->link_params.shmem2_base = bp->common.shmem2_base;
11014 if (SHMEM2_RD(bp, size) >
11015 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11016 bp->link_params.lfa_base =
11017 REG_RD(bp, bp->common.shmem2_base +
11018 (u32)offsetof(struct shmem2_region,
11019 lfa_host_addr[BP_PORT(bp)]));
11020 else
11021 bp->link_params.lfa_base = 0;
11022 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11023 bp->common.shmem_base, bp->common.shmem2_base);
11024
11025 if (!bp->common.shmem_base) {
11026 BNX2X_DEV_INFO("MCP not active\n");
11027 bp->flags |= NO_MCP_FLAG;
11028 return;
11029 }
11030
11031 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11032 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11033
11034 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11035 SHARED_HW_CFG_LED_MODE_MASK) >>
11036 SHARED_HW_CFG_LED_MODE_SHIFT);
11037
11038 bp->link_params.feature_config_flags = 0;
11039 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11040 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11041 bp->link_params.feature_config_flags |=
11042 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11043 else
11044 bp->link_params.feature_config_flags &=
11045 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11046
11047 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11048 bp->common.bc_ver = val;
11049 BNX2X_DEV_INFO("bc_ver %X\n", val);
11050 if (val < BNX2X_BC_VER) {
11051 /* for now only warn
11052 * later we might need to enforce this */
11053 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11054 BNX2X_BC_VER, val);
11055 }
11056 bp->link_params.feature_config_flags |=
11057 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11058 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11059
11060 bp->link_params.feature_config_flags |=
11061 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11062 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11063 bp->link_params.feature_config_flags |=
11064 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11065 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11066 bp->link_params.feature_config_flags |=
11067 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11068 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11069
11070 bp->link_params.feature_config_flags |=
11071 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11072 FEATURE_CONFIG_MT_SUPPORT : 0;
11073
11074 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11075 BC_SUPPORTS_PFC_STATS : 0;
11076
11077 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11078 BC_SUPPORTS_FCOE_FEATURES : 0;
11079
11080 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11081 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11082
11083 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11084 BC_SUPPORTS_RMMOD_CMD : 0;
11085
11086 boot_mode = SHMEM_RD(bp,
11087 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11088 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11089 switch (boot_mode) {
11090 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11091 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11092 break;
11093 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11094 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11095 break;
11096 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11097 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11098 break;
11099 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11100 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11101 break;
11102 }
11103
11104 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11105 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11106
11107 BNX2X_DEV_INFO("%sWoL capable\n",
11108 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11109
11110 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11111 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11112 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11113 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11114
11115 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11116 val, val2, val3, val4);
11117 }
11118
11119 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11120 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11121
bnx2x_get_igu_cam_info(struct bnx2x * bp)11122 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11123 {
11124 int pfid = BP_FUNC(bp);
11125 int igu_sb_id;
11126 u32 val;
11127 u8 fid, igu_sb_cnt = 0;
11128
11129 bp->igu_base_sb = 0xff;
11130 if (CHIP_INT_MODE_IS_BC(bp)) {
11131 int vn = BP_VN(bp);
11132 igu_sb_cnt = bp->igu_sb_cnt;
11133 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11134 FP_SB_MAX_E1x;
11135
11136 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11137 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11138
11139 return 0;
11140 }
11141
11142 /* IGU in normal mode - read CAM */
11143 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11144 igu_sb_id++) {
11145 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11146 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11147 continue;
11148 fid = IGU_FID(val);
11149 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11150 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11151 continue;
11152 if (IGU_VEC(val) == 0)
11153 /* default status block */
11154 bp->igu_dsb_id = igu_sb_id;
11155 else {
11156 if (bp->igu_base_sb == 0xff)
11157 bp->igu_base_sb = igu_sb_id;
11158 igu_sb_cnt++;
11159 }
11160 }
11161 }
11162
11163 #ifdef CONFIG_PCI_MSI
11164 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11165 * optional that number of CAM entries will not be equal to the value
11166 * advertised in PCI.
11167 * Driver should use the minimal value of both as the actual status
11168 * block count
11169 */
11170 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11171 #endif
11172
11173 if (igu_sb_cnt == 0) {
11174 BNX2X_ERR("CAM configuration error\n");
11175 return -EINVAL;
11176 }
11177
11178 return 0;
11179 }
11180
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11181 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11182 {
11183 int cfg_size = 0, idx, port = BP_PORT(bp);
11184
11185 /* Aggregation of supported attributes of all external phys */
11186 bp->port.supported[0] = 0;
11187 bp->port.supported[1] = 0;
11188 switch (bp->link_params.num_phys) {
11189 case 1:
11190 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11191 cfg_size = 1;
11192 break;
11193 case 2:
11194 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11195 cfg_size = 1;
11196 break;
11197 case 3:
11198 if (bp->link_params.multi_phy_config &
11199 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11200 bp->port.supported[1] =
11201 bp->link_params.phy[EXT_PHY1].supported;
11202 bp->port.supported[0] =
11203 bp->link_params.phy[EXT_PHY2].supported;
11204 } else {
11205 bp->port.supported[0] =
11206 bp->link_params.phy[EXT_PHY1].supported;
11207 bp->port.supported[1] =
11208 bp->link_params.phy[EXT_PHY2].supported;
11209 }
11210 cfg_size = 2;
11211 break;
11212 }
11213
11214 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11215 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11216 SHMEM_RD(bp,
11217 dev_info.port_hw_config[port].external_phy_config),
11218 SHMEM_RD(bp,
11219 dev_info.port_hw_config[port].external_phy_config2));
11220 return;
11221 }
11222
11223 if (CHIP_IS_E3(bp))
11224 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11225 else {
11226 switch (switch_cfg) {
11227 case SWITCH_CFG_1G:
11228 bp->port.phy_addr = REG_RD(
11229 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11230 break;
11231 case SWITCH_CFG_10G:
11232 bp->port.phy_addr = REG_RD(
11233 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11234 break;
11235 default:
11236 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11237 bp->port.link_config[0]);
11238 return;
11239 }
11240 }
11241 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11242 /* mask what we support according to speed_cap_mask per configuration */
11243 for (idx = 0; idx < cfg_size; idx++) {
11244 if (!(bp->link_params.speed_cap_mask[idx] &
11245 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11246 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11247
11248 if (!(bp->link_params.speed_cap_mask[idx] &
11249 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11250 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11251
11252 if (!(bp->link_params.speed_cap_mask[idx] &
11253 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11254 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11255
11256 if (!(bp->link_params.speed_cap_mask[idx] &
11257 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11258 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11259
11260 if (!(bp->link_params.speed_cap_mask[idx] &
11261 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11262 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11263 SUPPORTED_1000baseT_Full);
11264
11265 if (!(bp->link_params.speed_cap_mask[idx] &
11266 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11267 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11268
11269 if (!(bp->link_params.speed_cap_mask[idx] &
11270 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11271 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11272
11273 if (!(bp->link_params.speed_cap_mask[idx] &
11274 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11275 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11276 }
11277
11278 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11279 bp->port.supported[1]);
11280 }
11281
bnx2x_link_settings_requested(struct bnx2x * bp)11282 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11283 {
11284 u32 link_config, idx, cfg_size = 0;
11285 bp->port.advertising[0] = 0;
11286 bp->port.advertising[1] = 0;
11287 switch (bp->link_params.num_phys) {
11288 case 1:
11289 case 2:
11290 cfg_size = 1;
11291 break;
11292 case 3:
11293 cfg_size = 2;
11294 break;
11295 }
11296 for (idx = 0; idx < cfg_size; idx++) {
11297 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11298 link_config = bp->port.link_config[idx];
11299 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11300 case PORT_FEATURE_LINK_SPEED_AUTO:
11301 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11302 bp->link_params.req_line_speed[idx] =
11303 SPEED_AUTO_NEG;
11304 bp->port.advertising[idx] |=
11305 bp->port.supported[idx];
11306 if (bp->link_params.phy[EXT_PHY1].type ==
11307 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11308 bp->port.advertising[idx] |=
11309 (SUPPORTED_100baseT_Half |
11310 SUPPORTED_100baseT_Full);
11311 } else {
11312 /* force 10G, no AN */
11313 bp->link_params.req_line_speed[idx] =
11314 SPEED_10000;
11315 bp->port.advertising[idx] |=
11316 (ADVERTISED_10000baseT_Full |
11317 ADVERTISED_FIBRE);
11318 continue;
11319 }
11320 break;
11321
11322 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11323 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11324 bp->link_params.req_line_speed[idx] =
11325 SPEED_10;
11326 bp->port.advertising[idx] |=
11327 (ADVERTISED_10baseT_Full |
11328 ADVERTISED_TP);
11329 } else {
11330 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11331 link_config,
11332 bp->link_params.speed_cap_mask[idx]);
11333 return;
11334 }
11335 break;
11336
11337 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11338 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11339 bp->link_params.req_line_speed[idx] =
11340 SPEED_10;
11341 bp->link_params.req_duplex[idx] =
11342 DUPLEX_HALF;
11343 bp->port.advertising[idx] |=
11344 (ADVERTISED_10baseT_Half |
11345 ADVERTISED_TP);
11346 } else {
11347 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11348 link_config,
11349 bp->link_params.speed_cap_mask[idx]);
11350 return;
11351 }
11352 break;
11353
11354 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11355 if (bp->port.supported[idx] &
11356 SUPPORTED_100baseT_Full) {
11357 bp->link_params.req_line_speed[idx] =
11358 SPEED_100;
11359 bp->port.advertising[idx] |=
11360 (ADVERTISED_100baseT_Full |
11361 ADVERTISED_TP);
11362 } else {
11363 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11364 link_config,
11365 bp->link_params.speed_cap_mask[idx]);
11366 return;
11367 }
11368 break;
11369
11370 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11371 if (bp->port.supported[idx] &
11372 SUPPORTED_100baseT_Half) {
11373 bp->link_params.req_line_speed[idx] =
11374 SPEED_100;
11375 bp->link_params.req_duplex[idx] =
11376 DUPLEX_HALF;
11377 bp->port.advertising[idx] |=
11378 (ADVERTISED_100baseT_Half |
11379 ADVERTISED_TP);
11380 } else {
11381 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11382 link_config,
11383 bp->link_params.speed_cap_mask[idx]);
11384 return;
11385 }
11386 break;
11387
11388 case PORT_FEATURE_LINK_SPEED_1G:
11389 if (bp->port.supported[idx] &
11390 SUPPORTED_1000baseT_Full) {
11391 bp->link_params.req_line_speed[idx] =
11392 SPEED_1000;
11393 bp->port.advertising[idx] |=
11394 (ADVERTISED_1000baseT_Full |
11395 ADVERTISED_TP);
11396 } else if (bp->port.supported[idx] &
11397 SUPPORTED_1000baseKX_Full) {
11398 bp->link_params.req_line_speed[idx] =
11399 SPEED_1000;
11400 bp->port.advertising[idx] |=
11401 ADVERTISED_1000baseKX_Full;
11402 } else {
11403 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11404 link_config,
11405 bp->link_params.speed_cap_mask[idx]);
11406 return;
11407 }
11408 break;
11409
11410 case PORT_FEATURE_LINK_SPEED_2_5G:
11411 if (bp->port.supported[idx] &
11412 SUPPORTED_2500baseX_Full) {
11413 bp->link_params.req_line_speed[idx] =
11414 SPEED_2500;
11415 bp->port.advertising[idx] |=
11416 (ADVERTISED_2500baseX_Full |
11417 ADVERTISED_TP);
11418 } else {
11419 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11420 link_config,
11421 bp->link_params.speed_cap_mask[idx]);
11422 return;
11423 }
11424 break;
11425
11426 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11427 if (bp->port.supported[idx] &
11428 SUPPORTED_10000baseT_Full) {
11429 bp->link_params.req_line_speed[idx] =
11430 SPEED_10000;
11431 bp->port.advertising[idx] |=
11432 (ADVERTISED_10000baseT_Full |
11433 ADVERTISED_FIBRE);
11434 } else if (bp->port.supported[idx] &
11435 SUPPORTED_10000baseKR_Full) {
11436 bp->link_params.req_line_speed[idx] =
11437 SPEED_10000;
11438 bp->port.advertising[idx] |=
11439 (ADVERTISED_10000baseKR_Full |
11440 ADVERTISED_FIBRE);
11441 } else {
11442 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11443 link_config,
11444 bp->link_params.speed_cap_mask[idx]);
11445 return;
11446 }
11447 break;
11448 case PORT_FEATURE_LINK_SPEED_20G:
11449 bp->link_params.req_line_speed[idx] = SPEED_20000;
11450
11451 break;
11452 default:
11453 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11454 link_config);
11455 bp->link_params.req_line_speed[idx] =
11456 SPEED_AUTO_NEG;
11457 bp->port.advertising[idx] =
11458 bp->port.supported[idx];
11459 break;
11460 }
11461
11462 bp->link_params.req_flow_ctrl[idx] = (link_config &
11463 PORT_FEATURE_FLOW_CONTROL_MASK);
11464 if (bp->link_params.req_flow_ctrl[idx] ==
11465 BNX2X_FLOW_CTRL_AUTO) {
11466 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11467 bp->link_params.req_flow_ctrl[idx] =
11468 BNX2X_FLOW_CTRL_NONE;
11469 else
11470 bnx2x_set_requested_fc(bp);
11471 }
11472
11473 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11474 bp->link_params.req_line_speed[idx],
11475 bp->link_params.req_duplex[idx],
11476 bp->link_params.req_flow_ctrl[idx],
11477 bp->port.advertising[idx]);
11478 }
11479 }
11480
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11481 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11482 {
11483 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11484 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11485 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11486 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11487 }
11488
bnx2x_get_port_hwinfo(struct bnx2x * bp)11489 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11490 {
11491 int port = BP_PORT(bp);
11492 u32 config;
11493 u32 ext_phy_type, ext_phy_config, eee_mode;
11494
11495 bp->link_params.bp = bp;
11496 bp->link_params.port = port;
11497
11498 bp->link_params.lane_config =
11499 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11500
11501 bp->link_params.speed_cap_mask[0] =
11502 SHMEM_RD(bp,
11503 dev_info.port_hw_config[port].speed_capability_mask) &
11504 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11505 bp->link_params.speed_cap_mask[1] =
11506 SHMEM_RD(bp,
11507 dev_info.port_hw_config[port].speed_capability_mask2) &
11508 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11509 bp->port.link_config[0] =
11510 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11511
11512 bp->port.link_config[1] =
11513 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11514
11515 bp->link_params.multi_phy_config =
11516 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11517 /* If the device is capable of WoL, set the default state according
11518 * to the HW
11519 */
11520 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11521 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11522 (config & PORT_FEATURE_WOL_ENABLED));
11523
11524 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11525 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11526 bp->flags |= NO_ISCSI_FLAG;
11527 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11528 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11529 bp->flags |= NO_FCOE_FLAG;
11530
11531 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11532 bp->link_params.lane_config,
11533 bp->link_params.speed_cap_mask[0],
11534 bp->port.link_config[0]);
11535
11536 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11537 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11538 bnx2x_phy_probe(&bp->link_params);
11539 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11540
11541 bnx2x_link_settings_requested(bp);
11542
11543 /*
11544 * If connected directly, work with the internal PHY, otherwise, work
11545 * with the external PHY
11546 */
11547 ext_phy_config =
11548 SHMEM_RD(bp,
11549 dev_info.port_hw_config[port].external_phy_config);
11550 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11551 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11552 bp->mdio.prtad = bp->port.phy_addr;
11553
11554 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11555 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11556 bp->mdio.prtad =
11557 XGXS_EXT_PHY_ADDR(ext_phy_config);
11558
11559 /* Configure link feature according to nvram value */
11560 eee_mode = (((SHMEM_RD(bp, dev_info.
11561 port_feature_config[port].eee_power_mode)) &
11562 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11563 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11564 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11565 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11566 EEE_MODE_ENABLE_LPI |
11567 EEE_MODE_OUTPUT_TIME;
11568 } else {
11569 bp->link_params.eee_mode = 0;
11570 }
11571 }
11572
bnx2x_get_iscsi_info(struct bnx2x * bp)11573 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11574 {
11575 u32 no_flags = NO_ISCSI_FLAG;
11576 int port = BP_PORT(bp);
11577 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11578 drv_lic_key[port].max_iscsi_conn);
11579
11580 if (!CNIC_SUPPORT(bp)) {
11581 bp->flags |= no_flags;
11582 return;
11583 }
11584
11585 /* Get the number of maximum allowed iSCSI connections */
11586 bp->cnic_eth_dev.max_iscsi_conn =
11587 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11588 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11589
11590 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11591 bp->cnic_eth_dev.max_iscsi_conn);
11592
11593 /*
11594 * If maximum allowed number of connections is zero -
11595 * disable the feature.
11596 */
11597 if (!bp->cnic_eth_dev.max_iscsi_conn)
11598 bp->flags |= no_flags;
11599 }
11600
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11601 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11602 {
11603 /* Port info */
11604 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11605 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11606 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11607 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11608
11609 /* Node info */
11610 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11611 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11612 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11613 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11614 }
11615
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11616 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11617 {
11618 u8 count = 0;
11619
11620 if (IS_MF(bp)) {
11621 u8 fid;
11622
11623 /* iterate over absolute function ids for this path: */
11624 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11625 if (IS_MF_SD(bp)) {
11626 u32 cfg = MF_CFG_RD(bp,
11627 func_mf_config[fid].config);
11628
11629 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11630 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11631 FUNC_MF_CFG_PROTOCOL_FCOE))
11632 count++;
11633 } else {
11634 u32 cfg = MF_CFG_RD(bp,
11635 func_ext_config[fid].
11636 func_cfg);
11637
11638 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11639 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11640 count++;
11641 }
11642 }
11643 } else { /* SF */
11644 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11645
11646 for (port = 0; port < port_cnt; port++) {
11647 u32 lic = SHMEM_RD(bp,
11648 drv_lic_key[port].max_fcoe_conn) ^
11649 FW_ENCODE_32BIT_PATTERN;
11650 if (lic)
11651 count++;
11652 }
11653 }
11654
11655 return count;
11656 }
11657
bnx2x_get_fcoe_info(struct bnx2x * bp)11658 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11659 {
11660 int port = BP_PORT(bp);
11661 int func = BP_ABS_FUNC(bp);
11662 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11663 drv_lic_key[port].max_fcoe_conn);
11664 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11665
11666 if (!CNIC_SUPPORT(bp)) {
11667 bp->flags |= NO_FCOE_FLAG;
11668 return;
11669 }
11670
11671 /* Get the number of maximum allowed FCoE connections */
11672 bp->cnic_eth_dev.max_fcoe_conn =
11673 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11674 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11675
11676 /* Calculate the number of maximum allowed FCoE tasks */
11677 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11678
11679 /* check if FCoE resources must be shared between different functions */
11680 if (num_fcoe_func)
11681 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11682
11683 /* Read the WWN: */
11684 if (!IS_MF(bp)) {
11685 /* Port info */
11686 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11687 SHMEM_RD(bp,
11688 dev_info.port_hw_config[port].
11689 fcoe_wwn_port_name_upper);
11690 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11691 SHMEM_RD(bp,
11692 dev_info.port_hw_config[port].
11693 fcoe_wwn_port_name_lower);
11694
11695 /* Node info */
11696 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11697 SHMEM_RD(bp,
11698 dev_info.port_hw_config[port].
11699 fcoe_wwn_node_name_upper);
11700 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11701 SHMEM_RD(bp,
11702 dev_info.port_hw_config[port].
11703 fcoe_wwn_node_name_lower);
11704 } else if (!IS_MF_SD(bp)) {
11705 /* Read the WWN info only if the FCoE feature is enabled for
11706 * this function.
11707 */
11708 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11709 bnx2x_get_ext_wwn_info(bp, func);
11710 } else {
11711 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11712 bnx2x_get_ext_wwn_info(bp, func);
11713 }
11714
11715 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11716
11717 /*
11718 * If maximum allowed number of connections is zero -
11719 * disable the feature.
11720 */
11721 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11722 bp->flags |= NO_FCOE_FLAG;
11723 eth_zero_addr(bp->fip_mac);
11724 }
11725 }
11726
bnx2x_get_cnic_info(struct bnx2x * bp)11727 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11728 {
11729 /*
11730 * iSCSI may be dynamically disabled but reading
11731 * info here we will decrease memory usage by driver
11732 * if the feature is disabled for good
11733 */
11734 bnx2x_get_iscsi_info(bp);
11735 bnx2x_get_fcoe_info(bp);
11736 }
11737
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11738 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11739 {
11740 u32 val, val2;
11741 int func = BP_ABS_FUNC(bp);
11742 int port = BP_PORT(bp);
11743 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11744 u8 *fip_mac = bp->fip_mac;
11745
11746 if (IS_MF(bp)) {
11747 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11748 * FCoE MAC then the appropriate feature should be disabled.
11749 * In non SD mode features configuration comes from struct
11750 * func_ext_config.
11751 */
11752 if (!IS_MF_SD(bp)) {
11753 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11754 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11755 val2 = MF_CFG_RD(bp, func_ext_config[func].
11756 iscsi_mac_addr_upper);
11757 val = MF_CFG_RD(bp, func_ext_config[func].
11758 iscsi_mac_addr_lower);
11759 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11760 BNX2X_DEV_INFO
11761 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11762 } else {
11763 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11764 }
11765
11766 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11767 val2 = MF_CFG_RD(bp, func_ext_config[func].
11768 fcoe_mac_addr_upper);
11769 val = MF_CFG_RD(bp, func_ext_config[func].
11770 fcoe_mac_addr_lower);
11771 bnx2x_set_mac_buf(fip_mac, val, val2);
11772 BNX2X_DEV_INFO
11773 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11774 } else {
11775 bp->flags |= NO_FCOE_FLAG;
11776 }
11777
11778 bp->mf_ext_config = cfg;
11779
11780 } else { /* SD MODE */
11781 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11782 /* use primary mac as iscsi mac */
11783 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11784
11785 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11786 BNX2X_DEV_INFO
11787 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11788 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11789 /* use primary mac as fip mac */
11790 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11791 BNX2X_DEV_INFO("SD FCoE MODE\n");
11792 BNX2X_DEV_INFO
11793 ("Read FIP MAC: %pM\n", fip_mac);
11794 }
11795 }
11796
11797 /* If this is a storage-only interface, use SAN mac as
11798 * primary MAC. Notice that for SD this is already the case,
11799 * as the SAN mac was copied from the primary MAC.
11800 */
11801 if (IS_MF_FCOE_AFEX(bp))
11802 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11803 } else {
11804 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11805 iscsi_mac_upper);
11806 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11807 iscsi_mac_lower);
11808 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11809
11810 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11811 fcoe_fip_mac_upper);
11812 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11813 fcoe_fip_mac_lower);
11814 bnx2x_set_mac_buf(fip_mac, val, val2);
11815 }
11816
11817 /* Disable iSCSI OOO if MAC configuration is invalid. */
11818 if (!is_valid_ether_addr(iscsi_mac)) {
11819 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11820 eth_zero_addr(iscsi_mac);
11821 }
11822
11823 /* Disable FCoE if MAC configuration is invalid. */
11824 if (!is_valid_ether_addr(fip_mac)) {
11825 bp->flags |= NO_FCOE_FLAG;
11826 eth_zero_addr(bp->fip_mac);
11827 }
11828 }
11829
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11830 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11831 {
11832 u32 val, val2;
11833 int func = BP_ABS_FUNC(bp);
11834 int port = BP_PORT(bp);
11835
11836 /* Zero primary MAC configuration */
11837 eth_zero_addr(bp->dev->dev_addr);
11838
11839 if (BP_NOMCP(bp)) {
11840 BNX2X_ERROR("warning: random MAC workaround active\n");
11841 eth_hw_addr_random(bp->dev);
11842 } else if (IS_MF(bp)) {
11843 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11844 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11845 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11846 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11847 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11848
11849 if (CNIC_SUPPORT(bp))
11850 bnx2x_get_cnic_mac_hwinfo(bp);
11851 } else {
11852 /* in SF read MACs from port configuration */
11853 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11854 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11855 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11856
11857 if (CNIC_SUPPORT(bp))
11858 bnx2x_get_cnic_mac_hwinfo(bp);
11859 }
11860
11861 if (!BP_NOMCP(bp)) {
11862 /* Read physical port identifier from shmem */
11863 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11864 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11865 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11866 bp->flags |= HAS_PHYS_PORT_ID;
11867 }
11868
11869 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11870
11871 if (!is_valid_ether_addr(bp->dev->dev_addr))
11872 dev_err(&bp->pdev->dev,
11873 "bad Ethernet MAC address configuration: %pM\n"
11874 "change it manually before bringing up the appropriate network interface\n",
11875 bp->dev->dev_addr);
11876 }
11877
bnx2x_get_dropless_info(struct bnx2x * bp)11878 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11879 {
11880 int tmp;
11881 u32 cfg;
11882
11883 if (IS_VF(bp))
11884 return false;
11885
11886 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11887 /* Take function: tmp = func */
11888 tmp = BP_ABS_FUNC(bp);
11889 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11890 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11891 } else {
11892 /* Take port: tmp = port */
11893 tmp = BP_PORT(bp);
11894 cfg = SHMEM_RD(bp,
11895 dev_info.port_hw_config[tmp].generic_features);
11896 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11897 }
11898 return cfg;
11899 }
11900
validate_set_si_mode(struct bnx2x * bp)11901 static void validate_set_si_mode(struct bnx2x *bp)
11902 {
11903 u8 func = BP_ABS_FUNC(bp);
11904 u32 val;
11905
11906 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11907
11908 /* check for legal mac (upper bytes) */
11909 if (val != 0xffff) {
11910 bp->mf_mode = MULTI_FUNCTION_SI;
11911 bp->mf_config[BP_VN(bp)] =
11912 MF_CFG_RD(bp, func_mf_config[func].config);
11913 } else
11914 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11915 }
11916
bnx2x_get_hwinfo(struct bnx2x * bp)11917 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11918 {
11919 int /*abs*/func = BP_ABS_FUNC(bp);
11920 int vn;
11921 u32 val = 0, val2 = 0;
11922 int rc = 0;
11923
11924 /* Validate that chip access is feasible */
11925 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11926 dev_err(&bp->pdev->dev,
11927 "Chip read returns all Fs. Preventing probe from continuing\n");
11928 return -EINVAL;
11929 }
11930
11931 bnx2x_get_common_hwinfo(bp);
11932
11933 /*
11934 * initialize IGU parameters
11935 */
11936 if (CHIP_IS_E1x(bp)) {
11937 bp->common.int_block = INT_BLOCK_HC;
11938
11939 bp->igu_dsb_id = DEF_SB_IGU_ID;
11940 bp->igu_base_sb = 0;
11941 } else {
11942 bp->common.int_block = INT_BLOCK_IGU;
11943
11944 /* do not allow device reset during IGU info processing */
11945 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11946
11947 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11948
11949 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11950 int tout = 5000;
11951
11952 BNX2X_DEV_INFO("FORCING Normal Mode\n");
11953
11954 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11955 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11956 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11957
11958 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11959 tout--;
11960 usleep_range(1000, 2000);
11961 }
11962
11963 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11964 dev_err(&bp->pdev->dev,
11965 "FORCING Normal Mode failed!!!\n");
11966 bnx2x_release_hw_lock(bp,
11967 HW_LOCK_RESOURCE_RESET);
11968 return -EPERM;
11969 }
11970 }
11971
11972 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11973 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11974 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11975 } else
11976 BNX2X_DEV_INFO("IGU Normal Mode\n");
11977
11978 rc = bnx2x_get_igu_cam_info(bp);
11979 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11980 if (rc)
11981 return rc;
11982 }
11983
11984 /*
11985 * set base FW non-default (fast path) status block id, this value is
11986 * used to initialize the fw_sb_id saved on the fp/queue structure to
11987 * determine the id used by the FW.
11988 */
11989 if (CHIP_IS_E1x(bp))
11990 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11991 else /*
11992 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11993 * the same queue are indicated on the same IGU SB). So we prefer
11994 * FW and IGU SBs to be the same value.
11995 */
11996 bp->base_fw_ndsb = bp->igu_base_sb;
11997
11998 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
11999 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12000 bp->igu_sb_cnt, bp->base_fw_ndsb);
12001
12002 /*
12003 * Initialize MF configuration
12004 */
12005 bp->mf_ov = 0;
12006 bp->mf_mode = 0;
12007 bp->mf_sub_mode = 0;
12008 vn = BP_VN(bp);
12009
12010 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12011 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12012 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12013 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12014
12015 if (SHMEM2_HAS(bp, mf_cfg_addr))
12016 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12017 else
12018 bp->common.mf_cfg_base = bp->common.shmem_base +
12019 offsetof(struct shmem_region, func_mb) +
12020 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12021 /*
12022 * get mf configuration:
12023 * 1. Existence of MF configuration
12024 * 2. MAC address must be legal (check only upper bytes)
12025 * for Switch-Independent mode;
12026 * OVLAN must be legal for Switch-Dependent mode
12027 * 3. SF_MODE configures specific MF mode
12028 */
12029 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12030 /* get mf configuration */
12031 val = SHMEM_RD(bp,
12032 dev_info.shared_feature_config.config);
12033 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12034
12035 switch (val) {
12036 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12037 validate_set_si_mode(bp);
12038 break;
12039 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12040 if ((!CHIP_IS_E1x(bp)) &&
12041 (MF_CFG_RD(bp, func_mf_config[func].
12042 mac_upper) != 0xffff) &&
12043 (SHMEM2_HAS(bp,
12044 afex_driver_support))) {
12045 bp->mf_mode = MULTI_FUNCTION_AFEX;
12046 bp->mf_config[vn] = MF_CFG_RD(bp,
12047 func_mf_config[func].config);
12048 } else {
12049 BNX2X_DEV_INFO("can not configure afex mode\n");
12050 }
12051 break;
12052 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12053 /* get OV configuration */
12054 val = MF_CFG_RD(bp,
12055 func_mf_config[FUNC_0].e1hov_tag);
12056 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12057
12058 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12059 bp->mf_mode = MULTI_FUNCTION_SD;
12060 bp->mf_config[vn] = MF_CFG_RD(bp,
12061 func_mf_config[func].config);
12062 } else
12063 BNX2X_DEV_INFO("illegal OV for SD\n");
12064 break;
12065 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12066 bp->mf_mode = MULTI_FUNCTION_SD;
12067 bp->mf_sub_mode = SUB_MF_MODE_BD;
12068 bp->mf_config[vn] =
12069 MF_CFG_RD(bp,
12070 func_mf_config[func].config);
12071
12072 if (SHMEM2_HAS(bp, mtu_size)) {
12073 int mtu_idx = BP_FW_MB_IDX(bp);
12074 u16 mtu_size;
12075 u32 mtu;
12076
12077 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12078 mtu_size = (u16)mtu;
12079 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12080 mtu_size, mtu);
12081
12082 /* if valid: update device mtu */
12083 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12084 (mtu_size <=
12085 ETH_MAX_JUMBO_PACKET_SIZE))
12086 bp->dev->mtu = mtu_size;
12087 }
12088 break;
12089 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12090 bp->mf_mode = MULTI_FUNCTION_SD;
12091 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12092 bp->mf_config[vn] =
12093 MF_CFG_RD(bp,
12094 func_mf_config[func].config);
12095 break;
12096 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12097 bp->mf_config[vn] = 0;
12098 break;
12099 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12100 val2 = SHMEM_RD(bp,
12101 dev_info.shared_hw_config.config_3);
12102 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12103 switch (val2) {
12104 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12105 validate_set_si_mode(bp);
12106 bp->mf_sub_mode =
12107 SUB_MF_MODE_NPAR1_DOT_5;
12108 break;
12109 default:
12110 /* Unknown configuration */
12111 bp->mf_config[vn] = 0;
12112 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12113 val);
12114 }
12115 break;
12116 default:
12117 /* Unknown configuration: reset mf_config */
12118 bp->mf_config[vn] = 0;
12119 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12120 }
12121 }
12122
12123 BNX2X_DEV_INFO("%s function mode\n",
12124 IS_MF(bp) ? "multi" : "single");
12125
12126 switch (bp->mf_mode) {
12127 case MULTI_FUNCTION_SD:
12128 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12129 FUNC_MF_CFG_E1HOV_TAG_MASK;
12130 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12131 bp->mf_ov = val;
12132 bp->path_has_ovlan = true;
12133
12134 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12135 func, bp->mf_ov, bp->mf_ov);
12136 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12137 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12138 dev_err(&bp->pdev->dev,
12139 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12140 func);
12141 bp->path_has_ovlan = true;
12142 } else {
12143 dev_err(&bp->pdev->dev,
12144 "No valid MF OV for func %d, aborting\n",
12145 func);
12146 return -EPERM;
12147 }
12148 break;
12149 case MULTI_FUNCTION_AFEX:
12150 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12151 break;
12152 case MULTI_FUNCTION_SI:
12153 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12154 func);
12155 break;
12156 default:
12157 if (vn) {
12158 dev_err(&bp->pdev->dev,
12159 "VN %d is in a single function mode, aborting\n",
12160 vn);
12161 return -EPERM;
12162 }
12163 break;
12164 }
12165
12166 /* check if other port on the path needs ovlan:
12167 * Since MF configuration is shared between ports
12168 * Possible mixed modes are only
12169 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12170 */
12171 if (CHIP_MODE_IS_4_PORT(bp) &&
12172 !bp->path_has_ovlan &&
12173 !IS_MF(bp) &&
12174 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12175 u8 other_port = !BP_PORT(bp);
12176 u8 other_func = BP_PATH(bp) + 2*other_port;
12177 val = MF_CFG_RD(bp,
12178 func_mf_config[other_func].e1hov_tag);
12179 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12180 bp->path_has_ovlan = true;
12181 }
12182 }
12183
12184 /* adjust igu_sb_cnt to MF for E1H */
12185 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12186 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12187
12188 /* port info */
12189 bnx2x_get_port_hwinfo(bp);
12190
12191 /* Get MAC addresses */
12192 bnx2x_get_mac_hwinfo(bp);
12193
12194 bnx2x_get_cnic_info(bp);
12195
12196 return rc;
12197 }
12198
bnx2x_read_fwinfo(struct bnx2x * bp)12199 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12200 {
12201 int cnt, i, block_end, rodi;
12202 char vpd_start[BNX2X_VPD_LEN+1];
12203 char str_id_reg[VENDOR_ID_LEN+1];
12204 char str_id_cap[VENDOR_ID_LEN+1];
12205 char *vpd_data;
12206 char *vpd_extended_data = NULL;
12207 u8 len;
12208
12209 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12210 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12211
12212 if (cnt < BNX2X_VPD_LEN)
12213 goto out_not_found;
12214
12215 /* VPD RO tag should be first tag after identifier string, hence
12216 * we should be able to find it in first BNX2X_VPD_LEN chars
12217 */
12218 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12219 PCI_VPD_LRDT_RO_DATA);
12220 if (i < 0)
12221 goto out_not_found;
12222
12223 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12224 pci_vpd_lrdt_size(&vpd_start[i]);
12225
12226 i += PCI_VPD_LRDT_TAG_SIZE;
12227
12228 if (block_end > BNX2X_VPD_LEN) {
12229 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12230 if (vpd_extended_data == NULL)
12231 goto out_not_found;
12232
12233 /* read rest of vpd image into vpd_extended_data */
12234 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12235 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12236 block_end - BNX2X_VPD_LEN,
12237 vpd_extended_data + BNX2X_VPD_LEN);
12238 if (cnt < (block_end - BNX2X_VPD_LEN))
12239 goto out_not_found;
12240 vpd_data = vpd_extended_data;
12241 } else
12242 vpd_data = vpd_start;
12243
12244 /* now vpd_data holds full vpd content in both cases */
12245
12246 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12247 PCI_VPD_RO_KEYWORD_MFR_ID);
12248 if (rodi < 0)
12249 goto out_not_found;
12250
12251 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12252
12253 if (len != VENDOR_ID_LEN)
12254 goto out_not_found;
12255
12256 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12257
12258 /* vendor specific info */
12259 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12260 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12261 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12262 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12263
12264 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12265 PCI_VPD_RO_KEYWORD_VENDOR0);
12266 if (rodi >= 0) {
12267 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12268
12269 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12270
12271 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12272 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12273 bp->fw_ver[len] = ' ';
12274 }
12275 }
12276 kfree(vpd_extended_data);
12277 return;
12278 }
12279 out_not_found:
12280 kfree(vpd_extended_data);
12281 return;
12282 }
12283
bnx2x_set_modes_bitmap(struct bnx2x * bp)12284 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12285 {
12286 u32 flags = 0;
12287
12288 if (CHIP_REV_IS_FPGA(bp))
12289 SET_FLAGS(flags, MODE_FPGA);
12290 else if (CHIP_REV_IS_EMUL(bp))
12291 SET_FLAGS(flags, MODE_EMUL);
12292 else
12293 SET_FLAGS(flags, MODE_ASIC);
12294
12295 if (CHIP_MODE_IS_4_PORT(bp))
12296 SET_FLAGS(flags, MODE_PORT4);
12297 else
12298 SET_FLAGS(flags, MODE_PORT2);
12299
12300 if (CHIP_IS_E2(bp))
12301 SET_FLAGS(flags, MODE_E2);
12302 else if (CHIP_IS_E3(bp)) {
12303 SET_FLAGS(flags, MODE_E3);
12304 if (CHIP_REV(bp) == CHIP_REV_Ax)
12305 SET_FLAGS(flags, MODE_E3_A0);
12306 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12307 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12308 }
12309
12310 if (IS_MF(bp)) {
12311 SET_FLAGS(flags, MODE_MF);
12312 switch (bp->mf_mode) {
12313 case MULTI_FUNCTION_SD:
12314 SET_FLAGS(flags, MODE_MF_SD);
12315 break;
12316 case MULTI_FUNCTION_SI:
12317 SET_FLAGS(flags, MODE_MF_SI);
12318 break;
12319 case MULTI_FUNCTION_AFEX:
12320 SET_FLAGS(flags, MODE_MF_AFEX);
12321 break;
12322 }
12323 } else
12324 SET_FLAGS(flags, MODE_SF);
12325
12326 #if defined(__LITTLE_ENDIAN)
12327 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12328 #else /*(__BIG_ENDIAN)*/
12329 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12330 #endif
12331 INIT_MODE_FLAGS(bp) = flags;
12332 }
12333
bnx2x_init_bp(struct bnx2x * bp)12334 static int bnx2x_init_bp(struct bnx2x *bp)
12335 {
12336 int func;
12337 int rc;
12338
12339 mutex_init(&bp->port.phy_mutex);
12340 mutex_init(&bp->fw_mb_mutex);
12341 mutex_init(&bp->drv_info_mutex);
12342 sema_init(&bp->stats_lock, 1);
12343 bp->drv_info_mng_owner = false;
12344 INIT_LIST_HEAD(&bp->vlan_reg);
12345
12346 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12347 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12348 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12349 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12350 if (IS_PF(bp)) {
12351 rc = bnx2x_get_hwinfo(bp);
12352 if (rc)
12353 return rc;
12354 } else {
12355 eth_zero_addr(bp->dev->dev_addr);
12356 }
12357
12358 bnx2x_set_modes_bitmap(bp);
12359
12360 rc = bnx2x_alloc_mem_bp(bp);
12361 if (rc)
12362 return rc;
12363
12364 bnx2x_read_fwinfo(bp);
12365
12366 if (IS_PF(bp)) {
12367 rc = bnx2x_init_firmware(bp);
12368
12369 if (rc) {
12370 bnx2x_free_mem_bp(bp);
12371 return rc;
12372 }
12373 }
12374
12375 func = BP_FUNC(bp);
12376
12377 /* need to reset chip if undi was active */
12378 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12379 /* init fw_seq */
12380 bp->fw_seq =
12381 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12382 DRV_MSG_SEQ_NUMBER_MASK;
12383 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12384
12385 rc = bnx2x_prev_unload(bp);
12386 if (rc) {
12387 bnx2x_release_firmware(bp);
12388 bnx2x_free_mem_bp(bp);
12389 return rc;
12390 }
12391 }
12392
12393 if (CHIP_REV_IS_FPGA(bp))
12394 dev_err(&bp->pdev->dev, "FPGA detected\n");
12395
12396 if (BP_NOMCP(bp) && (func == 0))
12397 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12398
12399 bp->disable_tpa = disable_tpa;
12400 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12401 /* Reduce memory usage in kdump environment by disabling TPA */
12402 bp->disable_tpa |= is_kdump_kernel();
12403
12404 /* Set TPA flags */
12405 if (bp->disable_tpa) {
12406 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12407 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12408 }
12409
12410 if (CHIP_IS_E1(bp))
12411 bp->dropless_fc = false;
12412 else
12413 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12414
12415 bp->mrrs = mrrs;
12416
12417 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12418 if (IS_VF(bp))
12419 bp->rx_ring_size = MAX_RX_AVAIL;
12420
12421 /* make sure that the numbers are in the right granularity */
12422 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12423 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12424
12425 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12426
12427 timer_setup(&bp->timer, bnx2x_timer, 0);
12428 bp->timer.expires = jiffies + bp->current_interval;
12429
12430 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12431 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12432 SHMEM2_HAS(bp, dcbx_en) &&
12433 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12434 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12435 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12436 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12437 bnx2x_dcbx_init_params(bp);
12438 } else {
12439 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12440 }
12441
12442 if (CHIP_IS_E1x(bp))
12443 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12444 else
12445 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12446
12447 /* multiple tx priority */
12448 if (IS_VF(bp))
12449 bp->max_cos = 1;
12450 else if (CHIP_IS_E1x(bp))
12451 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12452 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12453 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12454 else if (CHIP_IS_E3B0(bp))
12455 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12456 else
12457 BNX2X_ERR("unknown chip %x revision %x\n",
12458 CHIP_NUM(bp), CHIP_REV(bp));
12459 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12460
12461 /* We need at least one default status block for slow-path events,
12462 * second status block for the L2 queue, and a third status block for
12463 * CNIC if supported.
12464 */
12465 if (IS_VF(bp))
12466 bp->min_msix_vec_cnt = 1;
12467 else if (CNIC_SUPPORT(bp))
12468 bp->min_msix_vec_cnt = 3;
12469 else /* PF w/o cnic */
12470 bp->min_msix_vec_cnt = 2;
12471 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12472
12473 bp->dump_preset_idx = 1;
12474
12475 return rc;
12476 }
12477
12478 /****************************************************************************
12479 * General service functions
12480 ****************************************************************************/
12481
12482 /*
12483 * net_device service functions
12484 */
12485
12486 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12487 static int bnx2x_open(struct net_device *dev)
12488 {
12489 struct bnx2x *bp = netdev_priv(dev);
12490 int rc;
12491
12492 bp->stats_init = true;
12493
12494 netif_carrier_off(dev);
12495
12496 bnx2x_set_power_state(bp, PCI_D0);
12497
12498 /* If parity had happen during the unload, then attentions
12499 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12500 * want the first function loaded on the current engine to
12501 * complete the recovery.
12502 * Parity recovery is only relevant for PF driver.
12503 */
12504 if (IS_PF(bp)) {
12505 int other_engine = BP_PATH(bp) ? 0 : 1;
12506 bool other_load_status, load_status;
12507 bool global = false;
12508
12509 other_load_status = bnx2x_get_load_status(bp, other_engine);
12510 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12511 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12512 bnx2x_chk_parity_attn(bp, &global, true)) {
12513 do {
12514 /* If there are attentions and they are in a
12515 * global blocks, set the GLOBAL_RESET bit
12516 * regardless whether it will be this function
12517 * that will complete the recovery or not.
12518 */
12519 if (global)
12520 bnx2x_set_reset_global(bp);
12521
12522 /* Only the first function on the current
12523 * engine should try to recover in open. In case
12524 * of attentions in global blocks only the first
12525 * in the chip should try to recover.
12526 */
12527 if ((!load_status &&
12528 (!global || !other_load_status)) &&
12529 bnx2x_trylock_leader_lock(bp) &&
12530 !bnx2x_leader_reset(bp)) {
12531 netdev_info(bp->dev,
12532 "Recovered in open\n");
12533 break;
12534 }
12535
12536 /* recovery has failed... */
12537 bnx2x_set_power_state(bp, PCI_D3hot);
12538 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12539
12540 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12541 "If you still see this message after a few retries then power cycle is required.\n");
12542
12543 return -EAGAIN;
12544 } while (0);
12545 }
12546 }
12547
12548 bp->recovery_state = BNX2X_RECOVERY_DONE;
12549 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12550 if (rc)
12551 return rc;
12552
12553 return 0;
12554 }
12555
12556 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12557 static int bnx2x_close(struct net_device *dev)
12558 {
12559 struct bnx2x *bp = netdev_priv(dev);
12560
12561 /* Unload the driver, release IRQs */
12562 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12563
12564 return 0;
12565 }
12566
12567 struct bnx2x_mcast_list_elem_group
12568 {
12569 struct list_head mcast_group_link;
12570 struct bnx2x_mcast_list_elem mcast_elems[];
12571 };
12572
12573 #define MCAST_ELEMS_PER_PG \
12574 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12575 sizeof(struct bnx2x_mcast_list_elem))
12576
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12577 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12578 {
12579 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12580
12581 while (!list_empty(mcast_group_list)) {
12582 current_mcast_group = list_first_entry(mcast_group_list,
12583 struct bnx2x_mcast_list_elem_group,
12584 mcast_group_link);
12585 list_del(¤t_mcast_group->mcast_group_link);
12586 free_page((unsigned long)current_mcast_group);
12587 }
12588 }
12589
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12590 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12591 struct bnx2x_mcast_ramrod_params *p,
12592 struct list_head *mcast_group_list)
12593 {
12594 struct bnx2x_mcast_list_elem *mc_mac;
12595 struct netdev_hw_addr *ha;
12596 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12597 int mc_count = netdev_mc_count(bp->dev);
12598 int offset = 0;
12599
12600 INIT_LIST_HEAD(&p->mcast_list);
12601 netdev_for_each_mc_addr(ha, bp->dev) {
12602 if (!offset) {
12603 current_mcast_group =
12604 (struct bnx2x_mcast_list_elem_group *)
12605 __get_free_page(GFP_ATOMIC);
12606 if (!current_mcast_group) {
12607 bnx2x_free_mcast_macs_list(mcast_group_list);
12608 BNX2X_ERR("Failed to allocate mc MAC list\n");
12609 return -ENOMEM;
12610 }
12611 list_add(¤t_mcast_group->mcast_group_link,
12612 mcast_group_list);
12613 }
12614 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12615 mc_mac->mac = bnx2x_mc_addr(ha);
12616 list_add_tail(&mc_mac->link, &p->mcast_list);
12617 offset++;
12618 if (offset == MCAST_ELEMS_PER_PG)
12619 offset = 0;
12620 }
12621 p->mcast_list_len = mc_count;
12622 return 0;
12623 }
12624
12625 /**
12626 * bnx2x_set_uc_list - configure a new unicast MACs list.
12627 *
12628 * @bp: driver handle
12629 *
12630 * We will use zero (0) as a MAC type for these MACs.
12631 */
bnx2x_set_uc_list(struct bnx2x * bp)12632 static int bnx2x_set_uc_list(struct bnx2x *bp)
12633 {
12634 int rc;
12635 struct net_device *dev = bp->dev;
12636 struct netdev_hw_addr *ha;
12637 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12638 unsigned long ramrod_flags = 0;
12639
12640 /* First schedule a cleanup up of old configuration */
12641 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12642 if (rc < 0) {
12643 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12644 return rc;
12645 }
12646
12647 netdev_for_each_uc_addr(ha, dev) {
12648 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12649 BNX2X_UC_LIST_MAC, &ramrod_flags);
12650 if (rc == -EEXIST) {
12651 DP(BNX2X_MSG_SP,
12652 "Failed to schedule ADD operations: %d\n", rc);
12653 /* do not treat adding same MAC as error */
12654 rc = 0;
12655
12656 } else if (rc < 0) {
12657
12658 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12659 rc);
12660 return rc;
12661 }
12662 }
12663
12664 /* Execute the pending commands */
12665 __set_bit(RAMROD_CONT, &ramrod_flags);
12666 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12667 BNX2X_UC_LIST_MAC, &ramrod_flags);
12668 }
12669
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12670 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12671 {
12672 LIST_HEAD(mcast_group_list);
12673 struct net_device *dev = bp->dev;
12674 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12675 int rc = 0;
12676
12677 rparam.mcast_obj = &bp->mcast_obj;
12678
12679 /* first, clear all configured multicast MACs */
12680 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12681 if (rc < 0) {
12682 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12683 return rc;
12684 }
12685
12686 /* then, configure a new MACs list */
12687 if (netdev_mc_count(dev)) {
12688 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12689 if (rc)
12690 return rc;
12691
12692 /* Now add the new MACs */
12693 rc = bnx2x_config_mcast(bp, &rparam,
12694 BNX2X_MCAST_CMD_ADD);
12695 if (rc < 0)
12696 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12697 rc);
12698
12699 bnx2x_free_mcast_macs_list(&mcast_group_list);
12700 }
12701
12702 return rc;
12703 }
12704
bnx2x_set_mc_list(struct bnx2x * bp)12705 static int bnx2x_set_mc_list(struct bnx2x *bp)
12706 {
12707 LIST_HEAD(mcast_group_list);
12708 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12709 struct net_device *dev = bp->dev;
12710 int rc = 0;
12711
12712 /* On older adapters, we need to flush and re-add filters */
12713 if (CHIP_IS_E1x(bp))
12714 return bnx2x_set_mc_list_e1x(bp);
12715
12716 rparam.mcast_obj = &bp->mcast_obj;
12717
12718 if (netdev_mc_count(dev)) {
12719 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12720 if (rc)
12721 return rc;
12722
12723 /* Override the curently configured set of mc filters */
12724 rc = bnx2x_config_mcast(bp, &rparam,
12725 BNX2X_MCAST_CMD_SET);
12726 if (rc < 0)
12727 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12728 rc);
12729
12730 bnx2x_free_mcast_macs_list(&mcast_group_list);
12731 } else {
12732 /* If no mc addresses are required, flush the configuration */
12733 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12734 if (rc < 0)
12735 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12736 rc);
12737 }
12738
12739 return rc;
12740 }
12741
12742 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12743 static void bnx2x_set_rx_mode(struct net_device *dev)
12744 {
12745 struct bnx2x *bp = netdev_priv(dev);
12746
12747 if (bp->state != BNX2X_STATE_OPEN) {
12748 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12749 return;
12750 } else {
12751 /* Schedule an SP task to handle rest of change */
12752 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12753 NETIF_MSG_IFUP);
12754 }
12755 }
12756
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12757 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12758 {
12759 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12760
12761 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12762
12763 netif_addr_lock_bh(bp->dev);
12764
12765 if (bp->dev->flags & IFF_PROMISC) {
12766 rx_mode = BNX2X_RX_MODE_PROMISC;
12767 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12768 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12769 CHIP_IS_E1(bp))) {
12770 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12771 } else {
12772 if (IS_PF(bp)) {
12773 /* some multicasts */
12774 if (bnx2x_set_mc_list(bp) < 0)
12775 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12776
12777 /* release bh lock, as bnx2x_set_uc_list might sleep */
12778 netif_addr_unlock_bh(bp->dev);
12779 if (bnx2x_set_uc_list(bp) < 0)
12780 rx_mode = BNX2X_RX_MODE_PROMISC;
12781 netif_addr_lock_bh(bp->dev);
12782 } else {
12783 /* configuring mcast to a vf involves sleeping (when we
12784 * wait for the pf's response).
12785 */
12786 bnx2x_schedule_sp_rtnl(bp,
12787 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12788 }
12789 }
12790
12791 bp->rx_mode = rx_mode;
12792 /* handle ISCSI SD mode */
12793 if (IS_MF_ISCSI_ONLY(bp))
12794 bp->rx_mode = BNX2X_RX_MODE_NONE;
12795
12796 /* Schedule the rx_mode command */
12797 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12798 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12799 netif_addr_unlock_bh(bp->dev);
12800 return;
12801 }
12802
12803 if (IS_PF(bp)) {
12804 bnx2x_set_storm_rx_mode(bp);
12805 netif_addr_unlock_bh(bp->dev);
12806 } else {
12807 /* VF will need to request the PF to make this change, and so
12808 * the VF needs to release the bottom-half lock prior to the
12809 * request (as it will likely require sleep on the VF side)
12810 */
12811 netif_addr_unlock_bh(bp->dev);
12812 bnx2x_vfpf_storm_rx_mode(bp);
12813 }
12814 }
12815
12816 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12817 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12818 int devad, u16 addr)
12819 {
12820 struct bnx2x *bp = netdev_priv(netdev);
12821 u16 value;
12822 int rc;
12823
12824 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12825 prtad, devad, addr);
12826
12827 /* The HW expects different devad if CL22 is used */
12828 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12829
12830 bnx2x_acquire_phy_lock(bp);
12831 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12832 bnx2x_release_phy_lock(bp);
12833 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12834
12835 if (!rc)
12836 rc = value;
12837 return rc;
12838 }
12839
12840 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12841 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12842 u16 addr, u16 value)
12843 {
12844 struct bnx2x *bp = netdev_priv(netdev);
12845 int rc;
12846
12847 DP(NETIF_MSG_LINK,
12848 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12849 prtad, devad, addr, value);
12850
12851 /* The HW expects different devad if CL22 is used */
12852 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12853
12854 bnx2x_acquire_phy_lock(bp);
12855 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12856 bnx2x_release_phy_lock(bp);
12857 return rc;
12858 }
12859
12860 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12861 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12862 {
12863 struct bnx2x *bp = netdev_priv(dev);
12864 struct mii_ioctl_data *mdio = if_mii(ifr);
12865
12866 if (!netif_running(dev))
12867 return -EAGAIN;
12868
12869 switch (cmd) {
12870 case SIOCSHWTSTAMP:
12871 return bnx2x_hwtstamp_ioctl(bp, ifr);
12872 default:
12873 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12874 mdio->phy_id, mdio->reg_num, mdio->val_in);
12875 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12876 }
12877 }
12878
bnx2x_validate_addr(struct net_device * dev)12879 static int bnx2x_validate_addr(struct net_device *dev)
12880 {
12881 struct bnx2x *bp = netdev_priv(dev);
12882
12883 /* query the bulletin board for mac address configured by the PF */
12884 if (IS_VF(bp))
12885 bnx2x_sample_bulletin(bp);
12886
12887 if (!is_valid_ether_addr(dev->dev_addr)) {
12888 BNX2X_ERR("Non-valid Ethernet address\n");
12889 return -EADDRNOTAVAIL;
12890 }
12891 return 0;
12892 }
12893
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12894 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12895 struct netdev_phys_item_id *ppid)
12896 {
12897 struct bnx2x *bp = netdev_priv(netdev);
12898
12899 if (!(bp->flags & HAS_PHYS_PORT_ID))
12900 return -EOPNOTSUPP;
12901
12902 ppid->id_len = sizeof(bp->phys_port_id);
12903 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12904
12905 return 0;
12906 }
12907
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12908 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12909 struct net_device *dev,
12910 netdev_features_t features)
12911 {
12912 /*
12913 * A skb with gso_size + header length > 9700 will cause a
12914 * firmware panic. Drop GSO support.
12915 *
12916 * Eventually the upper layer should not pass these packets down.
12917 *
12918 * For speed, if the gso_size is <= 9000, assume there will
12919 * not be 700 bytes of headers and pass it through. Only do a
12920 * full (slow) validation if the gso_size is > 9000.
12921 *
12922 * (Due to the way SKB_BY_FRAGS works this will also do a full
12923 * validation in that case.)
12924 */
12925 if (unlikely(skb_is_gso(skb) &&
12926 (skb_shinfo(skb)->gso_size > 9000) &&
12927 !skb_gso_validate_mac_len(skb, 9700)))
12928 features &= ~NETIF_F_GSO_MASK;
12929
12930 features = vlan_features_check(skb, features);
12931 return vxlan_features_check(skb, features);
12932 }
12933
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12934 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12935 {
12936 int rc;
12937
12938 if (IS_PF(bp)) {
12939 unsigned long ramrod_flags = 0;
12940
12941 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12942 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12943 add, &ramrod_flags);
12944 } else {
12945 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12946 }
12947
12948 return rc;
12949 }
12950
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)12951 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
12952 {
12953 struct bnx2x_vlan_entry *vlan;
12954 int rc = 0;
12955
12956 /* Configure all non-configured entries */
12957 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12958 if (vlan->hw)
12959 continue;
12960
12961 if (bp->vlan_cnt >= bp->vlan_credit)
12962 return -ENOBUFS;
12963
12964 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12965 if (rc) {
12966 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
12967 return rc;
12968 }
12969
12970 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
12971 vlan->hw = true;
12972 bp->vlan_cnt++;
12973 }
12974
12975 return 0;
12976 }
12977
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)12978 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
12979 {
12980 bool need_accept_any_vlan;
12981
12982 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
12983
12984 if (bp->accept_any_vlan != need_accept_any_vlan) {
12985 bp->accept_any_vlan = need_accept_any_vlan;
12986 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
12987 bp->accept_any_vlan ? "raised" : "cleared");
12988 if (set_rx_mode) {
12989 if (IS_PF(bp))
12990 bnx2x_set_rx_mode_inner(bp);
12991 else
12992 bnx2x_vfpf_storm_rx_mode(bp);
12993 }
12994 }
12995 }
12996
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)12997 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12998 {
12999 /* Don't set rx mode here. Our caller will do it. */
13000 bnx2x_vlan_configure(bp, false);
13001
13002 return 0;
13003 }
13004
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)13005 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13006 {
13007 struct bnx2x *bp = netdev_priv(dev);
13008 struct bnx2x_vlan_entry *vlan;
13009
13010 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13011
13012 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13013 if (!vlan)
13014 return -ENOMEM;
13015
13016 vlan->vid = vid;
13017 vlan->hw = false;
13018 list_add_tail(&vlan->link, &bp->vlan_reg);
13019
13020 if (netif_running(dev))
13021 bnx2x_vlan_configure(bp, true);
13022
13023 return 0;
13024 }
13025
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13026 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13027 {
13028 struct bnx2x *bp = netdev_priv(dev);
13029 struct bnx2x_vlan_entry *vlan;
13030 bool found = false;
13031 int rc = 0;
13032
13033 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13034
13035 list_for_each_entry(vlan, &bp->vlan_reg, link)
13036 if (vlan->vid == vid) {
13037 found = true;
13038 break;
13039 }
13040
13041 if (!found) {
13042 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13043 return -EINVAL;
13044 }
13045
13046 if (netif_running(dev) && vlan->hw) {
13047 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13048 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13049 bp->vlan_cnt--;
13050 }
13051
13052 list_del(&vlan->link);
13053 kfree(vlan);
13054
13055 if (netif_running(dev))
13056 bnx2x_vlan_configure(bp, true);
13057
13058 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13059
13060 return rc;
13061 }
13062
13063 static const struct net_device_ops bnx2x_netdev_ops = {
13064 .ndo_open = bnx2x_open,
13065 .ndo_stop = bnx2x_close,
13066 .ndo_start_xmit = bnx2x_start_xmit,
13067 .ndo_select_queue = bnx2x_select_queue,
13068 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13069 .ndo_set_mac_address = bnx2x_change_mac_addr,
13070 .ndo_validate_addr = bnx2x_validate_addr,
13071 .ndo_do_ioctl = bnx2x_ioctl,
13072 .ndo_change_mtu = bnx2x_change_mtu,
13073 .ndo_fix_features = bnx2x_fix_features,
13074 .ndo_set_features = bnx2x_set_features,
13075 .ndo_tx_timeout = bnx2x_tx_timeout,
13076 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13077 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13078 .ndo_setup_tc = __bnx2x_setup_tc,
13079 #ifdef CONFIG_BNX2X_SRIOV
13080 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13081 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13082 .ndo_get_vf_config = bnx2x_get_vf_config,
13083 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13084 #endif
13085 #ifdef NETDEV_FCOE_WWNN
13086 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13087 #endif
13088
13089 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13090 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13091 .ndo_features_check = bnx2x_features_check,
13092 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
13093 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
13094 };
13095
bnx2x_set_coherency_mask(struct bnx2x * bp)13096 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13097 {
13098 struct device *dev = &bp->pdev->dev;
13099
13100 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13101 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13102 dev_err(dev, "System does not support DMA, aborting\n");
13103 return -EIO;
13104 }
13105
13106 return 0;
13107 }
13108
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13109 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13110 {
13111 if (bp->flags & AER_ENABLED) {
13112 pci_disable_pcie_error_reporting(bp->pdev);
13113 bp->flags &= ~AER_ENABLED;
13114 }
13115 }
13116
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13117 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13118 struct net_device *dev, unsigned long board_type)
13119 {
13120 int rc;
13121 u32 pci_cfg_dword;
13122 bool chip_is_e1x = (board_type == BCM57710 ||
13123 board_type == BCM57711 ||
13124 board_type == BCM57711E);
13125
13126 SET_NETDEV_DEV(dev, &pdev->dev);
13127
13128 bp->dev = dev;
13129 bp->pdev = pdev;
13130
13131 rc = pci_enable_device(pdev);
13132 if (rc) {
13133 dev_err(&bp->pdev->dev,
13134 "Cannot enable PCI device, aborting\n");
13135 goto err_out;
13136 }
13137
13138 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13139 dev_err(&bp->pdev->dev,
13140 "Cannot find PCI device base address, aborting\n");
13141 rc = -ENODEV;
13142 goto err_out_disable;
13143 }
13144
13145 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13146 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13147 rc = -ENODEV;
13148 goto err_out_disable;
13149 }
13150
13151 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13152 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13153 PCICFG_REVESION_ID_ERROR_VAL) {
13154 pr_err("PCI device error, probably due to fan failure, aborting\n");
13155 rc = -ENODEV;
13156 goto err_out_disable;
13157 }
13158
13159 if (atomic_read(&pdev->enable_cnt) == 1) {
13160 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13161 if (rc) {
13162 dev_err(&bp->pdev->dev,
13163 "Cannot obtain PCI resources, aborting\n");
13164 goto err_out_disable;
13165 }
13166
13167 pci_set_master(pdev);
13168 pci_save_state(pdev);
13169 }
13170
13171 if (IS_PF(bp)) {
13172 if (!pdev->pm_cap) {
13173 dev_err(&bp->pdev->dev,
13174 "Cannot find power management capability, aborting\n");
13175 rc = -EIO;
13176 goto err_out_release;
13177 }
13178 }
13179
13180 if (!pci_is_pcie(pdev)) {
13181 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13182 rc = -EIO;
13183 goto err_out_release;
13184 }
13185
13186 rc = bnx2x_set_coherency_mask(bp);
13187 if (rc)
13188 goto err_out_release;
13189
13190 dev->mem_start = pci_resource_start(pdev, 0);
13191 dev->base_addr = dev->mem_start;
13192 dev->mem_end = pci_resource_end(pdev, 0);
13193
13194 dev->irq = pdev->irq;
13195
13196 bp->regview = pci_ioremap_bar(pdev, 0);
13197 if (!bp->regview) {
13198 dev_err(&bp->pdev->dev,
13199 "Cannot map register space, aborting\n");
13200 rc = -ENOMEM;
13201 goto err_out_release;
13202 }
13203
13204 /* In E1/E1H use pci device function given by kernel.
13205 * In E2/E3 read physical function from ME register since these chips
13206 * support Physical Device Assignment where kernel BDF maybe arbitrary
13207 * (depending on hypervisor).
13208 */
13209 if (chip_is_e1x) {
13210 bp->pf_num = PCI_FUNC(pdev->devfn);
13211 } else {
13212 /* chip is E2/3*/
13213 pci_read_config_dword(bp->pdev,
13214 PCICFG_ME_REGISTER, &pci_cfg_dword);
13215 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13216 ME_REG_ABS_PF_NUM_SHIFT);
13217 }
13218 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13219
13220 /* clean indirect addresses */
13221 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13222 PCICFG_VENDOR_ID_OFFSET);
13223
13224 /* Set PCIe reset type to fundamental for EEH recovery */
13225 pdev->needs_freset = 1;
13226
13227 /* AER (Advanced Error reporting) configuration */
13228 rc = pci_enable_pcie_error_reporting(pdev);
13229 if (!rc)
13230 bp->flags |= AER_ENABLED;
13231 else
13232 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13233
13234 /*
13235 * Clean the following indirect addresses for all functions since it
13236 * is not used by the driver.
13237 */
13238 if (IS_PF(bp)) {
13239 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13240 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13241 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13242 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13243
13244 if (chip_is_e1x) {
13245 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13246 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13247 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13248 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13249 }
13250
13251 /* Enable internal target-read (in case we are probed after PF
13252 * FLR). Must be done prior to any BAR read access. Only for
13253 * 57712 and up
13254 */
13255 if (!chip_is_e1x)
13256 REG_WR(bp,
13257 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13258 }
13259
13260 dev->watchdog_timeo = TX_TIMEOUT;
13261
13262 dev->netdev_ops = &bnx2x_netdev_ops;
13263 bnx2x_set_ethtool_ops(bp, dev);
13264
13265 dev->priv_flags |= IFF_UNICAST_FLT;
13266
13267 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13268 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13269 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13270 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13271 if (!chip_is_e1x) {
13272 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13273 NETIF_F_GSO_IPXIP4 |
13274 NETIF_F_GSO_UDP_TUNNEL |
13275 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13276 NETIF_F_GSO_PARTIAL;
13277
13278 dev->hw_enc_features =
13279 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13280 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13281 NETIF_F_GSO_IPXIP4 |
13282 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13283 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13284 NETIF_F_GSO_PARTIAL;
13285
13286 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13287 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13288
13289 if (IS_PF(bp))
13290 dev->udp_tunnel_nic_info = &bnx2x_udp_tunnels;
13291 }
13292
13293 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13294 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13295
13296 if (IS_PF(bp)) {
13297 if (chip_is_e1x)
13298 bp->accept_any_vlan = true;
13299 else
13300 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13301 }
13302 /* For VF we'll know whether to enable VLAN filtering after
13303 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13304 */
13305
13306 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13307 dev->features |= NETIF_F_HIGHDMA;
13308 if (dev->features & NETIF_F_LRO)
13309 dev->features &= ~NETIF_F_GRO_HW;
13310
13311 /* Add Loopback capability to the device */
13312 dev->hw_features |= NETIF_F_LOOPBACK;
13313
13314 #ifdef BCM_DCBNL
13315 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13316 #endif
13317
13318 /* MTU range, 46 - 9600 */
13319 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13320 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13321
13322 /* get_port_hwinfo() will set prtad and mmds properly */
13323 bp->mdio.prtad = MDIO_PRTAD_NONE;
13324 bp->mdio.mmds = 0;
13325 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13326 bp->mdio.dev = dev;
13327 bp->mdio.mdio_read = bnx2x_mdio_read;
13328 bp->mdio.mdio_write = bnx2x_mdio_write;
13329
13330 return 0;
13331
13332 err_out_release:
13333 if (atomic_read(&pdev->enable_cnt) == 1)
13334 pci_release_regions(pdev);
13335
13336 err_out_disable:
13337 pci_disable_device(pdev);
13338
13339 err_out:
13340 return rc;
13341 }
13342
bnx2x_check_firmware(struct bnx2x * bp)13343 static int bnx2x_check_firmware(struct bnx2x *bp)
13344 {
13345 const struct firmware *firmware = bp->firmware;
13346 struct bnx2x_fw_file_hdr *fw_hdr;
13347 struct bnx2x_fw_file_section *sections;
13348 u32 offset, len, num_ops;
13349 __be16 *ops_offsets;
13350 int i;
13351 const u8 *fw_ver;
13352
13353 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13354 BNX2X_ERR("Wrong FW size\n");
13355 return -EINVAL;
13356 }
13357
13358 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13359 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13360
13361 /* Make sure none of the offsets and sizes make us read beyond
13362 * the end of the firmware data */
13363 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13364 offset = be32_to_cpu(sections[i].offset);
13365 len = be32_to_cpu(sections[i].len);
13366 if (offset + len > firmware->size) {
13367 BNX2X_ERR("Section %d length is out of bounds\n", i);
13368 return -EINVAL;
13369 }
13370 }
13371
13372 /* Likewise for the init_ops offsets */
13373 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13374 ops_offsets = (__force __be16 *)(firmware->data + offset);
13375 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13376
13377 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13378 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13379 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13380 return -EINVAL;
13381 }
13382 }
13383
13384 /* Check FW version */
13385 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13386 fw_ver = firmware->data + offset;
13387 if (fw_ver[0] != bp->fw_major || fw_ver[1] != bp->fw_minor ||
13388 fw_ver[2] != bp->fw_rev || fw_ver[3] != bp->fw_eng) {
13389 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13390 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13391 bp->fw_major, bp->fw_minor, bp->fw_rev, bp->fw_eng);
13392 return -EINVAL;
13393 }
13394
13395 return 0;
13396 }
13397
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13398 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13399 {
13400 const __be32 *source = (const __be32 *)_source;
13401 u32 *target = (u32 *)_target;
13402 u32 i;
13403
13404 for (i = 0; i < n/4; i++)
13405 target[i] = be32_to_cpu(source[i]);
13406 }
13407
13408 /*
13409 Ops array is stored in the following format:
13410 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13411 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13412 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13413 {
13414 const __be32 *source = (const __be32 *)_source;
13415 struct raw_op *target = (struct raw_op *)_target;
13416 u32 i, j, tmp;
13417
13418 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13419 tmp = be32_to_cpu(source[j]);
13420 target[i].op = (tmp >> 24) & 0xff;
13421 target[i].offset = tmp & 0xffffff;
13422 target[i].raw_data = be32_to_cpu(source[j + 1]);
13423 }
13424 }
13425
13426 /* IRO array is stored in the following format:
13427 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13428 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13429 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13430 {
13431 const __be32 *source = (const __be32 *)_source;
13432 struct iro *target = (struct iro *)_target;
13433 u32 i, j, tmp;
13434
13435 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13436 target[i].base = be32_to_cpu(source[j]);
13437 j++;
13438 tmp = be32_to_cpu(source[j]);
13439 target[i].m1 = (tmp >> 16) & 0xffff;
13440 target[i].m2 = tmp & 0xffff;
13441 j++;
13442 tmp = be32_to_cpu(source[j]);
13443 target[i].m3 = (tmp >> 16) & 0xffff;
13444 target[i].size = tmp & 0xffff;
13445 j++;
13446 }
13447 }
13448
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13449 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13450 {
13451 const __be16 *source = (const __be16 *)_source;
13452 u16 *target = (u16 *)_target;
13453 u32 i;
13454
13455 for (i = 0; i < n/2; i++)
13456 target[i] = be16_to_cpu(source[i]);
13457 }
13458
13459 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13460 do { \
13461 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13462 bp->arr = kmalloc(len, GFP_KERNEL); \
13463 if (!bp->arr) \
13464 goto lbl; \
13465 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13466 (u8 *)bp->arr, len); \
13467 } while (0)
13468
bnx2x_init_firmware(struct bnx2x * bp)13469 int bnx2x_init_firmware(struct bnx2x *bp)
13470 {
13471 const char *fw_file_name, *fw_file_name_v15;
13472 struct bnx2x_fw_file_hdr *fw_hdr;
13473 int rc;
13474
13475 if (bp->firmware)
13476 return 0;
13477
13478 if (CHIP_IS_E1(bp)) {
13479 fw_file_name = FW_FILE_NAME_E1;
13480 fw_file_name_v15 = FW_FILE_NAME_E1_V15;
13481 } else if (CHIP_IS_E1H(bp)) {
13482 fw_file_name = FW_FILE_NAME_E1H;
13483 fw_file_name_v15 = FW_FILE_NAME_E1H_V15;
13484 } else if (!CHIP_IS_E1x(bp)) {
13485 fw_file_name = FW_FILE_NAME_E2;
13486 fw_file_name_v15 = FW_FILE_NAME_E2_V15;
13487 } else {
13488 BNX2X_ERR("Unsupported chip revision\n");
13489 return -EINVAL;
13490 }
13491
13492 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13493
13494 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13495 if (rc) {
13496 BNX2X_DEV_INFO("Trying to load older fw %s\n", fw_file_name_v15);
13497
13498 /* try to load prev version */
13499 rc = request_firmware(&bp->firmware, fw_file_name_v15, &bp->pdev->dev);
13500
13501 if (rc)
13502 goto request_firmware_exit;
13503
13504 bp->fw_rev = BCM_5710_FW_REVISION_VERSION_V15;
13505 } else {
13506 bp->fw_cap |= FW_CAP_INVALIDATE_VF_FP_HSI;
13507 bp->fw_rev = BCM_5710_FW_REVISION_VERSION;
13508 }
13509
13510 bp->fw_major = BCM_5710_FW_MAJOR_VERSION;
13511 bp->fw_minor = BCM_5710_FW_MINOR_VERSION;
13512 bp->fw_eng = BCM_5710_FW_ENGINEERING_VERSION;
13513
13514 rc = bnx2x_check_firmware(bp);
13515 if (rc) {
13516 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13517 goto request_firmware_exit;
13518 }
13519
13520 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13521
13522 /* Initialize the pointers to the init arrays */
13523 /* Blob */
13524 rc = -ENOMEM;
13525 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13526
13527 /* Opcodes */
13528 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13529
13530 /* Offsets */
13531 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13532 be16_to_cpu_n);
13533
13534 /* STORMs firmware */
13535 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13536 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13537 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13538 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13539 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13540 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13541 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13542 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13543 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13544 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13545 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13546 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13547 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13548 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13549 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13550 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13551 /* IRO */
13552 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13553
13554 return 0;
13555
13556 iro_alloc_err:
13557 kfree(bp->init_ops_offsets);
13558 init_offsets_alloc_err:
13559 kfree(bp->init_ops);
13560 init_ops_alloc_err:
13561 kfree(bp->init_data);
13562 request_firmware_exit:
13563 release_firmware(bp->firmware);
13564 bp->firmware = NULL;
13565
13566 return rc;
13567 }
13568
bnx2x_release_firmware(struct bnx2x * bp)13569 void bnx2x_release_firmware(struct bnx2x *bp)
13570 {
13571 kfree(bp->init_ops_offsets);
13572 kfree(bp->init_ops);
13573 kfree(bp->init_data);
13574 release_firmware(bp->firmware);
13575 bp->firmware = NULL;
13576 }
13577
13578 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13579 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13580 .init_hw_cmn = bnx2x_init_hw_common,
13581 .init_hw_port = bnx2x_init_hw_port,
13582 .init_hw_func = bnx2x_init_hw_func,
13583
13584 .reset_hw_cmn = bnx2x_reset_common,
13585 .reset_hw_port = bnx2x_reset_port,
13586 .reset_hw_func = bnx2x_reset_func,
13587
13588 .gunzip_init = bnx2x_gunzip_init,
13589 .gunzip_end = bnx2x_gunzip_end,
13590
13591 .init_fw = bnx2x_init_firmware,
13592 .release_fw = bnx2x_release_firmware,
13593 };
13594
bnx2x__init_func_obj(struct bnx2x * bp)13595 void bnx2x__init_func_obj(struct bnx2x *bp)
13596 {
13597 /* Prepare DMAE related driver resources */
13598 bnx2x_setup_dmae(bp);
13599
13600 bnx2x_init_func_obj(bp, &bp->func_obj,
13601 bnx2x_sp(bp, func_rdata),
13602 bnx2x_sp_mapping(bp, func_rdata),
13603 bnx2x_sp(bp, func_afex_rdata),
13604 bnx2x_sp_mapping(bp, func_afex_rdata),
13605 &bnx2x_func_sp_drv);
13606 }
13607
13608 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13609 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13610 {
13611 int cid_count = BNX2X_L2_MAX_CID(bp);
13612
13613 if (IS_SRIOV(bp))
13614 cid_count += BNX2X_VF_CIDS;
13615
13616 if (CNIC_SUPPORT(bp))
13617 cid_count += CNIC_CID_MAX;
13618
13619 return roundup(cid_count, QM_CID_ROUND);
13620 }
13621
13622 /**
13623 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13624 * @pdev: pci device
13625 * @cnic_cnt: count
13626 *
13627 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13628 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13629 {
13630 int index;
13631 u16 control = 0;
13632
13633 /*
13634 * If MSI-X is not supported - return number of SBs needed to support
13635 * one fast path queue: one FP queue + SB for CNIC
13636 */
13637 if (!pdev->msix_cap) {
13638 dev_info(&pdev->dev, "no msix capability found\n");
13639 return 1 + cnic_cnt;
13640 }
13641 dev_info(&pdev->dev, "msix capability found\n");
13642
13643 /*
13644 * The value in the PCI configuration space is the index of the last
13645 * entry, namely one less than the actual size of the table, which is
13646 * exactly what we want to return from this function: number of all SBs
13647 * without the default SB.
13648 * For VFs there is no default SB, then we return (index+1).
13649 */
13650 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13651
13652 index = control & PCI_MSIX_FLAGS_QSIZE;
13653
13654 return index;
13655 }
13656
set_max_cos_est(int chip_id)13657 static int set_max_cos_est(int chip_id)
13658 {
13659 switch (chip_id) {
13660 case BCM57710:
13661 case BCM57711:
13662 case BCM57711E:
13663 return BNX2X_MULTI_TX_COS_E1X;
13664 case BCM57712:
13665 case BCM57712_MF:
13666 return BNX2X_MULTI_TX_COS_E2_E3A0;
13667 case BCM57800:
13668 case BCM57800_MF:
13669 case BCM57810:
13670 case BCM57810_MF:
13671 case BCM57840_4_10:
13672 case BCM57840_2_20:
13673 case BCM57840_O:
13674 case BCM57840_MFO:
13675 case BCM57840_MF:
13676 case BCM57811:
13677 case BCM57811_MF:
13678 return BNX2X_MULTI_TX_COS_E3B0;
13679 case BCM57712_VF:
13680 case BCM57800_VF:
13681 case BCM57810_VF:
13682 case BCM57840_VF:
13683 case BCM57811_VF:
13684 return 1;
13685 default:
13686 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13687 return -ENODEV;
13688 }
13689 }
13690
set_is_vf(int chip_id)13691 static int set_is_vf(int chip_id)
13692 {
13693 switch (chip_id) {
13694 case BCM57712_VF:
13695 case BCM57800_VF:
13696 case BCM57810_VF:
13697 case BCM57840_VF:
13698 case BCM57811_VF:
13699 return true;
13700 default:
13701 return false;
13702 }
13703 }
13704
13705 /* nig_tsgen registers relative address */
13706 #define tsgen_ctrl 0x0
13707 #define tsgen_freecount 0x10
13708 #define tsgen_synctime_t0 0x20
13709 #define tsgen_offset_t0 0x28
13710 #define tsgen_drift_t0 0x30
13711 #define tsgen_synctime_t1 0x58
13712 #define tsgen_offset_t1 0x60
13713 #define tsgen_drift_t1 0x68
13714
13715 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13716 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13717 int best_val, int best_period)
13718 {
13719 struct bnx2x_func_state_params func_params = {NULL};
13720 struct bnx2x_func_set_timesync_params *set_timesync_params =
13721 &func_params.params.set_timesync;
13722
13723 /* Prepare parameters for function state transitions */
13724 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13725 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13726
13727 func_params.f_obj = &bp->func_obj;
13728 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13729
13730 /* Function parameters */
13731 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13732 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13733 set_timesync_params->add_sub_drift_adjust_value =
13734 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13735 set_timesync_params->drift_adjust_value = best_val;
13736 set_timesync_params->drift_adjust_period = best_period;
13737
13738 return bnx2x_func_state_change(bp, &func_params);
13739 }
13740
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13741 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13742 {
13743 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13744 int rc;
13745 int drift_dir = 1;
13746 int val, period, period1, period2, dif, dif1, dif2;
13747 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13748
13749 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13750
13751 if (!netif_running(bp->dev)) {
13752 DP(BNX2X_MSG_PTP,
13753 "PTP adjfreq called while the interface is down\n");
13754 return -ENETDOWN;
13755 }
13756
13757 if (ppb < 0) {
13758 ppb = -ppb;
13759 drift_dir = 0;
13760 }
13761
13762 if (ppb == 0) {
13763 best_val = 1;
13764 best_period = 0x1FFFFFF;
13765 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13766 best_val = 31;
13767 best_period = 1;
13768 } else {
13769 /* Changed not to allow val = 8, 16, 24 as these values
13770 * are not supported in workaround.
13771 */
13772 for (val = 0; val <= 31; val++) {
13773 if ((val & 0x7) == 0)
13774 continue;
13775 period1 = val * 1000000 / ppb;
13776 period2 = period1 + 1;
13777 if (period1 != 0)
13778 dif1 = ppb - (val * 1000000 / period1);
13779 else
13780 dif1 = BNX2X_MAX_PHC_DRIFT;
13781 if (dif1 < 0)
13782 dif1 = -dif1;
13783 dif2 = ppb - (val * 1000000 / period2);
13784 if (dif2 < 0)
13785 dif2 = -dif2;
13786 dif = (dif1 < dif2) ? dif1 : dif2;
13787 period = (dif1 < dif2) ? period1 : period2;
13788 if (dif < best_dif) {
13789 best_dif = dif;
13790 best_val = val;
13791 best_period = period;
13792 }
13793 }
13794 }
13795
13796 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13797 best_period);
13798 if (rc) {
13799 BNX2X_ERR("Failed to set drift\n");
13800 return -EFAULT;
13801 }
13802
13803 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13804 best_period);
13805
13806 return 0;
13807 }
13808
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13809 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13810 {
13811 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13812
13813 if (!netif_running(bp->dev)) {
13814 DP(BNX2X_MSG_PTP,
13815 "PTP adjtime called while the interface is down\n");
13816 return -ENETDOWN;
13817 }
13818
13819 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13820
13821 timecounter_adjtime(&bp->timecounter, delta);
13822
13823 return 0;
13824 }
13825
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13826 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13827 {
13828 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13829 u64 ns;
13830
13831 if (!netif_running(bp->dev)) {
13832 DP(BNX2X_MSG_PTP,
13833 "PTP gettime called while the interface is down\n");
13834 return -ENETDOWN;
13835 }
13836
13837 ns = timecounter_read(&bp->timecounter);
13838
13839 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13840
13841 *ts = ns_to_timespec64(ns);
13842
13843 return 0;
13844 }
13845
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13846 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13847 const struct timespec64 *ts)
13848 {
13849 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13850 u64 ns;
13851
13852 if (!netif_running(bp->dev)) {
13853 DP(BNX2X_MSG_PTP,
13854 "PTP settime called while the interface is down\n");
13855 return -ENETDOWN;
13856 }
13857
13858 ns = timespec64_to_ns(ts);
13859
13860 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13861
13862 /* Re-init the timecounter */
13863 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13864
13865 return 0;
13866 }
13867
13868 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13869 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13870 struct ptp_clock_request *rq, int on)
13871 {
13872 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13873
13874 BNX2X_ERR("PHC ancillary features are not supported\n");
13875 return -ENOTSUPP;
13876 }
13877
bnx2x_register_phc(struct bnx2x * bp)13878 void bnx2x_register_phc(struct bnx2x *bp)
13879 {
13880 /* Fill the ptp_clock_info struct and register PTP clock*/
13881 bp->ptp_clock_info.owner = THIS_MODULE;
13882 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13883 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13884 bp->ptp_clock_info.n_alarm = 0;
13885 bp->ptp_clock_info.n_ext_ts = 0;
13886 bp->ptp_clock_info.n_per_out = 0;
13887 bp->ptp_clock_info.pps = 0;
13888 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13889 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13890 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13891 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13892 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13893
13894 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13895 if (IS_ERR(bp->ptp_clock)) {
13896 bp->ptp_clock = NULL;
13897 BNX2X_ERR("PTP clock registration failed\n");
13898 }
13899 }
13900
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13901 static int bnx2x_init_one(struct pci_dev *pdev,
13902 const struct pci_device_id *ent)
13903 {
13904 struct net_device *dev = NULL;
13905 struct bnx2x *bp;
13906 int rc, max_non_def_sbs;
13907 int rx_count, tx_count, rss_count, doorbell_size;
13908 int max_cos_est;
13909 bool is_vf;
13910 int cnic_cnt;
13911
13912 /* Management FW 'remembers' living interfaces. Allow it some time
13913 * to forget previously living interfaces, allowing a proper re-load.
13914 */
13915 if (is_kdump_kernel()) {
13916 ktime_t now = ktime_get_boottime();
13917 ktime_t fw_ready_time = ktime_set(5, 0);
13918
13919 if (ktime_before(now, fw_ready_time))
13920 msleep(ktime_ms_delta(fw_ready_time, now));
13921 }
13922
13923 /* An estimated maximum supported CoS number according to the chip
13924 * version.
13925 * We will try to roughly estimate the maximum number of CoSes this chip
13926 * may support in order to minimize the memory allocated for Tx
13927 * netdev_queue's. This number will be accurately calculated during the
13928 * initialization of bp->max_cos based on the chip versions AND chip
13929 * revision in the bnx2x_init_bp().
13930 */
13931 max_cos_est = set_max_cos_est(ent->driver_data);
13932 if (max_cos_est < 0)
13933 return max_cos_est;
13934 is_vf = set_is_vf(ent->driver_data);
13935 cnic_cnt = is_vf ? 0 : 1;
13936
13937 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13938
13939 /* add another SB for VF as it has no default SB */
13940 max_non_def_sbs += is_vf ? 1 : 0;
13941
13942 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13943 rss_count = max_non_def_sbs - cnic_cnt;
13944
13945 if (rss_count < 1)
13946 return -EINVAL;
13947
13948 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13949 rx_count = rss_count + cnic_cnt;
13950
13951 /* Maximum number of netdev Tx queues:
13952 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13953 */
13954 tx_count = rss_count * max_cos_est + cnic_cnt;
13955
13956 /* dev zeroed in init_etherdev */
13957 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13958 if (!dev)
13959 return -ENOMEM;
13960
13961 bp = netdev_priv(dev);
13962
13963 bp->flags = 0;
13964 if (is_vf)
13965 bp->flags |= IS_VF_FLAG;
13966
13967 bp->igu_sb_cnt = max_non_def_sbs;
13968 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13969 bp->msg_enable = debug;
13970 bp->cnic_support = cnic_cnt;
13971 bp->cnic_probe = bnx2x_cnic_probe;
13972
13973 pci_set_drvdata(pdev, dev);
13974
13975 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13976 if (rc < 0) {
13977 free_netdev(dev);
13978 return rc;
13979 }
13980
13981 BNX2X_DEV_INFO("This is a %s function\n",
13982 IS_PF(bp) ? "physical" : "virtual");
13983 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13984 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13985 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13986 tx_count, rx_count);
13987
13988 rc = bnx2x_init_bp(bp);
13989 if (rc)
13990 goto init_one_exit;
13991
13992 /* Map doorbells here as we need the real value of bp->max_cos which
13993 * is initialized in bnx2x_init_bp() to determine the number of
13994 * l2 connections.
13995 */
13996 if (IS_VF(bp)) {
13997 bp->doorbells = bnx2x_vf_doorbells(bp);
13998 rc = bnx2x_vf_pci_alloc(bp);
13999 if (rc)
14000 goto init_one_freemem;
14001 } else {
14002 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14003 if (doorbell_size > pci_resource_len(pdev, 2)) {
14004 dev_err(&bp->pdev->dev,
14005 "Cannot map doorbells, bar size too small, aborting\n");
14006 rc = -ENOMEM;
14007 goto init_one_freemem;
14008 }
14009 bp->doorbells = ioremap(pci_resource_start(pdev, 2),
14010 doorbell_size);
14011 }
14012 if (!bp->doorbells) {
14013 dev_err(&bp->pdev->dev,
14014 "Cannot map doorbell space, aborting\n");
14015 rc = -ENOMEM;
14016 goto init_one_freemem;
14017 }
14018
14019 if (IS_VF(bp)) {
14020 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14021 if (rc)
14022 goto init_one_freemem;
14023
14024 #ifdef CONFIG_BNX2X_SRIOV
14025 /* VF with OLD Hypervisor or old PF do not support filtering */
14026 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14027 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14028 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14029 }
14030 #endif
14031 }
14032
14033 /* Enable SRIOV if capability found in configuration space */
14034 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14035 if (rc)
14036 goto init_one_freemem;
14037
14038 /* calc qm_cid_count */
14039 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14040 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14041
14042 /* disable FCOE L2 queue for E1x*/
14043 if (CHIP_IS_E1x(bp))
14044 bp->flags |= NO_FCOE_FLAG;
14045
14046 /* Set bp->num_queues for MSI-X mode*/
14047 bnx2x_set_num_queues(bp);
14048
14049 /* Configure interrupt mode: try to enable MSI-X/MSI if
14050 * needed.
14051 */
14052 rc = bnx2x_set_int_mode(bp);
14053 if (rc) {
14054 dev_err(&pdev->dev, "Cannot set interrupts\n");
14055 goto init_one_freemem;
14056 }
14057 BNX2X_DEV_INFO("set interrupts successfully\n");
14058
14059 /* register the net device */
14060 rc = register_netdev(dev);
14061 if (rc) {
14062 dev_err(&pdev->dev, "Cannot register net device\n");
14063 goto init_one_freemem;
14064 }
14065 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14066
14067 if (!NO_FCOE(bp)) {
14068 /* Add storage MAC address */
14069 rtnl_lock();
14070 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14071 rtnl_unlock();
14072 }
14073 BNX2X_DEV_INFO(
14074 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14075 board_info[ent->driver_data].name,
14076 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14077 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14078 pcie_print_link_status(bp->pdev);
14079
14080 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14081 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14082
14083 return 0;
14084
14085 init_one_freemem:
14086 bnx2x_release_firmware(bp);
14087 bnx2x_free_mem_bp(bp);
14088
14089 init_one_exit:
14090 bnx2x_disable_pcie_error_reporting(bp);
14091
14092 if (bp->regview)
14093 iounmap(bp->regview);
14094
14095 if (IS_PF(bp) && bp->doorbells)
14096 iounmap(bp->doorbells);
14097
14098 free_netdev(dev);
14099
14100 if (atomic_read(&pdev->enable_cnt) == 1)
14101 pci_release_regions(pdev);
14102
14103 pci_disable_device(pdev);
14104
14105 return rc;
14106 }
14107
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14108 static void __bnx2x_remove(struct pci_dev *pdev,
14109 struct net_device *dev,
14110 struct bnx2x *bp,
14111 bool remove_netdev)
14112 {
14113 /* Delete storage MAC address */
14114 if (!NO_FCOE(bp)) {
14115 rtnl_lock();
14116 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14117 rtnl_unlock();
14118 }
14119
14120 #ifdef BCM_DCBNL
14121 /* Delete app tlvs from dcbnl */
14122 bnx2x_dcbnl_update_applist(bp, true);
14123 #endif
14124
14125 if (IS_PF(bp) &&
14126 !BP_NOMCP(bp) &&
14127 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14128 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14129
14130 /* Close the interface - either directly or implicitly */
14131 if (remove_netdev) {
14132 unregister_netdev(dev);
14133 } else {
14134 rtnl_lock();
14135 dev_close(dev);
14136 rtnl_unlock();
14137 }
14138
14139 bnx2x_iov_remove_one(bp);
14140
14141 /* Power on: we can't let PCI layer write to us while we are in D3 */
14142 if (IS_PF(bp)) {
14143 bnx2x_set_power_state(bp, PCI_D0);
14144 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14145
14146 /* Set endianity registers to reset values in case next driver
14147 * boots in different endianty environment.
14148 */
14149 bnx2x_reset_endianity(bp);
14150 }
14151
14152 /* Disable MSI/MSI-X */
14153 bnx2x_disable_msi(bp);
14154
14155 /* Power off */
14156 if (IS_PF(bp))
14157 bnx2x_set_power_state(bp, PCI_D3hot);
14158
14159 /* Make sure RESET task is not scheduled before continuing */
14160 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14161
14162 /* send message via vfpf channel to release the resources of this vf */
14163 if (IS_VF(bp))
14164 bnx2x_vfpf_release(bp);
14165
14166 /* Assumes no further PCIe PM changes will occur */
14167 if (system_state == SYSTEM_POWER_OFF) {
14168 pci_wake_from_d3(pdev, bp->wol);
14169 pci_set_power_state(pdev, PCI_D3hot);
14170 }
14171
14172 bnx2x_disable_pcie_error_reporting(bp);
14173 if (remove_netdev) {
14174 if (bp->regview)
14175 iounmap(bp->regview);
14176
14177 /* For vfs, doorbells are part of the regview and were unmapped
14178 * along with it. FW is only loaded by PF.
14179 */
14180 if (IS_PF(bp)) {
14181 if (bp->doorbells)
14182 iounmap(bp->doorbells);
14183
14184 bnx2x_release_firmware(bp);
14185 } else {
14186 bnx2x_vf_pci_dealloc(bp);
14187 }
14188 bnx2x_free_mem_bp(bp);
14189
14190 free_netdev(dev);
14191
14192 if (atomic_read(&pdev->enable_cnt) == 1)
14193 pci_release_regions(pdev);
14194
14195 pci_disable_device(pdev);
14196 }
14197 }
14198
bnx2x_remove_one(struct pci_dev * pdev)14199 static void bnx2x_remove_one(struct pci_dev *pdev)
14200 {
14201 struct net_device *dev = pci_get_drvdata(pdev);
14202 struct bnx2x *bp;
14203
14204 if (!dev) {
14205 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14206 return;
14207 }
14208 bp = netdev_priv(dev);
14209
14210 __bnx2x_remove(pdev, dev, bp, true);
14211 }
14212
bnx2x_eeh_nic_unload(struct bnx2x * bp)14213 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14214 {
14215 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14216
14217 bp->rx_mode = BNX2X_RX_MODE_NONE;
14218
14219 if (CNIC_LOADED(bp))
14220 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14221
14222 /* Stop Tx */
14223 bnx2x_tx_disable(bp);
14224 /* Delete all NAPI objects */
14225 bnx2x_del_all_napi(bp);
14226 if (CNIC_LOADED(bp))
14227 bnx2x_del_all_napi_cnic(bp);
14228 netdev_reset_tc(bp->dev);
14229
14230 del_timer_sync(&bp->timer);
14231 cancel_delayed_work_sync(&bp->sp_task);
14232 cancel_delayed_work_sync(&bp->period_task);
14233
14234 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14235 bp->stats_state = STATS_STATE_DISABLED;
14236 up(&bp->stats_lock);
14237 }
14238
14239 bnx2x_save_statistics(bp);
14240
14241 netif_carrier_off(bp->dev);
14242
14243 return 0;
14244 }
14245
14246 /**
14247 * bnx2x_io_error_detected - called when PCI error is detected
14248 * @pdev: Pointer to PCI device
14249 * @state: The current pci connection state
14250 *
14251 * This function is called after a PCI bus error affecting
14252 * this device has been detected.
14253 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14254 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14255 pci_channel_state_t state)
14256 {
14257 struct net_device *dev = pci_get_drvdata(pdev);
14258 struct bnx2x *bp = netdev_priv(dev);
14259
14260 rtnl_lock();
14261
14262 BNX2X_ERR("IO error detected\n");
14263
14264 netif_device_detach(dev);
14265
14266 if (state == pci_channel_io_perm_failure) {
14267 rtnl_unlock();
14268 return PCI_ERS_RESULT_DISCONNECT;
14269 }
14270
14271 if (netif_running(dev))
14272 bnx2x_eeh_nic_unload(bp);
14273
14274 bnx2x_prev_path_mark_eeh(bp);
14275
14276 pci_disable_device(pdev);
14277
14278 rtnl_unlock();
14279
14280 /* Request a slot reset */
14281 return PCI_ERS_RESULT_NEED_RESET;
14282 }
14283
14284 /**
14285 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14286 * @pdev: Pointer to PCI device
14287 *
14288 * Restart the card from scratch, as if from a cold-boot.
14289 */
bnx2x_io_slot_reset(struct pci_dev * pdev)14290 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14291 {
14292 struct net_device *dev = pci_get_drvdata(pdev);
14293 struct bnx2x *bp = netdev_priv(dev);
14294 int i;
14295
14296 rtnl_lock();
14297 BNX2X_ERR("IO slot reset initializing...\n");
14298 if (pci_enable_device(pdev)) {
14299 dev_err(&pdev->dev,
14300 "Cannot re-enable PCI device after reset\n");
14301 rtnl_unlock();
14302 return PCI_ERS_RESULT_DISCONNECT;
14303 }
14304
14305 pci_set_master(pdev);
14306 pci_restore_state(pdev);
14307 pci_save_state(pdev);
14308
14309 if (netif_running(dev))
14310 bnx2x_set_power_state(bp, PCI_D0);
14311
14312 if (netif_running(dev)) {
14313 BNX2X_ERR("IO slot reset --> driver unload\n");
14314
14315 /* MCP should have been reset; Need to wait for validity */
14316 if (bnx2x_init_shmem(bp)) {
14317 rtnl_unlock();
14318 return PCI_ERS_RESULT_DISCONNECT;
14319 }
14320
14321 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14322 u32 v;
14323
14324 v = SHMEM2_RD(bp,
14325 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14326 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14327 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14328 }
14329 bnx2x_drain_tx_queues(bp);
14330 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14331 bnx2x_netif_stop(bp, 1);
14332 bnx2x_free_irq(bp);
14333
14334 /* Report UNLOAD_DONE to MCP */
14335 bnx2x_send_unload_done(bp, true);
14336
14337 bp->sp_state = 0;
14338 bp->port.pmf = 0;
14339
14340 bnx2x_prev_unload(bp);
14341
14342 /* We should have reseted the engine, so It's fair to
14343 * assume the FW will no longer write to the bnx2x driver.
14344 */
14345 bnx2x_squeeze_objects(bp);
14346 bnx2x_free_skbs(bp);
14347 for_each_rx_queue(bp, i)
14348 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14349 bnx2x_free_fp_mem(bp);
14350 bnx2x_free_mem(bp);
14351
14352 bp->state = BNX2X_STATE_CLOSED;
14353 }
14354
14355 rtnl_unlock();
14356
14357 return PCI_ERS_RESULT_RECOVERED;
14358 }
14359
14360 /**
14361 * bnx2x_io_resume - called when traffic can start flowing again
14362 * @pdev: Pointer to PCI device
14363 *
14364 * This callback is called when the error recovery driver tells us that
14365 * its OK to resume normal operation.
14366 */
bnx2x_io_resume(struct pci_dev * pdev)14367 static void bnx2x_io_resume(struct pci_dev *pdev)
14368 {
14369 struct net_device *dev = pci_get_drvdata(pdev);
14370 struct bnx2x *bp = netdev_priv(dev);
14371
14372 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14373 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14374 return;
14375 }
14376
14377 rtnl_lock();
14378
14379 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14380 DRV_MSG_SEQ_NUMBER_MASK;
14381
14382 if (netif_running(dev))
14383 bnx2x_nic_load(bp, LOAD_NORMAL);
14384
14385 netif_device_attach(dev);
14386
14387 rtnl_unlock();
14388 }
14389
14390 static const struct pci_error_handlers bnx2x_err_handler = {
14391 .error_detected = bnx2x_io_error_detected,
14392 .slot_reset = bnx2x_io_slot_reset,
14393 .resume = bnx2x_io_resume,
14394 };
14395
bnx2x_shutdown(struct pci_dev * pdev)14396 static void bnx2x_shutdown(struct pci_dev *pdev)
14397 {
14398 struct net_device *dev = pci_get_drvdata(pdev);
14399 struct bnx2x *bp;
14400
14401 if (!dev)
14402 return;
14403
14404 bp = netdev_priv(dev);
14405 if (!bp)
14406 return;
14407
14408 rtnl_lock();
14409 netif_device_detach(dev);
14410 rtnl_unlock();
14411
14412 /* Don't remove the netdevice, as there are scenarios which will cause
14413 * the kernel to hang, e.g., when trying to remove bnx2i while the
14414 * rootfs is mounted from SAN.
14415 */
14416 __bnx2x_remove(pdev, dev, bp, false);
14417 }
14418
14419 static struct pci_driver bnx2x_pci_driver = {
14420 .name = DRV_MODULE_NAME,
14421 .id_table = bnx2x_pci_tbl,
14422 .probe = bnx2x_init_one,
14423 .remove = bnx2x_remove_one,
14424 .driver.pm = &bnx2x_pm_ops,
14425 .err_handler = &bnx2x_err_handler,
14426 #ifdef CONFIG_BNX2X_SRIOV
14427 .sriov_configure = bnx2x_sriov_configure,
14428 #endif
14429 .shutdown = bnx2x_shutdown,
14430 };
14431
bnx2x_init(void)14432 static int __init bnx2x_init(void)
14433 {
14434 int ret;
14435
14436 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14437 if (bnx2x_wq == NULL) {
14438 pr_err("Cannot create workqueue\n");
14439 return -ENOMEM;
14440 }
14441 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14442 if (!bnx2x_iov_wq) {
14443 pr_err("Cannot create iov workqueue\n");
14444 destroy_workqueue(bnx2x_wq);
14445 return -ENOMEM;
14446 }
14447
14448 ret = pci_register_driver(&bnx2x_pci_driver);
14449 if (ret) {
14450 pr_err("Cannot register driver\n");
14451 destroy_workqueue(bnx2x_wq);
14452 destroy_workqueue(bnx2x_iov_wq);
14453 }
14454 return ret;
14455 }
14456
bnx2x_cleanup(void)14457 static void __exit bnx2x_cleanup(void)
14458 {
14459 struct list_head *pos, *q;
14460
14461 pci_unregister_driver(&bnx2x_pci_driver);
14462
14463 destroy_workqueue(bnx2x_wq);
14464 destroy_workqueue(bnx2x_iov_wq);
14465
14466 /* Free globally allocated resources */
14467 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14468 struct bnx2x_prev_path_list *tmp =
14469 list_entry(pos, struct bnx2x_prev_path_list, list);
14470 list_del(pos);
14471 kfree(tmp);
14472 }
14473 }
14474
bnx2x_notify_link_changed(struct bnx2x * bp)14475 void bnx2x_notify_link_changed(struct bnx2x *bp)
14476 {
14477 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14478 }
14479
14480 module_init(bnx2x_init);
14481 module_exit(bnx2x_cleanup);
14482
14483 /**
14484 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14485 * @bp: driver handle
14486 *
14487 * This function will wait until the ramrod completion returns.
14488 * Return 0 if success, -ENODEV if ramrod doesn't return.
14489 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14490 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14491 {
14492 unsigned long ramrod_flags = 0;
14493
14494 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14495 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14496 &bp->iscsi_l2_mac_obj, true,
14497 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14498 }
14499
14500 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14501 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14502 {
14503 struct eth_spe *spe;
14504 int cxt_index, cxt_offset;
14505
14506 #ifdef BNX2X_STOP_ON_ERROR
14507 if (unlikely(bp->panic))
14508 return;
14509 #endif
14510
14511 spin_lock_bh(&bp->spq_lock);
14512 BUG_ON(bp->cnic_spq_pending < count);
14513 bp->cnic_spq_pending -= count;
14514
14515 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14516 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14517 & SPE_HDR_CONN_TYPE) >>
14518 SPE_HDR_CONN_TYPE_SHIFT;
14519 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14520 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14521
14522 /* Set validation for iSCSI L2 client before sending SETUP
14523 * ramrod
14524 */
14525 if (type == ETH_CONNECTION_TYPE) {
14526 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14527 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14528 ILT_PAGE_CIDS;
14529 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14530 (cxt_index * ILT_PAGE_CIDS);
14531 bnx2x_set_ctx_validation(bp,
14532 &bp->context[cxt_index].
14533 vcxt[cxt_offset].eth,
14534 BNX2X_ISCSI_ETH_CID(bp));
14535 }
14536 }
14537
14538 /*
14539 * There may be not more than 8 L2, not more than 8 L5 SPEs
14540 * and in the air. We also check that number of outstanding
14541 * COMMON ramrods is not more than the EQ and SPQ can
14542 * accommodate.
14543 */
14544 if (type == ETH_CONNECTION_TYPE) {
14545 if (!atomic_read(&bp->cq_spq_left))
14546 break;
14547 else
14548 atomic_dec(&bp->cq_spq_left);
14549 } else if (type == NONE_CONNECTION_TYPE) {
14550 if (!atomic_read(&bp->eq_spq_left))
14551 break;
14552 else
14553 atomic_dec(&bp->eq_spq_left);
14554 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14555 (type == FCOE_CONNECTION_TYPE)) {
14556 if (bp->cnic_spq_pending >=
14557 bp->cnic_eth_dev.max_kwqe_pending)
14558 break;
14559 else
14560 bp->cnic_spq_pending++;
14561 } else {
14562 BNX2X_ERR("Unknown SPE type: %d\n", type);
14563 bnx2x_panic();
14564 break;
14565 }
14566
14567 spe = bnx2x_sp_get_next(bp);
14568 *spe = *bp->cnic_kwq_cons;
14569
14570 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14571 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14572
14573 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14574 bp->cnic_kwq_cons = bp->cnic_kwq;
14575 else
14576 bp->cnic_kwq_cons++;
14577 }
14578 bnx2x_sp_prod_update(bp);
14579 spin_unlock_bh(&bp->spq_lock);
14580 }
14581
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14582 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14583 struct kwqe_16 *kwqes[], u32 count)
14584 {
14585 struct bnx2x *bp = netdev_priv(dev);
14586 int i;
14587
14588 #ifdef BNX2X_STOP_ON_ERROR
14589 if (unlikely(bp->panic)) {
14590 BNX2X_ERR("Can't post to SP queue while panic\n");
14591 return -EIO;
14592 }
14593 #endif
14594
14595 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14596 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14597 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14598 return -EAGAIN;
14599 }
14600
14601 spin_lock_bh(&bp->spq_lock);
14602
14603 for (i = 0; i < count; i++) {
14604 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14605
14606 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14607 break;
14608
14609 *bp->cnic_kwq_prod = *spe;
14610
14611 bp->cnic_kwq_pending++;
14612
14613 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14614 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14615 spe->data.update_data_addr.hi,
14616 spe->data.update_data_addr.lo,
14617 bp->cnic_kwq_pending);
14618
14619 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14620 bp->cnic_kwq_prod = bp->cnic_kwq;
14621 else
14622 bp->cnic_kwq_prod++;
14623 }
14624
14625 spin_unlock_bh(&bp->spq_lock);
14626
14627 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14628 bnx2x_cnic_sp_post(bp, 0);
14629
14630 return i;
14631 }
14632
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14633 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14634 {
14635 struct cnic_ops *c_ops;
14636 int rc = 0;
14637
14638 mutex_lock(&bp->cnic_mutex);
14639 c_ops = rcu_dereference_protected(bp->cnic_ops,
14640 lockdep_is_held(&bp->cnic_mutex));
14641 if (c_ops)
14642 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14643 mutex_unlock(&bp->cnic_mutex);
14644
14645 return rc;
14646 }
14647
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14648 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14649 {
14650 struct cnic_ops *c_ops;
14651 int rc = 0;
14652
14653 rcu_read_lock();
14654 c_ops = rcu_dereference(bp->cnic_ops);
14655 if (c_ops)
14656 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14657 rcu_read_unlock();
14658
14659 return rc;
14660 }
14661
14662 /*
14663 * for commands that have no data
14664 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14665 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14666 {
14667 struct cnic_ctl_info ctl = {0};
14668
14669 ctl.cmd = cmd;
14670
14671 return bnx2x_cnic_ctl_send(bp, &ctl);
14672 }
14673
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14674 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14675 {
14676 struct cnic_ctl_info ctl = {0};
14677
14678 /* first we tell CNIC and only then we count this as a completion */
14679 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14680 ctl.data.comp.cid = cid;
14681 ctl.data.comp.error = err;
14682
14683 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14684 bnx2x_cnic_sp_post(bp, 0);
14685 }
14686
14687 /* Called with netif_addr_lock_bh() taken.
14688 * Sets an rx_mode config for an iSCSI ETH client.
14689 * Doesn't block.
14690 * Completion should be checked outside.
14691 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14692 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14693 {
14694 unsigned long accept_flags = 0, ramrod_flags = 0;
14695 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14696 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14697
14698 if (start) {
14699 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14700 * because it's the only way for UIO Queue to accept
14701 * multicasts (in non-promiscuous mode only one Queue per
14702 * function will receive multicast packets (leading in our
14703 * case).
14704 */
14705 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14706 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14707 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14708 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14709
14710 /* Clear STOP_PENDING bit if START is requested */
14711 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14712
14713 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14714 } else
14715 /* Clear START_PENDING bit if STOP is requested */
14716 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14717
14718 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14719 set_bit(sched_state, &bp->sp_state);
14720 else {
14721 __set_bit(RAMROD_RX, &ramrod_flags);
14722 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14723 ramrod_flags);
14724 }
14725 }
14726
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14727 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14728 {
14729 struct bnx2x *bp = netdev_priv(dev);
14730 int rc = 0;
14731
14732 switch (ctl->cmd) {
14733 case DRV_CTL_CTXTBL_WR_CMD: {
14734 u32 index = ctl->data.io.offset;
14735 dma_addr_t addr = ctl->data.io.dma_addr;
14736
14737 bnx2x_ilt_wr(bp, index, addr);
14738 break;
14739 }
14740
14741 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14742 int count = ctl->data.credit.credit_count;
14743
14744 bnx2x_cnic_sp_post(bp, count);
14745 break;
14746 }
14747
14748 /* rtnl_lock is held. */
14749 case DRV_CTL_START_L2_CMD: {
14750 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14751 unsigned long sp_bits = 0;
14752
14753 /* Configure the iSCSI classification object */
14754 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14755 cp->iscsi_l2_client_id,
14756 cp->iscsi_l2_cid, BP_FUNC(bp),
14757 bnx2x_sp(bp, mac_rdata),
14758 bnx2x_sp_mapping(bp, mac_rdata),
14759 BNX2X_FILTER_MAC_PENDING,
14760 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14761 &bp->macs_pool);
14762
14763 /* Set iSCSI MAC address */
14764 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14765 if (rc)
14766 break;
14767
14768 barrier();
14769
14770 /* Start accepting on iSCSI L2 ring */
14771
14772 netif_addr_lock_bh(dev);
14773 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14774 netif_addr_unlock_bh(dev);
14775
14776 /* bits to wait on */
14777 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14778 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14779
14780 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14781 BNX2X_ERR("rx_mode completion timed out!\n");
14782
14783 break;
14784 }
14785
14786 /* rtnl_lock is held. */
14787 case DRV_CTL_STOP_L2_CMD: {
14788 unsigned long sp_bits = 0;
14789
14790 /* Stop accepting on iSCSI L2 ring */
14791 netif_addr_lock_bh(dev);
14792 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14793 netif_addr_unlock_bh(dev);
14794
14795 /* bits to wait on */
14796 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14797 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14798
14799 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14800 BNX2X_ERR("rx_mode completion timed out!\n");
14801
14802 barrier();
14803
14804 /* Unset iSCSI L2 MAC */
14805 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14806 BNX2X_ISCSI_ETH_MAC, true);
14807 break;
14808 }
14809 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14810 int count = ctl->data.credit.credit_count;
14811
14812 smp_mb__before_atomic();
14813 atomic_add(count, &bp->cq_spq_left);
14814 smp_mb__after_atomic();
14815 break;
14816 }
14817 case DRV_CTL_ULP_REGISTER_CMD: {
14818 int ulp_type = ctl->data.register_data.ulp_type;
14819
14820 if (CHIP_IS_E3(bp)) {
14821 int idx = BP_FW_MB_IDX(bp);
14822 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14823 int path = BP_PATH(bp);
14824 int port = BP_PORT(bp);
14825 int i;
14826 u32 scratch_offset;
14827 u32 *host_addr;
14828
14829 /* first write capability to shmem2 */
14830 if (ulp_type == CNIC_ULP_ISCSI)
14831 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14832 else if (ulp_type == CNIC_ULP_FCOE)
14833 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14834 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14835
14836 if ((ulp_type != CNIC_ULP_FCOE) ||
14837 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14838 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14839 break;
14840
14841 /* if reached here - should write fcoe capabilities */
14842 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14843 if (!scratch_offset)
14844 break;
14845 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14846 fcoe_features[path][port]);
14847 host_addr = (u32 *) &(ctl->data.register_data.
14848 fcoe_features);
14849 for (i = 0; i < sizeof(struct fcoe_capabilities);
14850 i += 4)
14851 REG_WR(bp, scratch_offset + i,
14852 *(host_addr + i/4));
14853 }
14854 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14855 break;
14856 }
14857
14858 case DRV_CTL_ULP_UNREGISTER_CMD: {
14859 int ulp_type = ctl->data.ulp_type;
14860
14861 if (CHIP_IS_E3(bp)) {
14862 int idx = BP_FW_MB_IDX(bp);
14863 u32 cap;
14864
14865 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14866 if (ulp_type == CNIC_ULP_ISCSI)
14867 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14868 else if (ulp_type == CNIC_ULP_FCOE)
14869 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14870 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14871 }
14872 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14873 break;
14874 }
14875
14876 default:
14877 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14878 rc = -EINVAL;
14879 }
14880
14881 /* For storage-only interfaces, change driver state */
14882 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14883 switch (ctl->drv_state) {
14884 case DRV_NOP:
14885 break;
14886 case DRV_ACTIVE:
14887 bnx2x_set_os_driver_state(bp,
14888 OS_DRIVER_STATE_ACTIVE);
14889 break;
14890 case DRV_INACTIVE:
14891 bnx2x_set_os_driver_state(bp,
14892 OS_DRIVER_STATE_DISABLED);
14893 break;
14894 case DRV_UNLOADED:
14895 bnx2x_set_os_driver_state(bp,
14896 OS_DRIVER_STATE_NOT_LOADED);
14897 break;
14898 default:
14899 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14900 }
14901 }
14902
14903 return rc;
14904 }
14905
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14906 static int bnx2x_get_fc_npiv(struct net_device *dev,
14907 struct cnic_fc_npiv_tbl *cnic_tbl)
14908 {
14909 struct bnx2x *bp = netdev_priv(dev);
14910 struct bdn_fc_npiv_tbl *tbl = NULL;
14911 u32 offset, entries;
14912 int rc = -EINVAL;
14913 int i;
14914
14915 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14916 goto out;
14917
14918 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14919
14920 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14921 if (!tbl) {
14922 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14923 goto out;
14924 }
14925
14926 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14927 if (!offset) {
14928 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14929 goto out;
14930 }
14931 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14932
14933 /* Read the table contents from nvram */
14934 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14935 BNX2X_ERR("Failed to read FC-NPIV table\n");
14936 goto out;
14937 }
14938
14939 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14940 * the number of entries back to cpu endianness.
14941 */
14942 entries = tbl->fc_npiv_cfg.num_of_npiv;
14943 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14944 tbl->fc_npiv_cfg.num_of_npiv = entries;
14945
14946 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14947 DP(BNX2X_MSG_MCP,
14948 "No FC-NPIV table [valid, simply not present]\n");
14949 goto out;
14950 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14951 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14952 tbl->fc_npiv_cfg.num_of_npiv);
14953 goto out;
14954 } else {
14955 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14956 tbl->fc_npiv_cfg.num_of_npiv);
14957 }
14958
14959 /* Copy the data into cnic-provided struct */
14960 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14961 for (i = 0; i < cnic_tbl->count; i++) {
14962 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14963 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14964 }
14965
14966 rc = 0;
14967 out:
14968 kfree(tbl);
14969 return rc;
14970 }
14971
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)14972 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14973 {
14974 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14975
14976 if (bp->flags & USING_MSIX_FLAG) {
14977 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14978 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14979 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14980 } else {
14981 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14982 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14983 }
14984 if (!CHIP_IS_E1x(bp))
14985 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14986 else
14987 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14988
14989 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
14990 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14991 cp->irq_arr[1].status_blk = bp->def_status_blk;
14992 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14993 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14994
14995 cp->num_irq = 2;
14996 }
14997
bnx2x_setup_cnic_info(struct bnx2x * bp)14998 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14999 {
15000 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15001
15002 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15003 bnx2x_cid_ilt_lines(bp);
15004 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15005 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15006 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15007
15008 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15009 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15010 cp->iscsi_l2_cid);
15011
15012 if (NO_ISCSI_OOO(bp))
15013 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15014 }
15015
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15016 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15017 void *data)
15018 {
15019 struct bnx2x *bp = netdev_priv(dev);
15020 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15021 int rc;
15022
15023 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15024
15025 if (ops == NULL) {
15026 BNX2X_ERR("NULL ops received\n");
15027 return -EINVAL;
15028 }
15029
15030 if (!CNIC_SUPPORT(bp)) {
15031 BNX2X_ERR("Can't register CNIC when not supported\n");
15032 return -EOPNOTSUPP;
15033 }
15034
15035 if (!CNIC_LOADED(bp)) {
15036 rc = bnx2x_load_cnic(bp);
15037 if (rc) {
15038 BNX2X_ERR("CNIC-related load failed\n");
15039 return rc;
15040 }
15041 }
15042
15043 bp->cnic_enabled = true;
15044
15045 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15046 if (!bp->cnic_kwq)
15047 return -ENOMEM;
15048
15049 bp->cnic_kwq_cons = bp->cnic_kwq;
15050 bp->cnic_kwq_prod = bp->cnic_kwq;
15051 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15052
15053 bp->cnic_spq_pending = 0;
15054 bp->cnic_kwq_pending = 0;
15055
15056 bp->cnic_data = data;
15057
15058 cp->num_irq = 0;
15059 cp->drv_state |= CNIC_DRV_STATE_REGD;
15060 cp->iro_arr = bp->iro_arr;
15061
15062 bnx2x_setup_cnic_irq_info(bp);
15063
15064 rcu_assign_pointer(bp->cnic_ops, ops);
15065
15066 /* Schedule driver to read CNIC driver versions */
15067 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15068
15069 return 0;
15070 }
15071
bnx2x_unregister_cnic(struct net_device * dev)15072 static int bnx2x_unregister_cnic(struct net_device *dev)
15073 {
15074 struct bnx2x *bp = netdev_priv(dev);
15075 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15076
15077 mutex_lock(&bp->cnic_mutex);
15078 cp->drv_state = 0;
15079 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15080 mutex_unlock(&bp->cnic_mutex);
15081 synchronize_rcu();
15082 bp->cnic_enabled = false;
15083 kfree(bp->cnic_kwq);
15084 bp->cnic_kwq = NULL;
15085
15086 return 0;
15087 }
15088
bnx2x_cnic_probe(struct net_device * dev)15089 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15090 {
15091 struct bnx2x *bp = netdev_priv(dev);
15092 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15093
15094 /* If both iSCSI and FCoE are disabled - return NULL in
15095 * order to indicate CNIC that it should not try to work
15096 * with this device.
15097 */
15098 if (NO_ISCSI(bp) && NO_FCOE(bp))
15099 return NULL;
15100
15101 cp->drv_owner = THIS_MODULE;
15102 cp->chip_id = CHIP_ID(bp);
15103 cp->pdev = bp->pdev;
15104 cp->io_base = bp->regview;
15105 cp->io_base2 = bp->doorbells;
15106 cp->max_kwqe_pending = 8;
15107 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15108 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15109 bnx2x_cid_ilt_lines(bp);
15110 cp->ctx_tbl_len = CNIC_ILT_LINES;
15111 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15112 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15113 cp->drv_ctl = bnx2x_drv_ctl;
15114 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15115 cp->drv_register_cnic = bnx2x_register_cnic;
15116 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15117 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15118 cp->iscsi_l2_client_id =
15119 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15120 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15121
15122 if (NO_ISCSI_OOO(bp))
15123 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15124
15125 if (NO_ISCSI(bp))
15126 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15127
15128 if (NO_FCOE(bp))
15129 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15130
15131 BNX2X_DEV_INFO(
15132 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15133 cp->ctx_blk_size,
15134 cp->ctx_tbl_offset,
15135 cp->ctx_tbl_len,
15136 cp->starting_cid);
15137 return cp;
15138 }
15139
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15140 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15141 {
15142 struct bnx2x *bp = fp->bp;
15143 u32 offset = BAR_USTRORM_INTMEM;
15144
15145 if (IS_VF(bp))
15146 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15147 else if (!CHIP_IS_E1x(bp))
15148 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15149 else
15150 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15151
15152 return offset;
15153 }
15154
15155 /* called only on E1H or E2.
15156 * When pretending to be PF, the pretend value is the function number 0...7
15157 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15158 * combination
15159 */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15160 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15161 {
15162 u32 pretend_reg;
15163
15164 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15165 return -1;
15166
15167 /* get my own pretend register */
15168 pretend_reg = bnx2x_get_pretend_reg(bp);
15169 REG_WR(bp, pretend_reg, pretend_func_val);
15170 REG_RD(bp, pretend_reg);
15171 return 0;
15172 }
15173
bnx2x_ptp_task(struct work_struct * work)15174 static void bnx2x_ptp_task(struct work_struct *work)
15175 {
15176 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15177 int port = BP_PORT(bp);
15178 u32 val_seq;
15179 u64 timestamp, ns;
15180 struct skb_shared_hwtstamps shhwtstamps;
15181 bool bail = true;
15182 int i;
15183
15184 /* FW may take a while to complete timestamping; try a bit and if it's
15185 * still not complete, may indicate an error state - bail out then.
15186 */
15187 for (i = 0; i < 10; i++) {
15188 /* Read Tx timestamp registers */
15189 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15190 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15191 if (val_seq & 0x10000) {
15192 bail = false;
15193 break;
15194 }
15195 msleep(1 << i);
15196 }
15197
15198 if (!bail) {
15199 /* There is a valid timestamp value */
15200 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15201 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15202 timestamp <<= 32;
15203 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15204 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15205 /* Reset timestamp register to allow new timestamp */
15206 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15207 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15208 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15209
15210 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15211 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15212 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15213
15214 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15215 timestamp, ns);
15216 } else {
15217 DP(BNX2X_MSG_PTP,
15218 "Tx timestamp is not recorded (register read=%u)\n",
15219 val_seq);
15220 bp->eth_stats.ptp_skip_tx_ts++;
15221 }
15222
15223 dev_kfree_skb_any(bp->ptp_tx_skb);
15224 bp->ptp_tx_skb = NULL;
15225 }
15226
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15227 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15228 {
15229 int port = BP_PORT(bp);
15230 u64 timestamp, ns;
15231
15232 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15233 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15234 timestamp <<= 32;
15235 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15236 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15237
15238 /* Reset timestamp register to allow new timestamp */
15239 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15240 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15241
15242 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15243
15244 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15245
15246 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15247 timestamp, ns);
15248 }
15249
15250 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15251 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15252 {
15253 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15254 int port = BP_PORT(bp);
15255 u32 wb_data[2];
15256 u64 phc_cycles;
15257
15258 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15259 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15260 phc_cycles = wb_data[1];
15261 phc_cycles = (phc_cycles << 32) + wb_data[0];
15262
15263 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15264
15265 return phc_cycles;
15266 }
15267
bnx2x_init_cyclecounter(struct bnx2x * bp)15268 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15269 {
15270 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15271 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15272 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15273 bp->cyclecounter.shift = 0;
15274 bp->cyclecounter.mult = 1;
15275 }
15276
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15277 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15278 {
15279 struct bnx2x_func_state_params func_params = {NULL};
15280 struct bnx2x_func_set_timesync_params *set_timesync_params =
15281 &func_params.params.set_timesync;
15282
15283 /* Prepare parameters for function state transitions */
15284 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15285 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15286
15287 func_params.f_obj = &bp->func_obj;
15288 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15289
15290 /* Function parameters */
15291 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15292 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15293
15294 return bnx2x_func_state_change(bp, &func_params);
15295 }
15296
bnx2x_enable_ptp_packets(struct bnx2x * bp)15297 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15298 {
15299 struct bnx2x_queue_state_params q_params;
15300 int rc, i;
15301
15302 /* send queue update ramrod to enable PTP packets */
15303 memset(&q_params, 0, sizeof(q_params));
15304 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15305 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15306 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15307 &q_params.params.update.update_flags);
15308 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15309 &q_params.params.update.update_flags);
15310
15311 /* send the ramrod on all the queues of the PF */
15312 for_each_eth_queue(bp, i) {
15313 struct bnx2x_fastpath *fp = &bp->fp[i];
15314
15315 /* Set the appropriate Queue object */
15316 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15317
15318 /* Update the Queue state */
15319 rc = bnx2x_queue_state_change(bp, &q_params);
15320 if (rc) {
15321 BNX2X_ERR("Failed to enable PTP packets\n");
15322 return rc;
15323 }
15324 }
15325
15326 return 0;
15327 }
15328
15329 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15330 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15331 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15332 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15333 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15334 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15335 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15336 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15337 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15338 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15339 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15340 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15341
bnx2x_configure_ptp_filters(struct bnx2x * bp)15342 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15343 {
15344 int port = BP_PORT(bp);
15345 u32 param, rule;
15346 int rc;
15347
15348 if (!bp->hwtstamp_ioctl_called)
15349 return 0;
15350
15351 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15352 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15353 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15354 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15355 switch (bp->tx_type) {
15356 case HWTSTAMP_TX_ON:
15357 bp->flags |= TX_TIMESTAMPING_EN;
15358 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15359 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15360 break;
15361 case HWTSTAMP_TX_ONESTEP_SYNC:
15362 case HWTSTAMP_TX_ONESTEP_P2P:
15363 BNX2X_ERR("One-step timestamping is not supported\n");
15364 return -ERANGE;
15365 }
15366
15367 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15368 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15369 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15370 NIG_REG_P0_LLH_PTP_RULE_MASK;
15371 switch (bp->rx_filter) {
15372 case HWTSTAMP_FILTER_NONE:
15373 break;
15374 case HWTSTAMP_FILTER_ALL:
15375 case HWTSTAMP_FILTER_SOME:
15376 case HWTSTAMP_FILTER_NTP_ALL:
15377 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15378 break;
15379 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15380 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15381 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15382 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15383 /* Initialize PTP detection for UDP/IPv4 events */
15384 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15385 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15386 break;
15387 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15388 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15389 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15390 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15391 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15392 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15393 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15394 break;
15395 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15396 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15397 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15398 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15399 /* Initialize PTP detection L2 events */
15400 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15401 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15402
15403 break;
15404 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15405 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15406 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15407 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15408 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15409 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15410 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15411 break;
15412 }
15413
15414 /* Indicate to FW that this PF expects recorded PTP packets */
15415 rc = bnx2x_enable_ptp_packets(bp);
15416 if (rc)
15417 return rc;
15418
15419 /* Enable sending PTP packets to host */
15420 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15421 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15422
15423 return 0;
15424 }
15425
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15426 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15427 {
15428 struct hwtstamp_config config;
15429 int rc;
15430
15431 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15432
15433 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15434 return -EFAULT;
15435
15436 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15437 config.tx_type, config.rx_filter);
15438
15439 if (config.flags) {
15440 BNX2X_ERR("config.flags is reserved for future use\n");
15441 return -EINVAL;
15442 }
15443
15444 bp->hwtstamp_ioctl_called = true;
15445 bp->tx_type = config.tx_type;
15446 bp->rx_filter = config.rx_filter;
15447
15448 rc = bnx2x_configure_ptp_filters(bp);
15449 if (rc)
15450 return rc;
15451
15452 config.rx_filter = bp->rx_filter;
15453
15454 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15455 -EFAULT : 0;
15456 }
15457
15458 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15459 static int bnx2x_configure_ptp(struct bnx2x *bp)
15460 {
15461 int rc, port = BP_PORT(bp);
15462 u32 wb_data[2];
15463
15464 /* Reset PTP event detection rules - will be configured in the IOCTL */
15465 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15466 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15467 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15468 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15469 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15470 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15471 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15472 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15473
15474 /* Disable PTP packets to host - will be configured in the IOCTL*/
15475 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15476 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15477
15478 /* Enable the PTP feature */
15479 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15480 NIG_REG_P0_PTP_EN, 0x3F);
15481
15482 /* Enable the free-running counter */
15483 wb_data[0] = 0;
15484 wb_data[1] = 0;
15485 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15486
15487 /* Reset drift register (offset register is not reset) */
15488 rc = bnx2x_send_reset_timesync_ramrod(bp);
15489 if (rc) {
15490 BNX2X_ERR("Failed to reset PHC drift register\n");
15491 return -EFAULT;
15492 }
15493
15494 /* Reset possibly old timestamps */
15495 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15496 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15497 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15498 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15499
15500 return 0;
15501 }
15502
15503 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15504 void bnx2x_init_ptp(struct bnx2x *bp)
15505 {
15506 int rc;
15507
15508 /* Configure PTP in HW */
15509 rc = bnx2x_configure_ptp(bp);
15510 if (rc) {
15511 BNX2X_ERR("Stopping PTP initialization\n");
15512 return;
15513 }
15514
15515 /* Init work queue for Tx timestamping */
15516 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15517
15518 /* Init cyclecounter and timecounter. This is done only in the first
15519 * load. If done in every load, PTP application will fail when doing
15520 * unload / load (e.g. MTU change) while it is running.
15521 */
15522 if (!bp->timecounter_init_done) {
15523 bnx2x_init_cyclecounter(bp);
15524 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15525 ktime_to_ns(ktime_get_real()));
15526 bp->timecounter_init_done = true;
15527 }
15528
15529 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15530 }
15531