1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29 * must be included exactly once across the whole kernel with
30 * CREATE_TRACE_POINTS defined
31 */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34
35 #define hns3_set_field(origin, shift, val) ((origin) |= ((val) << (shift)))
36 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37
38 #define hns3_rl_err(fmt, ...) \
39 do { \
40 if (net_ratelimit()) \
41 netdev_err(fmt, ##__VA_ARGS__); \
42 } while (0)
43
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 "Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58
59 #define HNS3_INNER_VLAN_TAG 1
60 #define HNS3_OUTER_VLAN_TAG 2
61
62 #define HNS3_MIN_TX_LEN 33U
63 #define HNS3_MIN_TUN_PKT_LEN 65U
64
65 /* hns3_pci_tbl - PCI Device ID Table
66 *
67 * Last entry must be all 0s
68 *
69 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
70 * Class, Class Mask, private data (not used) }
71 */
72 static const struct pci_device_id hns3_pci_tbl[] = {
73 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
74 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
75 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
76 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
78 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
80 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
82 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
84 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
86 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
89 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
90 /* required last entry */
91 {0, }
92 };
93 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
94
hns3_irq_handle(int irq,void * vector)95 static irqreturn_t hns3_irq_handle(int irq, void *vector)
96 {
97 struct hns3_enet_tqp_vector *tqp_vector = vector;
98
99 napi_schedule_irqoff(&tqp_vector->napi);
100
101 return IRQ_HANDLED;
102 }
103
hns3_nic_uninit_irq(struct hns3_nic_priv * priv)104 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
105 {
106 struct hns3_enet_tqp_vector *tqp_vectors;
107 unsigned int i;
108
109 for (i = 0; i < priv->vector_num; i++) {
110 tqp_vectors = &priv->tqp_vector[i];
111
112 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
113 continue;
114
115 /* clear the affinity mask */
116 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
117
118 /* release the irq resource */
119 free_irq(tqp_vectors->vector_irq, tqp_vectors);
120 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
121 }
122 }
123
hns3_nic_init_irq(struct hns3_nic_priv * priv)124 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
125 {
126 struct hns3_enet_tqp_vector *tqp_vectors;
127 int txrx_int_idx = 0;
128 int rx_int_idx = 0;
129 int tx_int_idx = 0;
130 unsigned int i;
131 int ret;
132
133 for (i = 0; i < priv->vector_num; i++) {
134 tqp_vectors = &priv->tqp_vector[i];
135
136 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
137 continue;
138
139 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
140 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
141 "%s-%s-%s-%d", hns3_driver_name,
142 pci_name(priv->ae_handle->pdev),
143 "TxRx", txrx_int_idx++);
144 txrx_int_idx++;
145 } else if (tqp_vectors->rx_group.ring) {
146 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
147 "%s-%s-%s-%d", hns3_driver_name,
148 pci_name(priv->ae_handle->pdev),
149 "Rx", rx_int_idx++);
150 } else if (tqp_vectors->tx_group.ring) {
151 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
152 "%s-%s-%s-%d", hns3_driver_name,
153 pci_name(priv->ae_handle->pdev),
154 "Tx", tx_int_idx++);
155 } else {
156 /* Skip this unused q_vector */
157 continue;
158 }
159
160 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
161
162 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
163 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
164 tqp_vectors->name, tqp_vectors);
165 if (ret) {
166 netdev_err(priv->netdev, "request irq(%d) fail\n",
167 tqp_vectors->vector_irq);
168 hns3_nic_uninit_irq(priv);
169 return ret;
170 }
171
172 irq_set_affinity_hint(tqp_vectors->vector_irq,
173 &tqp_vectors->affinity_mask);
174
175 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
176 }
177
178 return 0;
179 }
180
hns3_mask_vector_irq(struct hns3_enet_tqp_vector * tqp_vector,u32 mask_en)181 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
182 u32 mask_en)
183 {
184 writel(mask_en, tqp_vector->mask_addr);
185 }
186
hns3_vector_enable(struct hns3_enet_tqp_vector * tqp_vector)187 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
188 {
189 napi_enable(&tqp_vector->napi);
190 enable_irq(tqp_vector->vector_irq);
191
192 /* enable vector */
193 hns3_mask_vector_irq(tqp_vector, 1);
194 }
195
hns3_vector_disable(struct hns3_enet_tqp_vector * tqp_vector)196 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
197 {
198 /* disable vector */
199 hns3_mask_vector_irq(tqp_vector, 0);
200
201 disable_irq(tqp_vector->vector_irq);
202 napi_disable(&tqp_vector->napi);
203 }
204
hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector * tqp_vector,u32 rl_value)205 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
206 u32 rl_value)
207 {
208 u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
209
210 /* this defines the configuration for RL (Interrupt Rate Limiter).
211 * Rl defines rate of interrupts i.e. number of interrupts-per-second
212 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
213 */
214
215 if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
216 !tqp_vector->rx_group.coal.gl_adapt_enable)
217 /* According to the hardware, the range of rl_reg is
218 * 0-59 and the unit is 4.
219 */
220 rl_reg |= HNS3_INT_RL_ENABLE_MASK;
221
222 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
223 }
224
hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)225 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
226 u32 gl_value)
227 {
228 u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
229
230 writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
231 }
232
hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)233 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
234 u32 gl_value)
235 {
236 u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
237
238 writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
239 }
240
hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)241 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
242 struct hns3_nic_priv *priv)
243 {
244 /* initialize the configuration for interrupt coalescing.
245 * 1. GL (Interrupt Gap Limiter)
246 * 2. RL (Interrupt Rate Limiter)
247 *
248 * Default: enable interrupt coalescing self-adaptive and GL
249 */
250 tqp_vector->tx_group.coal.gl_adapt_enable = 1;
251 tqp_vector->rx_group.coal.gl_adapt_enable = 1;
252
253 tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
254 tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
255
256 tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
257 tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
258 }
259
hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)260 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
261 struct hns3_nic_priv *priv)
262 {
263 struct hnae3_handle *h = priv->ae_handle;
264
265 hns3_set_vector_coalesce_tx_gl(tqp_vector,
266 tqp_vector->tx_group.coal.int_gl);
267 hns3_set_vector_coalesce_rx_gl(tqp_vector,
268 tqp_vector->rx_group.coal.int_gl);
269 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
270 }
271
hns3_nic_set_real_num_queue(struct net_device * netdev)272 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
273 {
274 struct hnae3_handle *h = hns3_get_handle(netdev);
275 struct hnae3_knic_private_info *kinfo = &h->kinfo;
276 unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
277 int i, ret;
278
279 if (kinfo->num_tc <= 1) {
280 netdev_reset_tc(netdev);
281 } else {
282 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
283 if (ret) {
284 netdev_err(netdev,
285 "netdev_set_num_tc fail, ret=%d!\n", ret);
286 return ret;
287 }
288
289 for (i = 0; i < HNAE3_MAX_TC; i++) {
290 if (!kinfo->tc_info[i].enable)
291 continue;
292
293 netdev_set_tc_queue(netdev,
294 kinfo->tc_info[i].tc,
295 kinfo->tc_info[i].tqp_count,
296 kinfo->tc_info[i].tqp_offset);
297 }
298 }
299
300 ret = netif_set_real_num_tx_queues(netdev, queue_size);
301 if (ret) {
302 netdev_err(netdev,
303 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
304 return ret;
305 }
306
307 ret = netif_set_real_num_rx_queues(netdev, queue_size);
308 if (ret) {
309 netdev_err(netdev,
310 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
311 return ret;
312 }
313
314 return 0;
315 }
316
hns3_get_max_available_channels(struct hnae3_handle * h)317 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
318 {
319 u16 alloc_tqps, max_rss_size, rss_size;
320
321 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
322 rss_size = alloc_tqps / h->kinfo.num_tc;
323
324 return min_t(u16, rss_size, max_rss_size);
325 }
326
hns3_tqp_enable(struct hnae3_queue * tqp)327 static void hns3_tqp_enable(struct hnae3_queue *tqp)
328 {
329 u32 rcb_reg;
330
331 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332 rcb_reg |= BIT(HNS3_RING_EN_B);
333 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335
hns3_tqp_disable(struct hnae3_queue * tqp)336 static void hns3_tqp_disable(struct hnae3_queue *tqp)
337 {
338 u32 rcb_reg;
339
340 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
341 rcb_reg &= ~BIT(HNS3_RING_EN_B);
342 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
343 }
344
hns3_free_rx_cpu_rmap(struct net_device * netdev)345 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
346 {
347 #ifdef CONFIG_RFS_ACCEL
348 free_irq_cpu_rmap(netdev->rx_cpu_rmap);
349 netdev->rx_cpu_rmap = NULL;
350 #endif
351 }
352
hns3_set_rx_cpu_rmap(struct net_device * netdev)353 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
354 {
355 #ifdef CONFIG_RFS_ACCEL
356 struct hns3_nic_priv *priv = netdev_priv(netdev);
357 struct hns3_enet_tqp_vector *tqp_vector;
358 int i, ret;
359
360 if (!netdev->rx_cpu_rmap) {
361 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
362 if (!netdev->rx_cpu_rmap)
363 return -ENOMEM;
364 }
365
366 for (i = 0; i < priv->vector_num; i++) {
367 tqp_vector = &priv->tqp_vector[i];
368 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
369 tqp_vector->vector_irq);
370 if (ret) {
371 hns3_free_rx_cpu_rmap(netdev);
372 return ret;
373 }
374 }
375 #endif
376 return 0;
377 }
378
hns3_nic_net_up(struct net_device * netdev)379 static int hns3_nic_net_up(struct net_device *netdev)
380 {
381 struct hns3_nic_priv *priv = netdev_priv(netdev);
382 struct hnae3_handle *h = priv->ae_handle;
383 int i, j;
384 int ret;
385
386 ret = hns3_nic_reset_all_ring(h);
387 if (ret)
388 return ret;
389
390 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
391
392 /* enable the vectors */
393 for (i = 0; i < priv->vector_num; i++)
394 hns3_vector_enable(&priv->tqp_vector[i]);
395
396 /* enable rcb */
397 for (j = 0; j < h->kinfo.num_tqps; j++)
398 hns3_tqp_enable(h->kinfo.tqp[j]);
399
400 /* start the ae_dev */
401 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
402 if (ret) {
403 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
404 while (j--)
405 hns3_tqp_disable(h->kinfo.tqp[j]);
406
407 for (j = i - 1; j >= 0; j--)
408 hns3_vector_disable(&priv->tqp_vector[j]);
409 }
410
411 return ret;
412 }
413
hns3_config_xps(struct hns3_nic_priv * priv)414 static void hns3_config_xps(struct hns3_nic_priv *priv)
415 {
416 int i;
417
418 for (i = 0; i < priv->vector_num; i++) {
419 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
420 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
421
422 while (ring) {
423 int ret;
424
425 ret = netif_set_xps_queue(priv->netdev,
426 &tqp_vector->affinity_mask,
427 ring->tqp->tqp_index);
428 if (ret)
429 netdev_warn(priv->netdev,
430 "set xps queue failed: %d", ret);
431
432 ring = ring->next;
433 }
434 }
435 }
436
hns3_nic_net_open(struct net_device * netdev)437 static int hns3_nic_net_open(struct net_device *netdev)
438 {
439 struct hns3_nic_priv *priv = netdev_priv(netdev);
440 struct hnae3_handle *h = hns3_get_handle(netdev);
441 struct hnae3_knic_private_info *kinfo;
442 int i, ret;
443
444 if (hns3_nic_resetting(netdev))
445 return -EBUSY;
446
447 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
448 netdev_warn(netdev, "net open repeatedly!\n");
449 return 0;
450 }
451
452 netif_carrier_off(netdev);
453
454 ret = hns3_nic_set_real_num_queue(netdev);
455 if (ret)
456 return ret;
457
458 ret = hns3_nic_net_up(netdev);
459 if (ret) {
460 netdev_err(netdev, "net up fail, ret=%d!\n", ret);
461 return ret;
462 }
463
464 kinfo = &h->kinfo;
465 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
466 netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
467
468 if (h->ae_algo->ops->set_timer_task)
469 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
470
471 hns3_config_xps(priv);
472
473 netif_dbg(h, drv, netdev, "net open\n");
474
475 return 0;
476 }
477
hns3_reset_tx_queue(struct hnae3_handle * h)478 static void hns3_reset_tx_queue(struct hnae3_handle *h)
479 {
480 struct net_device *ndev = h->kinfo.netdev;
481 struct hns3_nic_priv *priv = netdev_priv(ndev);
482 struct netdev_queue *dev_queue;
483 u32 i;
484
485 for (i = 0; i < h->kinfo.num_tqps; i++) {
486 dev_queue = netdev_get_tx_queue(ndev,
487 priv->ring[i].queue_index);
488 netdev_tx_reset_queue(dev_queue);
489 }
490 }
491
hns3_nic_net_down(struct net_device * netdev)492 static void hns3_nic_net_down(struct net_device *netdev)
493 {
494 struct hns3_nic_priv *priv = netdev_priv(netdev);
495 struct hnae3_handle *h = hns3_get_handle(netdev);
496 const struct hnae3_ae_ops *ops;
497 int i;
498
499 /* disable vectors */
500 for (i = 0; i < priv->vector_num; i++)
501 hns3_vector_disable(&priv->tqp_vector[i]);
502
503 /* disable rcb */
504 for (i = 0; i < h->kinfo.num_tqps; i++)
505 hns3_tqp_disable(h->kinfo.tqp[i]);
506
507 /* stop ae_dev */
508 ops = priv->ae_handle->ae_algo->ops;
509 if (ops->stop)
510 ops->stop(priv->ae_handle);
511
512 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet
513 * during reset process, because driver may not be able
514 * to disable the ring through firmware when downing the netdev.
515 */
516 if (!hns3_nic_resetting(netdev))
517 hns3_clear_all_ring(priv->ae_handle, false);
518
519 hns3_reset_tx_queue(priv->ae_handle);
520 }
521
hns3_nic_net_stop(struct net_device * netdev)522 static int hns3_nic_net_stop(struct net_device *netdev)
523 {
524 struct hns3_nic_priv *priv = netdev_priv(netdev);
525 struct hnae3_handle *h = hns3_get_handle(netdev);
526
527 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
528 return 0;
529
530 netif_dbg(h, drv, netdev, "net stop\n");
531
532 if (h->ae_algo->ops->set_timer_task)
533 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
534
535 netif_carrier_off(netdev);
536 netif_tx_disable(netdev);
537
538 hns3_nic_net_down(netdev);
539
540 return 0;
541 }
542
hns3_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)543 static int hns3_nic_uc_sync(struct net_device *netdev,
544 const unsigned char *addr)
545 {
546 struct hnae3_handle *h = hns3_get_handle(netdev);
547
548 if (h->ae_algo->ops->add_uc_addr)
549 return h->ae_algo->ops->add_uc_addr(h, addr);
550
551 return 0;
552 }
553
hns3_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)554 static int hns3_nic_uc_unsync(struct net_device *netdev,
555 const unsigned char *addr)
556 {
557 struct hnae3_handle *h = hns3_get_handle(netdev);
558
559 /* need ignore the request of removing device address, because
560 * we store the device address and other addresses of uc list
561 * in the function's mac filter list.
562 */
563 if (ether_addr_equal(addr, netdev->dev_addr))
564 return 0;
565
566 if (h->ae_algo->ops->rm_uc_addr)
567 return h->ae_algo->ops->rm_uc_addr(h, addr);
568
569 return 0;
570 }
571
hns3_nic_mc_sync(struct net_device * netdev,const unsigned char * addr)572 static int hns3_nic_mc_sync(struct net_device *netdev,
573 const unsigned char *addr)
574 {
575 struct hnae3_handle *h = hns3_get_handle(netdev);
576
577 if (h->ae_algo->ops->add_mc_addr)
578 return h->ae_algo->ops->add_mc_addr(h, addr);
579
580 return 0;
581 }
582
hns3_nic_mc_unsync(struct net_device * netdev,const unsigned char * addr)583 static int hns3_nic_mc_unsync(struct net_device *netdev,
584 const unsigned char *addr)
585 {
586 struct hnae3_handle *h = hns3_get_handle(netdev);
587
588 if (h->ae_algo->ops->rm_mc_addr)
589 return h->ae_algo->ops->rm_mc_addr(h, addr);
590
591 return 0;
592 }
593
hns3_get_netdev_flags(struct net_device * netdev)594 static u8 hns3_get_netdev_flags(struct net_device *netdev)
595 {
596 u8 flags = 0;
597
598 if (netdev->flags & IFF_PROMISC) {
599 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
600 } else {
601 flags |= HNAE3_VLAN_FLTR;
602 if (netdev->flags & IFF_ALLMULTI)
603 flags |= HNAE3_USER_MPE;
604 }
605
606 return flags;
607 }
608
hns3_nic_set_rx_mode(struct net_device * netdev)609 static void hns3_nic_set_rx_mode(struct net_device *netdev)
610 {
611 struct hnae3_handle *h = hns3_get_handle(netdev);
612 u8 new_flags;
613
614 new_flags = hns3_get_netdev_flags(netdev);
615
616 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
617 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
618
619 /* User mode Promisc mode enable and vlan filtering is disabled to
620 * let all packets in.
621 */
622 h->netdev_flags = new_flags;
623 hns3_request_update_promisc_mode(h);
624 }
625
hns3_request_update_promisc_mode(struct hnae3_handle * handle)626 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
627 {
628 const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
629
630 if (ops->request_update_promisc_mode)
631 ops->request_update_promisc_mode(handle);
632 }
633
hns3_enable_vlan_filter(struct net_device * netdev,bool enable)634 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
635 {
636 struct hns3_nic_priv *priv = netdev_priv(netdev);
637 struct hnae3_handle *h = priv->ae_handle;
638 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
639 bool last_state;
640
641 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
642 h->ae_algo->ops->enable_vlan_filter) {
643 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
644 if (enable != last_state) {
645 netdev_info(netdev,
646 "%s vlan filter\n",
647 enable ? "enable" : "disable");
648 h->ae_algo->ops->enable_vlan_filter(h, enable);
649 }
650 }
651 }
652
hns3_set_tso(struct sk_buff * skb,u32 * paylen,u16 * mss,u32 * type_cs_vlan_tso)653 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
654 u16 *mss, u32 *type_cs_vlan_tso)
655 {
656 u32 l4_offset, hdr_len;
657 union l3_hdr_info l3;
658 union l4_hdr_info l4;
659 u32 l4_paylen;
660 int ret;
661
662 if (!skb_is_gso(skb))
663 return 0;
664
665 ret = skb_cow_head(skb, 0);
666 if (unlikely(ret < 0))
667 return ret;
668
669 l3.hdr = skb_network_header(skb);
670 l4.hdr = skb_transport_header(skb);
671
672 /* Software should clear the IPv4's checksum field when tso is
673 * needed.
674 */
675 if (l3.v4->version == 4)
676 l3.v4->check = 0;
677
678 /* tunnel packet */
679 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
680 SKB_GSO_GRE_CSUM |
681 SKB_GSO_UDP_TUNNEL |
682 SKB_GSO_UDP_TUNNEL_CSUM)) {
683 if ((!(skb_shinfo(skb)->gso_type &
684 SKB_GSO_PARTIAL)) &&
685 (skb_shinfo(skb)->gso_type &
686 SKB_GSO_UDP_TUNNEL_CSUM)) {
687 /* Software should clear the udp's checksum
688 * field when tso is needed.
689 */
690 l4.udp->check = 0;
691 }
692 /* reset l3&l4 pointers from outer to inner headers */
693 l3.hdr = skb_inner_network_header(skb);
694 l4.hdr = skb_inner_transport_header(skb);
695
696 /* Software should clear the IPv4's checksum field when
697 * tso is needed.
698 */
699 if (l3.v4->version == 4)
700 l3.v4->check = 0;
701 }
702
703 /* normal or tunnel packet */
704 l4_offset = l4.hdr - skb->data;
705
706 /* remove payload length from inner pseudo checksum when tso */
707 l4_paylen = skb->len - l4_offset;
708
709 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
710 hdr_len = sizeof(*l4.udp) + l4_offset;
711 csum_replace_by_diff(&l4.udp->check,
712 (__force __wsum)htonl(l4_paylen));
713 } else {
714 hdr_len = (l4.tcp->doff << 2) + l4_offset;
715 csum_replace_by_diff(&l4.tcp->check,
716 (__force __wsum)htonl(l4_paylen));
717 }
718
719 /* find the txbd field values */
720 *paylen = skb->len - hdr_len;
721 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
722
723 /* get MSS for TSO */
724 *mss = skb_shinfo(skb)->gso_size;
725
726 trace_hns3_tso(skb);
727
728 return 0;
729 }
730
hns3_get_l4_protocol(struct sk_buff * skb,u8 * ol4_proto,u8 * il4_proto)731 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
732 u8 *il4_proto)
733 {
734 union l3_hdr_info l3;
735 unsigned char *l4_hdr;
736 unsigned char *exthdr;
737 u8 l4_proto_tmp;
738 __be16 frag_off;
739
740 /* find outer header point */
741 l3.hdr = skb_network_header(skb);
742 l4_hdr = skb_transport_header(skb);
743
744 if (skb->protocol == htons(ETH_P_IPV6)) {
745 exthdr = l3.hdr + sizeof(*l3.v6);
746 l4_proto_tmp = l3.v6->nexthdr;
747 if (l4_hdr != exthdr)
748 ipv6_skip_exthdr(skb, exthdr - skb->data,
749 &l4_proto_tmp, &frag_off);
750 } else if (skb->protocol == htons(ETH_P_IP)) {
751 l4_proto_tmp = l3.v4->protocol;
752 } else {
753 return -EINVAL;
754 }
755
756 *ol4_proto = l4_proto_tmp;
757
758 /* tunnel packet */
759 if (!skb->encapsulation) {
760 *il4_proto = 0;
761 return 0;
762 }
763
764 /* find inner header point */
765 l3.hdr = skb_inner_network_header(skb);
766 l4_hdr = skb_inner_transport_header(skb);
767
768 if (l3.v6->version == 6) {
769 exthdr = l3.hdr + sizeof(*l3.v6);
770 l4_proto_tmp = l3.v6->nexthdr;
771 if (l4_hdr != exthdr)
772 ipv6_skip_exthdr(skb, exthdr - skb->data,
773 &l4_proto_tmp, &frag_off);
774 } else if (l3.v4->version == 4) {
775 l4_proto_tmp = l3.v4->protocol;
776 }
777
778 *il4_proto = l4_proto_tmp;
779
780 return 0;
781 }
782
783 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
784 * and it is udp packet, which has a dest port as the IANA assigned.
785 * the hardware is expected to do the checksum offload, but the
786 * hardware will not do the checksum offload when udp dest port is
787 * 4789, 4790 or 6081.
788 */
hns3_tunnel_csum_bug(struct sk_buff * skb)789 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
790 {
791 union l4_hdr_info l4;
792
793 l4.hdr = skb_transport_header(skb);
794
795 if (!(!skb->encapsulation &&
796 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
797 l4.udp->dest == htons(GENEVE_UDP_PORT) ||
798 l4.udp->dest == htons(4790))))
799 return false;
800
801 return true;
802 }
803
hns3_set_outer_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u32 * ol_type_vlan_len_msec)804 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
805 u32 *ol_type_vlan_len_msec)
806 {
807 u32 l2_len, l3_len, l4_len;
808 unsigned char *il2_hdr;
809 union l3_hdr_info l3;
810 union l4_hdr_info l4;
811
812 l3.hdr = skb_network_header(skb);
813 l4.hdr = skb_transport_header(skb);
814
815 /* compute OL2 header size, defined in 2 Bytes */
816 l2_len = l3.hdr - skb->data;
817 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
818
819 /* compute OL3 header size, defined in 4 Bytes */
820 l3_len = l4.hdr - l3.hdr;
821 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
822
823 il2_hdr = skb_inner_mac_header(skb);
824 /* compute OL4 header size, defined in 4 Bytes */
825 l4_len = il2_hdr - l4.hdr;
826 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
827
828 /* define outer network header type */
829 if (skb->protocol == htons(ETH_P_IP)) {
830 if (skb_is_gso(skb))
831 hns3_set_field(*ol_type_vlan_len_msec,
832 HNS3_TXD_OL3T_S,
833 HNS3_OL3T_IPV4_CSUM);
834 else
835 hns3_set_field(*ol_type_vlan_len_msec,
836 HNS3_TXD_OL3T_S,
837 HNS3_OL3T_IPV4_NO_CSUM);
838
839 } else if (skb->protocol == htons(ETH_P_IPV6)) {
840 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
841 HNS3_OL3T_IPV6);
842 }
843
844 if (ol4_proto == IPPROTO_UDP)
845 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
846 HNS3_TUN_MAC_IN_UDP);
847 else if (ol4_proto == IPPROTO_GRE)
848 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
849 HNS3_TUN_NVGRE);
850 }
851
hns3_set_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u8 il4_proto,u32 * type_cs_vlan_tso,u32 * ol_type_vlan_len_msec)852 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
853 u8 il4_proto, u32 *type_cs_vlan_tso,
854 u32 *ol_type_vlan_len_msec)
855 {
856 unsigned char *l2_hdr = skb->data;
857 u32 l4_proto = ol4_proto;
858 union l4_hdr_info l4;
859 union l3_hdr_info l3;
860 u32 l2_len, l3_len;
861
862 l4.hdr = skb_transport_header(skb);
863 l3.hdr = skb_network_header(skb);
864
865 /* handle encapsulation skb */
866 if (skb->encapsulation) {
867 /* If this is a not UDP/GRE encapsulation skb */
868 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
869 /* drop the skb tunnel packet if hardware don't support,
870 * because hardware can't calculate csum when TSO.
871 */
872 if (skb_is_gso(skb))
873 return -EDOM;
874
875 /* the stack computes the IP header already,
876 * driver calculate l4 checksum when not TSO.
877 */
878 return skb_checksum_help(skb);
879 }
880
881 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
882
883 /* switch to inner header */
884 l2_hdr = skb_inner_mac_header(skb);
885 l3.hdr = skb_inner_network_header(skb);
886 l4.hdr = skb_inner_transport_header(skb);
887 l4_proto = il4_proto;
888 }
889
890 if (l3.v4->version == 4) {
891 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
892 HNS3_L3T_IPV4);
893
894 /* the stack computes the IP header already, the only time we
895 * need the hardware to recompute it is in the case of TSO.
896 */
897 if (skb_is_gso(skb))
898 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
899 } else if (l3.v6->version == 6) {
900 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
901 HNS3_L3T_IPV6);
902 }
903
904 /* compute inner(/normal) L2 header size, defined in 2 Bytes */
905 l2_len = l3.hdr - l2_hdr;
906 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
907
908 /* compute inner(/normal) L3 header size, defined in 4 Bytes */
909 l3_len = l4.hdr - l3.hdr;
910 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
911
912 /* compute inner(/normal) L4 header size, defined in 4 Bytes */
913 switch (l4_proto) {
914 case IPPROTO_TCP:
915 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
916 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
917 HNS3_L4T_TCP);
918 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
919 l4.tcp->doff);
920 break;
921 case IPPROTO_UDP:
922 if (hns3_tunnel_csum_bug(skb)) {
923 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
924
925 return ret ? ret : skb_checksum_help(skb);
926 }
927
928 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930 HNS3_L4T_UDP);
931 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
932 (sizeof(struct udphdr) >> 2));
933 break;
934 case IPPROTO_SCTP:
935 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
936 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
937 HNS3_L4T_SCTP);
938 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
939 (sizeof(struct sctphdr) >> 2));
940 break;
941 default:
942 /* drop the skb tunnel packet if hardware don't support,
943 * because hardware can't calculate csum when TSO.
944 */
945 if (skb_is_gso(skb))
946 return -EDOM;
947
948 /* the stack computes the IP header already,
949 * driver calculate l4 checksum when not TSO.
950 */
951 return skb_checksum_help(skb);
952 }
953
954 return 0;
955 }
956
hns3_handle_vtags(struct hns3_enet_ring * tx_ring,struct sk_buff * skb)957 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
958 struct sk_buff *skb)
959 {
960 struct hnae3_handle *handle = tx_ring->tqp->handle;
961 struct vlan_ethhdr *vhdr;
962 int rc;
963
964 if (!(skb->protocol == htons(ETH_P_8021Q) ||
965 skb_vlan_tag_present(skb)))
966 return 0;
967
968 /* Since HW limitation, if port based insert VLAN enabled, only one VLAN
969 * header is allowed in skb, otherwise it will cause RAS error.
970 */
971 if (unlikely(skb_vlan_tagged_multi(skb) &&
972 handle->port_base_vlan_state ==
973 HNAE3_PORT_BASE_VLAN_ENABLE))
974 return -EINVAL;
975
976 if (skb->protocol == htons(ETH_P_8021Q) &&
977 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
978 /* When HW VLAN acceleration is turned off, and the stack
979 * sets the protocol to 802.1q, the driver just need to
980 * set the protocol to the encapsulated ethertype.
981 */
982 skb->protocol = vlan_get_protocol(skb);
983 return 0;
984 }
985
986 if (skb_vlan_tag_present(skb)) {
987 /* Based on hw strategy, use out_vtag in two layer tag case,
988 * and use inner_vtag in one tag case.
989 */
990 if (skb->protocol == htons(ETH_P_8021Q) &&
991 handle->port_base_vlan_state ==
992 HNAE3_PORT_BASE_VLAN_DISABLE)
993 rc = HNS3_OUTER_VLAN_TAG;
994 else
995 rc = HNS3_INNER_VLAN_TAG;
996
997 skb->protocol = vlan_get_protocol(skb);
998 return rc;
999 }
1000
1001 rc = skb_cow_head(skb, 0);
1002 if (unlikely(rc < 0))
1003 return rc;
1004
1005 vhdr = (struct vlan_ethhdr *)skb->data;
1006 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1007 & VLAN_PRIO_MASK);
1008
1009 skb->protocol = vlan_get_protocol(skb);
1010 return 0;
1011 }
1012
hns3_fill_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc * desc)1013 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1014 struct sk_buff *skb, struct hns3_desc *desc)
1015 {
1016 u32 ol_type_vlan_len_msec = 0;
1017 u32 type_cs_vlan_tso = 0;
1018 u32 paylen = skb->len;
1019 u16 inner_vtag = 0;
1020 u16 out_vtag = 0;
1021 u16 mss = 0;
1022 int ret;
1023
1024 ret = hns3_handle_vtags(ring, skb);
1025 if (unlikely(ret < 0)) {
1026 u64_stats_update_begin(&ring->syncp);
1027 ring->stats.tx_vlan_err++;
1028 u64_stats_update_end(&ring->syncp);
1029 return ret;
1030 } else if (ret == HNS3_INNER_VLAN_TAG) {
1031 inner_vtag = skb_vlan_tag_get(skb);
1032 inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 VLAN_PRIO_MASK;
1034 hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1035 } else if (ret == HNS3_OUTER_VLAN_TAG) {
1036 out_vtag = skb_vlan_tag_get(skb);
1037 out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1038 VLAN_PRIO_MASK;
1039 hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1040 1);
1041 }
1042
1043 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1044 u8 ol4_proto, il4_proto;
1045
1046 skb_reset_mac_len(skb);
1047
1048 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1049 if (unlikely(ret < 0)) {
1050 u64_stats_update_begin(&ring->syncp);
1051 ring->stats.tx_l4_proto_err++;
1052 u64_stats_update_end(&ring->syncp);
1053 return ret;
1054 }
1055
1056 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1057 &type_cs_vlan_tso,
1058 &ol_type_vlan_len_msec);
1059 if (unlikely(ret < 0)) {
1060 u64_stats_update_begin(&ring->syncp);
1061 ring->stats.tx_l2l3l4_err++;
1062 u64_stats_update_end(&ring->syncp);
1063 return ret;
1064 }
1065
1066 ret = hns3_set_tso(skb, &paylen, &mss,
1067 &type_cs_vlan_tso);
1068 if (unlikely(ret < 0)) {
1069 u64_stats_update_begin(&ring->syncp);
1070 ring->stats.tx_tso_err++;
1071 u64_stats_update_end(&ring->syncp);
1072 return ret;
1073 }
1074 }
1075
1076 /* Set txbd */
1077 desc->tx.ol_type_vlan_len_msec =
1078 cpu_to_le32(ol_type_vlan_len_msec);
1079 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1080 desc->tx.paylen = cpu_to_le32(paylen);
1081 desc->tx.mss = cpu_to_le16(mss);
1082 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1083 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1084
1085 return 0;
1086 }
1087
hns3_fill_desc(struct hns3_enet_ring * ring,void * priv,unsigned int size,enum hns_desc_type type)1088 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1089 unsigned int size, enum hns_desc_type type)
1090 {
1091 #define HNS3_LIKELY_BD_NUM 1
1092
1093 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1094 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1095 struct device *dev = ring_to_dev(ring);
1096 skb_frag_t *frag;
1097 unsigned int frag_buf_num;
1098 int k, sizeoflast;
1099 dma_addr_t dma;
1100
1101 if (type == DESC_TYPE_FRAGLIST_SKB ||
1102 type == DESC_TYPE_SKB) {
1103 struct sk_buff *skb = (struct sk_buff *)priv;
1104
1105 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1106 } else {
1107 frag = (skb_frag_t *)priv;
1108 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1109 }
1110
1111 if (unlikely(dma_mapping_error(dev, dma))) {
1112 u64_stats_update_begin(&ring->syncp);
1113 ring->stats.sw_err_cnt++;
1114 u64_stats_update_end(&ring->syncp);
1115 return -ENOMEM;
1116 }
1117
1118 desc_cb->priv = priv;
1119 desc_cb->length = size;
1120 desc_cb->dma = dma;
1121 desc_cb->type = type;
1122
1123 if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124 desc->addr = cpu_to_le64(dma);
1125 desc->tx.send_size = cpu_to_le16(size);
1126 desc->tx.bdtp_fe_sc_vld_ra_ri =
1127 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1128
1129 trace_hns3_tx_desc(ring, ring->next_to_use);
1130 ring_ptr_move_fw(ring, next_to_use);
1131 return HNS3_LIKELY_BD_NUM;
1132 }
1133
1134 frag_buf_num = hns3_tx_bd_count(size);
1135 sizeoflast = size % HNS3_MAX_BD_SIZE;
1136 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1137
1138 /* When frag size is bigger than hardware limit, split this frag */
1139 for (k = 0; k < frag_buf_num; k++) {
1140 /* now, fill the descriptor */
1141 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1142 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1143 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1144 desc->tx.bdtp_fe_sc_vld_ra_ri =
1145 cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1146
1147 trace_hns3_tx_desc(ring, ring->next_to_use);
1148 /* move ring pointer to next */
1149 ring_ptr_move_fw(ring, next_to_use);
1150
1151 desc = &ring->desc[ring->next_to_use];
1152 }
1153
1154 return frag_buf_num;
1155 }
1156
hns3_skb_bd_num(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num)1157 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1158 unsigned int bd_num)
1159 {
1160 unsigned int size;
1161 int i;
1162
1163 size = skb_headlen(skb);
1164 while (size > HNS3_MAX_BD_SIZE) {
1165 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1166 size -= HNS3_MAX_BD_SIZE;
1167
1168 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1169 return bd_num;
1170 }
1171
1172 if (size) {
1173 bd_size[bd_num++] = size;
1174 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1175 return bd_num;
1176 }
1177
1178 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1179 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1180 size = skb_frag_size(frag);
1181 if (!size)
1182 continue;
1183
1184 while (size > HNS3_MAX_BD_SIZE) {
1185 bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1186 size -= HNS3_MAX_BD_SIZE;
1187
1188 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1189 return bd_num;
1190 }
1191
1192 bd_size[bd_num++] = size;
1193 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1194 return bd_num;
1195 }
1196
1197 return bd_num;
1198 }
1199
hns3_tx_bd_num(struct sk_buff * skb,unsigned int * bd_size,u8 max_non_tso_bd_num,unsigned int bd_num,unsigned int recursion_level)1200 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1201 u8 max_non_tso_bd_num, unsigned int bd_num,
1202 unsigned int recursion_level)
1203 {
1204 #define HNS3_MAX_RECURSION_LEVEL 24
1205
1206 struct sk_buff *frag_skb;
1207
1208 /* If the total len is within the max bd limit */
1209 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1210 !skb_has_frag_list(skb) &&
1211 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1212 return skb_shinfo(skb)->nr_frags + 1U;
1213
1214 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1215 return UINT_MAX;
1216
1217 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1218
1219 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1220 return bd_num;
1221
1222 skb_walk_frags(skb, frag_skb) {
1223 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1224 bd_num, recursion_level + 1);
1225 if (bd_num > HNS3_MAX_TSO_BD_NUM)
1226 return bd_num;
1227 }
1228
1229 return bd_num;
1230 }
1231
hns3_gso_hdr_len(struct sk_buff * skb)1232 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1233 {
1234 if (!skb->encapsulation)
1235 return skb_transport_offset(skb) + tcp_hdrlen(skb);
1236
1237 return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1238 }
1239
1240 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1241 * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1242 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1243 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1244 * than MSS except the last max_non_tso_bd_num - 1 frags.
1245 */
hns3_skb_need_linearized(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num,u8 max_non_tso_bd_num)1246 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1247 unsigned int bd_num, u8 max_non_tso_bd_num)
1248 {
1249 unsigned int tot_len = 0;
1250 int i;
1251
1252 for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1253 tot_len += bd_size[i];
1254
1255 /* ensure the first max_non_tso_bd_num frags is greater than
1256 * mss + header
1257 */
1258 if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1259 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1260 return true;
1261
1262 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1263 * than mss except the last one.
1264 */
1265 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1266 tot_len -= bd_size[i];
1267 tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1268
1269 if (tot_len < skb_shinfo(skb)->gso_size)
1270 return true;
1271 }
1272
1273 return false;
1274 }
1275
hns3_shinfo_pack(struct skb_shared_info * shinfo,__u32 * size)1276 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1277 {
1278 int i;
1279
1280 for (i = 0; i < MAX_SKB_FRAGS; i++)
1281 size[i] = skb_frag_size(&shinfo->frags[i]);
1282 }
1283
hns3_skb_linearize(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int bd_num)1284 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1285 struct sk_buff *skb,
1286 unsigned int bd_num)
1287 {
1288 /* 'bd_num == UINT_MAX' means the skb' fraglist has a
1289 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1290 */
1291 if (bd_num == UINT_MAX) {
1292 u64_stats_update_begin(&ring->syncp);
1293 ring->stats.over_max_recursion++;
1294 u64_stats_update_end(&ring->syncp);
1295 return -ENOMEM;
1296 }
1297
1298 /* The skb->len has exceeded the hw limitation, linearization
1299 * will not help.
1300 */
1301 if (skb->len > HNS3_MAX_TSO_SIZE ||
1302 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1303 u64_stats_update_begin(&ring->syncp);
1304 ring->stats.hw_limitation++;
1305 u64_stats_update_end(&ring->syncp);
1306 return -ENOMEM;
1307 }
1308
1309 if (__skb_linearize(skb)) {
1310 u64_stats_update_begin(&ring->syncp);
1311 ring->stats.sw_err_cnt++;
1312 u64_stats_update_end(&ring->syncp);
1313 return -ENOMEM;
1314 }
1315
1316 return 0;
1317 }
1318
hns3_nic_maybe_stop_tx(struct hns3_enet_ring * ring,struct net_device * netdev,struct sk_buff * skb)1319 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1320 struct net_device *netdev,
1321 struct sk_buff *skb)
1322 {
1323 struct hns3_nic_priv *priv = netdev_priv(netdev);
1324 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1325 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1326 unsigned int bd_num;
1327
1328 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1329 if (unlikely(bd_num > max_non_tso_bd_num)) {
1330 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1331 !hns3_skb_need_linearized(skb, bd_size, bd_num,
1332 max_non_tso_bd_num)) {
1333 trace_hns3_over_max_bd(skb);
1334 goto out;
1335 }
1336
1337 if (hns3_skb_linearize(ring, skb, bd_num))
1338 return -ENOMEM;
1339
1340 bd_num = hns3_tx_bd_count(skb->len);
1341
1342 u64_stats_update_begin(&ring->syncp);
1343 ring->stats.tx_copy++;
1344 u64_stats_update_end(&ring->syncp);
1345 }
1346
1347 out:
1348 if (likely(ring_space(ring) >= bd_num))
1349 return bd_num;
1350
1351 netif_stop_subqueue(netdev, ring->queue_index);
1352 smp_mb(); /* Memory barrier before checking ring_space */
1353
1354 /* Start queue in case hns3_clean_tx_ring has just made room
1355 * available and has not seen the queue stopped state performed
1356 * by netif_stop_subqueue above.
1357 */
1358 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1359 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1360 netif_start_subqueue(netdev, ring->queue_index);
1361 return bd_num;
1362 }
1363
1364 u64_stats_update_begin(&ring->syncp);
1365 ring->stats.tx_busy++;
1366 u64_stats_update_end(&ring->syncp);
1367
1368 return -EBUSY;
1369 }
1370
hns3_clear_desc(struct hns3_enet_ring * ring,int next_to_use_orig)1371 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1372 {
1373 struct device *dev = ring_to_dev(ring);
1374 unsigned int i;
1375
1376 for (i = 0; i < ring->desc_num; i++) {
1377 struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1378
1379 memset(desc, 0, sizeof(*desc));
1380
1381 /* check if this is where we started */
1382 if (ring->next_to_use == next_to_use_orig)
1383 break;
1384
1385 /* rollback one */
1386 ring_ptr_move_bw(ring, next_to_use);
1387
1388 if (!ring->desc_cb[ring->next_to_use].dma)
1389 continue;
1390
1391 /* unmap the descriptor dma address */
1392 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1393 ring->desc_cb[ring->next_to_use].type ==
1394 DESC_TYPE_FRAGLIST_SKB)
1395 dma_unmap_single(dev,
1396 ring->desc_cb[ring->next_to_use].dma,
1397 ring->desc_cb[ring->next_to_use].length,
1398 DMA_TO_DEVICE);
1399 else if (ring->desc_cb[ring->next_to_use].length)
1400 dma_unmap_page(dev,
1401 ring->desc_cb[ring->next_to_use].dma,
1402 ring->desc_cb[ring->next_to_use].length,
1403 DMA_TO_DEVICE);
1404
1405 ring->desc_cb[ring->next_to_use].length = 0;
1406 ring->desc_cb[ring->next_to_use].dma = 0;
1407 ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1408 }
1409 }
1410
hns3_fill_skb_to_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,enum hns_desc_type type)1411 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1412 struct sk_buff *skb, enum hns_desc_type type)
1413 {
1414 unsigned int size = skb_headlen(skb);
1415 struct sk_buff *frag_skb;
1416 int i, ret, bd_num = 0;
1417
1418 if (size) {
1419 ret = hns3_fill_desc(ring, skb, size, type);
1420 if (unlikely(ret < 0))
1421 return ret;
1422
1423 bd_num += ret;
1424 }
1425
1426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1428
1429 size = skb_frag_size(frag);
1430 if (!size)
1431 continue;
1432
1433 ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1434 if (unlikely(ret < 0))
1435 return ret;
1436
1437 bd_num += ret;
1438 }
1439
1440 skb_walk_frags(skb, frag_skb) {
1441 ret = hns3_fill_skb_to_desc(ring, frag_skb,
1442 DESC_TYPE_FRAGLIST_SKB);
1443 if (unlikely(ret < 0))
1444 return ret;
1445
1446 bd_num += ret;
1447 }
1448
1449 return bd_num;
1450 }
1451
hns3_tx_doorbell(struct hns3_enet_ring * ring,int num,bool doorbell)1452 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1453 bool doorbell)
1454 {
1455 ring->pending_buf += num;
1456
1457 if (!doorbell) {
1458 u64_stats_update_begin(&ring->syncp);
1459 ring->stats.tx_more++;
1460 u64_stats_update_end(&ring->syncp);
1461 return;
1462 }
1463
1464 if (!ring->pending_buf)
1465 return;
1466
1467 writel(ring->pending_buf,
1468 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1469 ring->pending_buf = 0;
1470 WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1471 }
1472
hns3_nic_net_xmit(struct sk_buff * skb,struct net_device * netdev)1473 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1474 {
1475 struct hns3_nic_priv *priv = netdev_priv(netdev);
1476 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1477 struct netdev_queue *dev_queue;
1478 int pre_ntu, next_to_use_head;
1479 bool doorbell;
1480 int ret;
1481
1482 /* Hardware can only handle short frames above 32 bytes */
1483 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1484 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1485 return NETDEV_TX_OK;
1486 }
1487
1488 /* Prefetch the data used later */
1489 prefetch(skb->data);
1490
1491 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1492 if (unlikely(ret <= 0)) {
1493 if (ret == -EBUSY) {
1494 hns3_tx_doorbell(ring, 0, true);
1495 return NETDEV_TX_BUSY;
1496 }
1497
1498 hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1499 goto out_err_tx_ok;
1500 }
1501
1502 next_to_use_head = ring->next_to_use;
1503
1504 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1505 if (unlikely(ret < 0))
1506 goto fill_err;
1507
1508 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1509 * zero, which is unlikely, and 'ret > 0' means how many tx desc
1510 * need to be notified to the hw.
1511 */
1512 ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1513 if (unlikely(ret <= 0))
1514 goto fill_err;
1515
1516 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1517 (ring->desc_num - 1);
1518 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1519 cpu_to_le16(BIT(HNS3_TXD_FE_B));
1520 trace_hns3_tx_desc(ring, pre_ntu);
1521
1522 /* Complete translate all packets */
1523 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1524 doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1525 netdev_xmit_more());
1526 hns3_tx_doorbell(ring, ret, doorbell);
1527
1528 return NETDEV_TX_OK;
1529
1530 fill_err:
1531 hns3_clear_desc(ring, next_to_use_head);
1532
1533 out_err_tx_ok:
1534 dev_kfree_skb_any(skb);
1535 hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1536 return NETDEV_TX_OK;
1537 }
1538
hns3_nic_net_set_mac_address(struct net_device * netdev,void * p)1539 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1540 {
1541 struct hnae3_handle *h = hns3_get_handle(netdev);
1542 struct sockaddr *mac_addr = p;
1543 int ret;
1544
1545 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1546 return -EADDRNOTAVAIL;
1547
1548 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1549 netdev_info(netdev, "already using mac address %pM\n",
1550 mac_addr->sa_data);
1551 return 0;
1552 }
1553
1554 /* For VF device, if there is a perm_addr, then the user will not
1555 * be allowed to change the address.
1556 */
1557 if (!hns3_is_phys_func(h->pdev) &&
1558 !is_zero_ether_addr(netdev->perm_addr)) {
1559 netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1560 netdev->perm_addr, mac_addr->sa_data);
1561 return -EPERM;
1562 }
1563
1564 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1565 if (ret) {
1566 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1567 return ret;
1568 }
1569
1570 ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1571
1572 return 0;
1573 }
1574
hns3_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1575 static int hns3_nic_do_ioctl(struct net_device *netdev,
1576 struct ifreq *ifr, int cmd)
1577 {
1578 struct hnae3_handle *h = hns3_get_handle(netdev);
1579
1580 if (!netif_running(netdev))
1581 return -EINVAL;
1582
1583 if (!h->ae_algo->ops->do_ioctl)
1584 return -EOPNOTSUPP;
1585
1586 return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1587 }
1588
hns3_nic_set_features(struct net_device * netdev,netdev_features_t features)1589 static int hns3_nic_set_features(struct net_device *netdev,
1590 netdev_features_t features)
1591 {
1592 netdev_features_t changed = netdev->features ^ features;
1593 struct hns3_nic_priv *priv = netdev_priv(netdev);
1594 struct hnae3_handle *h = priv->ae_handle;
1595 bool enable;
1596 int ret;
1597
1598 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1599 enable = !!(features & NETIF_F_GRO_HW);
1600 ret = h->ae_algo->ops->set_gro_en(h, enable);
1601 if (ret)
1602 return ret;
1603 }
1604
1605 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1606 h->ae_algo->ops->enable_hw_strip_rxvtag) {
1607 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1608 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1609 if (ret)
1610 return ret;
1611 }
1612
1613 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1614 enable = !!(features & NETIF_F_NTUPLE);
1615 h->ae_algo->ops->enable_fd(h, enable);
1616 }
1617
1618 netdev->features = features;
1619 return 0;
1620 }
1621
hns3_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1622 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1623 struct net_device *dev,
1624 netdev_features_t features)
1625 {
1626 #define HNS3_MAX_HDR_LEN 480U
1627 #define HNS3_MAX_L4_HDR_LEN 60U
1628
1629 size_t len;
1630
1631 if (skb->ip_summed != CHECKSUM_PARTIAL)
1632 return features;
1633
1634 if (skb->encapsulation)
1635 len = skb_inner_transport_header(skb) - skb->data;
1636 else
1637 len = skb_transport_header(skb) - skb->data;
1638
1639 /* Assume L4 is 60 byte as TCP is the only protocol with a
1640 * a flexible value, and it's max len is 60 bytes.
1641 */
1642 len += HNS3_MAX_L4_HDR_LEN;
1643
1644 /* Hardware only supports checksum on the skb with a max header
1645 * len of 480 bytes.
1646 */
1647 if (len > HNS3_MAX_HDR_LEN)
1648 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1649
1650 return features;
1651 }
1652
hns3_nic_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1653 static void hns3_nic_get_stats64(struct net_device *netdev,
1654 struct rtnl_link_stats64 *stats)
1655 {
1656 struct hns3_nic_priv *priv = netdev_priv(netdev);
1657 int queue_num = priv->ae_handle->kinfo.num_tqps;
1658 struct hnae3_handle *handle = priv->ae_handle;
1659 struct hns3_enet_ring *ring;
1660 u64 rx_length_errors = 0;
1661 u64 rx_crc_errors = 0;
1662 u64 rx_multicast = 0;
1663 unsigned int start;
1664 u64 tx_errors = 0;
1665 u64 rx_errors = 0;
1666 unsigned int idx;
1667 u64 tx_bytes = 0;
1668 u64 rx_bytes = 0;
1669 u64 tx_pkts = 0;
1670 u64 rx_pkts = 0;
1671 u64 tx_drop = 0;
1672 u64 rx_drop = 0;
1673
1674 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1675 return;
1676
1677 handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1678
1679 for (idx = 0; idx < queue_num; idx++) {
1680 /* fetch the tx stats */
1681 ring = &priv->ring[idx];
1682 do {
1683 start = u64_stats_fetch_begin_irq(&ring->syncp);
1684 tx_bytes += ring->stats.tx_bytes;
1685 tx_pkts += ring->stats.tx_pkts;
1686 tx_drop += ring->stats.sw_err_cnt;
1687 tx_drop += ring->stats.tx_vlan_err;
1688 tx_drop += ring->stats.tx_l4_proto_err;
1689 tx_drop += ring->stats.tx_l2l3l4_err;
1690 tx_drop += ring->stats.tx_tso_err;
1691 tx_drop += ring->stats.over_max_recursion;
1692 tx_drop += ring->stats.hw_limitation;
1693 tx_errors += ring->stats.sw_err_cnt;
1694 tx_errors += ring->stats.tx_vlan_err;
1695 tx_errors += ring->stats.tx_l4_proto_err;
1696 tx_errors += ring->stats.tx_l2l3l4_err;
1697 tx_errors += ring->stats.tx_tso_err;
1698 tx_errors += ring->stats.over_max_recursion;
1699 tx_errors += ring->stats.hw_limitation;
1700 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1701
1702 /* fetch the rx stats */
1703 ring = &priv->ring[idx + queue_num];
1704 do {
1705 start = u64_stats_fetch_begin_irq(&ring->syncp);
1706 rx_bytes += ring->stats.rx_bytes;
1707 rx_pkts += ring->stats.rx_pkts;
1708 rx_drop += ring->stats.l2_err;
1709 rx_errors += ring->stats.l2_err;
1710 rx_errors += ring->stats.l3l4_csum_err;
1711 rx_crc_errors += ring->stats.l2_err;
1712 rx_multicast += ring->stats.rx_multicast;
1713 rx_length_errors += ring->stats.err_pkt_len;
1714 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1715 }
1716
1717 stats->tx_bytes = tx_bytes;
1718 stats->tx_packets = tx_pkts;
1719 stats->rx_bytes = rx_bytes;
1720 stats->rx_packets = rx_pkts;
1721
1722 stats->rx_errors = rx_errors;
1723 stats->multicast = rx_multicast;
1724 stats->rx_length_errors = rx_length_errors;
1725 stats->rx_crc_errors = rx_crc_errors;
1726 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1727
1728 stats->tx_errors = tx_errors;
1729 stats->rx_dropped = rx_drop;
1730 stats->tx_dropped = tx_drop;
1731 stats->collisions = netdev->stats.collisions;
1732 stats->rx_over_errors = netdev->stats.rx_over_errors;
1733 stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1734 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1735 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1736 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1737 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1738 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1739 stats->tx_window_errors = netdev->stats.tx_window_errors;
1740 stats->rx_compressed = netdev->stats.rx_compressed;
1741 stats->tx_compressed = netdev->stats.tx_compressed;
1742 }
1743
hns3_setup_tc(struct net_device * netdev,void * type_data)1744 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1745 {
1746 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1747 u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1748 struct hnae3_knic_private_info *kinfo;
1749 u8 tc = mqprio_qopt->qopt.num_tc;
1750 u16 mode = mqprio_qopt->mode;
1751 u8 hw = mqprio_qopt->qopt.hw;
1752 struct hnae3_handle *h;
1753
1754 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1755 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1756 return -EOPNOTSUPP;
1757
1758 if (tc > HNAE3_MAX_TC)
1759 return -EINVAL;
1760
1761 if (!netdev)
1762 return -EINVAL;
1763
1764 h = hns3_get_handle(netdev);
1765 kinfo = &h->kinfo;
1766
1767 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1768
1769 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1770 kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1771 }
1772
hns3_nic_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1773 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1774 void *type_data)
1775 {
1776 if (type != TC_SETUP_QDISC_MQPRIO)
1777 return -EOPNOTSUPP;
1778
1779 return hns3_setup_tc(dev, type_data);
1780 }
1781
hns3_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1782 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1783 __be16 proto, u16 vid)
1784 {
1785 struct hnae3_handle *h = hns3_get_handle(netdev);
1786 int ret = -EIO;
1787
1788 if (h->ae_algo->ops->set_vlan_filter)
1789 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1790
1791 return ret;
1792 }
1793
hns3_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1794 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1795 __be16 proto, u16 vid)
1796 {
1797 struct hnae3_handle *h = hns3_get_handle(netdev);
1798 int ret = -EIO;
1799
1800 if (h->ae_algo->ops->set_vlan_filter)
1801 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1802
1803 return ret;
1804 }
1805
hns3_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)1806 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1807 u8 qos, __be16 vlan_proto)
1808 {
1809 struct hnae3_handle *h = hns3_get_handle(netdev);
1810 int ret = -EIO;
1811
1812 netif_dbg(h, drv, netdev,
1813 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1814 vf, vlan, qos, ntohs(vlan_proto));
1815
1816 if (h->ae_algo->ops->set_vf_vlan_filter)
1817 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1818 qos, vlan_proto);
1819
1820 return ret;
1821 }
1822
hns3_set_vf_spoofchk(struct net_device * netdev,int vf,bool enable)1823 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1824 {
1825 struct hnae3_handle *handle = hns3_get_handle(netdev);
1826
1827 if (hns3_nic_resetting(netdev))
1828 return -EBUSY;
1829
1830 if (!handle->ae_algo->ops->set_vf_spoofchk)
1831 return -EOPNOTSUPP;
1832
1833 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1834 }
1835
hns3_set_vf_trust(struct net_device * netdev,int vf,bool enable)1836 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1837 {
1838 struct hnae3_handle *handle = hns3_get_handle(netdev);
1839
1840 if (!handle->ae_algo->ops->set_vf_trust)
1841 return -EOPNOTSUPP;
1842
1843 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1844 }
1845
hns3_nic_change_mtu(struct net_device * netdev,int new_mtu)1846 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1847 {
1848 struct hnae3_handle *h = hns3_get_handle(netdev);
1849 int ret;
1850
1851 if (hns3_nic_resetting(netdev))
1852 return -EBUSY;
1853
1854 if (!h->ae_algo->ops->set_mtu)
1855 return -EOPNOTSUPP;
1856
1857 netif_dbg(h, drv, netdev,
1858 "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1859
1860 ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1861 if (ret)
1862 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1863 ret);
1864 else
1865 netdev->mtu = new_mtu;
1866
1867 return ret;
1868 }
1869
hns3_get_tx_timeo_queue_info(struct net_device * ndev)1870 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1871 {
1872 struct hns3_nic_priv *priv = netdev_priv(ndev);
1873 struct hnae3_handle *h = hns3_get_handle(ndev);
1874 struct hns3_enet_ring *tx_ring;
1875 struct napi_struct *napi;
1876 int timeout_queue = 0;
1877 int hw_head, hw_tail;
1878 int fbd_num, fbd_oft;
1879 int ebd_num, ebd_oft;
1880 int bd_num, bd_err;
1881 int ring_en, tc;
1882 int i;
1883
1884 /* Find the stopped queue the same way the stack does */
1885 for (i = 0; i < ndev->num_tx_queues; i++) {
1886 struct netdev_queue *q;
1887 unsigned long trans_start;
1888
1889 q = netdev_get_tx_queue(ndev, i);
1890 trans_start = q->trans_start;
1891 if (netif_xmit_stopped(q) &&
1892 time_after(jiffies,
1893 (trans_start + ndev->watchdog_timeo))) {
1894 timeout_queue = i;
1895 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1896 q->state,
1897 jiffies_to_msecs(jiffies - trans_start));
1898 break;
1899 }
1900 }
1901
1902 if (i == ndev->num_tx_queues) {
1903 netdev_info(ndev,
1904 "no netdev TX timeout queue found, timeout count: %llu\n",
1905 priv->tx_timeout_count);
1906 return false;
1907 }
1908
1909 priv->tx_timeout_count++;
1910
1911 tx_ring = &priv->ring[timeout_queue];
1912 napi = &tx_ring->tqp_vector->napi;
1913
1914 netdev_info(ndev,
1915 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1916 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1917 tx_ring->next_to_clean, napi->state);
1918
1919 netdev_info(ndev,
1920 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
1921 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1922 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
1923
1924 netdev_info(ndev,
1925 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
1926 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
1927 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1928
1929 /* When mac received many pause frames continuous, it's unable to send
1930 * packets, which may cause tx timeout
1931 */
1932 if (h->ae_algo->ops->get_mac_stats) {
1933 struct hns3_mac_stats mac_stats;
1934
1935 h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1936 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1937 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1938 }
1939
1940 hw_head = readl_relaxed(tx_ring->tqp->io_base +
1941 HNS3_RING_TX_RING_HEAD_REG);
1942 hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1943 HNS3_RING_TX_RING_TAIL_REG);
1944 fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1945 HNS3_RING_TX_RING_FBDNUM_REG);
1946 fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1947 HNS3_RING_TX_RING_OFFSET_REG);
1948 ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1949 HNS3_RING_TX_RING_EBDNUM_REG);
1950 ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1951 HNS3_RING_TX_RING_EBD_OFFSET_REG);
1952 bd_num = readl_relaxed(tx_ring->tqp->io_base +
1953 HNS3_RING_TX_RING_BD_NUM_REG);
1954 bd_err = readl_relaxed(tx_ring->tqp->io_base +
1955 HNS3_RING_TX_RING_BD_ERR_REG);
1956 ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1957 tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1958
1959 netdev_info(ndev,
1960 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1961 bd_num, hw_head, hw_tail, bd_err,
1962 readl(tx_ring->tqp_vector->mask_addr));
1963 netdev_info(ndev,
1964 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1965 ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1966
1967 return true;
1968 }
1969
hns3_nic_net_timeout(struct net_device * ndev,unsigned int txqueue)1970 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1971 {
1972 struct hns3_nic_priv *priv = netdev_priv(ndev);
1973 struct hnae3_handle *h = priv->ae_handle;
1974
1975 if (!hns3_get_tx_timeo_queue_info(ndev))
1976 return;
1977
1978 /* request the reset, and let the hclge to determine
1979 * which reset level should be done
1980 */
1981 if (h->ae_algo->ops->reset_event)
1982 h->ae_algo->ops->reset_event(h->pdev, h);
1983 }
1984
1985 #ifdef CONFIG_RFS_ACCEL
hns3_rx_flow_steer(struct net_device * dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)1986 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1987 u16 rxq_index, u32 flow_id)
1988 {
1989 struct hnae3_handle *h = hns3_get_handle(dev);
1990 struct flow_keys fkeys;
1991
1992 if (!h->ae_algo->ops->add_arfs_entry)
1993 return -EOPNOTSUPP;
1994
1995 if (skb->encapsulation)
1996 return -EPROTONOSUPPORT;
1997
1998 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1999 return -EPROTONOSUPPORT;
2000
2001 if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2002 fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2003 (fkeys.basic.ip_proto != IPPROTO_TCP &&
2004 fkeys.basic.ip_proto != IPPROTO_UDP))
2005 return -EPROTONOSUPPORT;
2006
2007 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2008 }
2009 #endif
2010
hns3_nic_get_vf_config(struct net_device * ndev,int vf,struct ifla_vf_info * ivf)2011 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2012 struct ifla_vf_info *ivf)
2013 {
2014 struct hnae3_handle *h = hns3_get_handle(ndev);
2015
2016 if (!h->ae_algo->ops->get_vf_config)
2017 return -EOPNOTSUPP;
2018
2019 return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2020 }
2021
hns3_nic_set_vf_link_state(struct net_device * ndev,int vf,int link_state)2022 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2023 int link_state)
2024 {
2025 struct hnae3_handle *h = hns3_get_handle(ndev);
2026
2027 if (!h->ae_algo->ops->set_vf_link_state)
2028 return -EOPNOTSUPP;
2029
2030 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2031 }
2032
hns3_nic_set_vf_rate(struct net_device * ndev,int vf,int min_tx_rate,int max_tx_rate)2033 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2034 int min_tx_rate, int max_tx_rate)
2035 {
2036 struct hnae3_handle *h = hns3_get_handle(ndev);
2037
2038 if (!h->ae_algo->ops->set_vf_rate)
2039 return -EOPNOTSUPP;
2040
2041 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2042 false);
2043 }
2044
hns3_nic_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)2045 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2046 {
2047 struct hnae3_handle *h = hns3_get_handle(netdev);
2048
2049 if (!h->ae_algo->ops->set_vf_mac)
2050 return -EOPNOTSUPP;
2051
2052 if (is_multicast_ether_addr(mac)) {
2053 netdev_err(netdev,
2054 "Invalid MAC:%pM specified. Could not set MAC\n",
2055 mac);
2056 return -EINVAL;
2057 }
2058
2059 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2060 }
2061
2062 static const struct net_device_ops hns3_nic_netdev_ops = {
2063 .ndo_open = hns3_nic_net_open,
2064 .ndo_stop = hns3_nic_net_stop,
2065 .ndo_start_xmit = hns3_nic_net_xmit,
2066 .ndo_tx_timeout = hns3_nic_net_timeout,
2067 .ndo_set_mac_address = hns3_nic_net_set_mac_address,
2068 .ndo_do_ioctl = hns3_nic_do_ioctl,
2069 .ndo_change_mtu = hns3_nic_change_mtu,
2070 .ndo_set_features = hns3_nic_set_features,
2071 .ndo_features_check = hns3_features_check,
2072 .ndo_get_stats64 = hns3_nic_get_stats64,
2073 .ndo_setup_tc = hns3_nic_setup_tc,
2074 .ndo_set_rx_mode = hns3_nic_set_rx_mode,
2075 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
2076 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
2077 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
2078 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk,
2079 .ndo_set_vf_trust = hns3_set_vf_trust,
2080 #ifdef CONFIG_RFS_ACCEL
2081 .ndo_rx_flow_steer = hns3_rx_flow_steer,
2082 #endif
2083 .ndo_get_vf_config = hns3_nic_get_vf_config,
2084 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state,
2085 .ndo_set_vf_rate = hns3_nic_set_vf_rate,
2086 .ndo_set_vf_mac = hns3_nic_set_vf_mac,
2087 };
2088
hns3_is_phys_func(struct pci_dev * pdev)2089 bool hns3_is_phys_func(struct pci_dev *pdev)
2090 {
2091 u32 dev_id = pdev->device;
2092
2093 switch (dev_id) {
2094 case HNAE3_DEV_ID_GE:
2095 case HNAE3_DEV_ID_25GE:
2096 case HNAE3_DEV_ID_25GE_RDMA:
2097 case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2098 case HNAE3_DEV_ID_50GE_RDMA:
2099 case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2100 case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2101 case HNAE3_DEV_ID_200G_RDMA:
2102 return true;
2103 case HNAE3_DEV_ID_VF:
2104 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2105 return false;
2106 default:
2107 dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2108 dev_id);
2109 }
2110
2111 return false;
2112 }
2113
hns3_disable_sriov(struct pci_dev * pdev)2114 static void hns3_disable_sriov(struct pci_dev *pdev)
2115 {
2116 /* If our VFs are assigned we cannot shut down SR-IOV
2117 * without causing issues, so just leave the hardware
2118 * available but disabled
2119 */
2120 if (pci_vfs_assigned(pdev)) {
2121 dev_warn(&pdev->dev,
2122 "disabling driver while VFs are assigned\n");
2123 return;
2124 }
2125
2126 pci_disable_sriov(pdev);
2127 }
2128
2129 /* hns3_probe - Device initialization routine
2130 * @pdev: PCI device information struct
2131 * @ent: entry in hns3_pci_tbl
2132 *
2133 * hns3_probe initializes a PF identified by a pci_dev structure.
2134 * The OS initialization, configuring of the PF private structure,
2135 * and a hardware reset occur.
2136 *
2137 * Returns 0 on success, negative on failure
2138 */
hns3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2139 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2140 {
2141 struct hnae3_ae_dev *ae_dev;
2142 int ret;
2143
2144 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2145 if (!ae_dev)
2146 return -ENOMEM;
2147
2148 ae_dev->pdev = pdev;
2149 ae_dev->flag = ent->driver_data;
2150 pci_set_drvdata(pdev, ae_dev);
2151
2152 ret = hnae3_register_ae_dev(ae_dev);
2153 if (ret)
2154 pci_set_drvdata(pdev, NULL);
2155
2156 return ret;
2157 }
2158
2159 /* hns3_remove - Device removal routine
2160 * @pdev: PCI device information struct
2161 */
hns3_remove(struct pci_dev * pdev)2162 static void hns3_remove(struct pci_dev *pdev)
2163 {
2164 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2165
2166 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2167 hns3_disable_sriov(pdev);
2168
2169 hnae3_unregister_ae_dev(ae_dev);
2170 pci_set_drvdata(pdev, NULL);
2171 }
2172
2173 /**
2174 * hns3_pci_sriov_configure
2175 * @pdev: pointer to a pci_dev structure
2176 * @num_vfs: number of VFs to allocate
2177 *
2178 * Enable or change the number of VFs. Called when the user updates the number
2179 * of VFs in sysfs.
2180 **/
hns3_pci_sriov_configure(struct pci_dev * pdev,int num_vfs)2181 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2182 {
2183 int ret;
2184
2185 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2186 dev_warn(&pdev->dev, "Can not config SRIOV\n");
2187 return -EINVAL;
2188 }
2189
2190 if (num_vfs) {
2191 ret = pci_enable_sriov(pdev, num_vfs);
2192 if (ret)
2193 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2194 else
2195 return num_vfs;
2196 } else if (!pci_vfs_assigned(pdev)) {
2197 pci_disable_sriov(pdev);
2198 } else {
2199 dev_warn(&pdev->dev,
2200 "Unable to free VFs because some are assigned to VMs.\n");
2201 }
2202
2203 return 0;
2204 }
2205
hns3_shutdown(struct pci_dev * pdev)2206 static void hns3_shutdown(struct pci_dev *pdev)
2207 {
2208 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2209
2210 hnae3_unregister_ae_dev(ae_dev);
2211 pci_set_drvdata(pdev, NULL);
2212
2213 if (system_state == SYSTEM_POWER_OFF)
2214 pci_set_power_state(pdev, PCI_D3hot);
2215 }
2216
hns3_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2217 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2218 pci_channel_state_t state)
2219 {
2220 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2221 pci_ers_result_t ret;
2222
2223 dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2224
2225 if (state == pci_channel_io_perm_failure)
2226 return PCI_ERS_RESULT_DISCONNECT;
2227
2228 if (!ae_dev || !ae_dev->ops) {
2229 dev_err(&pdev->dev,
2230 "Can't recover - error happened before device initialized\n");
2231 return PCI_ERS_RESULT_NONE;
2232 }
2233
2234 if (ae_dev->ops->handle_hw_ras_error)
2235 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2236 else
2237 return PCI_ERS_RESULT_NONE;
2238
2239 return ret;
2240 }
2241
hns3_slot_reset(struct pci_dev * pdev)2242 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2243 {
2244 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2245 const struct hnae3_ae_ops *ops;
2246 enum hnae3_reset_type reset_type;
2247 struct device *dev = &pdev->dev;
2248
2249 if (!ae_dev || !ae_dev->ops)
2250 return PCI_ERS_RESULT_NONE;
2251
2252 ops = ae_dev->ops;
2253 /* request the reset */
2254 if (ops->reset_event && ops->get_reset_level &&
2255 ops->set_default_reset_request) {
2256 if (ae_dev->hw_err_reset_req) {
2257 reset_type = ops->get_reset_level(ae_dev,
2258 &ae_dev->hw_err_reset_req);
2259 ops->set_default_reset_request(ae_dev, reset_type);
2260 dev_info(dev, "requesting reset due to PCI error\n");
2261 ops->reset_event(pdev, NULL);
2262 }
2263
2264 return PCI_ERS_RESULT_RECOVERED;
2265 }
2266
2267 return PCI_ERS_RESULT_DISCONNECT;
2268 }
2269
hns3_reset_prepare(struct pci_dev * pdev)2270 static void hns3_reset_prepare(struct pci_dev *pdev)
2271 {
2272 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2273
2274 dev_info(&pdev->dev, "FLR prepare\n");
2275 if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2276 ae_dev->ops->flr_prepare(ae_dev);
2277 }
2278
hns3_reset_done(struct pci_dev * pdev)2279 static void hns3_reset_done(struct pci_dev *pdev)
2280 {
2281 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2282
2283 dev_info(&pdev->dev, "FLR done\n");
2284 if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2285 ae_dev->ops->flr_done(ae_dev);
2286 }
2287
2288 static const struct pci_error_handlers hns3_err_handler = {
2289 .error_detected = hns3_error_detected,
2290 .slot_reset = hns3_slot_reset,
2291 .reset_prepare = hns3_reset_prepare,
2292 .reset_done = hns3_reset_done,
2293 };
2294
2295 static struct pci_driver hns3_driver = {
2296 .name = hns3_driver_name,
2297 .id_table = hns3_pci_tbl,
2298 .probe = hns3_probe,
2299 .remove = hns3_remove,
2300 .shutdown = hns3_shutdown,
2301 .sriov_configure = hns3_pci_sriov_configure,
2302 .err_handler = &hns3_err_handler,
2303 };
2304
2305 /* set default feature to hns3 */
hns3_set_default_feature(struct net_device * netdev)2306 static void hns3_set_default_feature(struct net_device *netdev)
2307 {
2308 struct hnae3_handle *h = hns3_get_handle(netdev);
2309 struct pci_dev *pdev = h->pdev;
2310 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2311
2312 netdev->priv_flags |= IFF_UNICAST_FLT;
2313
2314 netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2315 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2316 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2317 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2318 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2319 NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2320
2321 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2322
2323 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2324 NETIF_F_HW_VLAN_CTAG_FILTER |
2325 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2326 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2327 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2328 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2329 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2330 NETIF_F_FRAGLIST;
2331
2332 netdev->vlan_features |=
2333 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2334 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2335 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2336 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2337 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2338 NETIF_F_FRAGLIST;
2339
2340 netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2341 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2342 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2343 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2344 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2345 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2346 NETIF_F_FRAGLIST;
2347
2348 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2349 netdev->hw_features |= NETIF_F_GRO_HW;
2350 netdev->features |= NETIF_F_GRO_HW;
2351
2352 if (!(h->flags & HNAE3_SUPPORT_VF)) {
2353 netdev->hw_features |= NETIF_F_NTUPLE;
2354 netdev->features |= NETIF_F_NTUPLE;
2355 }
2356 }
2357
2358 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2359 netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2360 netdev->features |= NETIF_F_GSO_UDP_L4;
2361 netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2362 netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2363 }
2364 }
2365
hns3_alloc_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2366 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2367 struct hns3_desc_cb *cb)
2368 {
2369 unsigned int order = hns3_page_order(ring);
2370 struct page *p;
2371
2372 p = dev_alloc_pages(order);
2373 if (!p)
2374 return -ENOMEM;
2375
2376 cb->priv = p;
2377 cb->page_offset = 0;
2378 cb->reuse_flag = 0;
2379 cb->buf = page_address(p);
2380 cb->length = hns3_page_size(ring);
2381 cb->type = DESC_TYPE_PAGE;
2382 page_ref_add(p, USHRT_MAX - 1);
2383 cb->pagecnt_bias = USHRT_MAX;
2384
2385 return 0;
2386 }
2387
hns3_free_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb,int budget)2388 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2389 struct hns3_desc_cb *cb, int budget)
2390 {
2391 if (cb->type == DESC_TYPE_SKB)
2392 napi_consume_skb(cb->priv, budget);
2393 else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2394 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2395 memset(cb, 0, sizeof(*cb));
2396 }
2397
hns3_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2398 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2399 {
2400 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2401 cb->length, ring_to_dma_dir(ring));
2402
2403 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2404 return -EIO;
2405
2406 return 0;
2407 }
2408
hns3_unmap_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2409 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2410 struct hns3_desc_cb *cb)
2411 {
2412 if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2413 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2414 ring_to_dma_dir(ring));
2415 else if (cb->length)
2416 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2417 ring_to_dma_dir(ring));
2418 }
2419
hns3_buffer_detach(struct hns3_enet_ring * ring,int i)2420 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2421 {
2422 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2423 ring->desc[i].addr = 0;
2424 ring->desc_cb[i].refill = 0;
2425 }
2426
hns3_free_buffer_detach(struct hns3_enet_ring * ring,int i,int budget)2427 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2428 int budget)
2429 {
2430 struct hns3_desc_cb *cb = &ring->desc_cb[i];
2431
2432 if (!ring->desc_cb[i].dma)
2433 return;
2434
2435 hns3_buffer_detach(ring, i);
2436 hns3_free_buffer(ring, cb, budget);
2437 }
2438
hns3_free_buffers(struct hns3_enet_ring * ring)2439 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2440 {
2441 int i;
2442
2443 for (i = 0; i < ring->desc_num; i++)
2444 hns3_free_buffer_detach(ring, i, 0);
2445 }
2446
2447 /* free desc along with its attached buffer */
hns3_free_desc(struct hns3_enet_ring * ring)2448 static void hns3_free_desc(struct hns3_enet_ring *ring)
2449 {
2450 int size = ring->desc_num * sizeof(ring->desc[0]);
2451
2452 hns3_free_buffers(ring);
2453
2454 if (ring->desc) {
2455 dma_free_coherent(ring_to_dev(ring), size,
2456 ring->desc, ring->desc_dma_addr);
2457 ring->desc = NULL;
2458 }
2459 }
2460
hns3_alloc_desc(struct hns3_enet_ring * ring)2461 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2462 {
2463 int size = ring->desc_num * sizeof(ring->desc[0]);
2464
2465 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2466 &ring->desc_dma_addr, GFP_KERNEL);
2467 if (!ring->desc)
2468 return -ENOMEM;
2469
2470 return 0;
2471 }
2472
hns3_alloc_and_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2473 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2474 struct hns3_desc_cb *cb)
2475 {
2476 int ret;
2477
2478 ret = hns3_alloc_buffer(ring, cb);
2479 if (ret)
2480 goto out;
2481
2482 ret = hns3_map_buffer(ring, cb);
2483 if (ret)
2484 goto out_with_buf;
2485
2486 return 0;
2487
2488 out_with_buf:
2489 hns3_free_buffer(ring, cb, 0);
2490 out:
2491 return ret;
2492 }
2493
hns3_alloc_and_attach_buffer(struct hns3_enet_ring * ring,int i)2494 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2495 {
2496 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2497
2498 if (ret)
2499 return ret;
2500
2501 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2502 ring->desc_cb[i].refill = 1;
2503
2504 return 0;
2505 }
2506
2507 /* Allocate memory for raw pkg, and map with dma */
hns3_alloc_ring_buffers(struct hns3_enet_ring * ring)2508 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2509 {
2510 int i, j, ret;
2511
2512 for (i = 0; i < ring->desc_num; i++) {
2513 ret = hns3_alloc_and_attach_buffer(ring, i);
2514 if (ret)
2515 goto out_buffer_fail;
2516 }
2517
2518 return 0;
2519
2520 out_buffer_fail:
2521 for (j = i - 1; j >= 0; j--)
2522 hns3_free_buffer_detach(ring, j, 0);
2523 return ret;
2524 }
2525
2526 /* detach a in-used buffer and replace with a reserved one */
hns3_replace_buffer(struct hns3_enet_ring * ring,int i,struct hns3_desc_cb * res_cb)2527 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2528 struct hns3_desc_cb *res_cb)
2529 {
2530 hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2531 ring->desc_cb[i] = *res_cb;
2532 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2533 ring->desc_cb[i].refill = 1;
2534 ring->desc[i].rx.bd_base_info = 0;
2535 }
2536
hns3_reuse_buffer(struct hns3_enet_ring * ring,int i)2537 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2538 {
2539 ring->desc_cb[i].reuse_flag = 0;
2540 ring->desc_cb[i].refill = 1;
2541 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2542 ring->desc_cb[i].page_offset);
2543 ring->desc[i].rx.bd_base_info = 0;
2544
2545 dma_sync_single_for_device(ring_to_dev(ring),
2546 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2547 hns3_buf_size(ring),
2548 DMA_FROM_DEVICE);
2549 }
2550
hns3_nic_reclaim_desc(struct hns3_enet_ring * ring,int * bytes,int * pkts,int budget)2551 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2552 int *bytes, int *pkts, int budget)
2553 {
2554 /* pair with ring->last_to_use update in hns3_tx_doorbell(),
2555 * smp_store_release() is not used in hns3_tx_doorbell() because
2556 * the doorbell operation already have the needed barrier operation.
2557 */
2558 int ltu = smp_load_acquire(&ring->last_to_use);
2559 int ntc = ring->next_to_clean;
2560 struct hns3_desc_cb *desc_cb;
2561 bool reclaimed = false;
2562 struct hns3_desc *desc;
2563
2564 while (ltu != ntc) {
2565 desc = &ring->desc[ntc];
2566
2567 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2568 BIT(HNS3_TXD_VLD_B))
2569 break;
2570
2571 desc_cb = &ring->desc_cb[ntc];
2572 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2573 (*bytes) += desc_cb->length;
2574 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2575 hns3_free_buffer_detach(ring, ntc, budget);
2576
2577 if (++ntc == ring->desc_num)
2578 ntc = 0;
2579
2580 /* Issue prefetch for next Tx descriptor */
2581 prefetch(&ring->desc_cb[ntc]);
2582 reclaimed = true;
2583 }
2584
2585 if (unlikely(!reclaimed))
2586 return false;
2587
2588 /* This smp_store_release() pairs with smp_load_acquire() in
2589 * ring_space called by hns3_nic_net_xmit.
2590 */
2591 smp_store_release(&ring->next_to_clean, ntc);
2592 return true;
2593 }
2594
hns3_clean_tx_ring(struct hns3_enet_ring * ring,int budget)2595 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2596 {
2597 struct net_device *netdev = ring_to_netdev(ring);
2598 struct hns3_nic_priv *priv = netdev_priv(netdev);
2599 struct netdev_queue *dev_queue;
2600 int bytes, pkts;
2601
2602 bytes = 0;
2603 pkts = 0;
2604
2605 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2606 return;
2607
2608 ring->tqp_vector->tx_group.total_bytes += bytes;
2609 ring->tqp_vector->tx_group.total_packets += pkts;
2610
2611 u64_stats_update_begin(&ring->syncp);
2612 ring->stats.tx_bytes += bytes;
2613 ring->stats.tx_pkts += pkts;
2614 u64_stats_update_end(&ring->syncp);
2615
2616 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2617 netdev_tx_completed_queue(dev_queue, pkts, bytes);
2618
2619 if (unlikely(netif_carrier_ok(netdev) &&
2620 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2621 /* Make sure that anybody stopping the queue after this
2622 * sees the new next_to_clean.
2623 */
2624 smp_mb();
2625 if (netif_tx_queue_stopped(dev_queue) &&
2626 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2627 netif_tx_wake_queue(dev_queue);
2628 ring->stats.restart_queue++;
2629 }
2630 }
2631 }
2632
hns3_desc_unused(struct hns3_enet_ring * ring)2633 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2634 {
2635 int ntc = ring->next_to_clean;
2636 int ntu = ring->next_to_use;
2637
2638 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
2639 return ring->desc_num;
2640
2641 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2642 }
2643
2644 /* Return true if there is any allocation failure */
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring * ring,int cleand_count)2645 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2646 int cleand_count)
2647 {
2648 struct hns3_desc_cb *desc_cb;
2649 struct hns3_desc_cb res_cbs;
2650 int i, ret;
2651
2652 for (i = 0; i < cleand_count; i++) {
2653 desc_cb = &ring->desc_cb[ring->next_to_use];
2654 if (desc_cb->reuse_flag) {
2655 u64_stats_update_begin(&ring->syncp);
2656 ring->stats.reuse_pg_cnt++;
2657 u64_stats_update_end(&ring->syncp);
2658
2659 hns3_reuse_buffer(ring, ring->next_to_use);
2660 } else {
2661 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2662 if (ret) {
2663 u64_stats_update_begin(&ring->syncp);
2664 ring->stats.sw_err_cnt++;
2665 u64_stats_update_end(&ring->syncp);
2666
2667 hns3_rl_err(ring_to_netdev(ring),
2668 "alloc rx buffer failed: %d\n",
2669 ret);
2670
2671 writel(i, ring->tqp->io_base +
2672 HNS3_RING_RX_RING_HEAD_REG);
2673 return true;
2674 }
2675 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2676
2677 u64_stats_update_begin(&ring->syncp);
2678 ring->stats.non_reuse_pg++;
2679 u64_stats_update_end(&ring->syncp);
2680 }
2681
2682 ring_ptr_move_fw(ring, next_to_use);
2683 }
2684
2685 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2686 return false;
2687 }
2688
hns3_page_is_reusable(struct page * page)2689 static bool hns3_page_is_reusable(struct page *page)
2690 {
2691 return page_to_nid(page) == numa_mem_id() &&
2692 !page_is_pfmemalloc(page);
2693 }
2694
hns3_can_reuse_page(struct hns3_desc_cb * cb)2695 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2696 {
2697 return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2698 }
2699
hns3_nic_reuse_page(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)2700 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2701 struct hns3_enet_ring *ring, int pull_len,
2702 struct hns3_desc_cb *desc_cb)
2703 {
2704 struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2705 int size = le16_to_cpu(desc->rx.size);
2706 u32 truesize = hns3_buf_size(ring);
2707
2708 desc_cb->pagecnt_bias--;
2709 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2710 size - pull_len, truesize);
2711
2712 /* Avoid re-using remote pages, or the stack is still using the page
2713 * when page_offset rollback to zero, flag default unreuse
2714 */
2715 if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2716 (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2717 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2718 return;
2719 }
2720
2721 /* Move offset up to the next cache line */
2722 desc_cb->page_offset += truesize;
2723
2724 if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2725 desc_cb->reuse_flag = 1;
2726 } else if (hns3_can_reuse_page(desc_cb)) {
2727 desc_cb->reuse_flag = 1;
2728 desc_cb->page_offset = 0;
2729 } else if (desc_cb->pagecnt_bias) {
2730 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2731 return;
2732 }
2733
2734 if (unlikely(!desc_cb->pagecnt_bias)) {
2735 page_ref_add(desc_cb->priv, USHRT_MAX);
2736 desc_cb->pagecnt_bias = USHRT_MAX;
2737 }
2738 }
2739
hns3_gro_complete(struct sk_buff * skb,u32 l234info)2740 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2741 {
2742 __be16 type = skb->protocol;
2743 struct tcphdr *th;
2744 int depth = 0;
2745
2746 while (eth_type_vlan(type)) {
2747 struct vlan_hdr *vh;
2748
2749 if ((depth + VLAN_HLEN) > skb_headlen(skb))
2750 return -EFAULT;
2751
2752 vh = (struct vlan_hdr *)(skb->data + depth);
2753 type = vh->h_vlan_encapsulated_proto;
2754 depth += VLAN_HLEN;
2755 }
2756
2757 skb_set_network_header(skb, depth);
2758
2759 if (type == htons(ETH_P_IP)) {
2760 const struct iphdr *iph = ip_hdr(skb);
2761
2762 depth += sizeof(struct iphdr);
2763 skb_set_transport_header(skb, depth);
2764 th = tcp_hdr(skb);
2765 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2766 iph->daddr, 0);
2767 } else if (type == htons(ETH_P_IPV6)) {
2768 const struct ipv6hdr *iph = ipv6_hdr(skb);
2769
2770 depth += sizeof(struct ipv6hdr);
2771 skb_set_transport_header(skb, depth);
2772 th = tcp_hdr(skb);
2773 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2774 &iph->daddr, 0);
2775 } else {
2776 hns3_rl_err(skb->dev,
2777 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2778 be16_to_cpu(type), depth);
2779 return -EFAULT;
2780 }
2781
2782 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2783 if (th->cwr)
2784 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2785
2786 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2787 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2788
2789 skb->csum_start = (unsigned char *)th - skb->head;
2790 skb->csum_offset = offsetof(struct tcphdr, check);
2791 skb->ip_summed = CHECKSUM_PARTIAL;
2792
2793 trace_hns3_gro(skb);
2794
2795 return 0;
2796 }
2797
hns3_rx_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info)2798 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2799 u32 l234info, u32 bd_base_info, u32 ol_info)
2800 {
2801 struct net_device *netdev = ring_to_netdev(ring);
2802 int l3_type, l4_type;
2803 int ol4_type;
2804
2805 skb->ip_summed = CHECKSUM_NONE;
2806
2807 skb_checksum_none_assert(skb);
2808
2809 if (!(netdev->features & NETIF_F_RXCSUM))
2810 return;
2811
2812 /* check if hardware has done checksum */
2813 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2814 return;
2815
2816 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2817 BIT(HNS3_RXD_OL3E_B) |
2818 BIT(HNS3_RXD_OL4E_B)))) {
2819 u64_stats_update_begin(&ring->syncp);
2820 ring->stats.l3l4_csum_err++;
2821 u64_stats_update_end(&ring->syncp);
2822
2823 return;
2824 }
2825
2826 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2827 HNS3_RXD_OL4ID_S);
2828 switch (ol4_type) {
2829 case HNS3_OL4_TYPE_MAC_IN_UDP:
2830 case HNS3_OL4_TYPE_NVGRE:
2831 skb->csum_level = 1;
2832 fallthrough;
2833 case HNS3_OL4_TYPE_NO_TUN:
2834 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2835 HNS3_RXD_L3ID_S);
2836 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2837 HNS3_RXD_L4ID_S);
2838
2839 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2840 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2841 l3_type == HNS3_L3_TYPE_IPV6) &&
2842 (l4_type == HNS3_L4_TYPE_UDP ||
2843 l4_type == HNS3_L4_TYPE_TCP ||
2844 l4_type == HNS3_L4_TYPE_SCTP))
2845 skb->ip_summed = CHECKSUM_UNNECESSARY;
2846 break;
2847 default:
2848 break;
2849 }
2850 }
2851
hns3_rx_skb(struct hns3_enet_ring * ring,struct sk_buff * skb)2852 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2853 {
2854 if (skb_has_frag_list(skb))
2855 napi_gro_flush(&ring->tqp_vector->napi, false);
2856
2857 napi_gro_receive(&ring->tqp_vector->napi, skb);
2858 }
2859
hns3_parse_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,u32 l234info,u16 * vlan_tag)2860 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2861 struct hns3_desc *desc, u32 l234info,
2862 u16 *vlan_tag)
2863 {
2864 struct hnae3_handle *handle = ring->tqp->handle;
2865 struct pci_dev *pdev = ring->tqp->handle->pdev;
2866 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2867
2868 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2869 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2870 if (!(*vlan_tag & VLAN_VID_MASK))
2871 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2872
2873 return (*vlan_tag != 0);
2874 }
2875
2876 #define HNS3_STRP_OUTER_VLAN 0x1
2877 #define HNS3_STRP_INNER_VLAN 0x2
2878 #define HNS3_STRP_BOTH 0x3
2879
2880 /* Hardware always insert VLAN tag into RX descriptor when
2881 * remove the tag from packet, driver needs to determine
2882 * reporting which tag to stack.
2883 */
2884 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2885 HNS3_RXD_STRP_TAGP_S)) {
2886 case HNS3_STRP_OUTER_VLAN:
2887 if (handle->port_base_vlan_state !=
2888 HNAE3_PORT_BASE_VLAN_DISABLE)
2889 return false;
2890
2891 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2892 return true;
2893 case HNS3_STRP_INNER_VLAN:
2894 if (handle->port_base_vlan_state !=
2895 HNAE3_PORT_BASE_VLAN_DISABLE)
2896 return false;
2897
2898 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2899 return true;
2900 case HNS3_STRP_BOTH:
2901 if (handle->port_base_vlan_state ==
2902 HNAE3_PORT_BASE_VLAN_DISABLE)
2903 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2904 else
2905 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2906
2907 return true;
2908 default:
2909 return false;
2910 }
2911 }
2912
hns3_rx_ring_move_fw(struct hns3_enet_ring * ring)2913 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
2914 {
2915 ring->desc[ring->next_to_clean].rx.bd_base_info &=
2916 cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
2917 ring->desc_cb[ring->next_to_clean].refill = 0;
2918 ring->next_to_clean += 1;
2919
2920 if (unlikely(ring->next_to_clean == ring->desc_num))
2921 ring->next_to_clean = 0;
2922 }
2923
hns3_alloc_skb(struct hns3_enet_ring * ring,unsigned int length,unsigned char * va)2924 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2925 unsigned char *va)
2926 {
2927 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2928 struct net_device *netdev = ring_to_netdev(ring);
2929 struct sk_buff *skb;
2930
2931 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2932 skb = ring->skb;
2933 if (unlikely(!skb)) {
2934 hns3_rl_err(netdev, "alloc rx skb fail\n");
2935
2936 u64_stats_update_begin(&ring->syncp);
2937 ring->stats.sw_err_cnt++;
2938 u64_stats_update_end(&ring->syncp);
2939
2940 return -ENOMEM;
2941 }
2942
2943 trace_hns3_rx_desc(ring);
2944 prefetchw(skb->data);
2945
2946 ring->pending_buf = 1;
2947 ring->frag_num = 0;
2948 ring->tail_skb = NULL;
2949 if (length <= HNS3_RX_HEAD_SIZE) {
2950 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2951
2952 /* We can reuse buffer as-is, just make sure it is local */
2953 if (likely(hns3_page_is_reusable(desc_cb->priv)))
2954 desc_cb->reuse_flag = 1;
2955 else /* This page cannot be reused so discard it */
2956 __page_frag_cache_drain(desc_cb->priv,
2957 desc_cb->pagecnt_bias);
2958
2959 hns3_rx_ring_move_fw(ring);
2960 return 0;
2961 }
2962 u64_stats_update_begin(&ring->syncp);
2963 ring->stats.seg_pkt_cnt++;
2964 u64_stats_update_end(&ring->syncp);
2965
2966 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2967 __skb_put(skb, ring->pull_len);
2968 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2969 desc_cb);
2970 hns3_rx_ring_move_fw(ring);
2971
2972 return 0;
2973 }
2974
hns3_add_frag(struct hns3_enet_ring * ring)2975 static int hns3_add_frag(struct hns3_enet_ring *ring)
2976 {
2977 struct sk_buff *skb = ring->skb;
2978 struct sk_buff *head_skb = skb;
2979 struct sk_buff *new_skb;
2980 struct hns3_desc_cb *desc_cb;
2981 struct hns3_desc *desc;
2982 u32 bd_base_info;
2983
2984 do {
2985 desc = &ring->desc[ring->next_to_clean];
2986 desc_cb = &ring->desc_cb[ring->next_to_clean];
2987 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2988 /* make sure HW write desc complete */
2989 dma_rmb();
2990 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2991 return -ENXIO;
2992
2993 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2994 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2995 if (unlikely(!new_skb)) {
2996 hns3_rl_err(ring_to_netdev(ring),
2997 "alloc rx fraglist skb fail\n");
2998 return -ENXIO;
2999 }
3000 ring->frag_num = 0;
3001
3002 if (ring->tail_skb) {
3003 ring->tail_skb->next = new_skb;
3004 ring->tail_skb = new_skb;
3005 } else {
3006 skb_shinfo(skb)->frag_list = new_skb;
3007 ring->tail_skb = new_skb;
3008 }
3009 }
3010
3011 if (ring->tail_skb) {
3012 head_skb->truesize += hns3_buf_size(ring);
3013 head_skb->data_len += le16_to_cpu(desc->rx.size);
3014 head_skb->len += le16_to_cpu(desc->rx.size);
3015 skb = ring->tail_skb;
3016 }
3017
3018 dma_sync_single_for_cpu(ring_to_dev(ring),
3019 desc_cb->dma + desc_cb->page_offset,
3020 hns3_buf_size(ring),
3021 DMA_FROM_DEVICE);
3022
3023 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3024 trace_hns3_rx_desc(ring);
3025 hns3_rx_ring_move_fw(ring);
3026 ring->pending_buf++;
3027 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3028
3029 return 0;
3030 }
3031
hns3_set_gro_and_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info)3032 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3033 struct sk_buff *skb, u32 l234info,
3034 u32 bd_base_info, u32 ol_info)
3035 {
3036 u32 l3_type;
3037
3038 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3039 HNS3_RXD_GRO_SIZE_M,
3040 HNS3_RXD_GRO_SIZE_S);
3041 /* if there is no HW GRO, do not set gro params */
3042 if (!skb_shinfo(skb)->gso_size) {
3043 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3044 return 0;
3045 }
3046
3047 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3048 HNS3_RXD_GRO_COUNT_M,
3049 HNS3_RXD_GRO_COUNT_S);
3050
3051 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3052 if (l3_type == HNS3_L3_TYPE_IPV4)
3053 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3054 else if (l3_type == HNS3_L3_TYPE_IPV6)
3055 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3056 else
3057 return -EFAULT;
3058
3059 return hns3_gro_complete(skb, l234info);
3060 }
3061
hns3_set_rx_skb_rss_type(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 rss_hash)3062 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3063 struct sk_buff *skb, u32 rss_hash)
3064 {
3065 struct hnae3_handle *handle = ring->tqp->handle;
3066 enum pkt_hash_types rss_type;
3067
3068 if (rss_hash)
3069 rss_type = handle->kinfo.rss_type;
3070 else
3071 rss_type = PKT_HASH_TYPE_NONE;
3072
3073 skb_set_hash(skb, rss_hash, rss_type);
3074 }
3075
hns3_handle_bdinfo(struct hns3_enet_ring * ring,struct sk_buff * skb)3076 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3077 {
3078 struct net_device *netdev = ring_to_netdev(ring);
3079 enum hns3_pkt_l2t_type l2_frame_type;
3080 u32 bd_base_info, l234info, ol_info;
3081 struct hns3_desc *desc;
3082 unsigned int len;
3083 int pre_ntc, ret;
3084
3085 /* bdinfo handled below is only valid on the last BD of the
3086 * current packet, and ring->next_to_clean indicates the first
3087 * descriptor of next packet, so need - 1 below.
3088 */
3089 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3090 (ring->desc_num - 1);
3091 desc = &ring->desc[pre_ntc];
3092 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3093 l234info = le32_to_cpu(desc->rx.l234_info);
3094 ol_info = le32_to_cpu(desc->rx.ol_info);
3095
3096 /* Based on hw strategy, the tag offloaded will be stored at
3097 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3098 * in one layer tag case.
3099 */
3100 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3101 u16 vlan_tag;
3102
3103 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3104 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3105 vlan_tag);
3106 }
3107
3108 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3109 BIT(HNS3_RXD_L2E_B))))) {
3110 u64_stats_update_begin(&ring->syncp);
3111 if (l234info & BIT(HNS3_RXD_L2E_B))
3112 ring->stats.l2_err++;
3113 else
3114 ring->stats.err_pkt_len++;
3115 u64_stats_update_end(&ring->syncp);
3116
3117 return -EFAULT;
3118 }
3119
3120 len = skb->len;
3121
3122 /* Do update ip stack process */
3123 skb->protocol = eth_type_trans(skb, netdev);
3124
3125 /* This is needed in order to enable forwarding support */
3126 ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3127 bd_base_info, ol_info);
3128 if (unlikely(ret)) {
3129 u64_stats_update_begin(&ring->syncp);
3130 ring->stats.rx_err_cnt++;
3131 u64_stats_update_end(&ring->syncp);
3132 return ret;
3133 }
3134
3135 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3136 HNS3_RXD_DMAC_S);
3137
3138 u64_stats_update_begin(&ring->syncp);
3139 ring->stats.rx_pkts++;
3140 ring->stats.rx_bytes += len;
3141
3142 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3143 ring->stats.rx_multicast++;
3144
3145 u64_stats_update_end(&ring->syncp);
3146
3147 ring->tqp_vector->rx_group.total_bytes += len;
3148
3149 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3150 return 0;
3151 }
3152
hns3_handle_rx_bd(struct hns3_enet_ring * ring)3153 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3154 {
3155 struct sk_buff *skb = ring->skb;
3156 struct hns3_desc_cb *desc_cb;
3157 struct hns3_desc *desc;
3158 unsigned int length;
3159 u32 bd_base_info;
3160 int ret;
3161
3162 desc = &ring->desc[ring->next_to_clean];
3163 desc_cb = &ring->desc_cb[ring->next_to_clean];
3164
3165 prefetch(desc);
3166
3167 if (!skb) {
3168 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3169
3170 /* Check valid BD */
3171 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3172 return -ENXIO;
3173
3174 dma_rmb();
3175 length = le16_to_cpu(desc->rx.size);
3176
3177 ring->va = desc_cb->buf + desc_cb->page_offset;
3178
3179 dma_sync_single_for_cpu(ring_to_dev(ring),
3180 desc_cb->dma + desc_cb->page_offset,
3181 hns3_buf_size(ring),
3182 DMA_FROM_DEVICE);
3183
3184 /* Prefetch first cache line of first page.
3185 * Idea is to cache few bytes of the header of the packet.
3186 * Our L1 Cache line size is 64B so need to prefetch twice to make
3187 * it 128B. But in actual we can have greater size of caches with
3188 * 128B Level 1 cache lines. In such a case, single fetch would
3189 * suffice to cache in the relevant part of the header.
3190 */
3191 net_prefetch(ring->va);
3192
3193 ret = hns3_alloc_skb(ring, length, ring->va);
3194 skb = ring->skb;
3195
3196 if (ret < 0) /* alloc buffer fail */
3197 return ret;
3198 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3199 ret = hns3_add_frag(ring);
3200 if (ret)
3201 return ret;
3202 }
3203 } else {
3204 ret = hns3_add_frag(ring);
3205 if (ret)
3206 return ret;
3207 }
3208
3209 /* As the head data may be changed when GRO enable, copy
3210 * the head data in after other data rx completed
3211 */
3212 if (skb->len > HNS3_RX_HEAD_SIZE)
3213 memcpy(skb->data, ring->va,
3214 ALIGN(ring->pull_len, sizeof(long)));
3215
3216 ret = hns3_handle_bdinfo(ring, skb);
3217 if (unlikely(ret)) {
3218 dev_kfree_skb_any(skb);
3219 return ret;
3220 }
3221
3222 skb_record_rx_queue(skb, ring->tqp->tqp_index);
3223 return 0;
3224 }
3225
hns3_clean_rx_ring(struct hns3_enet_ring * ring,int budget,void (* rx_fn)(struct hns3_enet_ring *,struct sk_buff *))3226 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3227 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3228 {
3229 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3230 int unused_count = hns3_desc_unused(ring);
3231 bool failure = false;
3232 int recv_pkts = 0;
3233 int err;
3234
3235 unused_count -= ring->pending_buf;
3236
3237 while (recv_pkts < budget) {
3238 /* Reuse or realloc buffers */
3239 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3240 failure = failure ||
3241 hns3_nic_alloc_rx_buffers(ring, unused_count);
3242 unused_count = 0;
3243 }
3244
3245 /* Poll one pkt */
3246 err = hns3_handle_rx_bd(ring);
3247 /* Do not get FE for the packet or failed to alloc skb */
3248 if (unlikely(!ring->skb || err == -ENXIO)) {
3249 goto out;
3250 } else if (likely(!err)) {
3251 rx_fn(ring, ring->skb);
3252 recv_pkts++;
3253 }
3254
3255 unused_count += ring->pending_buf;
3256 ring->skb = NULL;
3257 ring->pending_buf = 0;
3258 }
3259
3260 out:
3261 return failure ? budget : recv_pkts;
3262 }
3263
hns3_get_new_flow_lvl(struct hns3_enet_ring_group * ring_group)3264 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3265 {
3266 #define HNS3_RX_LOW_BYTE_RATE 10000
3267 #define HNS3_RX_MID_BYTE_RATE 20000
3268 #define HNS3_RX_ULTRA_PACKET_RATE 40
3269
3270 enum hns3_flow_level_range new_flow_level;
3271 struct hns3_enet_tqp_vector *tqp_vector;
3272 int packets_per_msecs, bytes_per_msecs;
3273 u32 time_passed_ms;
3274
3275 tqp_vector = ring_group->ring->tqp_vector;
3276 time_passed_ms =
3277 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3278 if (!time_passed_ms)
3279 return false;
3280
3281 do_div(ring_group->total_packets, time_passed_ms);
3282 packets_per_msecs = ring_group->total_packets;
3283
3284 do_div(ring_group->total_bytes, time_passed_ms);
3285 bytes_per_msecs = ring_group->total_bytes;
3286
3287 new_flow_level = ring_group->coal.flow_level;
3288
3289 /* Simple throttlerate management
3290 * 0-10MB/s lower (50000 ints/s)
3291 * 10-20MB/s middle (20000 ints/s)
3292 * 20-1249MB/s high (18000 ints/s)
3293 * > 40000pps ultra (8000 ints/s)
3294 */
3295 switch (new_flow_level) {
3296 case HNS3_FLOW_LOW:
3297 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3298 new_flow_level = HNS3_FLOW_MID;
3299 break;
3300 case HNS3_FLOW_MID:
3301 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3302 new_flow_level = HNS3_FLOW_HIGH;
3303 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3304 new_flow_level = HNS3_FLOW_LOW;
3305 break;
3306 case HNS3_FLOW_HIGH:
3307 case HNS3_FLOW_ULTRA:
3308 default:
3309 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3310 new_flow_level = HNS3_FLOW_MID;
3311 break;
3312 }
3313
3314 if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3315 &tqp_vector->rx_group == ring_group)
3316 new_flow_level = HNS3_FLOW_ULTRA;
3317
3318 ring_group->total_bytes = 0;
3319 ring_group->total_packets = 0;
3320 ring_group->coal.flow_level = new_flow_level;
3321
3322 return true;
3323 }
3324
hns3_get_new_int_gl(struct hns3_enet_ring_group * ring_group)3325 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3326 {
3327 struct hns3_enet_tqp_vector *tqp_vector;
3328 u16 new_int_gl;
3329
3330 if (!ring_group->ring)
3331 return false;
3332
3333 tqp_vector = ring_group->ring->tqp_vector;
3334 if (!tqp_vector->last_jiffies)
3335 return false;
3336
3337 if (ring_group->total_packets == 0) {
3338 ring_group->coal.int_gl = HNS3_INT_GL_50K;
3339 ring_group->coal.flow_level = HNS3_FLOW_LOW;
3340 return true;
3341 }
3342
3343 if (!hns3_get_new_flow_lvl(ring_group))
3344 return false;
3345
3346 new_int_gl = ring_group->coal.int_gl;
3347 switch (ring_group->coal.flow_level) {
3348 case HNS3_FLOW_LOW:
3349 new_int_gl = HNS3_INT_GL_50K;
3350 break;
3351 case HNS3_FLOW_MID:
3352 new_int_gl = HNS3_INT_GL_20K;
3353 break;
3354 case HNS3_FLOW_HIGH:
3355 new_int_gl = HNS3_INT_GL_18K;
3356 break;
3357 case HNS3_FLOW_ULTRA:
3358 new_int_gl = HNS3_INT_GL_8K;
3359 break;
3360 default:
3361 break;
3362 }
3363
3364 if (new_int_gl != ring_group->coal.int_gl) {
3365 ring_group->coal.int_gl = new_int_gl;
3366 return true;
3367 }
3368 return false;
3369 }
3370
hns3_update_new_int_gl(struct hns3_enet_tqp_vector * tqp_vector)3371 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3372 {
3373 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3374 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3375 bool rx_update, tx_update;
3376
3377 /* update param every 1000ms */
3378 if (time_before(jiffies,
3379 tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3380 return;
3381
3382 if (rx_group->coal.gl_adapt_enable) {
3383 rx_update = hns3_get_new_int_gl(rx_group);
3384 if (rx_update)
3385 hns3_set_vector_coalesce_rx_gl(tqp_vector,
3386 rx_group->coal.int_gl);
3387 }
3388
3389 if (tx_group->coal.gl_adapt_enable) {
3390 tx_update = hns3_get_new_int_gl(tx_group);
3391 if (tx_update)
3392 hns3_set_vector_coalesce_tx_gl(tqp_vector,
3393 tx_group->coal.int_gl);
3394 }
3395
3396 tqp_vector->last_jiffies = jiffies;
3397 }
3398
hns3_nic_common_poll(struct napi_struct * napi,int budget)3399 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3400 {
3401 struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3402 struct hns3_enet_ring *ring;
3403 int rx_pkt_total = 0;
3404
3405 struct hns3_enet_tqp_vector *tqp_vector =
3406 container_of(napi, struct hns3_enet_tqp_vector, napi);
3407 bool clean_complete = true;
3408 int rx_budget = budget;
3409
3410 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3411 napi_complete(napi);
3412 return 0;
3413 }
3414
3415 /* Since the actual Tx work is minimal, we can give the Tx a larger
3416 * budget and be more aggressive about cleaning up the Tx descriptors.
3417 */
3418 hns3_for_each_ring(ring, tqp_vector->tx_group)
3419 hns3_clean_tx_ring(ring, budget);
3420
3421 /* make sure rx ring budget not smaller than 1 */
3422 if (tqp_vector->num_tqps > 1)
3423 rx_budget = max(budget / tqp_vector->num_tqps, 1);
3424
3425 hns3_for_each_ring(ring, tqp_vector->rx_group) {
3426 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3427 hns3_rx_skb);
3428
3429 if (rx_cleaned >= rx_budget)
3430 clean_complete = false;
3431
3432 rx_pkt_total += rx_cleaned;
3433 }
3434
3435 tqp_vector->rx_group.total_packets += rx_pkt_total;
3436
3437 if (!clean_complete)
3438 return budget;
3439
3440 if (napi_complete(napi) &&
3441 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3442 hns3_update_new_int_gl(tqp_vector);
3443 hns3_mask_vector_irq(tqp_vector, 1);
3444 }
3445
3446 return rx_pkt_total;
3447 }
3448
hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)3449 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3450 struct hnae3_ring_chain_node *head)
3451 {
3452 struct pci_dev *pdev = tqp_vector->handle->pdev;
3453 struct hnae3_ring_chain_node *cur_chain = head;
3454 struct hnae3_ring_chain_node *chain;
3455 struct hns3_enet_ring *tx_ring;
3456 struct hns3_enet_ring *rx_ring;
3457
3458 tx_ring = tqp_vector->tx_group.ring;
3459 if (tx_ring) {
3460 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3461 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3462 HNAE3_RING_TYPE_TX);
3463 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3464 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3465
3466 cur_chain->next = NULL;
3467
3468 while (tx_ring->next) {
3469 tx_ring = tx_ring->next;
3470
3471 chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3472 GFP_KERNEL);
3473 if (!chain)
3474 goto err_free_chain;
3475
3476 cur_chain->next = chain;
3477 chain->tqp_index = tx_ring->tqp->tqp_index;
3478 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3479 HNAE3_RING_TYPE_TX);
3480 hnae3_set_field(chain->int_gl_idx,
3481 HNAE3_RING_GL_IDX_M,
3482 HNAE3_RING_GL_IDX_S,
3483 HNAE3_RING_GL_TX);
3484
3485 cur_chain = chain;
3486 }
3487 }
3488
3489 rx_ring = tqp_vector->rx_group.ring;
3490 if (!tx_ring && rx_ring) {
3491 cur_chain->next = NULL;
3492 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3493 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3494 HNAE3_RING_TYPE_RX);
3495 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3496 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3497
3498 rx_ring = rx_ring->next;
3499 }
3500
3501 while (rx_ring) {
3502 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3503 if (!chain)
3504 goto err_free_chain;
3505
3506 cur_chain->next = chain;
3507 chain->tqp_index = rx_ring->tqp->tqp_index;
3508 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3509 HNAE3_RING_TYPE_RX);
3510 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3511 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3512
3513 cur_chain = chain;
3514
3515 rx_ring = rx_ring->next;
3516 }
3517
3518 return 0;
3519
3520 err_free_chain:
3521 cur_chain = head->next;
3522 while (cur_chain) {
3523 chain = cur_chain->next;
3524 devm_kfree(&pdev->dev, cur_chain);
3525 cur_chain = chain;
3526 }
3527 head->next = NULL;
3528
3529 return -ENOMEM;
3530 }
3531
hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)3532 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3533 struct hnae3_ring_chain_node *head)
3534 {
3535 struct pci_dev *pdev = tqp_vector->handle->pdev;
3536 struct hnae3_ring_chain_node *chain_tmp, *chain;
3537
3538 chain = head->next;
3539
3540 while (chain) {
3541 chain_tmp = chain->next;
3542 devm_kfree(&pdev->dev, chain);
3543 chain = chain_tmp;
3544 }
3545 }
3546
hns3_add_ring_to_group(struct hns3_enet_ring_group * group,struct hns3_enet_ring * ring)3547 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3548 struct hns3_enet_ring *ring)
3549 {
3550 ring->next = group->ring;
3551 group->ring = ring;
3552
3553 group->count++;
3554 }
3555
hns3_nic_set_cpumask(struct hns3_nic_priv * priv)3556 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3557 {
3558 struct pci_dev *pdev = priv->ae_handle->pdev;
3559 struct hns3_enet_tqp_vector *tqp_vector;
3560 int num_vectors = priv->vector_num;
3561 int numa_node;
3562 int vector_i;
3563
3564 numa_node = dev_to_node(&pdev->dev);
3565
3566 for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3567 tqp_vector = &priv->tqp_vector[vector_i];
3568 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3569 &tqp_vector->affinity_mask);
3570 }
3571 }
3572
hns3_nic_init_vector_data(struct hns3_nic_priv * priv)3573 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3574 {
3575 struct hnae3_handle *h = priv->ae_handle;
3576 struct hns3_enet_tqp_vector *tqp_vector;
3577 int ret;
3578 int i;
3579
3580 hns3_nic_set_cpumask(priv);
3581
3582 for (i = 0; i < priv->vector_num; i++) {
3583 tqp_vector = &priv->tqp_vector[i];
3584 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3585 tqp_vector->num_tqps = 0;
3586 }
3587
3588 for (i = 0; i < h->kinfo.num_tqps; i++) {
3589 u16 vector_i = i % priv->vector_num;
3590 u16 tqp_num = h->kinfo.num_tqps;
3591
3592 tqp_vector = &priv->tqp_vector[vector_i];
3593
3594 hns3_add_ring_to_group(&tqp_vector->tx_group,
3595 &priv->ring[i]);
3596
3597 hns3_add_ring_to_group(&tqp_vector->rx_group,
3598 &priv->ring[i + tqp_num]);
3599
3600 priv->ring[i].tqp_vector = tqp_vector;
3601 priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3602 tqp_vector->num_tqps++;
3603 }
3604
3605 for (i = 0; i < priv->vector_num; i++) {
3606 struct hnae3_ring_chain_node vector_ring_chain;
3607
3608 tqp_vector = &priv->tqp_vector[i];
3609
3610 tqp_vector->rx_group.total_bytes = 0;
3611 tqp_vector->rx_group.total_packets = 0;
3612 tqp_vector->tx_group.total_bytes = 0;
3613 tqp_vector->tx_group.total_packets = 0;
3614 tqp_vector->handle = h;
3615
3616 ret = hns3_get_vector_ring_chain(tqp_vector,
3617 &vector_ring_chain);
3618 if (ret)
3619 goto map_ring_fail;
3620
3621 ret = h->ae_algo->ops->map_ring_to_vector(h,
3622 tqp_vector->vector_irq, &vector_ring_chain);
3623
3624 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3625
3626 if (ret)
3627 goto map_ring_fail;
3628
3629 netif_napi_add(priv->netdev, &tqp_vector->napi,
3630 hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3631 }
3632
3633 return 0;
3634
3635 map_ring_fail:
3636 while (i--)
3637 netif_napi_del(&priv->tqp_vector[i].napi);
3638
3639 return ret;
3640 }
3641
hns3_nic_alloc_vector_data(struct hns3_nic_priv * priv)3642 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3643 {
3644 #define HNS3_VECTOR_PF_MAX_NUM 64
3645
3646 struct hnae3_handle *h = priv->ae_handle;
3647 struct hns3_enet_tqp_vector *tqp_vector;
3648 struct hnae3_vector_info *vector;
3649 struct pci_dev *pdev = h->pdev;
3650 u16 tqp_num = h->kinfo.num_tqps;
3651 u16 vector_num;
3652 int ret = 0;
3653 u16 i;
3654
3655 /* RSS size, cpu online and vector_num should be the same */
3656 /* Should consider 2p/4p later */
3657 vector_num = min_t(u16, num_online_cpus(), tqp_num);
3658 vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3659
3660 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3661 GFP_KERNEL);
3662 if (!vector)
3663 return -ENOMEM;
3664
3665 /* save the actual available vector number */
3666 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3667
3668 priv->vector_num = vector_num;
3669 priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3670 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3671 GFP_KERNEL);
3672 if (!priv->tqp_vector) {
3673 ret = -ENOMEM;
3674 goto out;
3675 }
3676
3677 for (i = 0; i < priv->vector_num; i++) {
3678 tqp_vector = &priv->tqp_vector[i];
3679 tqp_vector->idx = i;
3680 tqp_vector->mask_addr = vector[i].io_addr;
3681 tqp_vector->vector_irq = vector[i].vector;
3682 hns3_vector_gl_rl_init(tqp_vector, priv);
3683 }
3684
3685 out:
3686 devm_kfree(&pdev->dev, vector);
3687 return ret;
3688 }
3689
hns3_clear_ring_group(struct hns3_enet_ring_group * group)3690 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3691 {
3692 group->ring = NULL;
3693 group->count = 0;
3694 }
3695
hns3_nic_uninit_vector_data(struct hns3_nic_priv * priv)3696 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3697 {
3698 struct hnae3_ring_chain_node vector_ring_chain;
3699 struct hnae3_handle *h = priv->ae_handle;
3700 struct hns3_enet_tqp_vector *tqp_vector;
3701 int i;
3702
3703 for (i = 0; i < priv->vector_num; i++) {
3704 tqp_vector = &priv->tqp_vector[i];
3705
3706 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3707 continue;
3708
3709 /* Since the mapping can be overwritten, when fail to get the
3710 * chain between vector and ring, we should go on to deal with
3711 * the remaining options.
3712 */
3713 if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3714 dev_warn(priv->dev, "failed to get ring chain\n");
3715
3716 h->ae_algo->ops->unmap_ring_from_vector(h,
3717 tqp_vector->vector_irq, &vector_ring_chain);
3718
3719 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3720
3721 hns3_clear_ring_group(&tqp_vector->rx_group);
3722 hns3_clear_ring_group(&tqp_vector->tx_group);
3723 netif_napi_del(&priv->tqp_vector[i].napi);
3724 }
3725 }
3726
hns3_nic_dealloc_vector_data(struct hns3_nic_priv * priv)3727 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3728 {
3729 struct hnae3_handle *h = priv->ae_handle;
3730 struct pci_dev *pdev = h->pdev;
3731 int i, ret;
3732
3733 for (i = 0; i < priv->vector_num; i++) {
3734 struct hns3_enet_tqp_vector *tqp_vector;
3735
3736 tqp_vector = &priv->tqp_vector[i];
3737 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3738 if (ret)
3739 return;
3740 }
3741
3742 devm_kfree(&pdev->dev, priv->tqp_vector);
3743 }
3744
hns3_ring_get_cfg(struct hnae3_queue * q,struct hns3_nic_priv * priv,unsigned int ring_type)3745 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3746 unsigned int ring_type)
3747 {
3748 int queue_num = priv->ae_handle->kinfo.num_tqps;
3749 struct hns3_enet_ring *ring;
3750 int desc_num;
3751
3752 if (ring_type == HNAE3_RING_TYPE_TX) {
3753 ring = &priv->ring[q->tqp_index];
3754 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3755 ring->queue_index = q->tqp_index;
3756 } else {
3757 ring = &priv->ring[q->tqp_index + queue_num];
3758 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3759 ring->queue_index = q->tqp_index;
3760 }
3761
3762 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3763
3764 ring->tqp = q;
3765 ring->desc = NULL;
3766 ring->desc_cb = NULL;
3767 ring->dev = priv->dev;
3768 ring->desc_dma_addr = 0;
3769 ring->buf_size = q->buf_size;
3770 ring->desc_num = desc_num;
3771 ring->next_to_use = 0;
3772 ring->next_to_clean = 0;
3773 ring->last_to_use = 0;
3774 }
3775
hns3_queue_to_ring(struct hnae3_queue * tqp,struct hns3_nic_priv * priv)3776 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3777 struct hns3_nic_priv *priv)
3778 {
3779 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3780 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3781 }
3782
hns3_get_ring_config(struct hns3_nic_priv * priv)3783 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3784 {
3785 struct hnae3_handle *h = priv->ae_handle;
3786 struct pci_dev *pdev = h->pdev;
3787 int i;
3788
3789 priv->ring = devm_kzalloc(&pdev->dev,
3790 array3_size(h->kinfo.num_tqps,
3791 sizeof(*priv->ring), 2),
3792 GFP_KERNEL);
3793 if (!priv->ring)
3794 return -ENOMEM;
3795
3796 for (i = 0; i < h->kinfo.num_tqps; i++)
3797 hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3798
3799 return 0;
3800 }
3801
hns3_put_ring_config(struct hns3_nic_priv * priv)3802 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3803 {
3804 if (!priv->ring)
3805 return;
3806
3807 devm_kfree(priv->dev, priv->ring);
3808 priv->ring = NULL;
3809 }
3810
hns3_alloc_ring_memory(struct hns3_enet_ring * ring)3811 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3812 {
3813 int ret;
3814
3815 if (ring->desc_num <= 0 || ring->buf_size <= 0)
3816 return -EINVAL;
3817
3818 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3819 sizeof(ring->desc_cb[0]), GFP_KERNEL);
3820 if (!ring->desc_cb) {
3821 ret = -ENOMEM;
3822 goto out;
3823 }
3824
3825 ret = hns3_alloc_desc(ring);
3826 if (ret)
3827 goto out_with_desc_cb;
3828
3829 if (!HNAE3_IS_TX_RING(ring)) {
3830 ret = hns3_alloc_ring_buffers(ring);
3831 if (ret)
3832 goto out_with_desc;
3833 }
3834
3835 return 0;
3836
3837 out_with_desc:
3838 hns3_free_desc(ring);
3839 out_with_desc_cb:
3840 devm_kfree(ring_to_dev(ring), ring->desc_cb);
3841 ring->desc_cb = NULL;
3842 out:
3843 return ret;
3844 }
3845
hns3_fini_ring(struct hns3_enet_ring * ring)3846 void hns3_fini_ring(struct hns3_enet_ring *ring)
3847 {
3848 hns3_free_desc(ring);
3849 devm_kfree(ring_to_dev(ring), ring->desc_cb);
3850 ring->desc_cb = NULL;
3851 ring->next_to_clean = 0;
3852 ring->next_to_use = 0;
3853 ring->last_to_use = 0;
3854 ring->pending_buf = 0;
3855 if (ring->skb) {
3856 dev_kfree_skb_any(ring->skb);
3857 ring->skb = NULL;
3858 }
3859 }
3860
hns3_buf_size2type(u32 buf_size)3861 static int hns3_buf_size2type(u32 buf_size)
3862 {
3863 int bd_size_type;
3864
3865 switch (buf_size) {
3866 case 512:
3867 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3868 break;
3869 case 1024:
3870 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3871 break;
3872 case 2048:
3873 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3874 break;
3875 case 4096:
3876 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3877 break;
3878 default:
3879 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3880 }
3881
3882 return bd_size_type;
3883 }
3884
hns3_init_ring_hw(struct hns3_enet_ring * ring)3885 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3886 {
3887 dma_addr_t dma = ring->desc_dma_addr;
3888 struct hnae3_queue *q = ring->tqp;
3889
3890 if (!HNAE3_IS_TX_RING(ring)) {
3891 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3892 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3893 (u32)((dma >> 31) >> 1));
3894
3895 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3896 hns3_buf_size2type(ring->buf_size));
3897 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3898 ring->desc_num / 8 - 1);
3899
3900 } else {
3901 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3902 (u32)dma);
3903 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3904 (u32)((dma >> 31) >> 1));
3905
3906 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3907 ring->desc_num / 8 - 1);
3908 }
3909 }
3910
hns3_init_tx_ring_tc(struct hns3_nic_priv * priv)3911 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3912 {
3913 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3914 int i;
3915
3916 for (i = 0; i < HNAE3_MAX_TC; i++) {
3917 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3918 int j;
3919
3920 if (!tc_info->enable)
3921 continue;
3922
3923 for (j = 0; j < tc_info->tqp_count; j++) {
3924 struct hnae3_queue *q;
3925
3926 q = priv->ring[tc_info->tqp_offset + j].tqp;
3927 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3928 tc_info->tc);
3929 }
3930 }
3931 }
3932
hns3_init_all_ring(struct hns3_nic_priv * priv)3933 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3934 {
3935 struct hnae3_handle *h = priv->ae_handle;
3936 int ring_num = h->kinfo.num_tqps * 2;
3937 int i, j;
3938 int ret;
3939
3940 for (i = 0; i < ring_num; i++) {
3941 ret = hns3_alloc_ring_memory(&priv->ring[i]);
3942 if (ret) {
3943 dev_err(priv->dev,
3944 "Alloc ring memory fail! ret=%d\n", ret);
3945 goto out_when_alloc_ring_memory;
3946 }
3947
3948 u64_stats_init(&priv->ring[i].syncp);
3949 }
3950
3951 return 0;
3952
3953 out_when_alloc_ring_memory:
3954 for (j = i - 1; j >= 0; j--)
3955 hns3_fini_ring(&priv->ring[j]);
3956
3957 return -ENOMEM;
3958 }
3959
hns3_uninit_all_ring(struct hns3_nic_priv * priv)3960 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3961 {
3962 struct hnae3_handle *h = priv->ae_handle;
3963 int i;
3964
3965 for (i = 0; i < h->kinfo.num_tqps; i++) {
3966 hns3_fini_ring(&priv->ring[i]);
3967 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3968 }
3969 return 0;
3970 }
3971
3972 /* Set mac addr if it is configured. or leave it to the AE driver */
hns3_init_mac_addr(struct net_device * netdev)3973 static int hns3_init_mac_addr(struct net_device *netdev)
3974 {
3975 struct hns3_nic_priv *priv = netdev_priv(netdev);
3976 struct hnae3_handle *h = priv->ae_handle;
3977 u8 mac_addr_temp[ETH_ALEN];
3978 int ret = 0;
3979
3980 if (h->ae_algo->ops->get_mac_addr)
3981 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3982
3983 /* Check if the MAC address is valid, if not get a random one */
3984 if (!is_valid_ether_addr(mac_addr_temp)) {
3985 eth_hw_addr_random(netdev);
3986 dev_warn(priv->dev, "using random MAC address %pM\n",
3987 netdev->dev_addr);
3988 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3989 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3990 ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3991 } else {
3992 return 0;
3993 }
3994
3995 if (h->ae_algo->ops->set_mac_addr)
3996 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3997
3998 return ret;
3999 }
4000
hns3_init_phy(struct net_device * netdev)4001 static int hns3_init_phy(struct net_device *netdev)
4002 {
4003 struct hnae3_handle *h = hns3_get_handle(netdev);
4004 int ret = 0;
4005
4006 if (h->ae_algo->ops->mac_connect_phy)
4007 ret = h->ae_algo->ops->mac_connect_phy(h);
4008
4009 return ret;
4010 }
4011
hns3_uninit_phy(struct net_device * netdev)4012 static void hns3_uninit_phy(struct net_device *netdev)
4013 {
4014 struct hnae3_handle *h = hns3_get_handle(netdev);
4015
4016 if (h->ae_algo->ops->mac_disconnect_phy)
4017 h->ae_algo->ops->mac_disconnect_phy(h);
4018 }
4019
hns3_del_all_fd_rules(struct net_device * netdev,bool clear_list)4020 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4021 {
4022 struct hnae3_handle *h = hns3_get_handle(netdev);
4023
4024 if (h->ae_algo->ops->del_all_fd_entries)
4025 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4026 }
4027
hns3_client_start(struct hnae3_handle * handle)4028 static int hns3_client_start(struct hnae3_handle *handle)
4029 {
4030 if (!handle->ae_algo->ops->client_start)
4031 return 0;
4032
4033 return handle->ae_algo->ops->client_start(handle);
4034 }
4035
hns3_client_stop(struct hnae3_handle * handle)4036 static void hns3_client_stop(struct hnae3_handle *handle)
4037 {
4038 if (!handle->ae_algo->ops->client_stop)
4039 return;
4040
4041 handle->ae_algo->ops->client_stop(handle);
4042 }
4043
hns3_info_show(struct hns3_nic_priv * priv)4044 static void hns3_info_show(struct hns3_nic_priv *priv)
4045 {
4046 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4047
4048 dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4049 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4050 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4051 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4052 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4053 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4054 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4055 dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
4056 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4057 }
4058
hns3_client_init(struct hnae3_handle * handle)4059 static int hns3_client_init(struct hnae3_handle *handle)
4060 {
4061 struct pci_dev *pdev = handle->pdev;
4062 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4063 u16 alloc_tqps, max_rss_size;
4064 struct hns3_nic_priv *priv;
4065 struct net_device *netdev;
4066 int ret;
4067
4068 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4069 &max_rss_size);
4070 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4071 if (!netdev)
4072 return -ENOMEM;
4073
4074 priv = netdev_priv(netdev);
4075 priv->dev = &pdev->dev;
4076 priv->netdev = netdev;
4077 priv->ae_handle = handle;
4078 priv->tx_timeout_count = 0;
4079 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4080 set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4081
4082 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4083
4084 handle->kinfo.netdev = netdev;
4085 handle->priv = (void *)priv;
4086
4087 hns3_init_mac_addr(netdev);
4088
4089 hns3_set_default_feature(netdev);
4090
4091 netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4092 netdev->priv_flags |= IFF_UNICAST_FLT;
4093 netdev->netdev_ops = &hns3_nic_netdev_ops;
4094 SET_NETDEV_DEV(netdev, &pdev->dev);
4095 hns3_ethtool_set_ops(netdev);
4096
4097 /* Carrier off reporting is important to ethtool even BEFORE open */
4098 netif_carrier_off(netdev);
4099
4100 ret = hns3_get_ring_config(priv);
4101 if (ret) {
4102 ret = -ENOMEM;
4103 goto out_get_ring_cfg;
4104 }
4105
4106 ret = hns3_nic_alloc_vector_data(priv);
4107 if (ret) {
4108 ret = -ENOMEM;
4109 goto out_alloc_vector_data;
4110 }
4111
4112 ret = hns3_nic_init_vector_data(priv);
4113 if (ret) {
4114 ret = -ENOMEM;
4115 goto out_init_vector_data;
4116 }
4117
4118 ret = hns3_init_all_ring(priv);
4119 if (ret) {
4120 ret = -ENOMEM;
4121 goto out_init_ring;
4122 }
4123
4124 ret = hns3_init_phy(netdev);
4125 if (ret)
4126 goto out_init_phy;
4127
4128 /* the device can work without cpu rmap, only aRFS needs it */
4129 ret = hns3_set_rx_cpu_rmap(netdev);
4130 if (ret)
4131 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4132
4133 ret = hns3_nic_init_irq(priv);
4134 if (ret) {
4135 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4136 hns3_free_rx_cpu_rmap(netdev);
4137 goto out_init_irq_fail;
4138 }
4139
4140 ret = hns3_client_start(handle);
4141 if (ret) {
4142 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4143 goto out_client_start;
4144 }
4145
4146 hns3_dcbnl_setup(handle);
4147
4148 hns3_dbg_init(handle);
4149
4150 /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4151 netdev->max_mtu = HNS3_MAX_MTU;
4152
4153 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4154
4155 ret = register_netdev(netdev);
4156 if (ret) {
4157 dev_err(priv->dev, "probe register netdev fail!\n");
4158 goto out_reg_netdev_fail;
4159 }
4160
4161 if (netif_msg_drv(handle))
4162 hns3_info_show(priv);
4163
4164 return ret;
4165
4166 out_reg_netdev_fail:
4167 hns3_dbg_uninit(handle);
4168 out_client_start:
4169 hns3_free_rx_cpu_rmap(netdev);
4170 hns3_nic_uninit_irq(priv);
4171 out_init_irq_fail:
4172 hns3_uninit_phy(netdev);
4173 out_init_phy:
4174 hns3_uninit_all_ring(priv);
4175 out_init_ring:
4176 hns3_nic_uninit_vector_data(priv);
4177 out_init_vector_data:
4178 hns3_nic_dealloc_vector_data(priv);
4179 out_alloc_vector_data:
4180 priv->ring = NULL;
4181 out_get_ring_cfg:
4182 priv->ae_handle = NULL;
4183 free_netdev(netdev);
4184 return ret;
4185 }
4186
hns3_client_uninit(struct hnae3_handle * handle,bool reset)4187 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4188 {
4189 struct net_device *netdev = handle->kinfo.netdev;
4190 struct hns3_nic_priv *priv = netdev_priv(netdev);
4191 int ret;
4192
4193 if (netdev->reg_state != NETREG_UNINITIALIZED)
4194 unregister_netdev(netdev);
4195
4196 hns3_client_stop(handle);
4197
4198 hns3_uninit_phy(netdev);
4199
4200 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4201 netdev_warn(netdev, "already uninitialized\n");
4202 goto out_netdev_free;
4203 }
4204
4205 hns3_free_rx_cpu_rmap(netdev);
4206
4207 hns3_nic_uninit_irq(priv);
4208
4209 hns3_del_all_fd_rules(netdev, true);
4210
4211 hns3_clear_all_ring(handle, true);
4212
4213 hns3_nic_uninit_vector_data(priv);
4214
4215 hns3_nic_dealloc_vector_data(priv);
4216
4217 ret = hns3_uninit_all_ring(priv);
4218 if (ret)
4219 netdev_err(netdev, "uninit ring error\n");
4220
4221 hns3_put_ring_config(priv);
4222
4223 out_netdev_free:
4224 hns3_dbg_uninit(handle);
4225 free_netdev(netdev);
4226 }
4227
hns3_link_status_change(struct hnae3_handle * handle,bool linkup)4228 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4229 {
4230 struct net_device *netdev = handle->kinfo.netdev;
4231
4232 if (!netdev)
4233 return;
4234
4235 if (linkup) {
4236 netif_tx_wake_all_queues(netdev);
4237 netif_carrier_on(netdev);
4238 if (netif_msg_link(handle))
4239 netdev_info(netdev, "link up\n");
4240 } else {
4241 netif_carrier_off(netdev);
4242 netif_tx_stop_all_queues(netdev);
4243 if (netif_msg_link(handle))
4244 netdev_info(netdev, "link down\n");
4245 }
4246 }
4247
hns3_client_setup_tc(struct hnae3_handle * handle,u8 tc)4248 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4249 {
4250 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4251 struct net_device *ndev = kinfo->netdev;
4252
4253 if (tc > HNAE3_MAX_TC)
4254 return -EINVAL;
4255
4256 if (!ndev)
4257 return -ENODEV;
4258
4259 return hns3_nic_set_real_num_queue(ndev);
4260 }
4261
hns3_clear_tx_ring(struct hns3_enet_ring * ring)4262 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4263 {
4264 while (ring->next_to_clean != ring->next_to_use) {
4265 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4266 hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4267 ring_ptr_move_fw(ring, next_to_clean);
4268 }
4269
4270 ring->pending_buf = 0;
4271 }
4272
hns3_clear_rx_ring(struct hns3_enet_ring * ring)4273 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4274 {
4275 struct hns3_desc_cb res_cbs;
4276 int ret;
4277
4278 while (ring->next_to_use != ring->next_to_clean) {
4279 /* When a buffer is not reused, it's memory has been
4280 * freed in hns3_handle_rx_bd or will be freed by
4281 * stack, so we need to replace the buffer here.
4282 */
4283 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4284 ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4285 if (ret) {
4286 u64_stats_update_begin(&ring->syncp);
4287 ring->stats.sw_err_cnt++;
4288 u64_stats_update_end(&ring->syncp);
4289 /* if alloc new buffer fail, exit directly
4290 * and reclear in up flow.
4291 */
4292 netdev_warn(ring_to_netdev(ring),
4293 "reserve buffer map failed, ret = %d\n",
4294 ret);
4295 return ret;
4296 }
4297 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4298 }
4299 ring_ptr_move_fw(ring, next_to_use);
4300 }
4301
4302 /* Free the pending skb in rx ring */
4303 if (ring->skb) {
4304 dev_kfree_skb_any(ring->skb);
4305 ring->skb = NULL;
4306 ring->pending_buf = 0;
4307 }
4308
4309 return 0;
4310 }
4311
hns3_force_clear_rx_ring(struct hns3_enet_ring * ring)4312 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4313 {
4314 while (ring->next_to_use != ring->next_to_clean) {
4315 /* When a buffer is not reused, it's memory has been
4316 * freed in hns3_handle_rx_bd or will be freed by
4317 * stack, so only need to unmap the buffer here.
4318 */
4319 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4320 hns3_unmap_buffer(ring,
4321 &ring->desc_cb[ring->next_to_use]);
4322 ring->desc_cb[ring->next_to_use].dma = 0;
4323 }
4324
4325 ring_ptr_move_fw(ring, next_to_use);
4326 }
4327 }
4328
hns3_clear_all_ring(struct hnae3_handle * h,bool force)4329 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4330 {
4331 struct net_device *ndev = h->kinfo.netdev;
4332 struct hns3_nic_priv *priv = netdev_priv(ndev);
4333 u32 i;
4334
4335 for (i = 0; i < h->kinfo.num_tqps; i++) {
4336 struct hns3_enet_ring *ring;
4337
4338 ring = &priv->ring[i];
4339 hns3_clear_tx_ring(ring);
4340
4341 ring = &priv->ring[i + h->kinfo.num_tqps];
4342 /* Continue to clear other rings even if clearing some
4343 * rings failed.
4344 */
4345 if (force)
4346 hns3_force_clear_rx_ring(ring);
4347 else
4348 hns3_clear_rx_ring(ring);
4349 }
4350 }
4351
hns3_nic_reset_all_ring(struct hnae3_handle * h)4352 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4353 {
4354 struct net_device *ndev = h->kinfo.netdev;
4355 struct hns3_nic_priv *priv = netdev_priv(ndev);
4356 struct hns3_enet_ring *rx_ring;
4357 int i, j;
4358 int ret;
4359
4360 for (i = 0; i < h->kinfo.num_tqps; i++) {
4361 ret = h->ae_algo->ops->reset_queue(h, i);
4362 if (ret)
4363 return ret;
4364
4365 hns3_init_ring_hw(&priv->ring[i]);
4366
4367 /* We need to clear tx ring here because self test will
4368 * use the ring and will not run down before up
4369 */
4370 hns3_clear_tx_ring(&priv->ring[i]);
4371 priv->ring[i].next_to_clean = 0;
4372 priv->ring[i].next_to_use = 0;
4373 priv->ring[i].last_to_use = 0;
4374
4375 rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4376 hns3_init_ring_hw(rx_ring);
4377 ret = hns3_clear_rx_ring(rx_ring);
4378 if (ret)
4379 return ret;
4380
4381 /* We can not know the hardware head and tail when this
4382 * function is called in reset flow, so we reuse all desc.
4383 */
4384 for (j = 0; j < rx_ring->desc_num; j++)
4385 hns3_reuse_buffer(rx_ring, j);
4386
4387 rx_ring->next_to_clean = 0;
4388 rx_ring->next_to_use = 0;
4389 }
4390
4391 hns3_init_tx_ring_tc(priv);
4392
4393 return 0;
4394 }
4395
hns3_store_coal(struct hns3_nic_priv * priv)4396 static void hns3_store_coal(struct hns3_nic_priv *priv)
4397 {
4398 /* ethtool only support setting and querying one coal
4399 * configuration for now, so save the vector 0' coal
4400 * configuration here in order to restore it.
4401 */
4402 memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4403 sizeof(struct hns3_enet_coalesce));
4404 memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4405 sizeof(struct hns3_enet_coalesce));
4406 }
4407
hns3_restore_coal(struct hns3_nic_priv * priv)4408 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4409 {
4410 u16 vector_num = priv->vector_num;
4411 int i;
4412
4413 for (i = 0; i < vector_num; i++) {
4414 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4415 sizeof(struct hns3_enet_coalesce));
4416 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4417 sizeof(struct hns3_enet_coalesce));
4418 }
4419 }
4420
hns3_reset_notify_down_enet(struct hnae3_handle * handle)4421 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4422 {
4423 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4424 struct net_device *ndev = kinfo->netdev;
4425 struct hns3_nic_priv *priv = netdev_priv(ndev);
4426
4427 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4428 return 0;
4429
4430 if (!netif_running(ndev))
4431 return 0;
4432
4433 return hns3_nic_net_stop(ndev);
4434 }
4435
hns3_reset_notify_up_enet(struct hnae3_handle * handle)4436 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4437 {
4438 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4439 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4440 int ret = 0;
4441
4442 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4443 netdev_err(kinfo->netdev, "device is not initialized yet\n");
4444 return -EFAULT;
4445 }
4446
4447 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4448
4449 if (netif_running(kinfo->netdev)) {
4450 ret = hns3_nic_net_open(kinfo->netdev);
4451 if (ret) {
4452 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4453 netdev_err(kinfo->netdev,
4454 "net up fail, ret=%d!\n", ret);
4455 return ret;
4456 }
4457 }
4458
4459 return ret;
4460 }
4461
hns3_reset_notify_init_enet(struct hnae3_handle * handle)4462 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4463 {
4464 struct net_device *netdev = handle->kinfo.netdev;
4465 struct hns3_nic_priv *priv = netdev_priv(netdev);
4466 int ret;
4467
4468 /* Carrier off reporting is important to ethtool even BEFORE open */
4469 netif_carrier_off(netdev);
4470
4471 ret = hns3_get_ring_config(priv);
4472 if (ret)
4473 return ret;
4474
4475 ret = hns3_nic_alloc_vector_data(priv);
4476 if (ret)
4477 goto err_put_ring;
4478
4479 hns3_restore_coal(priv);
4480
4481 ret = hns3_nic_init_vector_data(priv);
4482 if (ret)
4483 goto err_dealloc_vector;
4484
4485 ret = hns3_init_all_ring(priv);
4486 if (ret)
4487 goto err_uninit_vector;
4488
4489 /* the device can work without cpu rmap, only aRFS needs it */
4490 ret = hns3_set_rx_cpu_rmap(netdev);
4491 if (ret)
4492 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4493
4494 ret = hns3_nic_init_irq(priv);
4495 if (ret) {
4496 dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4497 hns3_free_rx_cpu_rmap(netdev);
4498 goto err_init_irq_fail;
4499 }
4500
4501 if (!hns3_is_phys_func(handle->pdev))
4502 hns3_init_mac_addr(netdev);
4503
4504 ret = hns3_client_start(handle);
4505 if (ret) {
4506 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4507 goto err_client_start_fail;
4508 }
4509
4510 set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4511
4512 return ret;
4513
4514 err_client_start_fail:
4515 hns3_free_rx_cpu_rmap(netdev);
4516 hns3_nic_uninit_irq(priv);
4517 err_init_irq_fail:
4518 hns3_uninit_all_ring(priv);
4519 err_uninit_vector:
4520 hns3_nic_uninit_vector_data(priv);
4521 err_dealloc_vector:
4522 hns3_nic_dealloc_vector_data(priv);
4523 err_put_ring:
4524 hns3_put_ring_config(priv);
4525
4526 return ret;
4527 }
4528
hns3_reset_notify_uninit_enet(struct hnae3_handle * handle)4529 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4530 {
4531 struct net_device *netdev = handle->kinfo.netdev;
4532 struct hns3_nic_priv *priv = netdev_priv(netdev);
4533 int ret;
4534
4535 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4536 netdev_warn(netdev, "already uninitialized\n");
4537 return 0;
4538 }
4539
4540 hns3_free_rx_cpu_rmap(netdev);
4541 hns3_nic_uninit_irq(priv);
4542 hns3_clear_all_ring(handle, true);
4543 hns3_reset_tx_queue(priv->ae_handle);
4544
4545 hns3_nic_uninit_vector_data(priv);
4546
4547 hns3_store_coal(priv);
4548
4549 hns3_nic_dealloc_vector_data(priv);
4550
4551 ret = hns3_uninit_all_ring(priv);
4552 if (ret)
4553 netdev_err(netdev, "uninit ring error\n");
4554
4555 hns3_put_ring_config(priv);
4556
4557 return ret;
4558 }
4559
hns3_reset_notify(struct hnae3_handle * handle,enum hnae3_reset_notify_type type)4560 static int hns3_reset_notify(struct hnae3_handle *handle,
4561 enum hnae3_reset_notify_type type)
4562 {
4563 int ret = 0;
4564
4565 switch (type) {
4566 case HNAE3_UP_CLIENT:
4567 ret = hns3_reset_notify_up_enet(handle);
4568 break;
4569 case HNAE3_DOWN_CLIENT:
4570 ret = hns3_reset_notify_down_enet(handle);
4571 break;
4572 case HNAE3_INIT_CLIENT:
4573 ret = hns3_reset_notify_init_enet(handle);
4574 break;
4575 case HNAE3_UNINIT_CLIENT:
4576 ret = hns3_reset_notify_uninit_enet(handle);
4577 break;
4578 default:
4579 break;
4580 }
4581
4582 return ret;
4583 }
4584
hns3_change_channels(struct hnae3_handle * handle,u32 new_tqp_num,bool rxfh_configured)4585 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4586 bool rxfh_configured)
4587 {
4588 int ret;
4589
4590 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4591 rxfh_configured);
4592 if (ret) {
4593 dev_err(&handle->pdev->dev,
4594 "Change tqp num(%u) fail.\n", new_tqp_num);
4595 return ret;
4596 }
4597
4598 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4599 if (ret)
4600 return ret;
4601
4602 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4603 if (ret)
4604 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4605
4606 return ret;
4607 }
4608
hns3_set_channels(struct net_device * netdev,struct ethtool_channels * ch)4609 int hns3_set_channels(struct net_device *netdev,
4610 struct ethtool_channels *ch)
4611 {
4612 struct hnae3_handle *h = hns3_get_handle(netdev);
4613 struct hnae3_knic_private_info *kinfo = &h->kinfo;
4614 bool rxfh_configured = netif_is_rxfh_configured(netdev);
4615 u32 new_tqp_num = ch->combined_count;
4616 u16 org_tqp_num;
4617 int ret;
4618
4619 if (hns3_nic_resetting(netdev))
4620 return -EBUSY;
4621
4622 if (ch->rx_count || ch->tx_count)
4623 return -EINVAL;
4624
4625 if (new_tqp_num > hns3_get_max_available_channels(h) ||
4626 new_tqp_num < 1) {
4627 dev_err(&netdev->dev,
4628 "Change tqps fail, the tqp range is from 1 to %u",
4629 hns3_get_max_available_channels(h));
4630 return -EINVAL;
4631 }
4632
4633 if (kinfo->rss_size == new_tqp_num)
4634 return 0;
4635
4636 netif_dbg(h, drv, netdev,
4637 "set channels: tqp_num=%u, rxfh=%d\n",
4638 new_tqp_num, rxfh_configured);
4639
4640 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4641 if (ret)
4642 return ret;
4643
4644 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4645 if (ret)
4646 return ret;
4647
4648 org_tqp_num = h->kinfo.num_tqps;
4649 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4650 if (ret) {
4651 int ret1;
4652
4653 netdev_warn(netdev,
4654 "Change channels fail, revert to old value\n");
4655 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4656 if (ret1) {
4657 netdev_err(netdev,
4658 "revert to old channel fail\n");
4659 return ret1;
4660 }
4661
4662 return ret;
4663 }
4664
4665 return 0;
4666 }
4667
4668 static const struct hns3_hw_error_info hns3_hw_err[] = {
4669 { .type = HNAE3_PPU_POISON_ERROR,
4670 .msg = "PPU poison" },
4671 { .type = HNAE3_CMDQ_ECC_ERROR,
4672 .msg = "IMP CMDQ error" },
4673 { .type = HNAE3_IMP_RD_POISON_ERROR,
4674 .msg = "IMP RD poison" },
4675 { .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4676 .msg = "ROCEE AXI RESP error" },
4677 };
4678
hns3_process_hw_error(struct hnae3_handle * handle,enum hnae3_hw_error_type type)4679 static void hns3_process_hw_error(struct hnae3_handle *handle,
4680 enum hnae3_hw_error_type type)
4681 {
4682 int i;
4683
4684 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4685 if (hns3_hw_err[i].type == type) {
4686 dev_err(&handle->pdev->dev, "Detected %s!\n",
4687 hns3_hw_err[i].msg);
4688 break;
4689 }
4690 }
4691 }
4692
4693 static const struct hnae3_client_ops client_ops = {
4694 .init_instance = hns3_client_init,
4695 .uninit_instance = hns3_client_uninit,
4696 .link_status_change = hns3_link_status_change,
4697 .setup_tc = hns3_client_setup_tc,
4698 .reset_notify = hns3_reset_notify,
4699 .process_hw_error = hns3_process_hw_error,
4700 };
4701
4702 /* hns3_init_module - Driver registration routine
4703 * hns3_init_module is the first routine called when the driver is
4704 * loaded. All it does is register with the PCI subsystem.
4705 */
hns3_init_module(void)4706 static int __init hns3_init_module(void)
4707 {
4708 int ret;
4709
4710 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4711 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4712
4713 client.type = HNAE3_CLIENT_KNIC;
4714 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4715 hns3_driver_name);
4716
4717 client.ops = &client_ops;
4718
4719 INIT_LIST_HEAD(&client.node);
4720
4721 hns3_dbg_register_debugfs(hns3_driver_name);
4722
4723 ret = hnae3_register_client(&client);
4724 if (ret)
4725 goto err_reg_client;
4726
4727 ret = pci_register_driver(&hns3_driver);
4728 if (ret)
4729 goto err_reg_driver;
4730
4731 return ret;
4732
4733 err_reg_driver:
4734 hnae3_unregister_client(&client);
4735 err_reg_client:
4736 hns3_dbg_unregister_debugfs();
4737 return ret;
4738 }
4739 module_init(hns3_init_module);
4740
4741 /* hns3_exit_module - Driver exit cleanup routine
4742 * hns3_exit_module is called just before the driver is removed
4743 * from memory.
4744 */
hns3_exit_module(void)4745 static void __exit hns3_exit_module(void)
4746 {
4747 pci_unregister_driver(&hns3_driver);
4748 hnae3_unregister_client(&client);
4749 hns3_dbg_unregister_debugfs();
4750 }
4751 module_exit(hns3_exit_module);
4752
4753 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4754 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4755 MODULE_LICENSE("GPL");
4756 MODULE_ALIAS("pci:hns-nic");
4757