• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 #define HNS3_MIN_TUN_PKT_LEN	65U
64 
65 /* hns3_pci_tbl - PCI Device ID Table
66  *
67  * Last entry must be all 0s
68  *
69  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
70  *   Class, Class Mask, private data (not used) }
71  */
72 static const struct pci_device_id hns3_pci_tbl[] = {
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
76 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
78 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
80 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
82 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
84 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
86 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
89 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
90 	/* required last entry */
91 	{0, }
92 };
93 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
94 
hns3_irq_handle(int irq,void * vector)95 static irqreturn_t hns3_irq_handle(int irq, void *vector)
96 {
97 	struct hns3_enet_tqp_vector *tqp_vector = vector;
98 
99 	napi_schedule_irqoff(&tqp_vector->napi);
100 
101 	return IRQ_HANDLED;
102 }
103 
hns3_nic_uninit_irq(struct hns3_nic_priv * priv)104 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
105 {
106 	struct hns3_enet_tqp_vector *tqp_vectors;
107 	unsigned int i;
108 
109 	for (i = 0; i < priv->vector_num; i++) {
110 		tqp_vectors = &priv->tqp_vector[i];
111 
112 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
113 			continue;
114 
115 		/* clear the affinity mask */
116 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
117 
118 		/* release the irq resource */
119 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
120 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
121 	}
122 }
123 
hns3_nic_init_irq(struct hns3_nic_priv * priv)124 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
125 {
126 	struct hns3_enet_tqp_vector *tqp_vectors;
127 	int txrx_int_idx = 0;
128 	int rx_int_idx = 0;
129 	int tx_int_idx = 0;
130 	unsigned int i;
131 	int ret;
132 
133 	for (i = 0; i < priv->vector_num; i++) {
134 		tqp_vectors = &priv->tqp_vector[i];
135 
136 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
137 			continue;
138 
139 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
140 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
141 				 "%s-%s-%s-%d", hns3_driver_name,
142 				 pci_name(priv->ae_handle->pdev),
143 				 "TxRx", txrx_int_idx++);
144 			txrx_int_idx++;
145 		} else if (tqp_vectors->rx_group.ring) {
146 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
147 				 "%s-%s-%s-%d", hns3_driver_name,
148 				 pci_name(priv->ae_handle->pdev),
149 				 "Rx", rx_int_idx++);
150 		} else if (tqp_vectors->tx_group.ring) {
151 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
152 				 "%s-%s-%s-%d", hns3_driver_name,
153 				 pci_name(priv->ae_handle->pdev),
154 				 "Tx", tx_int_idx++);
155 		} else {
156 			/* Skip this unused q_vector */
157 			continue;
158 		}
159 
160 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
161 
162 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
163 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
164 				  tqp_vectors->name, tqp_vectors);
165 		if (ret) {
166 			netdev_err(priv->netdev, "request irq(%d) fail\n",
167 				   tqp_vectors->vector_irq);
168 			hns3_nic_uninit_irq(priv);
169 			return ret;
170 		}
171 
172 		irq_set_affinity_hint(tqp_vectors->vector_irq,
173 				      &tqp_vectors->affinity_mask);
174 
175 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
176 	}
177 
178 	return 0;
179 }
180 
hns3_mask_vector_irq(struct hns3_enet_tqp_vector * tqp_vector,u32 mask_en)181 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
182 				 u32 mask_en)
183 {
184 	writel(mask_en, tqp_vector->mask_addr);
185 }
186 
hns3_vector_enable(struct hns3_enet_tqp_vector * tqp_vector)187 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
188 {
189 	napi_enable(&tqp_vector->napi);
190 	enable_irq(tqp_vector->vector_irq);
191 
192 	/* enable vector */
193 	hns3_mask_vector_irq(tqp_vector, 1);
194 }
195 
hns3_vector_disable(struct hns3_enet_tqp_vector * tqp_vector)196 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
197 {
198 	/* disable vector */
199 	hns3_mask_vector_irq(tqp_vector, 0);
200 
201 	disable_irq(tqp_vector->vector_irq);
202 	napi_disable(&tqp_vector->napi);
203 }
204 
hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector * tqp_vector,u32 rl_value)205 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
206 				 u32 rl_value)
207 {
208 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
209 
210 	/* this defines the configuration for RL (Interrupt Rate Limiter).
211 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
212 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
213 	 */
214 
215 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
216 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
217 		/* According to the hardware, the range of rl_reg is
218 		 * 0-59 and the unit is 4.
219 		 */
220 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
221 
222 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
223 }
224 
hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)225 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
226 				    u32 gl_value)
227 {
228 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
229 
230 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
231 }
232 
hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector * tqp_vector,u32 gl_value)233 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
234 				    u32 gl_value)
235 {
236 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
237 
238 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
239 }
240 
hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)241 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
242 				   struct hns3_nic_priv *priv)
243 {
244 	/* initialize the configuration for interrupt coalescing.
245 	 * 1. GL (Interrupt Gap Limiter)
246 	 * 2. RL (Interrupt Rate Limiter)
247 	 *
248 	 * Default: enable interrupt coalescing self-adaptive and GL
249 	 */
250 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
251 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
252 
253 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
254 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
255 
256 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
257 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
258 }
259 
hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector * tqp_vector,struct hns3_nic_priv * priv)260 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
261 				      struct hns3_nic_priv *priv)
262 {
263 	struct hnae3_handle *h = priv->ae_handle;
264 
265 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
266 				       tqp_vector->tx_group.coal.int_gl);
267 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
268 				       tqp_vector->rx_group.coal.int_gl);
269 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
270 }
271 
hns3_nic_set_real_num_queue(struct net_device * netdev)272 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
273 {
274 	struct hnae3_handle *h = hns3_get_handle(netdev);
275 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
276 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
277 	int i, ret;
278 
279 	if (kinfo->num_tc <= 1) {
280 		netdev_reset_tc(netdev);
281 	} else {
282 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
283 		if (ret) {
284 			netdev_err(netdev,
285 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
286 			return ret;
287 		}
288 
289 		for (i = 0; i < HNAE3_MAX_TC; i++) {
290 			if (!kinfo->tc_info[i].enable)
291 				continue;
292 
293 			netdev_set_tc_queue(netdev,
294 					    kinfo->tc_info[i].tc,
295 					    kinfo->tc_info[i].tqp_count,
296 					    kinfo->tc_info[i].tqp_offset);
297 		}
298 	}
299 
300 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
301 	if (ret) {
302 		netdev_err(netdev,
303 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
304 		return ret;
305 	}
306 
307 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
308 	if (ret) {
309 		netdev_err(netdev,
310 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
311 		return ret;
312 	}
313 
314 	return 0;
315 }
316 
hns3_get_max_available_channels(struct hnae3_handle * h)317 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
318 {
319 	u16 alloc_tqps, max_rss_size, rss_size;
320 
321 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
322 	rss_size = alloc_tqps / h->kinfo.num_tc;
323 
324 	return min_t(u16, rss_size, max_rss_size);
325 }
326 
hns3_tqp_enable(struct hnae3_queue * tqp)327 static void hns3_tqp_enable(struct hnae3_queue *tqp)
328 {
329 	u32 rcb_reg;
330 
331 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332 	rcb_reg |= BIT(HNS3_RING_EN_B);
333 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335 
hns3_tqp_disable(struct hnae3_queue * tqp)336 static void hns3_tqp_disable(struct hnae3_queue *tqp)
337 {
338 	u32 rcb_reg;
339 
340 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
341 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
342 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
343 }
344 
hns3_free_rx_cpu_rmap(struct net_device * netdev)345 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
346 {
347 #ifdef CONFIG_RFS_ACCEL
348 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
349 	netdev->rx_cpu_rmap = NULL;
350 #endif
351 }
352 
hns3_set_rx_cpu_rmap(struct net_device * netdev)353 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
354 {
355 #ifdef CONFIG_RFS_ACCEL
356 	struct hns3_nic_priv *priv = netdev_priv(netdev);
357 	struct hns3_enet_tqp_vector *tqp_vector;
358 	int i, ret;
359 
360 	if (!netdev->rx_cpu_rmap) {
361 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
362 		if (!netdev->rx_cpu_rmap)
363 			return -ENOMEM;
364 	}
365 
366 	for (i = 0; i < priv->vector_num; i++) {
367 		tqp_vector = &priv->tqp_vector[i];
368 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
369 				       tqp_vector->vector_irq);
370 		if (ret) {
371 			hns3_free_rx_cpu_rmap(netdev);
372 			return ret;
373 		}
374 	}
375 #endif
376 	return 0;
377 }
378 
hns3_nic_net_up(struct net_device * netdev)379 static int hns3_nic_net_up(struct net_device *netdev)
380 {
381 	struct hns3_nic_priv *priv = netdev_priv(netdev);
382 	struct hnae3_handle *h = priv->ae_handle;
383 	int i, j;
384 	int ret;
385 
386 	ret = hns3_nic_reset_all_ring(h);
387 	if (ret)
388 		return ret;
389 
390 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
391 
392 	/* enable the vectors */
393 	for (i = 0; i < priv->vector_num; i++)
394 		hns3_vector_enable(&priv->tqp_vector[i]);
395 
396 	/* enable rcb */
397 	for (j = 0; j < h->kinfo.num_tqps; j++)
398 		hns3_tqp_enable(h->kinfo.tqp[j]);
399 
400 	/* start the ae_dev */
401 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
402 	if (ret) {
403 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
404 		while (j--)
405 			hns3_tqp_disable(h->kinfo.tqp[j]);
406 
407 		for (j = i - 1; j >= 0; j--)
408 			hns3_vector_disable(&priv->tqp_vector[j]);
409 	}
410 
411 	return ret;
412 }
413 
hns3_config_xps(struct hns3_nic_priv * priv)414 static void hns3_config_xps(struct hns3_nic_priv *priv)
415 {
416 	int i;
417 
418 	for (i = 0; i < priv->vector_num; i++) {
419 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
420 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
421 
422 		while (ring) {
423 			int ret;
424 
425 			ret = netif_set_xps_queue(priv->netdev,
426 						  &tqp_vector->affinity_mask,
427 						  ring->tqp->tqp_index);
428 			if (ret)
429 				netdev_warn(priv->netdev,
430 					    "set xps queue failed: %d", ret);
431 
432 			ring = ring->next;
433 		}
434 	}
435 }
436 
hns3_nic_net_open(struct net_device * netdev)437 static int hns3_nic_net_open(struct net_device *netdev)
438 {
439 	struct hns3_nic_priv *priv = netdev_priv(netdev);
440 	struct hnae3_handle *h = hns3_get_handle(netdev);
441 	struct hnae3_knic_private_info *kinfo;
442 	int i, ret;
443 
444 	if (hns3_nic_resetting(netdev))
445 		return -EBUSY;
446 
447 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
448 		netdev_warn(netdev, "net open repeatedly!\n");
449 		return 0;
450 	}
451 
452 	netif_carrier_off(netdev);
453 
454 	ret = hns3_nic_set_real_num_queue(netdev);
455 	if (ret)
456 		return ret;
457 
458 	ret = hns3_nic_net_up(netdev);
459 	if (ret) {
460 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
461 		return ret;
462 	}
463 
464 	kinfo = &h->kinfo;
465 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
466 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
467 
468 	if (h->ae_algo->ops->set_timer_task)
469 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
470 
471 	hns3_config_xps(priv);
472 
473 	netif_dbg(h, drv, netdev, "net open\n");
474 
475 	return 0;
476 }
477 
hns3_reset_tx_queue(struct hnae3_handle * h)478 static void hns3_reset_tx_queue(struct hnae3_handle *h)
479 {
480 	struct net_device *ndev = h->kinfo.netdev;
481 	struct hns3_nic_priv *priv = netdev_priv(ndev);
482 	struct netdev_queue *dev_queue;
483 	u32 i;
484 
485 	for (i = 0; i < h->kinfo.num_tqps; i++) {
486 		dev_queue = netdev_get_tx_queue(ndev,
487 						priv->ring[i].queue_index);
488 		netdev_tx_reset_queue(dev_queue);
489 	}
490 }
491 
hns3_nic_net_down(struct net_device * netdev)492 static void hns3_nic_net_down(struct net_device *netdev)
493 {
494 	struct hns3_nic_priv *priv = netdev_priv(netdev);
495 	struct hnae3_handle *h = hns3_get_handle(netdev);
496 	const struct hnae3_ae_ops *ops;
497 	int i;
498 
499 	/* disable vectors */
500 	for (i = 0; i < priv->vector_num; i++)
501 		hns3_vector_disable(&priv->tqp_vector[i]);
502 
503 	/* disable rcb */
504 	for (i = 0; i < h->kinfo.num_tqps; i++)
505 		hns3_tqp_disable(h->kinfo.tqp[i]);
506 
507 	/* stop ae_dev */
508 	ops = priv->ae_handle->ae_algo->ops;
509 	if (ops->stop)
510 		ops->stop(priv->ae_handle);
511 
512 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
513 	 * during reset process, because driver may not be able
514 	 * to disable the ring through firmware when downing the netdev.
515 	 */
516 	if (!hns3_nic_resetting(netdev))
517 		hns3_clear_all_ring(priv->ae_handle, false);
518 
519 	hns3_reset_tx_queue(priv->ae_handle);
520 }
521 
hns3_nic_net_stop(struct net_device * netdev)522 static int hns3_nic_net_stop(struct net_device *netdev)
523 {
524 	struct hns3_nic_priv *priv = netdev_priv(netdev);
525 	struct hnae3_handle *h = hns3_get_handle(netdev);
526 
527 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
528 		return 0;
529 
530 	netif_dbg(h, drv, netdev, "net stop\n");
531 
532 	if (h->ae_algo->ops->set_timer_task)
533 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
534 
535 	netif_carrier_off(netdev);
536 	netif_tx_disable(netdev);
537 
538 	hns3_nic_net_down(netdev);
539 
540 	return 0;
541 }
542 
hns3_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)543 static int hns3_nic_uc_sync(struct net_device *netdev,
544 			    const unsigned char *addr)
545 {
546 	struct hnae3_handle *h = hns3_get_handle(netdev);
547 
548 	if (h->ae_algo->ops->add_uc_addr)
549 		return h->ae_algo->ops->add_uc_addr(h, addr);
550 
551 	return 0;
552 }
553 
hns3_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)554 static int hns3_nic_uc_unsync(struct net_device *netdev,
555 			      const unsigned char *addr)
556 {
557 	struct hnae3_handle *h = hns3_get_handle(netdev);
558 
559 	/* need ignore the request of removing device address, because
560 	 * we store the device address and other addresses of uc list
561 	 * in the function's mac filter list.
562 	 */
563 	if (ether_addr_equal(addr, netdev->dev_addr))
564 		return 0;
565 
566 	if (h->ae_algo->ops->rm_uc_addr)
567 		return h->ae_algo->ops->rm_uc_addr(h, addr);
568 
569 	return 0;
570 }
571 
hns3_nic_mc_sync(struct net_device * netdev,const unsigned char * addr)572 static int hns3_nic_mc_sync(struct net_device *netdev,
573 			    const unsigned char *addr)
574 {
575 	struct hnae3_handle *h = hns3_get_handle(netdev);
576 
577 	if (h->ae_algo->ops->add_mc_addr)
578 		return h->ae_algo->ops->add_mc_addr(h, addr);
579 
580 	return 0;
581 }
582 
hns3_nic_mc_unsync(struct net_device * netdev,const unsigned char * addr)583 static int hns3_nic_mc_unsync(struct net_device *netdev,
584 			      const unsigned char *addr)
585 {
586 	struct hnae3_handle *h = hns3_get_handle(netdev);
587 
588 	if (h->ae_algo->ops->rm_mc_addr)
589 		return h->ae_algo->ops->rm_mc_addr(h, addr);
590 
591 	return 0;
592 }
593 
hns3_get_netdev_flags(struct net_device * netdev)594 static u8 hns3_get_netdev_flags(struct net_device *netdev)
595 {
596 	u8 flags = 0;
597 
598 	if (netdev->flags & IFF_PROMISC) {
599 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
600 	} else {
601 		flags |= HNAE3_VLAN_FLTR;
602 		if (netdev->flags & IFF_ALLMULTI)
603 			flags |= HNAE3_USER_MPE;
604 	}
605 
606 	return flags;
607 }
608 
hns3_nic_set_rx_mode(struct net_device * netdev)609 static void hns3_nic_set_rx_mode(struct net_device *netdev)
610 {
611 	struct hnae3_handle *h = hns3_get_handle(netdev);
612 	u8 new_flags;
613 
614 	new_flags = hns3_get_netdev_flags(netdev);
615 
616 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
617 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
618 
619 	/* User mode Promisc mode enable and vlan filtering is disabled to
620 	 * let all packets in.
621 	 */
622 	h->netdev_flags = new_flags;
623 	hns3_request_update_promisc_mode(h);
624 }
625 
hns3_request_update_promisc_mode(struct hnae3_handle * handle)626 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
627 {
628 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
629 
630 	if (ops->request_update_promisc_mode)
631 		ops->request_update_promisc_mode(handle);
632 }
633 
hns3_enable_vlan_filter(struct net_device * netdev,bool enable)634 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
635 {
636 	struct hns3_nic_priv *priv = netdev_priv(netdev);
637 	struct hnae3_handle *h = priv->ae_handle;
638 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
639 	bool last_state;
640 
641 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
642 	    h->ae_algo->ops->enable_vlan_filter) {
643 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
644 		if (enable != last_state) {
645 			netdev_info(netdev,
646 				    "%s vlan filter\n",
647 				    enable ? "enable" : "disable");
648 			h->ae_algo->ops->enable_vlan_filter(h, enable);
649 		}
650 	}
651 }
652 
hns3_set_tso(struct sk_buff * skb,u32 * paylen,u16 * mss,u32 * type_cs_vlan_tso)653 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
654 			u16 *mss, u32 *type_cs_vlan_tso)
655 {
656 	u32 l4_offset, hdr_len;
657 	union l3_hdr_info l3;
658 	union l4_hdr_info l4;
659 	u32 l4_paylen;
660 	int ret;
661 
662 	if (!skb_is_gso(skb))
663 		return 0;
664 
665 	ret = skb_cow_head(skb, 0);
666 	if (unlikely(ret < 0))
667 		return ret;
668 
669 	l3.hdr = skb_network_header(skb);
670 	l4.hdr = skb_transport_header(skb);
671 
672 	/* Software should clear the IPv4's checksum field when tso is
673 	 * needed.
674 	 */
675 	if (l3.v4->version == 4)
676 		l3.v4->check = 0;
677 
678 	/* tunnel packet */
679 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
680 					 SKB_GSO_GRE_CSUM |
681 					 SKB_GSO_UDP_TUNNEL |
682 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
683 		if ((!(skb_shinfo(skb)->gso_type &
684 		    SKB_GSO_PARTIAL)) &&
685 		    (skb_shinfo(skb)->gso_type &
686 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
687 			/* Software should clear the udp's checksum
688 			 * field when tso is needed.
689 			 */
690 			l4.udp->check = 0;
691 		}
692 		/* reset l3&l4 pointers from outer to inner headers */
693 		l3.hdr = skb_inner_network_header(skb);
694 		l4.hdr = skb_inner_transport_header(skb);
695 
696 		/* Software should clear the IPv4's checksum field when
697 		 * tso is needed.
698 		 */
699 		if (l3.v4->version == 4)
700 			l3.v4->check = 0;
701 	}
702 
703 	/* normal or tunnel packet */
704 	l4_offset = l4.hdr - skb->data;
705 
706 	/* remove payload length from inner pseudo checksum when tso */
707 	l4_paylen = skb->len - l4_offset;
708 
709 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
710 		hdr_len = sizeof(*l4.udp) + l4_offset;
711 		csum_replace_by_diff(&l4.udp->check,
712 				     (__force __wsum)htonl(l4_paylen));
713 	} else {
714 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
715 		csum_replace_by_diff(&l4.tcp->check,
716 				     (__force __wsum)htonl(l4_paylen));
717 	}
718 
719 	/* find the txbd field values */
720 	*paylen = skb->len - hdr_len;
721 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
722 
723 	/* get MSS for TSO */
724 	*mss = skb_shinfo(skb)->gso_size;
725 
726 	trace_hns3_tso(skb);
727 
728 	return 0;
729 }
730 
hns3_get_l4_protocol(struct sk_buff * skb,u8 * ol4_proto,u8 * il4_proto)731 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
732 				u8 *il4_proto)
733 {
734 	union l3_hdr_info l3;
735 	unsigned char *l4_hdr;
736 	unsigned char *exthdr;
737 	u8 l4_proto_tmp;
738 	__be16 frag_off;
739 
740 	/* find outer header point */
741 	l3.hdr = skb_network_header(skb);
742 	l4_hdr = skb_transport_header(skb);
743 
744 	if (skb->protocol == htons(ETH_P_IPV6)) {
745 		exthdr = l3.hdr + sizeof(*l3.v6);
746 		l4_proto_tmp = l3.v6->nexthdr;
747 		if (l4_hdr != exthdr)
748 			ipv6_skip_exthdr(skb, exthdr - skb->data,
749 					 &l4_proto_tmp, &frag_off);
750 	} else if (skb->protocol == htons(ETH_P_IP)) {
751 		l4_proto_tmp = l3.v4->protocol;
752 	} else {
753 		return -EINVAL;
754 	}
755 
756 	*ol4_proto = l4_proto_tmp;
757 
758 	/* tunnel packet */
759 	if (!skb->encapsulation) {
760 		*il4_proto = 0;
761 		return 0;
762 	}
763 
764 	/* find inner header point */
765 	l3.hdr = skb_inner_network_header(skb);
766 	l4_hdr = skb_inner_transport_header(skb);
767 
768 	if (l3.v6->version == 6) {
769 		exthdr = l3.hdr + sizeof(*l3.v6);
770 		l4_proto_tmp = l3.v6->nexthdr;
771 		if (l4_hdr != exthdr)
772 			ipv6_skip_exthdr(skb, exthdr - skb->data,
773 					 &l4_proto_tmp, &frag_off);
774 	} else if (l3.v4->version == 4) {
775 		l4_proto_tmp = l3.v4->protocol;
776 	}
777 
778 	*il4_proto = l4_proto_tmp;
779 
780 	return 0;
781 }
782 
783 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
784  * and it is udp packet, which has a dest port as the IANA assigned.
785  * the hardware is expected to do the checksum offload, but the
786  * hardware will not do the checksum offload when udp dest port is
787  * 4789, 4790 or 6081.
788  */
hns3_tunnel_csum_bug(struct sk_buff * skb)789 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
790 {
791 	union l4_hdr_info l4;
792 
793 	l4.hdr = skb_transport_header(skb);
794 
795 	if (!(!skb->encapsulation &&
796 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
797 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
798 	      l4.udp->dest == htons(4790))))
799 		return false;
800 
801 	return true;
802 }
803 
hns3_set_outer_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u32 * ol_type_vlan_len_msec)804 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
805 				  u32 *ol_type_vlan_len_msec)
806 {
807 	u32 l2_len, l3_len, l4_len;
808 	unsigned char *il2_hdr;
809 	union l3_hdr_info l3;
810 	union l4_hdr_info l4;
811 
812 	l3.hdr = skb_network_header(skb);
813 	l4.hdr = skb_transport_header(skb);
814 
815 	/* compute OL2 header size, defined in 2 Bytes */
816 	l2_len = l3.hdr - skb->data;
817 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
818 
819 	/* compute OL3 header size, defined in 4 Bytes */
820 	l3_len = l4.hdr - l3.hdr;
821 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
822 
823 	il2_hdr = skb_inner_mac_header(skb);
824 	/* compute OL4 header size, defined in 4 Bytes */
825 	l4_len = il2_hdr - l4.hdr;
826 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
827 
828 	/* define outer network header type */
829 	if (skb->protocol == htons(ETH_P_IP)) {
830 		if (skb_is_gso(skb))
831 			hns3_set_field(*ol_type_vlan_len_msec,
832 				       HNS3_TXD_OL3T_S,
833 				       HNS3_OL3T_IPV4_CSUM);
834 		else
835 			hns3_set_field(*ol_type_vlan_len_msec,
836 				       HNS3_TXD_OL3T_S,
837 				       HNS3_OL3T_IPV4_NO_CSUM);
838 
839 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
840 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
841 			       HNS3_OL3T_IPV6);
842 	}
843 
844 	if (ol4_proto == IPPROTO_UDP)
845 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
846 			       HNS3_TUN_MAC_IN_UDP);
847 	else if (ol4_proto == IPPROTO_GRE)
848 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
849 			       HNS3_TUN_NVGRE);
850 }
851 
hns3_set_l2l3l4(struct sk_buff * skb,u8 ol4_proto,u8 il4_proto,u32 * type_cs_vlan_tso,u32 * ol_type_vlan_len_msec)852 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
853 			   u8 il4_proto, u32 *type_cs_vlan_tso,
854 			   u32 *ol_type_vlan_len_msec)
855 {
856 	unsigned char *l2_hdr = skb->data;
857 	u32 l4_proto = ol4_proto;
858 	union l4_hdr_info l4;
859 	union l3_hdr_info l3;
860 	u32 l2_len, l3_len;
861 
862 	l4.hdr = skb_transport_header(skb);
863 	l3.hdr = skb_network_header(skb);
864 
865 	/* handle encapsulation skb */
866 	if (skb->encapsulation) {
867 		/* If this is a not UDP/GRE encapsulation skb */
868 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
869 			/* drop the skb tunnel packet if hardware don't support,
870 			 * because hardware can't calculate csum when TSO.
871 			 */
872 			if (skb_is_gso(skb))
873 				return -EDOM;
874 
875 			/* the stack computes the IP header already,
876 			 * driver calculate l4 checksum when not TSO.
877 			 */
878 			return skb_checksum_help(skb);
879 		}
880 
881 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
882 
883 		/* switch to inner header */
884 		l2_hdr = skb_inner_mac_header(skb);
885 		l3.hdr = skb_inner_network_header(skb);
886 		l4.hdr = skb_inner_transport_header(skb);
887 		l4_proto = il4_proto;
888 	}
889 
890 	if (l3.v4->version == 4) {
891 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
892 			       HNS3_L3T_IPV4);
893 
894 		/* the stack computes the IP header already, the only time we
895 		 * need the hardware to recompute it is in the case of TSO.
896 		 */
897 		if (skb_is_gso(skb))
898 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
899 	} else if (l3.v6->version == 6) {
900 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
901 			       HNS3_L3T_IPV6);
902 	}
903 
904 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
905 	l2_len = l3.hdr - l2_hdr;
906 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
907 
908 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
909 	l3_len = l4.hdr - l3.hdr;
910 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
911 
912 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
913 	switch (l4_proto) {
914 	case IPPROTO_TCP:
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
916 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
917 			       HNS3_L4T_TCP);
918 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
919 			       l4.tcp->doff);
920 		break;
921 	case IPPROTO_UDP:
922 		if (hns3_tunnel_csum_bug(skb)) {
923 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
924 
925 			return ret ? ret : skb_checksum_help(skb);
926 		}
927 
928 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930 			       HNS3_L4T_UDP);
931 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
932 			       (sizeof(struct udphdr) >> 2));
933 		break;
934 	case IPPROTO_SCTP:
935 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
936 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
937 			       HNS3_L4T_SCTP);
938 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
939 			       (sizeof(struct sctphdr) >> 2));
940 		break;
941 	default:
942 		/* drop the skb tunnel packet if hardware don't support,
943 		 * because hardware can't calculate csum when TSO.
944 		 */
945 		if (skb_is_gso(skb))
946 			return -EDOM;
947 
948 		/* the stack computes the IP header already,
949 		 * driver calculate l4 checksum when not TSO.
950 		 */
951 		return skb_checksum_help(skb);
952 	}
953 
954 	return 0;
955 }
956 
hns3_handle_vtags(struct hns3_enet_ring * tx_ring,struct sk_buff * skb)957 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
958 			     struct sk_buff *skb)
959 {
960 	struct hnae3_handle *handle = tx_ring->tqp->handle;
961 	struct vlan_ethhdr *vhdr;
962 	int rc;
963 
964 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
965 	      skb_vlan_tag_present(skb)))
966 		return 0;
967 
968 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
969 	 * header is allowed in skb, otherwise it will cause RAS error.
970 	 */
971 	if (unlikely(skb_vlan_tagged_multi(skb) &&
972 		     handle->port_base_vlan_state ==
973 		     HNAE3_PORT_BASE_VLAN_ENABLE))
974 		return -EINVAL;
975 
976 	if (skb->protocol == htons(ETH_P_8021Q) &&
977 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
978 		/* When HW VLAN acceleration is turned off, and the stack
979 		 * sets the protocol to 802.1q, the driver just need to
980 		 * set the protocol to the encapsulated ethertype.
981 		 */
982 		skb->protocol = vlan_get_protocol(skb);
983 		return 0;
984 	}
985 
986 	if (skb_vlan_tag_present(skb)) {
987 		/* Based on hw strategy, use out_vtag in two layer tag case,
988 		 * and use inner_vtag in one tag case.
989 		 */
990 		if (skb->protocol == htons(ETH_P_8021Q) &&
991 		    handle->port_base_vlan_state ==
992 		    HNAE3_PORT_BASE_VLAN_DISABLE)
993 			rc = HNS3_OUTER_VLAN_TAG;
994 		else
995 			rc = HNS3_INNER_VLAN_TAG;
996 
997 		skb->protocol = vlan_get_protocol(skb);
998 		return rc;
999 	}
1000 
1001 	rc = skb_cow_head(skb, 0);
1002 	if (unlikely(rc < 0))
1003 		return rc;
1004 
1005 	vhdr = (struct vlan_ethhdr *)skb->data;
1006 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1007 					 & VLAN_PRIO_MASK);
1008 
1009 	skb->protocol = vlan_get_protocol(skb);
1010 	return 0;
1011 }
1012 
hns3_fill_skb_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,struct hns3_desc * desc)1013 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1014 			      struct sk_buff *skb, struct hns3_desc *desc)
1015 {
1016 	u32 ol_type_vlan_len_msec = 0;
1017 	u32 type_cs_vlan_tso = 0;
1018 	u32 paylen = skb->len;
1019 	u16 inner_vtag = 0;
1020 	u16 out_vtag = 0;
1021 	u16 mss = 0;
1022 	int ret;
1023 
1024 	ret = hns3_handle_vtags(ring, skb);
1025 	if (unlikely(ret < 0)) {
1026 		u64_stats_update_begin(&ring->syncp);
1027 		ring->stats.tx_vlan_err++;
1028 		u64_stats_update_end(&ring->syncp);
1029 		return ret;
1030 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1031 		inner_vtag = skb_vlan_tag_get(skb);
1032 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1035 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1036 		out_vtag = skb_vlan_tag_get(skb);
1037 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1038 				VLAN_PRIO_MASK;
1039 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1040 			       1);
1041 	}
1042 
1043 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1044 		u8 ol4_proto, il4_proto;
1045 
1046 		skb_reset_mac_len(skb);
1047 
1048 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1049 		if (unlikely(ret < 0)) {
1050 			u64_stats_update_begin(&ring->syncp);
1051 			ring->stats.tx_l4_proto_err++;
1052 			u64_stats_update_end(&ring->syncp);
1053 			return ret;
1054 		}
1055 
1056 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1057 				      &type_cs_vlan_tso,
1058 				      &ol_type_vlan_len_msec);
1059 		if (unlikely(ret < 0)) {
1060 			u64_stats_update_begin(&ring->syncp);
1061 			ring->stats.tx_l2l3l4_err++;
1062 			u64_stats_update_end(&ring->syncp);
1063 			return ret;
1064 		}
1065 
1066 		ret = hns3_set_tso(skb, &paylen, &mss,
1067 				   &type_cs_vlan_tso);
1068 		if (unlikely(ret < 0)) {
1069 			u64_stats_update_begin(&ring->syncp);
1070 			ring->stats.tx_tso_err++;
1071 			u64_stats_update_end(&ring->syncp);
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	/* Set txbd */
1077 	desc->tx.ol_type_vlan_len_msec =
1078 		cpu_to_le32(ol_type_vlan_len_msec);
1079 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1080 	desc->tx.paylen = cpu_to_le32(paylen);
1081 	desc->tx.mss = cpu_to_le16(mss);
1082 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1083 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1084 
1085 	return 0;
1086 }
1087 
hns3_fill_desc(struct hns3_enet_ring * ring,void * priv,unsigned int size,enum hns_desc_type type)1088 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1089 			  unsigned int size, enum hns_desc_type type)
1090 {
1091 #define HNS3_LIKELY_BD_NUM	1
1092 
1093 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1094 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1095 	struct device *dev = ring_to_dev(ring);
1096 	skb_frag_t *frag;
1097 	unsigned int frag_buf_num;
1098 	int k, sizeoflast;
1099 	dma_addr_t dma;
1100 
1101 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1102 	    type == DESC_TYPE_SKB) {
1103 		struct sk_buff *skb = (struct sk_buff *)priv;
1104 
1105 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1106 	} else {
1107 		frag = (skb_frag_t *)priv;
1108 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1109 	}
1110 
1111 	if (unlikely(dma_mapping_error(dev, dma))) {
1112 		u64_stats_update_begin(&ring->syncp);
1113 		ring->stats.sw_err_cnt++;
1114 		u64_stats_update_end(&ring->syncp);
1115 		return -ENOMEM;
1116 	}
1117 
1118 	desc_cb->priv = priv;
1119 	desc_cb->length = size;
1120 	desc_cb->dma = dma;
1121 	desc_cb->type = type;
1122 
1123 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124 		desc->addr = cpu_to_le64(dma);
1125 		desc->tx.send_size = cpu_to_le16(size);
1126 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1127 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1128 
1129 		trace_hns3_tx_desc(ring, ring->next_to_use);
1130 		ring_ptr_move_fw(ring, next_to_use);
1131 		return HNS3_LIKELY_BD_NUM;
1132 	}
1133 
1134 	frag_buf_num = hns3_tx_bd_count(size);
1135 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1136 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1137 
1138 	/* When frag size is bigger than hardware limit, split this frag */
1139 	for (k = 0; k < frag_buf_num; k++) {
1140 		/* now, fill the descriptor */
1141 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1142 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1143 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1144 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1145 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1146 
1147 		trace_hns3_tx_desc(ring, ring->next_to_use);
1148 		/* move ring pointer to next */
1149 		ring_ptr_move_fw(ring, next_to_use);
1150 
1151 		desc = &ring->desc[ring->next_to_use];
1152 	}
1153 
1154 	return frag_buf_num;
1155 }
1156 
hns3_skb_bd_num(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num)1157 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1158 				    unsigned int bd_num)
1159 {
1160 	unsigned int size;
1161 	int i;
1162 
1163 	size = skb_headlen(skb);
1164 	while (size > HNS3_MAX_BD_SIZE) {
1165 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1166 		size -= HNS3_MAX_BD_SIZE;
1167 
1168 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1169 			return bd_num;
1170 	}
1171 
1172 	if (size) {
1173 		bd_size[bd_num++] = size;
1174 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1175 			return bd_num;
1176 	}
1177 
1178 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1179 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1180 		size = skb_frag_size(frag);
1181 		if (!size)
1182 			continue;
1183 
1184 		while (size > HNS3_MAX_BD_SIZE) {
1185 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1186 			size -= HNS3_MAX_BD_SIZE;
1187 
1188 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1189 				return bd_num;
1190 		}
1191 
1192 		bd_size[bd_num++] = size;
1193 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1194 			return bd_num;
1195 	}
1196 
1197 	return bd_num;
1198 }
1199 
hns3_tx_bd_num(struct sk_buff * skb,unsigned int * bd_size,u8 max_non_tso_bd_num,unsigned int bd_num,unsigned int recursion_level)1200 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1201 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1202 				   unsigned int recursion_level)
1203 {
1204 #define HNS3_MAX_RECURSION_LEVEL	24
1205 
1206 	struct sk_buff *frag_skb;
1207 
1208 	/* If the total len is within the max bd limit */
1209 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1210 		   !skb_has_frag_list(skb) &&
1211 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1212 		return skb_shinfo(skb)->nr_frags + 1U;
1213 
1214 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1215 		return UINT_MAX;
1216 
1217 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1218 
1219 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1220 		return bd_num;
1221 
1222 	skb_walk_frags(skb, frag_skb) {
1223 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1224 					bd_num, recursion_level + 1);
1225 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1226 			return bd_num;
1227 	}
1228 
1229 	return bd_num;
1230 }
1231 
hns3_gso_hdr_len(struct sk_buff * skb)1232 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1233 {
1234 	if (!skb->encapsulation)
1235 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1236 
1237 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1238 }
1239 
1240 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1241  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1242  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1243  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1244  * than MSS except the last max_non_tso_bd_num - 1 frags.
1245  */
hns3_skb_need_linearized(struct sk_buff * skb,unsigned int * bd_size,unsigned int bd_num,u8 max_non_tso_bd_num)1246 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1247 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1248 {
1249 	unsigned int tot_len = 0;
1250 	int i;
1251 
1252 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1253 		tot_len += bd_size[i];
1254 
1255 	/* ensure the first max_non_tso_bd_num frags is greater than
1256 	 * mss + header
1257 	 */
1258 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1259 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1260 		return true;
1261 
1262 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1263 	 * than mss except the last one.
1264 	 */
1265 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1266 		tot_len -= bd_size[i];
1267 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1268 
1269 		if (tot_len < skb_shinfo(skb)->gso_size)
1270 			return true;
1271 	}
1272 
1273 	return false;
1274 }
1275 
hns3_shinfo_pack(struct skb_shared_info * shinfo,__u32 * size)1276 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1281 		size[i] = skb_frag_size(&shinfo->frags[i]);
1282 }
1283 
hns3_skb_linearize(struct hns3_enet_ring * ring,struct sk_buff * skb,unsigned int bd_num)1284 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1285 			      struct sk_buff *skb,
1286 			      unsigned int bd_num)
1287 {
1288 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1289 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1290 	 */
1291 	if (bd_num == UINT_MAX) {
1292 		u64_stats_update_begin(&ring->syncp);
1293 		ring->stats.over_max_recursion++;
1294 		u64_stats_update_end(&ring->syncp);
1295 		return -ENOMEM;
1296 	}
1297 
1298 	/* The skb->len has exceeded the hw limitation, linearization
1299 	 * will not help.
1300 	 */
1301 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1302 	    (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1303 		u64_stats_update_begin(&ring->syncp);
1304 		ring->stats.hw_limitation++;
1305 		u64_stats_update_end(&ring->syncp);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	if (__skb_linearize(skb)) {
1310 		u64_stats_update_begin(&ring->syncp);
1311 		ring->stats.sw_err_cnt++;
1312 		u64_stats_update_end(&ring->syncp);
1313 		return -ENOMEM;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
hns3_nic_maybe_stop_tx(struct hns3_enet_ring * ring,struct net_device * netdev,struct sk_buff * skb)1319 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1320 				  struct net_device *netdev,
1321 				  struct sk_buff *skb)
1322 {
1323 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1324 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1325 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1326 	unsigned int bd_num;
1327 
1328 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1329 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1330 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1331 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1332 					      max_non_tso_bd_num)) {
1333 			trace_hns3_over_max_bd(skb);
1334 			goto out;
1335 		}
1336 
1337 		if (hns3_skb_linearize(ring, skb, bd_num))
1338 			return -ENOMEM;
1339 
1340 		bd_num = hns3_tx_bd_count(skb->len);
1341 
1342 		u64_stats_update_begin(&ring->syncp);
1343 		ring->stats.tx_copy++;
1344 		u64_stats_update_end(&ring->syncp);
1345 	}
1346 
1347 out:
1348 	if (likely(ring_space(ring) >= bd_num))
1349 		return bd_num;
1350 
1351 	netif_stop_subqueue(netdev, ring->queue_index);
1352 	smp_mb(); /* Memory barrier before checking ring_space */
1353 
1354 	/* Start queue in case hns3_clean_tx_ring has just made room
1355 	 * available and has not seen the queue stopped state performed
1356 	 * by netif_stop_subqueue above.
1357 	 */
1358 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1359 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1360 		netif_start_subqueue(netdev, ring->queue_index);
1361 		return bd_num;
1362 	}
1363 
1364 	u64_stats_update_begin(&ring->syncp);
1365 	ring->stats.tx_busy++;
1366 	u64_stats_update_end(&ring->syncp);
1367 
1368 	return -EBUSY;
1369 }
1370 
hns3_clear_desc(struct hns3_enet_ring * ring,int next_to_use_orig)1371 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1372 {
1373 	struct device *dev = ring_to_dev(ring);
1374 	unsigned int i;
1375 
1376 	for (i = 0; i < ring->desc_num; i++) {
1377 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1378 
1379 		memset(desc, 0, sizeof(*desc));
1380 
1381 		/* check if this is where we started */
1382 		if (ring->next_to_use == next_to_use_orig)
1383 			break;
1384 
1385 		/* rollback one */
1386 		ring_ptr_move_bw(ring, next_to_use);
1387 
1388 		if (!ring->desc_cb[ring->next_to_use].dma)
1389 			continue;
1390 
1391 		/* unmap the descriptor dma address */
1392 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1393 		    ring->desc_cb[ring->next_to_use].type ==
1394 		    DESC_TYPE_FRAGLIST_SKB)
1395 			dma_unmap_single(dev,
1396 					 ring->desc_cb[ring->next_to_use].dma,
1397 					ring->desc_cb[ring->next_to_use].length,
1398 					DMA_TO_DEVICE);
1399 		else if (ring->desc_cb[ring->next_to_use].length)
1400 			dma_unmap_page(dev,
1401 				       ring->desc_cb[ring->next_to_use].dma,
1402 				       ring->desc_cb[ring->next_to_use].length,
1403 				       DMA_TO_DEVICE);
1404 
1405 		ring->desc_cb[ring->next_to_use].length = 0;
1406 		ring->desc_cb[ring->next_to_use].dma = 0;
1407 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1408 	}
1409 }
1410 
hns3_fill_skb_to_desc(struct hns3_enet_ring * ring,struct sk_buff * skb,enum hns_desc_type type)1411 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1412 				 struct sk_buff *skb, enum hns_desc_type type)
1413 {
1414 	unsigned int size = skb_headlen(skb);
1415 	struct sk_buff *frag_skb;
1416 	int i, ret, bd_num = 0;
1417 
1418 	if (size) {
1419 		ret = hns3_fill_desc(ring, skb, size, type);
1420 		if (unlikely(ret < 0))
1421 			return ret;
1422 
1423 		bd_num += ret;
1424 	}
1425 
1426 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1427 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1428 
1429 		size = skb_frag_size(frag);
1430 		if (!size)
1431 			continue;
1432 
1433 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1434 		if (unlikely(ret < 0))
1435 			return ret;
1436 
1437 		bd_num += ret;
1438 	}
1439 
1440 	skb_walk_frags(skb, frag_skb) {
1441 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1442 					    DESC_TYPE_FRAGLIST_SKB);
1443 		if (unlikely(ret < 0))
1444 			return ret;
1445 
1446 		bd_num += ret;
1447 	}
1448 
1449 	return bd_num;
1450 }
1451 
hns3_tx_doorbell(struct hns3_enet_ring * ring,int num,bool doorbell)1452 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1453 			     bool doorbell)
1454 {
1455 	ring->pending_buf += num;
1456 
1457 	if (!doorbell) {
1458 		u64_stats_update_begin(&ring->syncp);
1459 		ring->stats.tx_more++;
1460 		u64_stats_update_end(&ring->syncp);
1461 		return;
1462 	}
1463 
1464 	if (!ring->pending_buf)
1465 		return;
1466 
1467 	writel(ring->pending_buf,
1468 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1469 	ring->pending_buf = 0;
1470 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1471 }
1472 
hns3_nic_net_xmit(struct sk_buff * skb,struct net_device * netdev)1473 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1474 {
1475 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1476 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1477 	struct netdev_queue *dev_queue;
1478 	int pre_ntu, next_to_use_head;
1479 	bool doorbell;
1480 	int ret;
1481 
1482 	/* Hardware can only handle short frames above 32 bytes */
1483 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1484 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1485 		return NETDEV_TX_OK;
1486 	}
1487 
1488 	/* Prefetch the data used later */
1489 	prefetch(skb->data);
1490 
1491 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1492 	if (unlikely(ret <= 0)) {
1493 		if (ret == -EBUSY) {
1494 			hns3_tx_doorbell(ring, 0, true);
1495 			return NETDEV_TX_BUSY;
1496 		}
1497 
1498 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1499 		goto out_err_tx_ok;
1500 	}
1501 
1502 	next_to_use_head = ring->next_to_use;
1503 
1504 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1505 	if (unlikely(ret < 0))
1506 		goto fill_err;
1507 
1508 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1509 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
1510 	 * need to be notified to the hw.
1511 	 */
1512 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1513 	if (unlikely(ret <= 0))
1514 		goto fill_err;
1515 
1516 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1517 					(ring->desc_num - 1);
1518 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1519 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1520 	trace_hns3_tx_desc(ring, pre_ntu);
1521 
1522 	/* Complete translate all packets */
1523 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1524 	doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1525 					  netdev_xmit_more());
1526 	hns3_tx_doorbell(ring, ret, doorbell);
1527 
1528 	return NETDEV_TX_OK;
1529 
1530 fill_err:
1531 	hns3_clear_desc(ring, next_to_use_head);
1532 
1533 out_err_tx_ok:
1534 	dev_kfree_skb_any(skb);
1535 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1536 	return NETDEV_TX_OK;
1537 }
1538 
hns3_nic_net_set_mac_address(struct net_device * netdev,void * p)1539 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1540 {
1541 	struct hnae3_handle *h = hns3_get_handle(netdev);
1542 	struct sockaddr *mac_addr = p;
1543 	int ret;
1544 
1545 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1546 		return -EADDRNOTAVAIL;
1547 
1548 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1549 		netdev_info(netdev, "already using mac address %pM\n",
1550 			    mac_addr->sa_data);
1551 		return 0;
1552 	}
1553 
1554 	/* For VF device, if there is a perm_addr, then the user will not
1555 	 * be allowed to change the address.
1556 	 */
1557 	if (!hns3_is_phys_func(h->pdev) &&
1558 	    !is_zero_ether_addr(netdev->perm_addr)) {
1559 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1560 			   netdev->perm_addr, mac_addr->sa_data);
1561 		return -EPERM;
1562 	}
1563 
1564 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1565 	if (ret) {
1566 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1567 		return ret;
1568 	}
1569 
1570 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1571 
1572 	return 0;
1573 }
1574 
hns3_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1575 static int hns3_nic_do_ioctl(struct net_device *netdev,
1576 			     struct ifreq *ifr, int cmd)
1577 {
1578 	struct hnae3_handle *h = hns3_get_handle(netdev);
1579 
1580 	if (!netif_running(netdev))
1581 		return -EINVAL;
1582 
1583 	if (!h->ae_algo->ops->do_ioctl)
1584 		return -EOPNOTSUPP;
1585 
1586 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1587 }
1588 
hns3_nic_set_features(struct net_device * netdev,netdev_features_t features)1589 static int hns3_nic_set_features(struct net_device *netdev,
1590 				 netdev_features_t features)
1591 {
1592 	netdev_features_t changed = netdev->features ^ features;
1593 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1594 	struct hnae3_handle *h = priv->ae_handle;
1595 	bool enable;
1596 	int ret;
1597 
1598 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1599 		enable = !!(features & NETIF_F_GRO_HW);
1600 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1601 		if (ret)
1602 			return ret;
1603 	}
1604 
1605 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1606 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1607 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1608 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1609 		if (ret)
1610 			return ret;
1611 	}
1612 
1613 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1614 		enable = !!(features & NETIF_F_NTUPLE);
1615 		h->ae_algo->ops->enable_fd(h, enable);
1616 	}
1617 
1618 	netdev->features = features;
1619 	return 0;
1620 }
1621 
hns3_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1622 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1623 					     struct net_device *dev,
1624 					     netdev_features_t features)
1625 {
1626 #define HNS3_MAX_HDR_LEN	480U
1627 #define HNS3_MAX_L4_HDR_LEN	60U
1628 
1629 	size_t len;
1630 
1631 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1632 		return features;
1633 
1634 	if (skb->encapsulation)
1635 		len = skb_inner_transport_header(skb) - skb->data;
1636 	else
1637 		len = skb_transport_header(skb) - skb->data;
1638 
1639 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1640 	 * a flexible value, and it's max len is 60 bytes.
1641 	 */
1642 	len += HNS3_MAX_L4_HDR_LEN;
1643 
1644 	/* Hardware only supports checksum on the skb with a max header
1645 	 * len of 480 bytes.
1646 	 */
1647 	if (len > HNS3_MAX_HDR_LEN)
1648 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1649 
1650 	return features;
1651 }
1652 
hns3_nic_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)1653 static void hns3_nic_get_stats64(struct net_device *netdev,
1654 				 struct rtnl_link_stats64 *stats)
1655 {
1656 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1657 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1658 	struct hnae3_handle *handle = priv->ae_handle;
1659 	struct hns3_enet_ring *ring;
1660 	u64 rx_length_errors = 0;
1661 	u64 rx_crc_errors = 0;
1662 	u64 rx_multicast = 0;
1663 	unsigned int start;
1664 	u64 tx_errors = 0;
1665 	u64 rx_errors = 0;
1666 	unsigned int idx;
1667 	u64 tx_bytes = 0;
1668 	u64 rx_bytes = 0;
1669 	u64 tx_pkts = 0;
1670 	u64 rx_pkts = 0;
1671 	u64 tx_drop = 0;
1672 	u64 rx_drop = 0;
1673 
1674 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1675 		return;
1676 
1677 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1678 
1679 	for (idx = 0; idx < queue_num; idx++) {
1680 		/* fetch the tx stats */
1681 		ring = &priv->ring[idx];
1682 		do {
1683 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1684 			tx_bytes += ring->stats.tx_bytes;
1685 			tx_pkts += ring->stats.tx_pkts;
1686 			tx_drop += ring->stats.sw_err_cnt;
1687 			tx_drop += ring->stats.tx_vlan_err;
1688 			tx_drop += ring->stats.tx_l4_proto_err;
1689 			tx_drop += ring->stats.tx_l2l3l4_err;
1690 			tx_drop += ring->stats.tx_tso_err;
1691 			tx_drop += ring->stats.over_max_recursion;
1692 			tx_drop += ring->stats.hw_limitation;
1693 			tx_errors += ring->stats.sw_err_cnt;
1694 			tx_errors += ring->stats.tx_vlan_err;
1695 			tx_errors += ring->stats.tx_l4_proto_err;
1696 			tx_errors += ring->stats.tx_l2l3l4_err;
1697 			tx_errors += ring->stats.tx_tso_err;
1698 			tx_errors += ring->stats.over_max_recursion;
1699 			tx_errors += ring->stats.hw_limitation;
1700 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1701 
1702 		/* fetch the rx stats */
1703 		ring = &priv->ring[idx + queue_num];
1704 		do {
1705 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1706 			rx_bytes += ring->stats.rx_bytes;
1707 			rx_pkts += ring->stats.rx_pkts;
1708 			rx_drop += ring->stats.l2_err;
1709 			rx_errors += ring->stats.l2_err;
1710 			rx_errors += ring->stats.l3l4_csum_err;
1711 			rx_crc_errors += ring->stats.l2_err;
1712 			rx_multicast += ring->stats.rx_multicast;
1713 			rx_length_errors += ring->stats.err_pkt_len;
1714 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1715 	}
1716 
1717 	stats->tx_bytes = tx_bytes;
1718 	stats->tx_packets = tx_pkts;
1719 	stats->rx_bytes = rx_bytes;
1720 	stats->rx_packets = rx_pkts;
1721 
1722 	stats->rx_errors = rx_errors;
1723 	stats->multicast = rx_multicast;
1724 	stats->rx_length_errors = rx_length_errors;
1725 	stats->rx_crc_errors = rx_crc_errors;
1726 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1727 
1728 	stats->tx_errors = tx_errors;
1729 	stats->rx_dropped = rx_drop;
1730 	stats->tx_dropped = tx_drop;
1731 	stats->collisions = netdev->stats.collisions;
1732 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1733 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1734 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1735 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1736 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1737 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1738 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1739 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1740 	stats->rx_compressed = netdev->stats.rx_compressed;
1741 	stats->tx_compressed = netdev->stats.tx_compressed;
1742 }
1743 
hns3_setup_tc(struct net_device * netdev,void * type_data)1744 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1745 {
1746 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1747 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1748 	struct hnae3_knic_private_info *kinfo;
1749 	u8 tc = mqprio_qopt->qopt.num_tc;
1750 	u16 mode = mqprio_qopt->mode;
1751 	u8 hw = mqprio_qopt->qopt.hw;
1752 	struct hnae3_handle *h;
1753 
1754 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1755 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1756 		return -EOPNOTSUPP;
1757 
1758 	if (tc > HNAE3_MAX_TC)
1759 		return -EINVAL;
1760 
1761 	if (!netdev)
1762 		return -EINVAL;
1763 
1764 	h = hns3_get_handle(netdev);
1765 	kinfo = &h->kinfo;
1766 
1767 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1768 
1769 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1770 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1771 }
1772 
hns3_nic_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)1773 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1774 			     void *type_data)
1775 {
1776 	if (type != TC_SETUP_QDISC_MQPRIO)
1777 		return -EOPNOTSUPP;
1778 
1779 	return hns3_setup_tc(dev, type_data);
1780 }
1781 
hns3_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1782 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1783 				__be16 proto, u16 vid)
1784 {
1785 	struct hnae3_handle *h = hns3_get_handle(netdev);
1786 	int ret = -EIO;
1787 
1788 	if (h->ae_algo->ops->set_vlan_filter)
1789 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1790 
1791 	return ret;
1792 }
1793 
hns3_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1794 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1795 				 __be16 proto, u16 vid)
1796 {
1797 	struct hnae3_handle *h = hns3_get_handle(netdev);
1798 	int ret = -EIO;
1799 
1800 	if (h->ae_algo->ops->set_vlan_filter)
1801 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1802 
1803 	return ret;
1804 }
1805 
hns3_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)1806 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1807 				u8 qos, __be16 vlan_proto)
1808 {
1809 	struct hnae3_handle *h = hns3_get_handle(netdev);
1810 	int ret = -EIO;
1811 
1812 	netif_dbg(h, drv, netdev,
1813 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1814 		  vf, vlan, qos, ntohs(vlan_proto));
1815 
1816 	if (h->ae_algo->ops->set_vf_vlan_filter)
1817 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1818 							  qos, vlan_proto);
1819 
1820 	return ret;
1821 }
1822 
hns3_set_vf_spoofchk(struct net_device * netdev,int vf,bool enable)1823 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1824 {
1825 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1826 
1827 	if (hns3_nic_resetting(netdev))
1828 		return -EBUSY;
1829 
1830 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1831 		return -EOPNOTSUPP;
1832 
1833 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1834 }
1835 
hns3_set_vf_trust(struct net_device * netdev,int vf,bool enable)1836 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1837 {
1838 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1839 
1840 	if (!handle->ae_algo->ops->set_vf_trust)
1841 		return -EOPNOTSUPP;
1842 
1843 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1844 }
1845 
hns3_nic_change_mtu(struct net_device * netdev,int new_mtu)1846 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1847 {
1848 	struct hnae3_handle *h = hns3_get_handle(netdev);
1849 	int ret;
1850 
1851 	if (hns3_nic_resetting(netdev))
1852 		return -EBUSY;
1853 
1854 	if (!h->ae_algo->ops->set_mtu)
1855 		return -EOPNOTSUPP;
1856 
1857 	netif_dbg(h, drv, netdev,
1858 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1859 
1860 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1861 	if (ret)
1862 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1863 			   ret);
1864 	else
1865 		netdev->mtu = new_mtu;
1866 
1867 	return ret;
1868 }
1869 
hns3_get_tx_timeo_queue_info(struct net_device * ndev)1870 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1871 {
1872 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1873 	struct hnae3_handle *h = hns3_get_handle(ndev);
1874 	struct hns3_enet_ring *tx_ring;
1875 	struct napi_struct *napi;
1876 	int timeout_queue = 0;
1877 	int hw_head, hw_tail;
1878 	int fbd_num, fbd_oft;
1879 	int ebd_num, ebd_oft;
1880 	int bd_num, bd_err;
1881 	int ring_en, tc;
1882 	int i;
1883 
1884 	/* Find the stopped queue the same way the stack does */
1885 	for (i = 0; i < ndev->num_tx_queues; i++) {
1886 		struct netdev_queue *q;
1887 		unsigned long trans_start;
1888 
1889 		q = netdev_get_tx_queue(ndev, i);
1890 		trans_start = q->trans_start;
1891 		if (netif_xmit_stopped(q) &&
1892 		    time_after(jiffies,
1893 			       (trans_start + ndev->watchdog_timeo))) {
1894 			timeout_queue = i;
1895 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1896 				    q->state,
1897 				    jiffies_to_msecs(jiffies - trans_start));
1898 			break;
1899 		}
1900 	}
1901 
1902 	if (i == ndev->num_tx_queues) {
1903 		netdev_info(ndev,
1904 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1905 			    priv->tx_timeout_count);
1906 		return false;
1907 	}
1908 
1909 	priv->tx_timeout_count++;
1910 
1911 	tx_ring = &priv->ring[timeout_queue];
1912 	napi = &tx_ring->tqp_vector->napi;
1913 
1914 	netdev_info(ndev,
1915 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1916 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1917 		    tx_ring->next_to_clean, napi->state);
1918 
1919 	netdev_info(ndev,
1920 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
1921 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1922 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
1923 
1924 	netdev_info(ndev,
1925 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
1926 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
1927 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1928 
1929 	/* When mac received many pause frames continuous, it's unable to send
1930 	 * packets, which may cause tx timeout
1931 	 */
1932 	if (h->ae_algo->ops->get_mac_stats) {
1933 		struct hns3_mac_stats mac_stats;
1934 
1935 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1936 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1937 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1938 	}
1939 
1940 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1941 				HNS3_RING_TX_RING_HEAD_REG);
1942 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1943 				HNS3_RING_TX_RING_TAIL_REG);
1944 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1945 				HNS3_RING_TX_RING_FBDNUM_REG);
1946 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1947 				HNS3_RING_TX_RING_OFFSET_REG);
1948 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1949 				HNS3_RING_TX_RING_EBDNUM_REG);
1950 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1951 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1952 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1953 			       HNS3_RING_TX_RING_BD_NUM_REG);
1954 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1955 			       HNS3_RING_TX_RING_BD_ERR_REG);
1956 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1957 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1958 
1959 	netdev_info(ndev,
1960 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1961 		    bd_num, hw_head, hw_tail, bd_err,
1962 		    readl(tx_ring->tqp_vector->mask_addr));
1963 	netdev_info(ndev,
1964 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1965 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1966 
1967 	return true;
1968 }
1969 
hns3_nic_net_timeout(struct net_device * ndev,unsigned int txqueue)1970 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1971 {
1972 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1973 	struct hnae3_handle *h = priv->ae_handle;
1974 
1975 	if (!hns3_get_tx_timeo_queue_info(ndev))
1976 		return;
1977 
1978 	/* request the reset, and let the hclge to determine
1979 	 * which reset level should be done
1980 	 */
1981 	if (h->ae_algo->ops->reset_event)
1982 		h->ae_algo->ops->reset_event(h->pdev, h);
1983 }
1984 
1985 #ifdef CONFIG_RFS_ACCEL
hns3_rx_flow_steer(struct net_device * dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)1986 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1987 			      u16 rxq_index, u32 flow_id)
1988 {
1989 	struct hnae3_handle *h = hns3_get_handle(dev);
1990 	struct flow_keys fkeys;
1991 
1992 	if (!h->ae_algo->ops->add_arfs_entry)
1993 		return -EOPNOTSUPP;
1994 
1995 	if (skb->encapsulation)
1996 		return -EPROTONOSUPPORT;
1997 
1998 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1999 		return -EPROTONOSUPPORT;
2000 
2001 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2002 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2003 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2004 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2005 		return -EPROTONOSUPPORT;
2006 
2007 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2008 }
2009 #endif
2010 
hns3_nic_get_vf_config(struct net_device * ndev,int vf,struct ifla_vf_info * ivf)2011 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2012 				  struct ifla_vf_info *ivf)
2013 {
2014 	struct hnae3_handle *h = hns3_get_handle(ndev);
2015 
2016 	if (!h->ae_algo->ops->get_vf_config)
2017 		return -EOPNOTSUPP;
2018 
2019 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2020 }
2021 
hns3_nic_set_vf_link_state(struct net_device * ndev,int vf,int link_state)2022 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2023 				      int link_state)
2024 {
2025 	struct hnae3_handle *h = hns3_get_handle(ndev);
2026 
2027 	if (!h->ae_algo->ops->set_vf_link_state)
2028 		return -EOPNOTSUPP;
2029 
2030 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2031 }
2032 
hns3_nic_set_vf_rate(struct net_device * ndev,int vf,int min_tx_rate,int max_tx_rate)2033 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2034 				int min_tx_rate, int max_tx_rate)
2035 {
2036 	struct hnae3_handle *h = hns3_get_handle(ndev);
2037 
2038 	if (!h->ae_algo->ops->set_vf_rate)
2039 		return -EOPNOTSUPP;
2040 
2041 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2042 					    false);
2043 }
2044 
hns3_nic_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)2045 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2046 {
2047 	struct hnae3_handle *h = hns3_get_handle(netdev);
2048 
2049 	if (!h->ae_algo->ops->set_vf_mac)
2050 		return -EOPNOTSUPP;
2051 
2052 	if (is_multicast_ether_addr(mac)) {
2053 		netdev_err(netdev,
2054 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2055 			   mac);
2056 		return -EINVAL;
2057 	}
2058 
2059 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2060 }
2061 
2062 static const struct net_device_ops hns3_nic_netdev_ops = {
2063 	.ndo_open		= hns3_nic_net_open,
2064 	.ndo_stop		= hns3_nic_net_stop,
2065 	.ndo_start_xmit		= hns3_nic_net_xmit,
2066 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2067 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2068 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2069 	.ndo_change_mtu		= hns3_nic_change_mtu,
2070 	.ndo_set_features	= hns3_nic_set_features,
2071 	.ndo_features_check	= hns3_features_check,
2072 	.ndo_get_stats64	= hns3_nic_get_stats64,
2073 	.ndo_setup_tc		= hns3_nic_setup_tc,
2074 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2075 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2076 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2077 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2078 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2079 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2080 #ifdef CONFIG_RFS_ACCEL
2081 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2082 #endif
2083 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2084 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2085 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2086 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2087 };
2088 
hns3_is_phys_func(struct pci_dev * pdev)2089 bool hns3_is_phys_func(struct pci_dev *pdev)
2090 {
2091 	u32 dev_id = pdev->device;
2092 
2093 	switch (dev_id) {
2094 	case HNAE3_DEV_ID_GE:
2095 	case HNAE3_DEV_ID_25GE:
2096 	case HNAE3_DEV_ID_25GE_RDMA:
2097 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2098 	case HNAE3_DEV_ID_50GE_RDMA:
2099 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2100 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2101 	case HNAE3_DEV_ID_200G_RDMA:
2102 		return true;
2103 	case HNAE3_DEV_ID_VF:
2104 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2105 		return false;
2106 	default:
2107 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2108 			 dev_id);
2109 	}
2110 
2111 	return false;
2112 }
2113 
hns3_disable_sriov(struct pci_dev * pdev)2114 static void hns3_disable_sriov(struct pci_dev *pdev)
2115 {
2116 	/* If our VFs are assigned we cannot shut down SR-IOV
2117 	 * without causing issues, so just leave the hardware
2118 	 * available but disabled
2119 	 */
2120 	if (pci_vfs_assigned(pdev)) {
2121 		dev_warn(&pdev->dev,
2122 			 "disabling driver while VFs are assigned\n");
2123 		return;
2124 	}
2125 
2126 	pci_disable_sriov(pdev);
2127 }
2128 
2129 /* hns3_probe - Device initialization routine
2130  * @pdev: PCI device information struct
2131  * @ent: entry in hns3_pci_tbl
2132  *
2133  * hns3_probe initializes a PF identified by a pci_dev structure.
2134  * The OS initialization, configuring of the PF private structure,
2135  * and a hardware reset occur.
2136  *
2137  * Returns 0 on success, negative on failure
2138  */
hns3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2139 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2140 {
2141 	struct hnae3_ae_dev *ae_dev;
2142 	int ret;
2143 
2144 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2145 	if (!ae_dev)
2146 		return -ENOMEM;
2147 
2148 	ae_dev->pdev = pdev;
2149 	ae_dev->flag = ent->driver_data;
2150 	pci_set_drvdata(pdev, ae_dev);
2151 
2152 	ret = hnae3_register_ae_dev(ae_dev);
2153 	if (ret)
2154 		pci_set_drvdata(pdev, NULL);
2155 
2156 	return ret;
2157 }
2158 
2159 /* hns3_remove - Device removal routine
2160  * @pdev: PCI device information struct
2161  */
hns3_remove(struct pci_dev * pdev)2162 static void hns3_remove(struct pci_dev *pdev)
2163 {
2164 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2165 
2166 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2167 		hns3_disable_sriov(pdev);
2168 
2169 	hnae3_unregister_ae_dev(ae_dev);
2170 	pci_set_drvdata(pdev, NULL);
2171 }
2172 
2173 /**
2174  * hns3_pci_sriov_configure
2175  * @pdev: pointer to a pci_dev structure
2176  * @num_vfs: number of VFs to allocate
2177  *
2178  * Enable or change the number of VFs. Called when the user updates the number
2179  * of VFs in sysfs.
2180  **/
hns3_pci_sriov_configure(struct pci_dev * pdev,int num_vfs)2181 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2182 {
2183 	int ret;
2184 
2185 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2186 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (num_vfs) {
2191 		ret = pci_enable_sriov(pdev, num_vfs);
2192 		if (ret)
2193 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2194 		else
2195 			return num_vfs;
2196 	} else if (!pci_vfs_assigned(pdev)) {
2197 		pci_disable_sriov(pdev);
2198 	} else {
2199 		dev_warn(&pdev->dev,
2200 			 "Unable to free VFs because some are assigned to VMs.\n");
2201 	}
2202 
2203 	return 0;
2204 }
2205 
hns3_shutdown(struct pci_dev * pdev)2206 static void hns3_shutdown(struct pci_dev *pdev)
2207 {
2208 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2209 
2210 	hnae3_unregister_ae_dev(ae_dev);
2211 	pci_set_drvdata(pdev, NULL);
2212 
2213 	if (system_state == SYSTEM_POWER_OFF)
2214 		pci_set_power_state(pdev, PCI_D3hot);
2215 }
2216 
hns3_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2217 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2218 					    pci_channel_state_t state)
2219 {
2220 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2221 	pci_ers_result_t ret;
2222 
2223 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2224 
2225 	if (state == pci_channel_io_perm_failure)
2226 		return PCI_ERS_RESULT_DISCONNECT;
2227 
2228 	if (!ae_dev || !ae_dev->ops) {
2229 		dev_err(&pdev->dev,
2230 			"Can't recover - error happened before device initialized\n");
2231 		return PCI_ERS_RESULT_NONE;
2232 	}
2233 
2234 	if (ae_dev->ops->handle_hw_ras_error)
2235 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2236 	else
2237 		return PCI_ERS_RESULT_NONE;
2238 
2239 	return ret;
2240 }
2241 
hns3_slot_reset(struct pci_dev * pdev)2242 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2243 {
2244 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2245 	const struct hnae3_ae_ops *ops;
2246 	enum hnae3_reset_type reset_type;
2247 	struct device *dev = &pdev->dev;
2248 
2249 	if (!ae_dev || !ae_dev->ops)
2250 		return PCI_ERS_RESULT_NONE;
2251 
2252 	ops = ae_dev->ops;
2253 	/* request the reset */
2254 	if (ops->reset_event && ops->get_reset_level &&
2255 	    ops->set_default_reset_request) {
2256 		if (ae_dev->hw_err_reset_req) {
2257 			reset_type = ops->get_reset_level(ae_dev,
2258 						&ae_dev->hw_err_reset_req);
2259 			ops->set_default_reset_request(ae_dev, reset_type);
2260 			dev_info(dev, "requesting reset due to PCI error\n");
2261 			ops->reset_event(pdev, NULL);
2262 		}
2263 
2264 		return PCI_ERS_RESULT_RECOVERED;
2265 	}
2266 
2267 	return PCI_ERS_RESULT_DISCONNECT;
2268 }
2269 
hns3_reset_prepare(struct pci_dev * pdev)2270 static void hns3_reset_prepare(struct pci_dev *pdev)
2271 {
2272 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2273 
2274 	dev_info(&pdev->dev, "FLR prepare\n");
2275 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2276 		ae_dev->ops->flr_prepare(ae_dev);
2277 }
2278 
hns3_reset_done(struct pci_dev * pdev)2279 static void hns3_reset_done(struct pci_dev *pdev)
2280 {
2281 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2282 
2283 	dev_info(&pdev->dev, "FLR done\n");
2284 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2285 		ae_dev->ops->flr_done(ae_dev);
2286 }
2287 
2288 static const struct pci_error_handlers hns3_err_handler = {
2289 	.error_detected = hns3_error_detected,
2290 	.slot_reset     = hns3_slot_reset,
2291 	.reset_prepare	= hns3_reset_prepare,
2292 	.reset_done	= hns3_reset_done,
2293 };
2294 
2295 static struct pci_driver hns3_driver = {
2296 	.name     = hns3_driver_name,
2297 	.id_table = hns3_pci_tbl,
2298 	.probe    = hns3_probe,
2299 	.remove   = hns3_remove,
2300 	.shutdown = hns3_shutdown,
2301 	.sriov_configure = hns3_pci_sriov_configure,
2302 	.err_handler    = &hns3_err_handler,
2303 };
2304 
2305 /* set default feature to hns3 */
hns3_set_default_feature(struct net_device * netdev)2306 static void hns3_set_default_feature(struct net_device *netdev)
2307 {
2308 	struct hnae3_handle *h = hns3_get_handle(netdev);
2309 	struct pci_dev *pdev = h->pdev;
2310 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2311 
2312 	netdev->priv_flags |= IFF_UNICAST_FLT;
2313 
2314 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2315 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2316 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2317 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2318 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2319 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2320 
2321 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2322 
2323 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2324 		NETIF_F_HW_VLAN_CTAG_FILTER |
2325 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2326 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2327 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2328 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2329 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2330 		NETIF_F_FRAGLIST;
2331 
2332 	netdev->vlan_features |=
2333 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2334 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2335 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2336 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2337 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2338 		NETIF_F_FRAGLIST;
2339 
2340 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2341 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2342 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2343 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2344 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2345 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2346 		NETIF_F_FRAGLIST;
2347 
2348 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2349 		netdev->hw_features |= NETIF_F_GRO_HW;
2350 		netdev->features |= NETIF_F_GRO_HW;
2351 
2352 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2353 			netdev->hw_features |= NETIF_F_NTUPLE;
2354 			netdev->features |= NETIF_F_NTUPLE;
2355 		}
2356 	}
2357 
2358 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2359 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2360 		netdev->features |= NETIF_F_GSO_UDP_L4;
2361 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2362 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2363 	}
2364 }
2365 
hns3_alloc_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2366 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2367 			     struct hns3_desc_cb *cb)
2368 {
2369 	unsigned int order = hns3_page_order(ring);
2370 	struct page *p;
2371 
2372 	p = dev_alloc_pages(order);
2373 	if (!p)
2374 		return -ENOMEM;
2375 
2376 	cb->priv = p;
2377 	cb->page_offset = 0;
2378 	cb->reuse_flag = 0;
2379 	cb->buf  = page_address(p);
2380 	cb->length = hns3_page_size(ring);
2381 	cb->type = DESC_TYPE_PAGE;
2382 	page_ref_add(p, USHRT_MAX - 1);
2383 	cb->pagecnt_bias = USHRT_MAX;
2384 
2385 	return 0;
2386 }
2387 
hns3_free_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb,int budget)2388 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2389 			     struct hns3_desc_cb *cb, int budget)
2390 {
2391 	if (cb->type == DESC_TYPE_SKB)
2392 		napi_consume_skb(cb->priv, budget);
2393 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2394 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2395 	memset(cb, 0, sizeof(*cb));
2396 }
2397 
hns3_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2398 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2399 {
2400 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2401 			       cb->length, ring_to_dma_dir(ring));
2402 
2403 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2404 		return -EIO;
2405 
2406 	return 0;
2407 }
2408 
hns3_unmap_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2409 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2410 			      struct hns3_desc_cb *cb)
2411 {
2412 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2413 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2414 				 ring_to_dma_dir(ring));
2415 	else if (cb->length)
2416 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2417 			       ring_to_dma_dir(ring));
2418 }
2419 
hns3_buffer_detach(struct hns3_enet_ring * ring,int i)2420 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2421 {
2422 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2423 	ring->desc[i].addr = 0;
2424 	ring->desc_cb[i].refill = 0;
2425 }
2426 
hns3_free_buffer_detach(struct hns3_enet_ring * ring,int i,int budget)2427 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2428 				    int budget)
2429 {
2430 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2431 
2432 	if (!ring->desc_cb[i].dma)
2433 		return;
2434 
2435 	hns3_buffer_detach(ring, i);
2436 	hns3_free_buffer(ring, cb, budget);
2437 }
2438 
hns3_free_buffers(struct hns3_enet_ring * ring)2439 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2440 {
2441 	int i;
2442 
2443 	for (i = 0; i < ring->desc_num; i++)
2444 		hns3_free_buffer_detach(ring, i, 0);
2445 }
2446 
2447 /* free desc along with its attached buffer */
hns3_free_desc(struct hns3_enet_ring * ring)2448 static void hns3_free_desc(struct hns3_enet_ring *ring)
2449 {
2450 	int size = ring->desc_num * sizeof(ring->desc[0]);
2451 
2452 	hns3_free_buffers(ring);
2453 
2454 	if (ring->desc) {
2455 		dma_free_coherent(ring_to_dev(ring), size,
2456 				  ring->desc, ring->desc_dma_addr);
2457 		ring->desc = NULL;
2458 	}
2459 }
2460 
hns3_alloc_desc(struct hns3_enet_ring * ring)2461 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2462 {
2463 	int size = ring->desc_num * sizeof(ring->desc[0]);
2464 
2465 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2466 					&ring->desc_dma_addr, GFP_KERNEL);
2467 	if (!ring->desc)
2468 		return -ENOMEM;
2469 
2470 	return 0;
2471 }
2472 
hns3_alloc_and_map_buffer(struct hns3_enet_ring * ring,struct hns3_desc_cb * cb)2473 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2474 				   struct hns3_desc_cb *cb)
2475 {
2476 	int ret;
2477 
2478 	ret = hns3_alloc_buffer(ring, cb);
2479 	if (ret)
2480 		goto out;
2481 
2482 	ret = hns3_map_buffer(ring, cb);
2483 	if (ret)
2484 		goto out_with_buf;
2485 
2486 	return 0;
2487 
2488 out_with_buf:
2489 	hns3_free_buffer(ring, cb, 0);
2490 out:
2491 	return ret;
2492 }
2493 
hns3_alloc_and_attach_buffer(struct hns3_enet_ring * ring,int i)2494 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2495 {
2496 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2497 
2498 	if (ret)
2499 		return ret;
2500 
2501 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2502 	ring->desc_cb[i].refill = 1;
2503 
2504 	return 0;
2505 }
2506 
2507 /* Allocate memory for raw pkg, and map with dma */
hns3_alloc_ring_buffers(struct hns3_enet_ring * ring)2508 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2509 {
2510 	int i, j, ret;
2511 
2512 	for (i = 0; i < ring->desc_num; i++) {
2513 		ret = hns3_alloc_and_attach_buffer(ring, i);
2514 		if (ret)
2515 			goto out_buffer_fail;
2516 	}
2517 
2518 	return 0;
2519 
2520 out_buffer_fail:
2521 	for (j = i - 1; j >= 0; j--)
2522 		hns3_free_buffer_detach(ring, j, 0);
2523 	return ret;
2524 }
2525 
2526 /* detach a in-used buffer and replace with a reserved one */
hns3_replace_buffer(struct hns3_enet_ring * ring,int i,struct hns3_desc_cb * res_cb)2527 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2528 				struct hns3_desc_cb *res_cb)
2529 {
2530 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2531 	ring->desc_cb[i] = *res_cb;
2532 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2533 	ring->desc_cb[i].refill = 1;
2534 	ring->desc[i].rx.bd_base_info = 0;
2535 }
2536 
hns3_reuse_buffer(struct hns3_enet_ring * ring,int i)2537 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2538 {
2539 	ring->desc_cb[i].reuse_flag = 0;
2540 	ring->desc_cb[i].refill = 1;
2541 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2542 					 ring->desc_cb[i].page_offset);
2543 	ring->desc[i].rx.bd_base_info = 0;
2544 
2545 	dma_sync_single_for_device(ring_to_dev(ring),
2546 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2547 			hns3_buf_size(ring),
2548 			DMA_FROM_DEVICE);
2549 }
2550 
hns3_nic_reclaim_desc(struct hns3_enet_ring * ring,int * bytes,int * pkts,int budget)2551 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2552 				  int *bytes, int *pkts, int budget)
2553 {
2554 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2555 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2556 	 * the doorbell operation already have the needed barrier operation.
2557 	 */
2558 	int ltu = smp_load_acquire(&ring->last_to_use);
2559 	int ntc = ring->next_to_clean;
2560 	struct hns3_desc_cb *desc_cb;
2561 	bool reclaimed = false;
2562 	struct hns3_desc *desc;
2563 
2564 	while (ltu != ntc) {
2565 		desc = &ring->desc[ntc];
2566 
2567 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2568 				BIT(HNS3_TXD_VLD_B))
2569 			break;
2570 
2571 		desc_cb = &ring->desc_cb[ntc];
2572 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2573 		(*bytes) += desc_cb->length;
2574 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2575 		hns3_free_buffer_detach(ring, ntc, budget);
2576 
2577 		if (++ntc == ring->desc_num)
2578 			ntc = 0;
2579 
2580 		/* Issue prefetch for next Tx descriptor */
2581 		prefetch(&ring->desc_cb[ntc]);
2582 		reclaimed = true;
2583 	}
2584 
2585 	if (unlikely(!reclaimed))
2586 		return false;
2587 
2588 	/* This smp_store_release() pairs with smp_load_acquire() in
2589 	 * ring_space called by hns3_nic_net_xmit.
2590 	 */
2591 	smp_store_release(&ring->next_to_clean, ntc);
2592 	return true;
2593 }
2594 
hns3_clean_tx_ring(struct hns3_enet_ring * ring,int budget)2595 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2596 {
2597 	struct net_device *netdev = ring_to_netdev(ring);
2598 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2599 	struct netdev_queue *dev_queue;
2600 	int bytes, pkts;
2601 
2602 	bytes = 0;
2603 	pkts = 0;
2604 
2605 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2606 		return;
2607 
2608 	ring->tqp_vector->tx_group.total_bytes += bytes;
2609 	ring->tqp_vector->tx_group.total_packets += pkts;
2610 
2611 	u64_stats_update_begin(&ring->syncp);
2612 	ring->stats.tx_bytes += bytes;
2613 	ring->stats.tx_pkts += pkts;
2614 	u64_stats_update_end(&ring->syncp);
2615 
2616 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2617 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2618 
2619 	if (unlikely(netif_carrier_ok(netdev) &&
2620 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2621 		/* Make sure that anybody stopping the queue after this
2622 		 * sees the new next_to_clean.
2623 		 */
2624 		smp_mb();
2625 		if (netif_tx_queue_stopped(dev_queue) &&
2626 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2627 			netif_tx_wake_queue(dev_queue);
2628 			ring->stats.restart_queue++;
2629 		}
2630 	}
2631 }
2632 
hns3_desc_unused(struct hns3_enet_ring * ring)2633 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2634 {
2635 	int ntc = ring->next_to_clean;
2636 	int ntu = ring->next_to_use;
2637 
2638 	if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
2639 		return ring->desc_num;
2640 
2641 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2642 }
2643 
2644 /* Return true if there is any allocation failure */
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring * ring,int cleand_count)2645 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2646 				      int cleand_count)
2647 {
2648 	struct hns3_desc_cb *desc_cb;
2649 	struct hns3_desc_cb res_cbs;
2650 	int i, ret;
2651 
2652 	for (i = 0; i < cleand_count; i++) {
2653 		desc_cb = &ring->desc_cb[ring->next_to_use];
2654 		if (desc_cb->reuse_flag) {
2655 			u64_stats_update_begin(&ring->syncp);
2656 			ring->stats.reuse_pg_cnt++;
2657 			u64_stats_update_end(&ring->syncp);
2658 
2659 			hns3_reuse_buffer(ring, ring->next_to_use);
2660 		} else {
2661 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2662 			if (ret) {
2663 				u64_stats_update_begin(&ring->syncp);
2664 				ring->stats.sw_err_cnt++;
2665 				u64_stats_update_end(&ring->syncp);
2666 
2667 				hns3_rl_err(ring_to_netdev(ring),
2668 					    "alloc rx buffer failed: %d\n",
2669 					    ret);
2670 
2671 				writel(i, ring->tqp->io_base +
2672 				       HNS3_RING_RX_RING_HEAD_REG);
2673 				return true;
2674 			}
2675 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2676 
2677 			u64_stats_update_begin(&ring->syncp);
2678 			ring->stats.non_reuse_pg++;
2679 			u64_stats_update_end(&ring->syncp);
2680 		}
2681 
2682 		ring_ptr_move_fw(ring, next_to_use);
2683 	}
2684 
2685 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2686 	return false;
2687 }
2688 
hns3_page_is_reusable(struct page * page)2689 static bool hns3_page_is_reusable(struct page *page)
2690 {
2691 	return page_to_nid(page) == numa_mem_id() &&
2692 		!page_is_pfmemalloc(page);
2693 }
2694 
hns3_can_reuse_page(struct hns3_desc_cb * cb)2695 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2696 {
2697 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2698 }
2699 
hns3_nic_reuse_page(struct sk_buff * skb,int i,struct hns3_enet_ring * ring,int pull_len,struct hns3_desc_cb * desc_cb)2700 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2701 				struct hns3_enet_ring *ring, int pull_len,
2702 				struct hns3_desc_cb *desc_cb)
2703 {
2704 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2705 	int size = le16_to_cpu(desc->rx.size);
2706 	u32 truesize = hns3_buf_size(ring);
2707 
2708 	desc_cb->pagecnt_bias--;
2709 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2710 			size - pull_len, truesize);
2711 
2712 	/* Avoid re-using remote pages, or the stack is still using the page
2713 	 * when page_offset rollback to zero, flag default unreuse
2714 	 */
2715 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2716 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2717 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2718 		return;
2719 	}
2720 
2721 	/* Move offset up to the next cache line */
2722 	desc_cb->page_offset += truesize;
2723 
2724 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2725 		desc_cb->reuse_flag = 1;
2726 	} else if (hns3_can_reuse_page(desc_cb)) {
2727 		desc_cb->reuse_flag = 1;
2728 		desc_cb->page_offset = 0;
2729 	} else if (desc_cb->pagecnt_bias) {
2730 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2731 		return;
2732 	}
2733 
2734 	if (unlikely(!desc_cb->pagecnt_bias)) {
2735 		page_ref_add(desc_cb->priv, USHRT_MAX);
2736 		desc_cb->pagecnt_bias = USHRT_MAX;
2737 	}
2738 }
2739 
hns3_gro_complete(struct sk_buff * skb,u32 l234info)2740 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2741 {
2742 	__be16 type = skb->protocol;
2743 	struct tcphdr *th;
2744 	int depth = 0;
2745 
2746 	while (eth_type_vlan(type)) {
2747 		struct vlan_hdr *vh;
2748 
2749 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2750 			return -EFAULT;
2751 
2752 		vh = (struct vlan_hdr *)(skb->data + depth);
2753 		type = vh->h_vlan_encapsulated_proto;
2754 		depth += VLAN_HLEN;
2755 	}
2756 
2757 	skb_set_network_header(skb, depth);
2758 
2759 	if (type == htons(ETH_P_IP)) {
2760 		const struct iphdr *iph = ip_hdr(skb);
2761 
2762 		depth += sizeof(struct iphdr);
2763 		skb_set_transport_header(skb, depth);
2764 		th = tcp_hdr(skb);
2765 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2766 					  iph->daddr, 0);
2767 	} else if (type == htons(ETH_P_IPV6)) {
2768 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2769 
2770 		depth += sizeof(struct ipv6hdr);
2771 		skb_set_transport_header(skb, depth);
2772 		th = tcp_hdr(skb);
2773 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2774 					  &iph->daddr, 0);
2775 	} else {
2776 		hns3_rl_err(skb->dev,
2777 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2778 			    be16_to_cpu(type), depth);
2779 		return -EFAULT;
2780 	}
2781 
2782 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2783 	if (th->cwr)
2784 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2785 
2786 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2787 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2788 
2789 	skb->csum_start = (unsigned char *)th - skb->head;
2790 	skb->csum_offset = offsetof(struct tcphdr, check);
2791 	skb->ip_summed = CHECKSUM_PARTIAL;
2792 
2793 	trace_hns3_gro(skb);
2794 
2795 	return 0;
2796 }
2797 
hns3_rx_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info)2798 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2799 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2800 {
2801 	struct net_device *netdev = ring_to_netdev(ring);
2802 	int l3_type, l4_type;
2803 	int ol4_type;
2804 
2805 	skb->ip_summed = CHECKSUM_NONE;
2806 
2807 	skb_checksum_none_assert(skb);
2808 
2809 	if (!(netdev->features & NETIF_F_RXCSUM))
2810 		return;
2811 
2812 	/* check if hardware has done checksum */
2813 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2814 		return;
2815 
2816 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2817 				 BIT(HNS3_RXD_OL3E_B) |
2818 				 BIT(HNS3_RXD_OL4E_B)))) {
2819 		u64_stats_update_begin(&ring->syncp);
2820 		ring->stats.l3l4_csum_err++;
2821 		u64_stats_update_end(&ring->syncp);
2822 
2823 		return;
2824 	}
2825 
2826 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2827 				   HNS3_RXD_OL4ID_S);
2828 	switch (ol4_type) {
2829 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2830 	case HNS3_OL4_TYPE_NVGRE:
2831 		skb->csum_level = 1;
2832 		fallthrough;
2833 	case HNS3_OL4_TYPE_NO_TUN:
2834 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2835 					  HNS3_RXD_L3ID_S);
2836 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2837 					  HNS3_RXD_L4ID_S);
2838 
2839 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2840 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2841 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2842 		    (l4_type == HNS3_L4_TYPE_UDP ||
2843 		     l4_type == HNS3_L4_TYPE_TCP ||
2844 		     l4_type == HNS3_L4_TYPE_SCTP))
2845 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2846 		break;
2847 	default:
2848 		break;
2849 	}
2850 }
2851 
hns3_rx_skb(struct hns3_enet_ring * ring,struct sk_buff * skb)2852 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2853 {
2854 	if (skb_has_frag_list(skb))
2855 		napi_gro_flush(&ring->tqp_vector->napi, false);
2856 
2857 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2858 }
2859 
hns3_parse_vlan_tag(struct hns3_enet_ring * ring,struct hns3_desc * desc,u32 l234info,u16 * vlan_tag)2860 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2861 				struct hns3_desc *desc, u32 l234info,
2862 				u16 *vlan_tag)
2863 {
2864 	struct hnae3_handle *handle = ring->tqp->handle;
2865 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2866 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2867 
2868 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2869 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2870 		if (!(*vlan_tag & VLAN_VID_MASK))
2871 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2872 
2873 		return (*vlan_tag != 0);
2874 	}
2875 
2876 #define HNS3_STRP_OUTER_VLAN	0x1
2877 #define HNS3_STRP_INNER_VLAN	0x2
2878 #define HNS3_STRP_BOTH		0x3
2879 
2880 	/* Hardware always insert VLAN tag into RX descriptor when
2881 	 * remove the tag from packet, driver needs to determine
2882 	 * reporting which tag to stack.
2883 	 */
2884 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2885 				HNS3_RXD_STRP_TAGP_S)) {
2886 	case HNS3_STRP_OUTER_VLAN:
2887 		if (handle->port_base_vlan_state !=
2888 				HNAE3_PORT_BASE_VLAN_DISABLE)
2889 			return false;
2890 
2891 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2892 		return true;
2893 	case HNS3_STRP_INNER_VLAN:
2894 		if (handle->port_base_vlan_state !=
2895 				HNAE3_PORT_BASE_VLAN_DISABLE)
2896 			return false;
2897 
2898 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2899 		return true;
2900 	case HNS3_STRP_BOTH:
2901 		if (handle->port_base_vlan_state ==
2902 				HNAE3_PORT_BASE_VLAN_DISABLE)
2903 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2904 		else
2905 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2906 
2907 		return true;
2908 	default:
2909 		return false;
2910 	}
2911 }
2912 
hns3_rx_ring_move_fw(struct hns3_enet_ring * ring)2913 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
2914 {
2915 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
2916 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
2917 	ring->desc_cb[ring->next_to_clean].refill = 0;
2918 	ring->next_to_clean += 1;
2919 
2920 	if (unlikely(ring->next_to_clean == ring->desc_num))
2921 		ring->next_to_clean = 0;
2922 }
2923 
hns3_alloc_skb(struct hns3_enet_ring * ring,unsigned int length,unsigned char * va)2924 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2925 			  unsigned char *va)
2926 {
2927 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2928 	struct net_device *netdev = ring_to_netdev(ring);
2929 	struct sk_buff *skb;
2930 
2931 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2932 	skb = ring->skb;
2933 	if (unlikely(!skb)) {
2934 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2935 
2936 		u64_stats_update_begin(&ring->syncp);
2937 		ring->stats.sw_err_cnt++;
2938 		u64_stats_update_end(&ring->syncp);
2939 
2940 		return -ENOMEM;
2941 	}
2942 
2943 	trace_hns3_rx_desc(ring);
2944 	prefetchw(skb->data);
2945 
2946 	ring->pending_buf = 1;
2947 	ring->frag_num = 0;
2948 	ring->tail_skb = NULL;
2949 	if (length <= HNS3_RX_HEAD_SIZE) {
2950 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2951 
2952 		/* We can reuse buffer as-is, just make sure it is local */
2953 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2954 			desc_cb->reuse_flag = 1;
2955 		else /* This page cannot be reused so discard it */
2956 			__page_frag_cache_drain(desc_cb->priv,
2957 						desc_cb->pagecnt_bias);
2958 
2959 		hns3_rx_ring_move_fw(ring);
2960 		return 0;
2961 	}
2962 	u64_stats_update_begin(&ring->syncp);
2963 	ring->stats.seg_pkt_cnt++;
2964 	u64_stats_update_end(&ring->syncp);
2965 
2966 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2967 	__skb_put(skb, ring->pull_len);
2968 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2969 			    desc_cb);
2970 	hns3_rx_ring_move_fw(ring);
2971 
2972 	return 0;
2973 }
2974 
hns3_add_frag(struct hns3_enet_ring * ring)2975 static int hns3_add_frag(struct hns3_enet_ring *ring)
2976 {
2977 	struct sk_buff *skb = ring->skb;
2978 	struct sk_buff *head_skb = skb;
2979 	struct sk_buff *new_skb;
2980 	struct hns3_desc_cb *desc_cb;
2981 	struct hns3_desc *desc;
2982 	u32 bd_base_info;
2983 
2984 	do {
2985 		desc = &ring->desc[ring->next_to_clean];
2986 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2987 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2988 		/* make sure HW write desc complete */
2989 		dma_rmb();
2990 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2991 			return -ENXIO;
2992 
2993 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2994 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2995 			if (unlikely(!new_skb)) {
2996 				hns3_rl_err(ring_to_netdev(ring),
2997 					    "alloc rx fraglist skb fail\n");
2998 				return -ENXIO;
2999 			}
3000 			ring->frag_num = 0;
3001 
3002 			if (ring->tail_skb) {
3003 				ring->tail_skb->next = new_skb;
3004 				ring->tail_skb = new_skb;
3005 			} else {
3006 				skb_shinfo(skb)->frag_list = new_skb;
3007 				ring->tail_skb = new_skb;
3008 			}
3009 		}
3010 
3011 		if (ring->tail_skb) {
3012 			head_skb->truesize += hns3_buf_size(ring);
3013 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3014 			head_skb->len += le16_to_cpu(desc->rx.size);
3015 			skb = ring->tail_skb;
3016 		}
3017 
3018 		dma_sync_single_for_cpu(ring_to_dev(ring),
3019 				desc_cb->dma + desc_cb->page_offset,
3020 				hns3_buf_size(ring),
3021 				DMA_FROM_DEVICE);
3022 
3023 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3024 		trace_hns3_rx_desc(ring);
3025 		hns3_rx_ring_move_fw(ring);
3026 		ring->pending_buf++;
3027 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3028 
3029 	return 0;
3030 }
3031 
hns3_set_gro_and_checksum(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 l234info,u32 bd_base_info,u32 ol_info)3032 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3033 				     struct sk_buff *skb, u32 l234info,
3034 				     u32 bd_base_info, u32 ol_info)
3035 {
3036 	u32 l3_type;
3037 
3038 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3039 						    HNS3_RXD_GRO_SIZE_M,
3040 						    HNS3_RXD_GRO_SIZE_S);
3041 	/* if there is no HW GRO, do not set gro params */
3042 	if (!skb_shinfo(skb)->gso_size) {
3043 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3044 		return 0;
3045 	}
3046 
3047 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3048 						  HNS3_RXD_GRO_COUNT_M,
3049 						  HNS3_RXD_GRO_COUNT_S);
3050 
3051 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3052 	if (l3_type == HNS3_L3_TYPE_IPV4)
3053 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3054 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3055 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3056 	else
3057 		return -EFAULT;
3058 
3059 	return  hns3_gro_complete(skb, l234info);
3060 }
3061 
hns3_set_rx_skb_rss_type(struct hns3_enet_ring * ring,struct sk_buff * skb,u32 rss_hash)3062 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3063 				     struct sk_buff *skb, u32 rss_hash)
3064 {
3065 	struct hnae3_handle *handle = ring->tqp->handle;
3066 	enum pkt_hash_types rss_type;
3067 
3068 	if (rss_hash)
3069 		rss_type = handle->kinfo.rss_type;
3070 	else
3071 		rss_type = PKT_HASH_TYPE_NONE;
3072 
3073 	skb_set_hash(skb, rss_hash, rss_type);
3074 }
3075 
hns3_handle_bdinfo(struct hns3_enet_ring * ring,struct sk_buff * skb)3076 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3077 {
3078 	struct net_device *netdev = ring_to_netdev(ring);
3079 	enum hns3_pkt_l2t_type l2_frame_type;
3080 	u32 bd_base_info, l234info, ol_info;
3081 	struct hns3_desc *desc;
3082 	unsigned int len;
3083 	int pre_ntc, ret;
3084 
3085 	/* bdinfo handled below is only valid on the last BD of the
3086 	 * current packet, and ring->next_to_clean indicates the first
3087 	 * descriptor of next packet, so need - 1 below.
3088 	 */
3089 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3090 					(ring->desc_num - 1);
3091 	desc = &ring->desc[pre_ntc];
3092 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3093 	l234info = le32_to_cpu(desc->rx.l234_info);
3094 	ol_info = le32_to_cpu(desc->rx.ol_info);
3095 
3096 	/* Based on hw strategy, the tag offloaded will be stored at
3097 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3098 	 * in one layer tag case.
3099 	 */
3100 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3101 		u16 vlan_tag;
3102 
3103 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3104 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3105 					       vlan_tag);
3106 	}
3107 
3108 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3109 				  BIT(HNS3_RXD_L2E_B))))) {
3110 		u64_stats_update_begin(&ring->syncp);
3111 		if (l234info & BIT(HNS3_RXD_L2E_B))
3112 			ring->stats.l2_err++;
3113 		else
3114 			ring->stats.err_pkt_len++;
3115 		u64_stats_update_end(&ring->syncp);
3116 
3117 		return -EFAULT;
3118 	}
3119 
3120 	len = skb->len;
3121 
3122 	/* Do update ip stack process */
3123 	skb->protocol = eth_type_trans(skb, netdev);
3124 
3125 	/* This is needed in order to enable forwarding support */
3126 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3127 					bd_base_info, ol_info);
3128 	if (unlikely(ret)) {
3129 		u64_stats_update_begin(&ring->syncp);
3130 		ring->stats.rx_err_cnt++;
3131 		u64_stats_update_end(&ring->syncp);
3132 		return ret;
3133 	}
3134 
3135 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3136 					HNS3_RXD_DMAC_S);
3137 
3138 	u64_stats_update_begin(&ring->syncp);
3139 	ring->stats.rx_pkts++;
3140 	ring->stats.rx_bytes += len;
3141 
3142 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3143 		ring->stats.rx_multicast++;
3144 
3145 	u64_stats_update_end(&ring->syncp);
3146 
3147 	ring->tqp_vector->rx_group.total_bytes += len;
3148 
3149 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3150 	return 0;
3151 }
3152 
hns3_handle_rx_bd(struct hns3_enet_ring * ring)3153 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3154 {
3155 	struct sk_buff *skb = ring->skb;
3156 	struct hns3_desc_cb *desc_cb;
3157 	struct hns3_desc *desc;
3158 	unsigned int length;
3159 	u32 bd_base_info;
3160 	int ret;
3161 
3162 	desc = &ring->desc[ring->next_to_clean];
3163 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3164 
3165 	prefetch(desc);
3166 
3167 	if (!skb) {
3168 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3169 
3170 		/* Check valid BD */
3171 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3172 			return -ENXIO;
3173 
3174 		dma_rmb();
3175 		length = le16_to_cpu(desc->rx.size);
3176 
3177 		ring->va = desc_cb->buf + desc_cb->page_offset;
3178 
3179 		dma_sync_single_for_cpu(ring_to_dev(ring),
3180 				desc_cb->dma + desc_cb->page_offset,
3181 				hns3_buf_size(ring),
3182 				DMA_FROM_DEVICE);
3183 
3184 		/* Prefetch first cache line of first page.
3185 		 * Idea is to cache few bytes of the header of the packet.
3186 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3187 		 * it 128B. But in actual we can have greater size of caches with
3188 		 * 128B Level 1 cache lines. In such a case, single fetch would
3189 		 * suffice to cache in the relevant part of the header.
3190 		 */
3191 		net_prefetch(ring->va);
3192 
3193 		ret = hns3_alloc_skb(ring, length, ring->va);
3194 		skb = ring->skb;
3195 
3196 		if (ret < 0) /* alloc buffer fail */
3197 			return ret;
3198 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3199 			ret = hns3_add_frag(ring);
3200 			if (ret)
3201 				return ret;
3202 		}
3203 	} else {
3204 		ret = hns3_add_frag(ring);
3205 		if (ret)
3206 			return ret;
3207 	}
3208 
3209 	/* As the head data may be changed when GRO enable, copy
3210 	 * the head data in after other data rx completed
3211 	 */
3212 	if (skb->len > HNS3_RX_HEAD_SIZE)
3213 		memcpy(skb->data, ring->va,
3214 		       ALIGN(ring->pull_len, sizeof(long)));
3215 
3216 	ret = hns3_handle_bdinfo(ring, skb);
3217 	if (unlikely(ret)) {
3218 		dev_kfree_skb_any(skb);
3219 		return ret;
3220 	}
3221 
3222 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3223 	return 0;
3224 }
3225 
hns3_clean_rx_ring(struct hns3_enet_ring * ring,int budget,void (* rx_fn)(struct hns3_enet_ring *,struct sk_buff *))3226 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3227 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3228 {
3229 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3230 	int unused_count = hns3_desc_unused(ring);
3231 	bool failure = false;
3232 	int recv_pkts = 0;
3233 	int err;
3234 
3235 	unused_count -= ring->pending_buf;
3236 
3237 	while (recv_pkts < budget) {
3238 		/* Reuse or realloc buffers */
3239 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3240 			failure = failure ||
3241 				hns3_nic_alloc_rx_buffers(ring, unused_count);
3242 			unused_count = 0;
3243 		}
3244 
3245 		/* Poll one pkt */
3246 		err = hns3_handle_rx_bd(ring);
3247 		/* Do not get FE for the packet or failed to alloc skb */
3248 		if (unlikely(!ring->skb || err == -ENXIO)) {
3249 			goto out;
3250 		} else if (likely(!err)) {
3251 			rx_fn(ring, ring->skb);
3252 			recv_pkts++;
3253 		}
3254 
3255 		unused_count += ring->pending_buf;
3256 		ring->skb = NULL;
3257 		ring->pending_buf = 0;
3258 	}
3259 
3260 out:
3261 	return failure ? budget : recv_pkts;
3262 }
3263 
hns3_get_new_flow_lvl(struct hns3_enet_ring_group * ring_group)3264 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3265 {
3266 #define HNS3_RX_LOW_BYTE_RATE 10000
3267 #define HNS3_RX_MID_BYTE_RATE 20000
3268 #define HNS3_RX_ULTRA_PACKET_RATE 40
3269 
3270 	enum hns3_flow_level_range new_flow_level;
3271 	struct hns3_enet_tqp_vector *tqp_vector;
3272 	int packets_per_msecs, bytes_per_msecs;
3273 	u32 time_passed_ms;
3274 
3275 	tqp_vector = ring_group->ring->tqp_vector;
3276 	time_passed_ms =
3277 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3278 	if (!time_passed_ms)
3279 		return false;
3280 
3281 	do_div(ring_group->total_packets, time_passed_ms);
3282 	packets_per_msecs = ring_group->total_packets;
3283 
3284 	do_div(ring_group->total_bytes, time_passed_ms);
3285 	bytes_per_msecs = ring_group->total_bytes;
3286 
3287 	new_flow_level = ring_group->coal.flow_level;
3288 
3289 	/* Simple throttlerate management
3290 	 * 0-10MB/s   lower     (50000 ints/s)
3291 	 * 10-20MB/s   middle    (20000 ints/s)
3292 	 * 20-1249MB/s high      (18000 ints/s)
3293 	 * > 40000pps  ultra     (8000 ints/s)
3294 	 */
3295 	switch (new_flow_level) {
3296 	case HNS3_FLOW_LOW:
3297 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3298 			new_flow_level = HNS3_FLOW_MID;
3299 		break;
3300 	case HNS3_FLOW_MID:
3301 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3302 			new_flow_level = HNS3_FLOW_HIGH;
3303 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3304 			new_flow_level = HNS3_FLOW_LOW;
3305 		break;
3306 	case HNS3_FLOW_HIGH:
3307 	case HNS3_FLOW_ULTRA:
3308 	default:
3309 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3310 			new_flow_level = HNS3_FLOW_MID;
3311 		break;
3312 	}
3313 
3314 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3315 	    &tqp_vector->rx_group == ring_group)
3316 		new_flow_level = HNS3_FLOW_ULTRA;
3317 
3318 	ring_group->total_bytes = 0;
3319 	ring_group->total_packets = 0;
3320 	ring_group->coal.flow_level = new_flow_level;
3321 
3322 	return true;
3323 }
3324 
hns3_get_new_int_gl(struct hns3_enet_ring_group * ring_group)3325 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3326 {
3327 	struct hns3_enet_tqp_vector *tqp_vector;
3328 	u16 new_int_gl;
3329 
3330 	if (!ring_group->ring)
3331 		return false;
3332 
3333 	tqp_vector = ring_group->ring->tqp_vector;
3334 	if (!tqp_vector->last_jiffies)
3335 		return false;
3336 
3337 	if (ring_group->total_packets == 0) {
3338 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3339 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3340 		return true;
3341 	}
3342 
3343 	if (!hns3_get_new_flow_lvl(ring_group))
3344 		return false;
3345 
3346 	new_int_gl = ring_group->coal.int_gl;
3347 	switch (ring_group->coal.flow_level) {
3348 	case HNS3_FLOW_LOW:
3349 		new_int_gl = HNS3_INT_GL_50K;
3350 		break;
3351 	case HNS3_FLOW_MID:
3352 		new_int_gl = HNS3_INT_GL_20K;
3353 		break;
3354 	case HNS3_FLOW_HIGH:
3355 		new_int_gl = HNS3_INT_GL_18K;
3356 		break;
3357 	case HNS3_FLOW_ULTRA:
3358 		new_int_gl = HNS3_INT_GL_8K;
3359 		break;
3360 	default:
3361 		break;
3362 	}
3363 
3364 	if (new_int_gl != ring_group->coal.int_gl) {
3365 		ring_group->coal.int_gl = new_int_gl;
3366 		return true;
3367 	}
3368 	return false;
3369 }
3370 
hns3_update_new_int_gl(struct hns3_enet_tqp_vector * tqp_vector)3371 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3372 {
3373 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3374 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3375 	bool rx_update, tx_update;
3376 
3377 	/* update param every 1000ms */
3378 	if (time_before(jiffies,
3379 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3380 		return;
3381 
3382 	if (rx_group->coal.gl_adapt_enable) {
3383 		rx_update = hns3_get_new_int_gl(rx_group);
3384 		if (rx_update)
3385 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3386 						       rx_group->coal.int_gl);
3387 	}
3388 
3389 	if (tx_group->coal.gl_adapt_enable) {
3390 		tx_update = hns3_get_new_int_gl(tx_group);
3391 		if (tx_update)
3392 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3393 						       tx_group->coal.int_gl);
3394 	}
3395 
3396 	tqp_vector->last_jiffies = jiffies;
3397 }
3398 
hns3_nic_common_poll(struct napi_struct * napi,int budget)3399 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3400 {
3401 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3402 	struct hns3_enet_ring *ring;
3403 	int rx_pkt_total = 0;
3404 
3405 	struct hns3_enet_tqp_vector *tqp_vector =
3406 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3407 	bool clean_complete = true;
3408 	int rx_budget = budget;
3409 
3410 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3411 		napi_complete(napi);
3412 		return 0;
3413 	}
3414 
3415 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3416 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3417 	 */
3418 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3419 		hns3_clean_tx_ring(ring, budget);
3420 
3421 	/* make sure rx ring budget not smaller than 1 */
3422 	if (tqp_vector->num_tqps > 1)
3423 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3424 
3425 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3426 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3427 						    hns3_rx_skb);
3428 
3429 		if (rx_cleaned >= rx_budget)
3430 			clean_complete = false;
3431 
3432 		rx_pkt_total += rx_cleaned;
3433 	}
3434 
3435 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3436 
3437 	if (!clean_complete)
3438 		return budget;
3439 
3440 	if (napi_complete(napi) &&
3441 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3442 		hns3_update_new_int_gl(tqp_vector);
3443 		hns3_mask_vector_irq(tqp_vector, 1);
3444 	}
3445 
3446 	return rx_pkt_total;
3447 }
3448 
hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)3449 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3450 				      struct hnae3_ring_chain_node *head)
3451 {
3452 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3453 	struct hnae3_ring_chain_node *cur_chain = head;
3454 	struct hnae3_ring_chain_node *chain;
3455 	struct hns3_enet_ring *tx_ring;
3456 	struct hns3_enet_ring *rx_ring;
3457 
3458 	tx_ring = tqp_vector->tx_group.ring;
3459 	if (tx_ring) {
3460 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3461 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3462 			      HNAE3_RING_TYPE_TX);
3463 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3464 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3465 
3466 		cur_chain->next = NULL;
3467 
3468 		while (tx_ring->next) {
3469 			tx_ring = tx_ring->next;
3470 
3471 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3472 					     GFP_KERNEL);
3473 			if (!chain)
3474 				goto err_free_chain;
3475 
3476 			cur_chain->next = chain;
3477 			chain->tqp_index = tx_ring->tqp->tqp_index;
3478 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3479 				      HNAE3_RING_TYPE_TX);
3480 			hnae3_set_field(chain->int_gl_idx,
3481 					HNAE3_RING_GL_IDX_M,
3482 					HNAE3_RING_GL_IDX_S,
3483 					HNAE3_RING_GL_TX);
3484 
3485 			cur_chain = chain;
3486 		}
3487 	}
3488 
3489 	rx_ring = tqp_vector->rx_group.ring;
3490 	if (!tx_ring && rx_ring) {
3491 		cur_chain->next = NULL;
3492 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3493 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3494 			      HNAE3_RING_TYPE_RX);
3495 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3496 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3497 
3498 		rx_ring = rx_ring->next;
3499 	}
3500 
3501 	while (rx_ring) {
3502 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3503 		if (!chain)
3504 			goto err_free_chain;
3505 
3506 		cur_chain->next = chain;
3507 		chain->tqp_index = rx_ring->tqp->tqp_index;
3508 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3509 			      HNAE3_RING_TYPE_RX);
3510 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3511 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3512 
3513 		cur_chain = chain;
3514 
3515 		rx_ring = rx_ring->next;
3516 	}
3517 
3518 	return 0;
3519 
3520 err_free_chain:
3521 	cur_chain = head->next;
3522 	while (cur_chain) {
3523 		chain = cur_chain->next;
3524 		devm_kfree(&pdev->dev, cur_chain);
3525 		cur_chain = chain;
3526 	}
3527 	head->next = NULL;
3528 
3529 	return -ENOMEM;
3530 }
3531 
hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector * tqp_vector,struct hnae3_ring_chain_node * head)3532 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3533 					struct hnae3_ring_chain_node *head)
3534 {
3535 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3536 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3537 
3538 	chain = head->next;
3539 
3540 	while (chain) {
3541 		chain_tmp = chain->next;
3542 		devm_kfree(&pdev->dev, chain);
3543 		chain = chain_tmp;
3544 	}
3545 }
3546 
hns3_add_ring_to_group(struct hns3_enet_ring_group * group,struct hns3_enet_ring * ring)3547 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3548 				   struct hns3_enet_ring *ring)
3549 {
3550 	ring->next = group->ring;
3551 	group->ring = ring;
3552 
3553 	group->count++;
3554 }
3555 
hns3_nic_set_cpumask(struct hns3_nic_priv * priv)3556 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3557 {
3558 	struct pci_dev *pdev = priv->ae_handle->pdev;
3559 	struct hns3_enet_tqp_vector *tqp_vector;
3560 	int num_vectors = priv->vector_num;
3561 	int numa_node;
3562 	int vector_i;
3563 
3564 	numa_node = dev_to_node(&pdev->dev);
3565 
3566 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3567 		tqp_vector = &priv->tqp_vector[vector_i];
3568 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3569 				&tqp_vector->affinity_mask);
3570 	}
3571 }
3572 
hns3_nic_init_vector_data(struct hns3_nic_priv * priv)3573 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3574 {
3575 	struct hnae3_handle *h = priv->ae_handle;
3576 	struct hns3_enet_tqp_vector *tqp_vector;
3577 	int ret;
3578 	int i;
3579 
3580 	hns3_nic_set_cpumask(priv);
3581 
3582 	for (i = 0; i < priv->vector_num; i++) {
3583 		tqp_vector = &priv->tqp_vector[i];
3584 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3585 		tqp_vector->num_tqps = 0;
3586 	}
3587 
3588 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3589 		u16 vector_i = i % priv->vector_num;
3590 		u16 tqp_num = h->kinfo.num_tqps;
3591 
3592 		tqp_vector = &priv->tqp_vector[vector_i];
3593 
3594 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3595 				       &priv->ring[i]);
3596 
3597 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3598 				       &priv->ring[i + tqp_num]);
3599 
3600 		priv->ring[i].tqp_vector = tqp_vector;
3601 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3602 		tqp_vector->num_tqps++;
3603 	}
3604 
3605 	for (i = 0; i < priv->vector_num; i++) {
3606 		struct hnae3_ring_chain_node vector_ring_chain;
3607 
3608 		tqp_vector = &priv->tqp_vector[i];
3609 
3610 		tqp_vector->rx_group.total_bytes = 0;
3611 		tqp_vector->rx_group.total_packets = 0;
3612 		tqp_vector->tx_group.total_bytes = 0;
3613 		tqp_vector->tx_group.total_packets = 0;
3614 		tqp_vector->handle = h;
3615 
3616 		ret = hns3_get_vector_ring_chain(tqp_vector,
3617 						 &vector_ring_chain);
3618 		if (ret)
3619 			goto map_ring_fail;
3620 
3621 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3622 			tqp_vector->vector_irq, &vector_ring_chain);
3623 
3624 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3625 
3626 		if (ret)
3627 			goto map_ring_fail;
3628 
3629 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3630 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3631 	}
3632 
3633 	return 0;
3634 
3635 map_ring_fail:
3636 	while (i--)
3637 		netif_napi_del(&priv->tqp_vector[i].napi);
3638 
3639 	return ret;
3640 }
3641 
hns3_nic_alloc_vector_data(struct hns3_nic_priv * priv)3642 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3643 {
3644 #define HNS3_VECTOR_PF_MAX_NUM		64
3645 
3646 	struct hnae3_handle *h = priv->ae_handle;
3647 	struct hns3_enet_tqp_vector *tqp_vector;
3648 	struct hnae3_vector_info *vector;
3649 	struct pci_dev *pdev = h->pdev;
3650 	u16 tqp_num = h->kinfo.num_tqps;
3651 	u16 vector_num;
3652 	int ret = 0;
3653 	u16 i;
3654 
3655 	/* RSS size, cpu online and vector_num should be the same */
3656 	/* Should consider 2p/4p later */
3657 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3658 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3659 
3660 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3661 			      GFP_KERNEL);
3662 	if (!vector)
3663 		return -ENOMEM;
3664 
3665 	/* save the actual available vector number */
3666 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3667 
3668 	priv->vector_num = vector_num;
3669 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3670 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3671 			     GFP_KERNEL);
3672 	if (!priv->tqp_vector) {
3673 		ret = -ENOMEM;
3674 		goto out;
3675 	}
3676 
3677 	for (i = 0; i < priv->vector_num; i++) {
3678 		tqp_vector = &priv->tqp_vector[i];
3679 		tqp_vector->idx = i;
3680 		tqp_vector->mask_addr = vector[i].io_addr;
3681 		tqp_vector->vector_irq = vector[i].vector;
3682 		hns3_vector_gl_rl_init(tqp_vector, priv);
3683 	}
3684 
3685 out:
3686 	devm_kfree(&pdev->dev, vector);
3687 	return ret;
3688 }
3689 
hns3_clear_ring_group(struct hns3_enet_ring_group * group)3690 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3691 {
3692 	group->ring = NULL;
3693 	group->count = 0;
3694 }
3695 
hns3_nic_uninit_vector_data(struct hns3_nic_priv * priv)3696 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3697 {
3698 	struct hnae3_ring_chain_node vector_ring_chain;
3699 	struct hnae3_handle *h = priv->ae_handle;
3700 	struct hns3_enet_tqp_vector *tqp_vector;
3701 	int i;
3702 
3703 	for (i = 0; i < priv->vector_num; i++) {
3704 		tqp_vector = &priv->tqp_vector[i];
3705 
3706 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3707 			continue;
3708 
3709 		/* Since the mapping can be overwritten, when fail to get the
3710 		 * chain between vector and ring, we should go on to deal with
3711 		 * the remaining options.
3712 		 */
3713 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3714 			dev_warn(priv->dev, "failed to get ring chain\n");
3715 
3716 		h->ae_algo->ops->unmap_ring_from_vector(h,
3717 			tqp_vector->vector_irq, &vector_ring_chain);
3718 
3719 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3720 
3721 		hns3_clear_ring_group(&tqp_vector->rx_group);
3722 		hns3_clear_ring_group(&tqp_vector->tx_group);
3723 		netif_napi_del(&priv->tqp_vector[i].napi);
3724 	}
3725 }
3726 
hns3_nic_dealloc_vector_data(struct hns3_nic_priv * priv)3727 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3728 {
3729 	struct hnae3_handle *h = priv->ae_handle;
3730 	struct pci_dev *pdev = h->pdev;
3731 	int i, ret;
3732 
3733 	for (i = 0; i < priv->vector_num; i++) {
3734 		struct hns3_enet_tqp_vector *tqp_vector;
3735 
3736 		tqp_vector = &priv->tqp_vector[i];
3737 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3738 		if (ret)
3739 			return;
3740 	}
3741 
3742 	devm_kfree(&pdev->dev, priv->tqp_vector);
3743 }
3744 
hns3_ring_get_cfg(struct hnae3_queue * q,struct hns3_nic_priv * priv,unsigned int ring_type)3745 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3746 			      unsigned int ring_type)
3747 {
3748 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3749 	struct hns3_enet_ring *ring;
3750 	int desc_num;
3751 
3752 	if (ring_type == HNAE3_RING_TYPE_TX) {
3753 		ring = &priv->ring[q->tqp_index];
3754 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3755 		ring->queue_index = q->tqp_index;
3756 	} else {
3757 		ring = &priv->ring[q->tqp_index + queue_num];
3758 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3759 		ring->queue_index = q->tqp_index;
3760 	}
3761 
3762 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3763 
3764 	ring->tqp = q;
3765 	ring->desc = NULL;
3766 	ring->desc_cb = NULL;
3767 	ring->dev = priv->dev;
3768 	ring->desc_dma_addr = 0;
3769 	ring->buf_size = q->buf_size;
3770 	ring->desc_num = desc_num;
3771 	ring->next_to_use = 0;
3772 	ring->next_to_clean = 0;
3773 	ring->last_to_use = 0;
3774 }
3775 
hns3_queue_to_ring(struct hnae3_queue * tqp,struct hns3_nic_priv * priv)3776 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3777 			       struct hns3_nic_priv *priv)
3778 {
3779 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3780 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3781 }
3782 
hns3_get_ring_config(struct hns3_nic_priv * priv)3783 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3784 {
3785 	struct hnae3_handle *h = priv->ae_handle;
3786 	struct pci_dev *pdev = h->pdev;
3787 	int i;
3788 
3789 	priv->ring = devm_kzalloc(&pdev->dev,
3790 				  array3_size(h->kinfo.num_tqps,
3791 					      sizeof(*priv->ring), 2),
3792 				  GFP_KERNEL);
3793 	if (!priv->ring)
3794 		return -ENOMEM;
3795 
3796 	for (i = 0; i < h->kinfo.num_tqps; i++)
3797 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3798 
3799 	return 0;
3800 }
3801 
hns3_put_ring_config(struct hns3_nic_priv * priv)3802 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3803 {
3804 	if (!priv->ring)
3805 		return;
3806 
3807 	devm_kfree(priv->dev, priv->ring);
3808 	priv->ring = NULL;
3809 }
3810 
hns3_alloc_ring_memory(struct hns3_enet_ring * ring)3811 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3812 {
3813 	int ret;
3814 
3815 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3816 		return -EINVAL;
3817 
3818 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3819 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3820 	if (!ring->desc_cb) {
3821 		ret = -ENOMEM;
3822 		goto out;
3823 	}
3824 
3825 	ret = hns3_alloc_desc(ring);
3826 	if (ret)
3827 		goto out_with_desc_cb;
3828 
3829 	if (!HNAE3_IS_TX_RING(ring)) {
3830 		ret = hns3_alloc_ring_buffers(ring);
3831 		if (ret)
3832 			goto out_with_desc;
3833 	}
3834 
3835 	return 0;
3836 
3837 out_with_desc:
3838 	hns3_free_desc(ring);
3839 out_with_desc_cb:
3840 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3841 	ring->desc_cb = NULL;
3842 out:
3843 	return ret;
3844 }
3845 
hns3_fini_ring(struct hns3_enet_ring * ring)3846 void hns3_fini_ring(struct hns3_enet_ring *ring)
3847 {
3848 	hns3_free_desc(ring);
3849 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3850 	ring->desc_cb = NULL;
3851 	ring->next_to_clean = 0;
3852 	ring->next_to_use = 0;
3853 	ring->last_to_use = 0;
3854 	ring->pending_buf = 0;
3855 	if (ring->skb) {
3856 		dev_kfree_skb_any(ring->skb);
3857 		ring->skb = NULL;
3858 	}
3859 }
3860 
hns3_buf_size2type(u32 buf_size)3861 static int hns3_buf_size2type(u32 buf_size)
3862 {
3863 	int bd_size_type;
3864 
3865 	switch (buf_size) {
3866 	case 512:
3867 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3868 		break;
3869 	case 1024:
3870 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3871 		break;
3872 	case 2048:
3873 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3874 		break;
3875 	case 4096:
3876 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3877 		break;
3878 	default:
3879 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3880 	}
3881 
3882 	return bd_size_type;
3883 }
3884 
hns3_init_ring_hw(struct hns3_enet_ring * ring)3885 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3886 {
3887 	dma_addr_t dma = ring->desc_dma_addr;
3888 	struct hnae3_queue *q = ring->tqp;
3889 
3890 	if (!HNAE3_IS_TX_RING(ring)) {
3891 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3892 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3893 			       (u32)((dma >> 31) >> 1));
3894 
3895 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3896 			       hns3_buf_size2type(ring->buf_size));
3897 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3898 			       ring->desc_num / 8 - 1);
3899 
3900 	} else {
3901 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3902 			       (u32)dma);
3903 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3904 			       (u32)((dma >> 31) >> 1));
3905 
3906 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3907 			       ring->desc_num / 8 - 1);
3908 	}
3909 }
3910 
hns3_init_tx_ring_tc(struct hns3_nic_priv * priv)3911 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3912 {
3913 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3914 	int i;
3915 
3916 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3917 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3918 		int j;
3919 
3920 		if (!tc_info->enable)
3921 			continue;
3922 
3923 		for (j = 0; j < tc_info->tqp_count; j++) {
3924 			struct hnae3_queue *q;
3925 
3926 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3927 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3928 				       tc_info->tc);
3929 		}
3930 	}
3931 }
3932 
hns3_init_all_ring(struct hns3_nic_priv * priv)3933 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3934 {
3935 	struct hnae3_handle *h = priv->ae_handle;
3936 	int ring_num = h->kinfo.num_tqps * 2;
3937 	int i, j;
3938 	int ret;
3939 
3940 	for (i = 0; i < ring_num; i++) {
3941 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3942 		if (ret) {
3943 			dev_err(priv->dev,
3944 				"Alloc ring memory fail! ret=%d\n", ret);
3945 			goto out_when_alloc_ring_memory;
3946 		}
3947 
3948 		u64_stats_init(&priv->ring[i].syncp);
3949 	}
3950 
3951 	return 0;
3952 
3953 out_when_alloc_ring_memory:
3954 	for (j = i - 1; j >= 0; j--)
3955 		hns3_fini_ring(&priv->ring[j]);
3956 
3957 	return -ENOMEM;
3958 }
3959 
hns3_uninit_all_ring(struct hns3_nic_priv * priv)3960 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3961 {
3962 	struct hnae3_handle *h = priv->ae_handle;
3963 	int i;
3964 
3965 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3966 		hns3_fini_ring(&priv->ring[i]);
3967 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3968 	}
3969 	return 0;
3970 }
3971 
3972 /* Set mac addr if it is configured. or leave it to the AE driver */
hns3_init_mac_addr(struct net_device * netdev)3973 static int hns3_init_mac_addr(struct net_device *netdev)
3974 {
3975 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3976 	struct hnae3_handle *h = priv->ae_handle;
3977 	u8 mac_addr_temp[ETH_ALEN];
3978 	int ret = 0;
3979 
3980 	if (h->ae_algo->ops->get_mac_addr)
3981 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3982 
3983 	/* Check if the MAC address is valid, if not get a random one */
3984 	if (!is_valid_ether_addr(mac_addr_temp)) {
3985 		eth_hw_addr_random(netdev);
3986 		dev_warn(priv->dev, "using random MAC address %pM\n",
3987 			 netdev->dev_addr);
3988 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3989 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3990 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3991 	} else {
3992 		return 0;
3993 	}
3994 
3995 	if (h->ae_algo->ops->set_mac_addr)
3996 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3997 
3998 	return ret;
3999 }
4000 
hns3_init_phy(struct net_device * netdev)4001 static int hns3_init_phy(struct net_device *netdev)
4002 {
4003 	struct hnae3_handle *h = hns3_get_handle(netdev);
4004 	int ret = 0;
4005 
4006 	if (h->ae_algo->ops->mac_connect_phy)
4007 		ret = h->ae_algo->ops->mac_connect_phy(h);
4008 
4009 	return ret;
4010 }
4011 
hns3_uninit_phy(struct net_device * netdev)4012 static void hns3_uninit_phy(struct net_device *netdev)
4013 {
4014 	struct hnae3_handle *h = hns3_get_handle(netdev);
4015 
4016 	if (h->ae_algo->ops->mac_disconnect_phy)
4017 		h->ae_algo->ops->mac_disconnect_phy(h);
4018 }
4019 
hns3_del_all_fd_rules(struct net_device * netdev,bool clear_list)4020 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4021 {
4022 	struct hnae3_handle *h = hns3_get_handle(netdev);
4023 
4024 	if (h->ae_algo->ops->del_all_fd_entries)
4025 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4026 }
4027 
hns3_client_start(struct hnae3_handle * handle)4028 static int hns3_client_start(struct hnae3_handle *handle)
4029 {
4030 	if (!handle->ae_algo->ops->client_start)
4031 		return 0;
4032 
4033 	return handle->ae_algo->ops->client_start(handle);
4034 }
4035 
hns3_client_stop(struct hnae3_handle * handle)4036 static void hns3_client_stop(struct hnae3_handle *handle)
4037 {
4038 	if (!handle->ae_algo->ops->client_stop)
4039 		return;
4040 
4041 	handle->ae_algo->ops->client_stop(handle);
4042 }
4043 
hns3_info_show(struct hns3_nic_priv * priv)4044 static void hns3_info_show(struct hns3_nic_priv *priv)
4045 {
4046 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4047 
4048 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4049 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4050 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4051 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4052 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4053 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4054 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4055 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
4056 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4057 }
4058 
hns3_client_init(struct hnae3_handle * handle)4059 static int hns3_client_init(struct hnae3_handle *handle)
4060 {
4061 	struct pci_dev *pdev = handle->pdev;
4062 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4063 	u16 alloc_tqps, max_rss_size;
4064 	struct hns3_nic_priv *priv;
4065 	struct net_device *netdev;
4066 	int ret;
4067 
4068 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4069 						    &max_rss_size);
4070 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4071 	if (!netdev)
4072 		return -ENOMEM;
4073 
4074 	priv = netdev_priv(netdev);
4075 	priv->dev = &pdev->dev;
4076 	priv->netdev = netdev;
4077 	priv->ae_handle = handle;
4078 	priv->tx_timeout_count = 0;
4079 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4080 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4081 
4082 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4083 
4084 	handle->kinfo.netdev = netdev;
4085 	handle->priv = (void *)priv;
4086 
4087 	hns3_init_mac_addr(netdev);
4088 
4089 	hns3_set_default_feature(netdev);
4090 
4091 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4092 	netdev->priv_flags |= IFF_UNICAST_FLT;
4093 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4094 	SET_NETDEV_DEV(netdev, &pdev->dev);
4095 	hns3_ethtool_set_ops(netdev);
4096 
4097 	/* Carrier off reporting is important to ethtool even BEFORE open */
4098 	netif_carrier_off(netdev);
4099 
4100 	ret = hns3_get_ring_config(priv);
4101 	if (ret) {
4102 		ret = -ENOMEM;
4103 		goto out_get_ring_cfg;
4104 	}
4105 
4106 	ret = hns3_nic_alloc_vector_data(priv);
4107 	if (ret) {
4108 		ret = -ENOMEM;
4109 		goto out_alloc_vector_data;
4110 	}
4111 
4112 	ret = hns3_nic_init_vector_data(priv);
4113 	if (ret) {
4114 		ret = -ENOMEM;
4115 		goto out_init_vector_data;
4116 	}
4117 
4118 	ret = hns3_init_all_ring(priv);
4119 	if (ret) {
4120 		ret = -ENOMEM;
4121 		goto out_init_ring;
4122 	}
4123 
4124 	ret = hns3_init_phy(netdev);
4125 	if (ret)
4126 		goto out_init_phy;
4127 
4128 	/* the device can work without cpu rmap, only aRFS needs it */
4129 	ret = hns3_set_rx_cpu_rmap(netdev);
4130 	if (ret)
4131 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4132 
4133 	ret = hns3_nic_init_irq(priv);
4134 	if (ret) {
4135 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4136 		hns3_free_rx_cpu_rmap(netdev);
4137 		goto out_init_irq_fail;
4138 	}
4139 
4140 	ret = hns3_client_start(handle);
4141 	if (ret) {
4142 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4143 		goto out_client_start;
4144 	}
4145 
4146 	hns3_dcbnl_setup(handle);
4147 
4148 	hns3_dbg_init(handle);
4149 
4150 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4151 	netdev->max_mtu = HNS3_MAX_MTU;
4152 
4153 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4154 
4155 	ret = register_netdev(netdev);
4156 	if (ret) {
4157 		dev_err(priv->dev, "probe register netdev fail!\n");
4158 		goto out_reg_netdev_fail;
4159 	}
4160 
4161 	if (netif_msg_drv(handle))
4162 		hns3_info_show(priv);
4163 
4164 	return ret;
4165 
4166 out_reg_netdev_fail:
4167 	hns3_dbg_uninit(handle);
4168 out_client_start:
4169 	hns3_free_rx_cpu_rmap(netdev);
4170 	hns3_nic_uninit_irq(priv);
4171 out_init_irq_fail:
4172 	hns3_uninit_phy(netdev);
4173 out_init_phy:
4174 	hns3_uninit_all_ring(priv);
4175 out_init_ring:
4176 	hns3_nic_uninit_vector_data(priv);
4177 out_init_vector_data:
4178 	hns3_nic_dealloc_vector_data(priv);
4179 out_alloc_vector_data:
4180 	priv->ring = NULL;
4181 out_get_ring_cfg:
4182 	priv->ae_handle = NULL;
4183 	free_netdev(netdev);
4184 	return ret;
4185 }
4186 
hns3_client_uninit(struct hnae3_handle * handle,bool reset)4187 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4188 {
4189 	struct net_device *netdev = handle->kinfo.netdev;
4190 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4191 	int ret;
4192 
4193 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4194 		unregister_netdev(netdev);
4195 
4196 	hns3_client_stop(handle);
4197 
4198 	hns3_uninit_phy(netdev);
4199 
4200 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4201 		netdev_warn(netdev, "already uninitialized\n");
4202 		goto out_netdev_free;
4203 	}
4204 
4205 	hns3_free_rx_cpu_rmap(netdev);
4206 
4207 	hns3_nic_uninit_irq(priv);
4208 
4209 	hns3_del_all_fd_rules(netdev, true);
4210 
4211 	hns3_clear_all_ring(handle, true);
4212 
4213 	hns3_nic_uninit_vector_data(priv);
4214 
4215 	hns3_nic_dealloc_vector_data(priv);
4216 
4217 	ret = hns3_uninit_all_ring(priv);
4218 	if (ret)
4219 		netdev_err(netdev, "uninit ring error\n");
4220 
4221 	hns3_put_ring_config(priv);
4222 
4223 out_netdev_free:
4224 	hns3_dbg_uninit(handle);
4225 	free_netdev(netdev);
4226 }
4227 
hns3_link_status_change(struct hnae3_handle * handle,bool linkup)4228 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4229 {
4230 	struct net_device *netdev = handle->kinfo.netdev;
4231 
4232 	if (!netdev)
4233 		return;
4234 
4235 	if (linkup) {
4236 		netif_tx_wake_all_queues(netdev);
4237 		netif_carrier_on(netdev);
4238 		if (netif_msg_link(handle))
4239 			netdev_info(netdev, "link up\n");
4240 	} else {
4241 		netif_carrier_off(netdev);
4242 		netif_tx_stop_all_queues(netdev);
4243 		if (netif_msg_link(handle))
4244 			netdev_info(netdev, "link down\n");
4245 	}
4246 }
4247 
hns3_client_setup_tc(struct hnae3_handle * handle,u8 tc)4248 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4249 {
4250 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4251 	struct net_device *ndev = kinfo->netdev;
4252 
4253 	if (tc > HNAE3_MAX_TC)
4254 		return -EINVAL;
4255 
4256 	if (!ndev)
4257 		return -ENODEV;
4258 
4259 	return hns3_nic_set_real_num_queue(ndev);
4260 }
4261 
hns3_clear_tx_ring(struct hns3_enet_ring * ring)4262 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4263 {
4264 	while (ring->next_to_clean != ring->next_to_use) {
4265 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4266 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4267 		ring_ptr_move_fw(ring, next_to_clean);
4268 	}
4269 
4270 	ring->pending_buf = 0;
4271 }
4272 
hns3_clear_rx_ring(struct hns3_enet_ring * ring)4273 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4274 {
4275 	struct hns3_desc_cb res_cbs;
4276 	int ret;
4277 
4278 	while (ring->next_to_use != ring->next_to_clean) {
4279 		/* When a buffer is not reused, it's memory has been
4280 		 * freed in hns3_handle_rx_bd or will be freed by
4281 		 * stack, so we need to replace the buffer here.
4282 		 */
4283 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4284 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4285 			if (ret) {
4286 				u64_stats_update_begin(&ring->syncp);
4287 				ring->stats.sw_err_cnt++;
4288 				u64_stats_update_end(&ring->syncp);
4289 				/* if alloc new buffer fail, exit directly
4290 				 * and reclear in up flow.
4291 				 */
4292 				netdev_warn(ring_to_netdev(ring),
4293 					    "reserve buffer map failed, ret = %d\n",
4294 					    ret);
4295 				return ret;
4296 			}
4297 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4298 		}
4299 		ring_ptr_move_fw(ring, next_to_use);
4300 	}
4301 
4302 	/* Free the pending skb in rx ring */
4303 	if (ring->skb) {
4304 		dev_kfree_skb_any(ring->skb);
4305 		ring->skb = NULL;
4306 		ring->pending_buf = 0;
4307 	}
4308 
4309 	return 0;
4310 }
4311 
hns3_force_clear_rx_ring(struct hns3_enet_ring * ring)4312 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4313 {
4314 	while (ring->next_to_use != ring->next_to_clean) {
4315 		/* When a buffer is not reused, it's memory has been
4316 		 * freed in hns3_handle_rx_bd or will be freed by
4317 		 * stack, so only need to unmap the buffer here.
4318 		 */
4319 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4320 			hns3_unmap_buffer(ring,
4321 					  &ring->desc_cb[ring->next_to_use]);
4322 			ring->desc_cb[ring->next_to_use].dma = 0;
4323 		}
4324 
4325 		ring_ptr_move_fw(ring, next_to_use);
4326 	}
4327 }
4328 
hns3_clear_all_ring(struct hnae3_handle * h,bool force)4329 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4330 {
4331 	struct net_device *ndev = h->kinfo.netdev;
4332 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4333 	u32 i;
4334 
4335 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4336 		struct hns3_enet_ring *ring;
4337 
4338 		ring = &priv->ring[i];
4339 		hns3_clear_tx_ring(ring);
4340 
4341 		ring = &priv->ring[i + h->kinfo.num_tqps];
4342 		/* Continue to clear other rings even if clearing some
4343 		 * rings failed.
4344 		 */
4345 		if (force)
4346 			hns3_force_clear_rx_ring(ring);
4347 		else
4348 			hns3_clear_rx_ring(ring);
4349 	}
4350 }
4351 
hns3_nic_reset_all_ring(struct hnae3_handle * h)4352 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4353 {
4354 	struct net_device *ndev = h->kinfo.netdev;
4355 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4356 	struct hns3_enet_ring *rx_ring;
4357 	int i, j;
4358 	int ret;
4359 
4360 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4361 		ret = h->ae_algo->ops->reset_queue(h, i);
4362 		if (ret)
4363 			return ret;
4364 
4365 		hns3_init_ring_hw(&priv->ring[i]);
4366 
4367 		/* We need to clear tx ring here because self test will
4368 		 * use the ring and will not run down before up
4369 		 */
4370 		hns3_clear_tx_ring(&priv->ring[i]);
4371 		priv->ring[i].next_to_clean = 0;
4372 		priv->ring[i].next_to_use = 0;
4373 		priv->ring[i].last_to_use = 0;
4374 
4375 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4376 		hns3_init_ring_hw(rx_ring);
4377 		ret = hns3_clear_rx_ring(rx_ring);
4378 		if (ret)
4379 			return ret;
4380 
4381 		/* We can not know the hardware head and tail when this
4382 		 * function is called in reset flow, so we reuse all desc.
4383 		 */
4384 		for (j = 0; j < rx_ring->desc_num; j++)
4385 			hns3_reuse_buffer(rx_ring, j);
4386 
4387 		rx_ring->next_to_clean = 0;
4388 		rx_ring->next_to_use = 0;
4389 	}
4390 
4391 	hns3_init_tx_ring_tc(priv);
4392 
4393 	return 0;
4394 }
4395 
hns3_store_coal(struct hns3_nic_priv * priv)4396 static void hns3_store_coal(struct hns3_nic_priv *priv)
4397 {
4398 	/* ethtool only support setting and querying one coal
4399 	 * configuration for now, so save the vector 0' coal
4400 	 * configuration here in order to restore it.
4401 	 */
4402 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4403 	       sizeof(struct hns3_enet_coalesce));
4404 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4405 	       sizeof(struct hns3_enet_coalesce));
4406 }
4407 
hns3_restore_coal(struct hns3_nic_priv * priv)4408 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4409 {
4410 	u16 vector_num = priv->vector_num;
4411 	int i;
4412 
4413 	for (i = 0; i < vector_num; i++) {
4414 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4415 		       sizeof(struct hns3_enet_coalesce));
4416 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4417 		       sizeof(struct hns3_enet_coalesce));
4418 	}
4419 }
4420 
hns3_reset_notify_down_enet(struct hnae3_handle * handle)4421 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4422 {
4423 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4424 	struct net_device *ndev = kinfo->netdev;
4425 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4426 
4427 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4428 		return 0;
4429 
4430 	if (!netif_running(ndev))
4431 		return 0;
4432 
4433 	return hns3_nic_net_stop(ndev);
4434 }
4435 
hns3_reset_notify_up_enet(struct hnae3_handle * handle)4436 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4437 {
4438 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4439 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4440 	int ret = 0;
4441 
4442 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4443 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
4444 		return -EFAULT;
4445 	}
4446 
4447 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4448 
4449 	if (netif_running(kinfo->netdev)) {
4450 		ret = hns3_nic_net_open(kinfo->netdev);
4451 		if (ret) {
4452 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4453 			netdev_err(kinfo->netdev,
4454 				   "net up fail, ret=%d!\n", ret);
4455 			return ret;
4456 		}
4457 	}
4458 
4459 	return ret;
4460 }
4461 
hns3_reset_notify_init_enet(struct hnae3_handle * handle)4462 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4463 {
4464 	struct net_device *netdev = handle->kinfo.netdev;
4465 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4466 	int ret;
4467 
4468 	/* Carrier off reporting is important to ethtool even BEFORE open */
4469 	netif_carrier_off(netdev);
4470 
4471 	ret = hns3_get_ring_config(priv);
4472 	if (ret)
4473 		return ret;
4474 
4475 	ret = hns3_nic_alloc_vector_data(priv);
4476 	if (ret)
4477 		goto err_put_ring;
4478 
4479 	hns3_restore_coal(priv);
4480 
4481 	ret = hns3_nic_init_vector_data(priv);
4482 	if (ret)
4483 		goto err_dealloc_vector;
4484 
4485 	ret = hns3_init_all_ring(priv);
4486 	if (ret)
4487 		goto err_uninit_vector;
4488 
4489 	/* the device can work without cpu rmap, only aRFS needs it */
4490 	ret = hns3_set_rx_cpu_rmap(netdev);
4491 	if (ret)
4492 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4493 
4494 	ret = hns3_nic_init_irq(priv);
4495 	if (ret) {
4496 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4497 		hns3_free_rx_cpu_rmap(netdev);
4498 		goto err_init_irq_fail;
4499 	}
4500 
4501 	if (!hns3_is_phys_func(handle->pdev))
4502 		hns3_init_mac_addr(netdev);
4503 
4504 	ret = hns3_client_start(handle);
4505 	if (ret) {
4506 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4507 		goto err_client_start_fail;
4508 	}
4509 
4510 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4511 
4512 	return ret;
4513 
4514 err_client_start_fail:
4515 	hns3_free_rx_cpu_rmap(netdev);
4516 	hns3_nic_uninit_irq(priv);
4517 err_init_irq_fail:
4518 	hns3_uninit_all_ring(priv);
4519 err_uninit_vector:
4520 	hns3_nic_uninit_vector_data(priv);
4521 err_dealloc_vector:
4522 	hns3_nic_dealloc_vector_data(priv);
4523 err_put_ring:
4524 	hns3_put_ring_config(priv);
4525 
4526 	return ret;
4527 }
4528 
hns3_reset_notify_uninit_enet(struct hnae3_handle * handle)4529 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4530 {
4531 	struct net_device *netdev = handle->kinfo.netdev;
4532 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4533 	int ret;
4534 
4535 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4536 		netdev_warn(netdev, "already uninitialized\n");
4537 		return 0;
4538 	}
4539 
4540 	hns3_free_rx_cpu_rmap(netdev);
4541 	hns3_nic_uninit_irq(priv);
4542 	hns3_clear_all_ring(handle, true);
4543 	hns3_reset_tx_queue(priv->ae_handle);
4544 
4545 	hns3_nic_uninit_vector_data(priv);
4546 
4547 	hns3_store_coal(priv);
4548 
4549 	hns3_nic_dealloc_vector_data(priv);
4550 
4551 	ret = hns3_uninit_all_ring(priv);
4552 	if (ret)
4553 		netdev_err(netdev, "uninit ring error\n");
4554 
4555 	hns3_put_ring_config(priv);
4556 
4557 	return ret;
4558 }
4559 
hns3_reset_notify(struct hnae3_handle * handle,enum hnae3_reset_notify_type type)4560 static int hns3_reset_notify(struct hnae3_handle *handle,
4561 			     enum hnae3_reset_notify_type type)
4562 {
4563 	int ret = 0;
4564 
4565 	switch (type) {
4566 	case HNAE3_UP_CLIENT:
4567 		ret = hns3_reset_notify_up_enet(handle);
4568 		break;
4569 	case HNAE3_DOWN_CLIENT:
4570 		ret = hns3_reset_notify_down_enet(handle);
4571 		break;
4572 	case HNAE3_INIT_CLIENT:
4573 		ret = hns3_reset_notify_init_enet(handle);
4574 		break;
4575 	case HNAE3_UNINIT_CLIENT:
4576 		ret = hns3_reset_notify_uninit_enet(handle);
4577 		break;
4578 	default:
4579 		break;
4580 	}
4581 
4582 	return ret;
4583 }
4584 
hns3_change_channels(struct hnae3_handle * handle,u32 new_tqp_num,bool rxfh_configured)4585 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4586 				bool rxfh_configured)
4587 {
4588 	int ret;
4589 
4590 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4591 						 rxfh_configured);
4592 	if (ret) {
4593 		dev_err(&handle->pdev->dev,
4594 			"Change tqp num(%u) fail.\n", new_tqp_num);
4595 		return ret;
4596 	}
4597 
4598 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4599 	if (ret)
4600 		return ret;
4601 
4602 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4603 	if (ret)
4604 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4605 
4606 	return ret;
4607 }
4608 
hns3_set_channels(struct net_device * netdev,struct ethtool_channels * ch)4609 int hns3_set_channels(struct net_device *netdev,
4610 		      struct ethtool_channels *ch)
4611 {
4612 	struct hnae3_handle *h = hns3_get_handle(netdev);
4613 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4614 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4615 	u32 new_tqp_num = ch->combined_count;
4616 	u16 org_tqp_num;
4617 	int ret;
4618 
4619 	if (hns3_nic_resetting(netdev))
4620 		return -EBUSY;
4621 
4622 	if (ch->rx_count || ch->tx_count)
4623 		return -EINVAL;
4624 
4625 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4626 	    new_tqp_num < 1) {
4627 		dev_err(&netdev->dev,
4628 			"Change tqps fail, the tqp range is from 1 to %u",
4629 			hns3_get_max_available_channels(h));
4630 		return -EINVAL;
4631 	}
4632 
4633 	if (kinfo->rss_size == new_tqp_num)
4634 		return 0;
4635 
4636 	netif_dbg(h, drv, netdev,
4637 		  "set channels: tqp_num=%u, rxfh=%d\n",
4638 		  new_tqp_num, rxfh_configured);
4639 
4640 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4641 	if (ret)
4642 		return ret;
4643 
4644 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4645 	if (ret)
4646 		return ret;
4647 
4648 	org_tqp_num = h->kinfo.num_tqps;
4649 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4650 	if (ret) {
4651 		int ret1;
4652 
4653 		netdev_warn(netdev,
4654 			    "Change channels fail, revert to old value\n");
4655 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4656 		if (ret1) {
4657 			netdev_err(netdev,
4658 				   "revert to old channel fail\n");
4659 			return ret1;
4660 		}
4661 
4662 		return ret;
4663 	}
4664 
4665 	return 0;
4666 }
4667 
4668 static const struct hns3_hw_error_info hns3_hw_err[] = {
4669 	{ .type = HNAE3_PPU_POISON_ERROR,
4670 	  .msg = "PPU poison" },
4671 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4672 	  .msg = "IMP CMDQ error" },
4673 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4674 	  .msg = "IMP RD poison" },
4675 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4676 	  .msg = "ROCEE AXI RESP error" },
4677 };
4678 
hns3_process_hw_error(struct hnae3_handle * handle,enum hnae3_hw_error_type type)4679 static void hns3_process_hw_error(struct hnae3_handle *handle,
4680 				  enum hnae3_hw_error_type type)
4681 {
4682 	int i;
4683 
4684 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4685 		if (hns3_hw_err[i].type == type) {
4686 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4687 				hns3_hw_err[i].msg);
4688 			break;
4689 		}
4690 	}
4691 }
4692 
4693 static const struct hnae3_client_ops client_ops = {
4694 	.init_instance = hns3_client_init,
4695 	.uninit_instance = hns3_client_uninit,
4696 	.link_status_change = hns3_link_status_change,
4697 	.setup_tc = hns3_client_setup_tc,
4698 	.reset_notify = hns3_reset_notify,
4699 	.process_hw_error = hns3_process_hw_error,
4700 };
4701 
4702 /* hns3_init_module - Driver registration routine
4703  * hns3_init_module is the first routine called when the driver is
4704  * loaded. All it does is register with the PCI subsystem.
4705  */
hns3_init_module(void)4706 static int __init hns3_init_module(void)
4707 {
4708 	int ret;
4709 
4710 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4711 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4712 
4713 	client.type = HNAE3_CLIENT_KNIC;
4714 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4715 		 hns3_driver_name);
4716 
4717 	client.ops = &client_ops;
4718 
4719 	INIT_LIST_HEAD(&client.node);
4720 
4721 	hns3_dbg_register_debugfs(hns3_driver_name);
4722 
4723 	ret = hnae3_register_client(&client);
4724 	if (ret)
4725 		goto err_reg_client;
4726 
4727 	ret = pci_register_driver(&hns3_driver);
4728 	if (ret)
4729 		goto err_reg_driver;
4730 
4731 	return ret;
4732 
4733 err_reg_driver:
4734 	hnae3_unregister_client(&client);
4735 err_reg_client:
4736 	hns3_dbg_unregister_debugfs();
4737 	return ret;
4738 }
4739 module_init(hns3_init_module);
4740 
4741 /* hns3_exit_module - Driver exit cleanup routine
4742  * hns3_exit_module is called just before the driver is removed
4743  * from memory.
4744  */
hns3_exit_module(void)4745 static void __exit hns3_exit_module(void)
4746 {
4747 	pci_unregister_driver(&hns3_driver);
4748 	hnae3_unregister_client(&client);
4749 	hns3_dbg_unregister_debugfs();
4750 }
4751 module_exit(hns3_exit_module);
4752 
4753 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4754 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4755 MODULE_LICENSE("GPL");
4756 MODULE_ALIAS("pci:hns-nic");
4757