• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
24 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 	/* required last entry */
26 	{0, }
27 };
28 
29 static const u8 hclgevf_hash_key[] = {
30 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
31 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
32 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
33 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
34 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
35 };
36 
37 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
38 
39 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_TX_TAIL_REG,
43 					 HCLGEVF_CMDQ_TX_HEAD_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
45 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
46 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
47 					 HCLGEVF_CMDQ_RX_TAIL_REG,
48 					 HCLGEVF_CMDQ_RX_HEAD_REG,
49 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 					 HCLGEVF_CMDQ_INTR_EN_REG,
52 					 HCLGEVF_CMDQ_INTR_GEN_REG};
53 
54 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
55 					   HCLGEVF_RST_ING,
56 					   HCLGEVF_GRO_EN_REG};
57 
58 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
59 					 HCLGEVF_RING_RX_ADDR_H_REG,
60 					 HCLGEVF_RING_RX_BD_NUM_REG,
61 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
62 					 HCLGEVF_RING_RX_MERGE_EN_REG,
63 					 HCLGEVF_RING_RX_TAIL_REG,
64 					 HCLGEVF_RING_RX_HEAD_REG,
65 					 HCLGEVF_RING_RX_FBD_NUM_REG,
66 					 HCLGEVF_RING_RX_OFFSET_REG,
67 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
68 					 HCLGEVF_RING_RX_STASH_REG,
69 					 HCLGEVF_RING_RX_BD_ERR_REG,
70 					 HCLGEVF_RING_TX_ADDR_L_REG,
71 					 HCLGEVF_RING_TX_ADDR_H_REG,
72 					 HCLGEVF_RING_TX_BD_NUM_REG,
73 					 HCLGEVF_RING_TX_PRIORITY_REG,
74 					 HCLGEVF_RING_TX_TC_REG,
75 					 HCLGEVF_RING_TX_MERGE_EN_REG,
76 					 HCLGEVF_RING_TX_TAIL_REG,
77 					 HCLGEVF_RING_TX_HEAD_REG,
78 					 HCLGEVF_RING_TX_FBD_NUM_REG,
79 					 HCLGEVF_RING_TX_OFFSET_REG,
80 					 HCLGEVF_RING_TX_EBD_NUM_REG,
81 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
82 					 HCLGEVF_RING_TX_BD_ERR_REG,
83 					 HCLGEVF_RING_EN_REG};
84 
85 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
86 					     HCLGEVF_TQP_INTR_GL0_REG,
87 					     HCLGEVF_TQP_INTR_GL1_REG,
88 					     HCLGEVF_TQP_INTR_GL2_REG,
89 					     HCLGEVF_TQP_INTR_RL_REG};
90 
hclgevf_ae_get_hdev(struct hnae3_handle * handle)91 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92 {
93 	if (!handle->client)
94 		return container_of(handle, struct hclgevf_dev, nic);
95 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
96 		return container_of(handle, struct hclgevf_dev, roce);
97 	else
98 		return container_of(handle, struct hclgevf_dev, nic);
99 }
100 
hclgevf_tqps_update_stats(struct hnae3_handle * handle)101 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
102 {
103 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
105 	struct hclgevf_desc desc;
106 	struct hclgevf_tqp *tqp;
107 	int status;
108 	int i;
109 
110 	for (i = 0; i < kinfo->num_tqps; i++) {
111 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 		hclgevf_cmd_setup_basic_desc(&desc,
113 					     HCLGEVF_OPC_QUERY_RX_STATUS,
114 					     true);
115 
116 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
117 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
118 		if (status) {
119 			dev_err(&hdev->pdev->dev,
120 				"Query tqp stat fail, status = %d,queue = %d\n",
121 				status,	i);
122 			return status;
123 		}
124 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125 			le32_to_cpu(desc.data[1]);
126 
127 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
128 					     true);
129 
130 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
131 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
132 		if (status) {
133 			dev_err(&hdev->pdev->dev,
134 				"Query tqp stat fail, status = %d,queue = %d\n",
135 				status, i);
136 			return status;
137 		}
138 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139 			le32_to_cpu(desc.data[1]);
140 	}
141 
142 	return 0;
143 }
144 
hclgevf_tqps_get_stats(struct hnae3_handle * handle,u64 * data)145 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
146 {
147 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
148 	struct hclgevf_tqp *tqp;
149 	u64 *buff = data;
150 	int i;
151 
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
155 	}
156 	for (i = 0; i < kinfo->num_tqps; i++) {
157 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
159 	}
160 
161 	return buff;
162 }
163 
hclgevf_tqps_get_sset_count(struct hnae3_handle * handle,int strset)164 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
165 {
166 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167 
168 	return kinfo->num_tqps * 2;
169 }
170 
hclgevf_tqps_get_strings(struct hnae3_handle * handle,u8 * data)171 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
172 {
173 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174 	u8 *buff = data;
175 	int i;
176 
177 	for (i = 0; i < kinfo->num_tqps; i++) {
178 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
179 						       struct hclgevf_tqp, q);
180 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 			 tqp->index);
182 		buff += ETH_GSTRING_LEN;
183 	}
184 
185 	for (i = 0; i < kinfo->num_tqps; i++) {
186 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
187 						       struct hclgevf_tqp, q);
188 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 			 tqp->index);
190 		buff += ETH_GSTRING_LEN;
191 	}
192 
193 	return buff;
194 }
195 
hclgevf_update_stats(struct hnae3_handle * handle,struct net_device_stats * net_stats)196 static void hclgevf_update_stats(struct hnae3_handle *handle,
197 				 struct net_device_stats *net_stats)
198 {
199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
200 	int status;
201 
202 	status = hclgevf_tqps_update_stats(handle);
203 	if (status)
204 		dev_err(&hdev->pdev->dev,
205 			"VF update of TQPS stats fail, status = %d.\n",
206 			status);
207 }
208 
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)209 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
210 {
211 	if (strset == ETH_SS_TEST)
212 		return -EOPNOTSUPP;
213 	else if (strset == ETH_SS_STATS)
214 		return hclgevf_tqps_get_sset_count(handle, strset);
215 
216 	return 0;
217 }
218 
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)219 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
220 				u8 *data)
221 {
222 	u8 *p = (char *)data;
223 
224 	if (strset == ETH_SS_STATS)
225 		p = hclgevf_tqps_get_strings(handle, p);
226 }
227 
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)228 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
229 {
230 	hclgevf_tqps_get_stats(handle, data);
231 }
232 
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)233 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
234 				   u8 subcode)
235 {
236 	if (msg) {
237 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
238 		msg->code = code;
239 		msg->subcode = subcode;
240 	}
241 }
242 
hclgevf_get_tc_info(struct hclgevf_dev * hdev)243 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
244 {
245 	struct hclge_vf_to_pf_msg send_msg;
246 	u8 resp_msg;
247 	int status;
248 
249 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
250 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
251 				      sizeof(resp_msg));
252 	if (status) {
253 		dev_err(&hdev->pdev->dev,
254 			"VF request to get TC info from PF failed %d",
255 			status);
256 		return status;
257 	}
258 
259 	hdev->hw_tc_map = resp_msg;
260 
261 	return 0;
262 }
263 
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)264 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
265 {
266 	struct hnae3_handle *nic = &hdev->nic;
267 	struct hclge_vf_to_pf_msg send_msg;
268 	u8 resp_msg;
269 	int ret;
270 
271 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
272 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
273 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
274 				   sizeof(u8));
275 	if (ret) {
276 		dev_err(&hdev->pdev->dev,
277 			"VF request to get port based vlan state failed %d",
278 			ret);
279 		return ret;
280 	}
281 
282 	nic->port_base_vlan_state = resp_msg;
283 
284 	return 0;
285 }
286 
hclgevf_get_queue_info(struct hclgevf_dev * hdev)287 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288 {
289 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
290 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
291 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
292 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
293 
294 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295 	struct hclge_vf_to_pf_msg send_msg;
296 	int status;
297 
298 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
299 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 				      HCLGEVF_TQPS_RSS_INFO_LEN);
301 	if (status) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp info from PF failed %d",
304 			status);
305 		return status;
306 	}
307 
308 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
309 	       sizeof(u16));
310 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
311 	       sizeof(u16));
312 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
313 	       sizeof(u16));
314 
315 	return 0;
316 }
317 
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)318 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
319 {
320 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
321 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
322 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
323 
324 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325 	struct hclge_vf_to_pf_msg send_msg;
326 	int ret;
327 
328 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
329 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
331 	if (ret) {
332 		dev_err(&hdev->pdev->dev,
333 			"VF request to get tqp depth info from PF failed %d",
334 			ret);
335 		return ret;
336 	}
337 
338 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
339 	       sizeof(u16));
340 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
341 	       sizeof(u16));
342 
343 	return 0;
344 }
345 
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)346 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
347 {
348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 	struct hclge_vf_to_pf_msg send_msg;
350 	u16 qid_in_pf = 0;
351 	u8 resp_data[2];
352 	int ret;
353 
354 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
355 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
356 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357 				   sizeof(resp_data));
358 	if (!ret)
359 		qid_in_pf = *(u16 *)resp_data;
360 
361 	return qid_in_pf;
362 }
363 
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)364 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
365 {
366 	struct hclge_vf_to_pf_msg send_msg;
367 	u8 resp_msg[2];
368 	int ret;
369 
370 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
371 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
372 				   sizeof(resp_msg));
373 	if (ret) {
374 		dev_err(&hdev->pdev->dev,
375 			"VF request to get the pf port media type failed %d",
376 			ret);
377 		return ret;
378 	}
379 
380 	hdev->hw.mac.media_type = resp_msg[0];
381 	hdev->hw.mac.module_type = resp_msg[1];
382 
383 	return 0;
384 }
385 
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)386 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
387 {
388 	struct hclgevf_tqp *tqp;
389 	int i;
390 
391 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
392 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
393 	if (!hdev->htqp)
394 		return -ENOMEM;
395 
396 	tqp = hdev->htqp;
397 
398 	for (i = 0; i < hdev->num_tqps; i++) {
399 		tqp->dev = &hdev->pdev->dev;
400 		tqp->index = i;
401 
402 		tqp->q.ae_algo = &ae_algovf;
403 		tqp->q.buf_size = hdev->rx_buf_len;
404 		tqp->q.tx_desc_num = hdev->num_tx_desc;
405 		tqp->q.rx_desc_num = hdev->num_rx_desc;
406 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
407 			i * HCLGEVF_TQP_REG_SIZE;
408 
409 		tqp++;
410 	}
411 
412 	return 0;
413 }
414 
hclgevf_knic_setup(struct hclgevf_dev * hdev)415 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
416 {
417 	struct hnae3_handle *nic = &hdev->nic;
418 	struct hnae3_knic_private_info *kinfo;
419 	u16 new_tqps = hdev->num_tqps;
420 	unsigned int i;
421 
422 	kinfo = &nic->kinfo;
423 	kinfo->num_tc = 0;
424 	kinfo->num_tx_desc = hdev->num_tx_desc;
425 	kinfo->num_rx_desc = hdev->num_rx_desc;
426 	kinfo->rx_buf_len = hdev->rx_buf_len;
427 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
428 		if (hdev->hw_tc_map & BIT(i))
429 			kinfo->num_tc++;
430 
431 	kinfo->rss_size
432 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
433 	new_tqps = kinfo->rss_size * kinfo->num_tc;
434 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
435 
436 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
437 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
438 	if (!kinfo->tqp)
439 		return -ENOMEM;
440 
441 	for (i = 0; i < kinfo->num_tqps; i++) {
442 		hdev->htqp[i].q.handle = &hdev->nic;
443 		hdev->htqp[i].q.tqp_index = i;
444 		kinfo->tqp[i] = &hdev->htqp[i].q;
445 	}
446 
447 	/* after init the max rss_size and tqps, adjust the default tqp numbers
448 	 * and rss size with the actual vector numbers
449 	 */
450 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
451 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
452 				kinfo->rss_size);
453 
454 	return 0;
455 }
456 
hclgevf_request_link_info(struct hclgevf_dev * hdev)457 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
458 {
459 	struct hclge_vf_to_pf_msg send_msg;
460 	int status;
461 
462 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
463 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
464 	if (status)
465 		dev_err(&hdev->pdev->dev,
466 			"VF failed to fetch link status(%d) from PF", status);
467 }
468 
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)469 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
470 {
471 	struct hnae3_handle *rhandle = &hdev->roce;
472 	struct hnae3_handle *handle = &hdev->nic;
473 	struct hnae3_client *rclient;
474 	struct hnae3_client *client;
475 
476 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
477 		return;
478 
479 	client = handle->client;
480 	rclient = hdev->roce_client;
481 
482 	link_state =
483 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
484 
485 	if (link_state != hdev->hw.mac.link) {
486 		client->ops->link_status_change(handle, !!link_state);
487 		if (rclient && rclient->ops->link_status_change)
488 			rclient->ops->link_status_change(rhandle, !!link_state);
489 		hdev->hw.mac.link = link_state;
490 	}
491 
492 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
493 }
494 
hclgevf_update_link_mode(struct hclgevf_dev * hdev)495 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
496 {
497 #define HCLGEVF_ADVERTISING	0
498 #define HCLGEVF_SUPPORTED	1
499 
500 	struct hclge_vf_to_pf_msg send_msg;
501 
502 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
503 	send_msg.data[0] = HCLGEVF_ADVERTISING;
504 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
505 	send_msg.data[0] = HCLGEVF_SUPPORTED;
506 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
507 }
508 
hclgevf_set_handle_info(struct hclgevf_dev * hdev)509 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
510 {
511 	struct hnae3_handle *nic = &hdev->nic;
512 	int ret;
513 
514 	nic->ae_algo = &ae_algovf;
515 	nic->pdev = hdev->pdev;
516 	nic->numa_node_mask = hdev->numa_node_mask;
517 	nic->flags |= HNAE3_SUPPORT_VF;
518 
519 	ret = hclgevf_knic_setup(hdev);
520 	if (ret)
521 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
522 			ret);
523 	return ret;
524 }
525 
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)526 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
527 {
528 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
529 		dev_warn(&hdev->pdev->dev,
530 			 "vector(vector_id %d) has been freed.\n", vector_id);
531 		return;
532 	}
533 
534 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
535 	hdev->num_msi_left += 1;
536 	hdev->num_msi_used -= 1;
537 }
538 
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)539 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
540 			      struct hnae3_vector_info *vector_info)
541 {
542 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
543 	struct hnae3_vector_info *vector = vector_info;
544 	int alloc = 0;
545 	int i, j;
546 
547 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
548 	vector_num = min(hdev->num_msi_left, vector_num);
549 
550 	for (j = 0; j < vector_num; j++) {
551 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
552 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
553 				vector->vector = pci_irq_vector(hdev->pdev, i);
554 				vector->io_addr = hdev->hw.io_base +
555 					HCLGEVF_VECTOR_REG_BASE +
556 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
557 				hdev->vector_status[i] = 0;
558 				hdev->vector_irq[i] = vector->vector;
559 
560 				vector++;
561 				alloc++;
562 
563 				break;
564 			}
565 		}
566 	}
567 	hdev->num_msi_left -= alloc;
568 	hdev->num_msi_used += alloc;
569 
570 	return alloc;
571 }
572 
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)573 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
574 {
575 	int i;
576 
577 	for (i = 0; i < hdev->num_msi; i++)
578 		if (vector == hdev->vector_irq[i])
579 			return i;
580 
581 	return -EINVAL;
582 }
583 
hclgevf_set_rss_algo_key(struct hclgevf_dev * hdev,const u8 hfunc,const u8 * key)584 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
585 				    const u8 hfunc, const u8 *key)
586 {
587 	struct hclgevf_rss_config_cmd *req;
588 	unsigned int key_offset = 0;
589 	struct hclgevf_desc desc;
590 	int key_counts;
591 	int key_size;
592 	int ret;
593 
594 	key_counts = HCLGEVF_RSS_KEY_SIZE;
595 	req = (struct hclgevf_rss_config_cmd *)desc.data;
596 
597 	while (key_counts) {
598 		hclgevf_cmd_setup_basic_desc(&desc,
599 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
600 					     false);
601 
602 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
603 		req->hash_config |=
604 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
605 
606 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
607 		memcpy(req->hash_key,
608 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
609 
610 		key_counts -= key_size;
611 		key_offset++;
612 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
613 		if (ret) {
614 			dev_err(&hdev->pdev->dev,
615 				"Configure RSS config fail, status = %d\n",
616 				ret);
617 			return ret;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
hclgevf_get_rss_key_size(struct hnae3_handle * handle)624 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
625 {
626 	return HCLGEVF_RSS_KEY_SIZE;
627 }
628 
hclgevf_get_rss_indir_size(struct hnae3_handle * handle)629 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
630 {
631 	return HCLGEVF_RSS_IND_TBL_SIZE;
632 }
633 
hclgevf_set_rss_indir_table(struct hclgevf_dev * hdev)634 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
635 {
636 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
637 	struct hclgevf_rss_indirection_table_cmd *req;
638 	struct hclgevf_desc desc;
639 	int status;
640 	int i, j;
641 
642 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
643 
644 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
645 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
646 					     false);
647 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
648 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
649 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
650 			req->rss_result[j] =
651 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
652 
653 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 		if (status) {
655 			dev_err(&hdev->pdev->dev,
656 				"VF failed(=%d) to set RSS indirection table\n",
657 				status);
658 			return status;
659 		}
660 	}
661 
662 	return 0;
663 }
664 
hclgevf_set_rss_tc_mode(struct hclgevf_dev * hdev,u16 rss_size)665 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
666 {
667 	struct hclgevf_rss_tc_mode_cmd *req;
668 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
669 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
670 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
671 	struct hclgevf_desc desc;
672 	u16 roundup_size;
673 	unsigned int i;
674 	int status;
675 
676 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
677 
678 	roundup_size = roundup_pow_of_two(rss_size);
679 	roundup_size = ilog2(roundup_size);
680 
681 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
682 		tc_valid[i] = 1;
683 		tc_size[i] = roundup_size;
684 		tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0;
685 	}
686 
687 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
688 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
689 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
690 			      (tc_valid[i] & 0x1));
691 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
692 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
693 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
694 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
695 	}
696 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
697 	if (status)
698 		dev_err(&hdev->pdev->dev,
699 			"VF failed(=%d) to set rss tc mode\n", status);
700 
701 	return status;
702 }
703 
704 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)705 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
706 {
707 #define HCLGEVF_RSS_MBX_RESP_LEN	8
708 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
709 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
710 	struct hclge_vf_to_pf_msg send_msg;
711 	u16 msg_num, hash_key_index;
712 	u8 index;
713 	int ret;
714 
715 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
716 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
717 			HCLGEVF_RSS_MBX_RESP_LEN;
718 	for (index = 0; index < msg_num; index++) {
719 		send_msg.data[0] = index;
720 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
721 					   HCLGEVF_RSS_MBX_RESP_LEN);
722 		if (ret) {
723 			dev_err(&hdev->pdev->dev,
724 				"VF get rss hash key from PF failed, ret=%d",
725 				ret);
726 			return ret;
727 		}
728 
729 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
730 		if (index == msg_num - 1)
731 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
732 			       &resp_msg[0],
733 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
734 		else
735 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
736 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
737 	}
738 
739 	return 0;
740 }
741 
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)742 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
743 			   u8 *hfunc)
744 {
745 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
746 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
747 	int i, ret;
748 
749 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
750 		/* Get hash algorithm */
751 		if (hfunc) {
752 			switch (rss_cfg->hash_algo) {
753 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
754 				*hfunc = ETH_RSS_HASH_TOP;
755 				break;
756 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
757 				*hfunc = ETH_RSS_HASH_XOR;
758 				break;
759 			default:
760 				*hfunc = ETH_RSS_HASH_UNKNOWN;
761 				break;
762 			}
763 		}
764 
765 		/* Get the RSS Key required by the user */
766 		if (key)
767 			memcpy(key, rss_cfg->rss_hash_key,
768 			       HCLGEVF_RSS_KEY_SIZE);
769 	} else {
770 		if (hfunc)
771 			*hfunc = ETH_RSS_HASH_TOP;
772 		if (key) {
773 			ret = hclgevf_get_rss_hash_key(hdev);
774 			if (ret)
775 				return ret;
776 			memcpy(key, rss_cfg->rss_hash_key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	if (indir)
782 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 			indir[i] = rss_cfg->rss_indirection_tbl[i];
784 
785 	return 0;
786 }
787 
hclgevf_parse_rss_hfunc(struct hclgevf_dev * hdev,const u8 hfunc,u8 * hash_algo)788 static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc,
789 				   u8 *hash_algo)
790 {
791 	switch (hfunc) {
792 	case ETH_RSS_HASH_TOP:
793 		*hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
794 		return 0;
795 	case ETH_RSS_HASH_XOR:
796 		*hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
797 		return 0;
798 	case ETH_RSS_HASH_NO_CHANGE:
799 		*hash_algo = hdev->rss_cfg.hash_algo;
800 		return 0;
801 	default:
802 		return -EINVAL;
803 	}
804 }
805 
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)806 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
807 			   const u8 *key, const u8 hfunc)
808 {
809 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
810 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
811 	u8 hash_algo;
812 	int ret, i;
813 
814 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 		ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo);
816 		if (ret)
817 			return ret;
818 
819 		/* Set the RSS Hash Key if specififed by the user */
820 		if (key) {
821 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key);
822 			if (ret) {
823 				dev_err(&hdev->pdev->dev,
824 					"invalid hfunc type %u\n", hfunc);
825 				return ret;
826 			}
827 
828 			/* Update the shadow RSS key with user specified qids */
829 			memcpy(rss_cfg->rss_hash_key, key,
830 			       HCLGEVF_RSS_KEY_SIZE);
831 		} else {
832 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo,
833 						       rss_cfg->rss_hash_key);
834 			if (ret)
835 				return ret;
836 		}
837 		rss_cfg->hash_algo = hash_algo;
838 	}
839 
840 	/* update the shadow RSS table with user specified qids */
841 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
842 		rss_cfg->rss_indirection_tbl[i] = indir[i];
843 
844 	/* update the hardware */
845 	return hclgevf_set_rss_indir_table(hdev);
846 }
847 
hclgevf_get_rss_hash_bits(struct ethtool_rxnfc * nfc)848 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
849 {
850 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
851 
852 	if (nfc->data & RXH_L4_B_2_3)
853 		hash_sets |= HCLGEVF_D_PORT_BIT;
854 	else
855 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
856 
857 	if (nfc->data & RXH_IP_SRC)
858 		hash_sets |= HCLGEVF_S_IP_BIT;
859 	else
860 		hash_sets &= ~HCLGEVF_S_IP_BIT;
861 
862 	if (nfc->data & RXH_IP_DST)
863 		hash_sets |= HCLGEVF_D_IP_BIT;
864 	else
865 		hash_sets &= ~HCLGEVF_D_IP_BIT;
866 
867 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
868 		hash_sets |= HCLGEVF_V_TAG_BIT;
869 
870 	return hash_sets;
871 }
872 
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)873 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
874 				 struct ethtool_rxnfc *nfc)
875 {
876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
878 	struct hclgevf_rss_input_tuple_cmd *req;
879 	struct hclgevf_desc desc;
880 	u8 tuple_sets;
881 	int ret;
882 
883 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
884 		return -EOPNOTSUPP;
885 
886 	if (nfc->data &
887 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
888 		return -EINVAL;
889 
890 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
891 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
892 
893 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
894 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
895 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
896 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
897 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
898 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
899 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
900 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
901 
902 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
903 	switch (nfc->flow_type) {
904 	case TCP_V4_FLOW:
905 		req->ipv4_tcp_en = tuple_sets;
906 		break;
907 	case TCP_V6_FLOW:
908 		req->ipv6_tcp_en = tuple_sets;
909 		break;
910 	case UDP_V4_FLOW:
911 		req->ipv4_udp_en = tuple_sets;
912 		break;
913 	case UDP_V6_FLOW:
914 		req->ipv6_udp_en = tuple_sets;
915 		break;
916 	case SCTP_V4_FLOW:
917 		req->ipv4_sctp_en = tuple_sets;
918 		break;
919 	case SCTP_V6_FLOW:
920 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
921 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
922 			return -EINVAL;
923 
924 		req->ipv6_sctp_en = tuple_sets;
925 		break;
926 	case IPV4_FLOW:
927 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
928 		break;
929 	case IPV6_FLOW:
930 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 		break;
932 	default:
933 		return -EINVAL;
934 	}
935 
936 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
937 	if (ret) {
938 		dev_err(&hdev->pdev->dev,
939 			"Set rss tuple fail, status = %d\n", ret);
940 		return ret;
941 	}
942 
943 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
944 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
945 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
946 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
947 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
948 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
949 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
950 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
951 	return 0;
952 }
953 
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)954 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
955 				 struct ethtool_rxnfc *nfc)
956 {
957 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
959 	u8 tuple_sets;
960 
961 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
962 		return -EOPNOTSUPP;
963 
964 	nfc->data = 0;
965 
966 	switch (nfc->flow_type) {
967 	case TCP_V4_FLOW:
968 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 		break;
970 	case UDP_V4_FLOW:
971 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
972 		break;
973 	case TCP_V6_FLOW:
974 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
975 		break;
976 	case UDP_V6_FLOW:
977 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
978 		break;
979 	case SCTP_V4_FLOW:
980 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
981 		break;
982 	case SCTP_V6_FLOW:
983 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
984 		break;
985 	case IPV4_FLOW:
986 	case IPV6_FLOW:
987 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
988 		break;
989 	default:
990 		return -EINVAL;
991 	}
992 
993 	if (!tuple_sets)
994 		return 0;
995 
996 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
997 		nfc->data |= RXH_L4_B_2_3;
998 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
999 		nfc->data |= RXH_L4_B_0_1;
1000 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1001 		nfc->data |= RXH_IP_DST;
1002 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1003 		nfc->data |= RXH_IP_SRC;
1004 
1005 	return 0;
1006 }
1007 
hclgevf_set_rss_input_tuple(struct hclgevf_dev * hdev,struct hclgevf_rss_cfg * rss_cfg)1008 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1009 				       struct hclgevf_rss_cfg *rss_cfg)
1010 {
1011 	struct hclgevf_rss_input_tuple_cmd *req;
1012 	struct hclgevf_desc desc;
1013 	int ret;
1014 
1015 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1016 
1017 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1018 
1019 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1020 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1021 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1022 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1023 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1024 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1025 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1026 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1027 
1028 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1029 	if (ret)
1030 		dev_err(&hdev->pdev->dev,
1031 			"Configure rss input fail, status = %d\n", ret);
1032 	return ret;
1033 }
1034 
hclgevf_get_tc_size(struct hnae3_handle * handle)1035 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1036 {
1037 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1038 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1039 
1040 	return rss_cfg->rss_size;
1041 }
1042 
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)1043 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1044 				       int vector_id,
1045 				       struct hnae3_ring_chain_node *ring_chain)
1046 {
1047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 	struct hclge_vf_to_pf_msg send_msg;
1049 	struct hnae3_ring_chain_node *node;
1050 	int status;
1051 	int i = 0;
1052 
1053 	memset(&send_msg, 0, sizeof(send_msg));
1054 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1055 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1056 	send_msg.vector_id = vector_id;
1057 
1058 	for (node = ring_chain; node; node = node->next) {
1059 		send_msg.param[i].ring_type =
1060 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1061 
1062 		send_msg.param[i].tqp_index = node->tqp_index;
1063 		send_msg.param[i].int_gl_index =
1064 					hnae3_get_field(node->int_gl_idx,
1065 							HNAE3_RING_GL_IDX_M,
1066 							HNAE3_RING_GL_IDX_S);
1067 
1068 		i++;
1069 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1070 			send_msg.ring_num = i;
1071 
1072 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1073 						      NULL, 0);
1074 			if (status) {
1075 				dev_err(&hdev->pdev->dev,
1076 					"Map TQP fail, status is %d.\n",
1077 					status);
1078 				return status;
1079 			}
1080 			i = 0;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1087 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1088 				      struct hnae3_ring_chain_node *ring_chain)
1089 {
1090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 	int vector_id;
1092 
1093 	vector_id = hclgevf_get_vector_index(hdev, vector);
1094 	if (vector_id < 0) {
1095 		dev_err(&handle->pdev->dev,
1096 			"Get vector index fail. ret =%d\n", vector_id);
1097 		return vector_id;
1098 	}
1099 
1100 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1101 }
1102 
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1103 static int hclgevf_unmap_ring_from_vector(
1104 				struct hnae3_handle *handle,
1105 				int vector,
1106 				struct hnae3_ring_chain_node *ring_chain)
1107 {
1108 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1109 	int ret, vector_id;
1110 
1111 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1112 		return 0;
1113 
1114 	vector_id = hclgevf_get_vector_index(hdev, vector);
1115 	if (vector_id < 0) {
1116 		dev_err(&handle->pdev->dev,
1117 			"Get vector index fail. ret =%d\n", vector_id);
1118 		return vector_id;
1119 	}
1120 
1121 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1122 	if (ret)
1123 		dev_err(&handle->pdev->dev,
1124 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1125 			vector_id,
1126 			ret);
1127 
1128 	return ret;
1129 }
1130 
hclgevf_put_vector(struct hnae3_handle * handle,int vector)1131 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1132 {
1133 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 	int vector_id;
1135 
1136 	vector_id = hclgevf_get_vector_index(hdev, vector);
1137 	if (vector_id < 0) {
1138 		dev_err(&handle->pdev->dev,
1139 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1140 			vector_id);
1141 		return vector_id;
1142 	}
1143 
1144 	hclgevf_free_vector(hdev, vector_id);
1145 
1146 	return 0;
1147 }
1148 
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)1149 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1150 					bool en_uc_pmc, bool en_mc_pmc,
1151 					bool en_bc_pmc)
1152 {
1153 	struct hclge_vf_to_pf_msg send_msg;
1154 	int ret;
1155 
1156 	memset(&send_msg, 0, sizeof(send_msg));
1157 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1158 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1159 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1160 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1161 
1162 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1163 	if (ret)
1164 		dev_err(&hdev->pdev->dev,
1165 			"Set promisc mode fail, status is %d.\n", ret);
1166 
1167 	return ret;
1168 }
1169 
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)1170 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1171 				    bool en_mc_pmc)
1172 {
1173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1174 	bool en_bc_pmc;
1175 
1176 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1177 
1178 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1179 					    en_bc_pmc);
1180 }
1181 
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)1182 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1183 {
1184 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1185 
1186 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1187 }
1188 
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)1189 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1190 {
1191 	struct hnae3_handle *handle = &hdev->nic;
1192 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1193 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1194 	int ret;
1195 
1196 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1197 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1198 		if (!ret)
1199 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1200 	}
1201 }
1202 
hclgevf_tqp_enable(struct hclgevf_dev * hdev,unsigned int tqp_id,int stream_id,bool enable)1203 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1204 			      int stream_id, bool enable)
1205 {
1206 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1207 	struct hclgevf_desc desc;
1208 	int status;
1209 
1210 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1211 
1212 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1213 				     false);
1214 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1215 	req->stream_id = cpu_to_le16(stream_id);
1216 	if (enable)
1217 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1218 
1219 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1220 	if (status)
1221 		dev_err(&hdev->pdev->dev,
1222 			"TQP enable fail, status =%d.\n", status);
1223 
1224 	return status;
1225 }
1226 
hclgevf_reset_tqp_stats(struct hnae3_handle * handle)1227 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1228 {
1229 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1230 	struct hclgevf_tqp *tqp;
1231 	int i;
1232 
1233 	for (i = 0; i < kinfo->num_tqps; i++) {
1234 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1235 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1236 	}
1237 }
1238 
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)1239 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1240 {
1241 	struct hclge_vf_to_pf_msg send_msg;
1242 	u8 host_mac[ETH_ALEN];
1243 	int status;
1244 
1245 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1246 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1247 				      ETH_ALEN);
1248 	if (status) {
1249 		dev_err(&hdev->pdev->dev,
1250 			"fail to get VF MAC from host %d", status);
1251 		return status;
1252 	}
1253 
1254 	ether_addr_copy(p, host_mac);
1255 
1256 	return 0;
1257 }
1258 
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)1259 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1260 {
1261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1262 	u8 host_mac_addr[ETH_ALEN];
1263 
1264 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1265 		return;
1266 
1267 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1268 	if (hdev->has_pf_mac)
1269 		ether_addr_copy(p, host_mac_addr);
1270 	else
1271 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1272 }
1273 
hclgevf_set_mac_addr(struct hnae3_handle * handle,void * p,bool is_first)1274 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1275 				bool is_first)
1276 {
1277 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1278 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1279 	struct hclge_vf_to_pf_msg send_msg;
1280 	u8 *new_mac_addr = (u8 *)p;
1281 	int status;
1282 
1283 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1284 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1285 	ether_addr_copy(send_msg.data, new_mac_addr);
1286 	if (is_first && !hdev->has_pf_mac)
1287 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1288 	else
1289 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1290 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1291 	if (!status)
1292 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1293 
1294 	return status;
1295 }
1296 
1297 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)1298 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1299 {
1300 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1301 
1302 	list_for_each_entry_safe(mac_node, tmp, list, node)
1303 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1304 			return mac_node;
1305 
1306 	return NULL;
1307 }
1308 
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)1309 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1310 				    enum HCLGEVF_MAC_NODE_STATE state)
1311 {
1312 	switch (state) {
1313 	/* from set_rx_mode or tmp_add_list */
1314 	case HCLGEVF_MAC_TO_ADD:
1315 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1316 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1317 		break;
1318 	/* only from set_rx_mode */
1319 	case HCLGEVF_MAC_TO_DEL:
1320 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1321 			list_del(&mac_node->node);
1322 			kfree(mac_node);
1323 		} else {
1324 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1325 		}
1326 		break;
1327 	/* only from tmp_add_list, the mac_node->state won't be
1328 	 * HCLGEVF_MAC_ACTIVE
1329 	 */
1330 	case HCLGEVF_MAC_ACTIVE:
1331 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1332 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1333 		break;
1334 	}
1335 }
1336 
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)1337 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1338 				   enum HCLGEVF_MAC_NODE_STATE state,
1339 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1340 				   const unsigned char *addr)
1341 {
1342 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1343 	struct hclgevf_mac_addr_node *mac_node;
1344 	struct list_head *list;
1345 
1346 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1347 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1348 
1349 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1350 
1351 	/* if the mac addr is already in the mac list, no need to add a new
1352 	 * one into it, just check the mac addr state, convert it to a new
1353 	 * new state, or just remove it, or do nothing.
1354 	 */
1355 	mac_node = hclgevf_find_mac_node(list, addr);
1356 	if (mac_node) {
1357 		hclgevf_update_mac_node(mac_node, state);
1358 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1359 		return 0;
1360 	}
1361 	/* if this address is never added, unnecessary to delete */
1362 	if (state == HCLGEVF_MAC_TO_DEL) {
1363 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1364 		return -ENOENT;
1365 	}
1366 
1367 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1368 	if (!mac_node) {
1369 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	mac_node->state = state;
1374 	ether_addr_copy(mac_node->mac_addr, addr);
1375 	list_add_tail(&mac_node->node, list);
1376 
1377 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1378 	return 0;
1379 }
1380 
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1381 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1382 			       const unsigned char *addr)
1383 {
1384 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1385 				       HCLGEVF_MAC_ADDR_UC, addr);
1386 }
1387 
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1388 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1389 			      const unsigned char *addr)
1390 {
1391 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1392 				       HCLGEVF_MAC_ADDR_UC, addr);
1393 }
1394 
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1395 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1396 			       const unsigned char *addr)
1397 {
1398 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1399 				       HCLGEVF_MAC_ADDR_MC, addr);
1400 }
1401 
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1402 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1403 			      const unsigned char *addr)
1404 {
1405 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1406 				       HCLGEVF_MAC_ADDR_MC, addr);
1407 }
1408 
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1409 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1410 				    struct hclgevf_mac_addr_node *mac_node,
1411 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1412 {
1413 	struct hclge_vf_to_pf_msg send_msg;
1414 	u8 code, subcode;
1415 
1416 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1417 		code = HCLGE_MBX_SET_UNICAST;
1418 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1419 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1420 		else
1421 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1422 	} else {
1423 		code = HCLGE_MBX_SET_MULTICAST;
1424 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1425 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1426 		else
1427 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1428 	}
1429 
1430 	hclgevf_build_send_msg(&send_msg, code, subcode);
1431 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1432 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1433 }
1434 
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1435 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1436 				    struct list_head *list,
1437 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1438 {
1439 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1440 	int ret;
1441 
1442 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1443 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1444 		if  (ret) {
1445 			dev_err(&hdev->pdev->dev,
1446 				"failed to configure mac %pM, state = %d, ret = %d\n",
1447 				mac_node->mac_addr, mac_node->state, ret);
1448 			return;
1449 		}
1450 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1451 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1452 		} else {
1453 			list_del(&mac_node->node);
1454 			kfree(mac_node);
1455 		}
1456 	}
1457 }
1458 
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1459 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1460 				       struct list_head *mac_list)
1461 {
1462 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1463 
1464 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1465 		/* if the mac address from tmp_add_list is not in the
1466 		 * uc/mc_mac_list, it means have received a TO_DEL request
1467 		 * during the time window of sending mac config request to PF
1468 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1469 		 * then it will be removed at next time. If is TO_ADD, it means
1470 		 * send TO_ADD request failed, so just remove the mac node.
1471 		 */
1472 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1473 		if (new_node) {
1474 			hclgevf_update_mac_node(new_node, mac_node->state);
1475 			list_del(&mac_node->node);
1476 			kfree(mac_node);
1477 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1478 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1479 			list_del(&mac_node->node);
1480 			list_add_tail(&mac_node->node, mac_list);
1481 		} else {
1482 			list_del(&mac_node->node);
1483 			kfree(mac_node);
1484 		}
1485 	}
1486 }
1487 
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1488 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1489 				       struct list_head *mac_list)
1490 {
1491 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1492 
1493 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1494 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1495 		if (new_node) {
1496 			/* If the mac addr is exist in the mac list, it means
1497 			 * received a new request TO_ADD during the time window
1498 			 * of sending mac addr configurrequest to PF, so just
1499 			 * change the mac state to ACTIVE.
1500 			 */
1501 			new_node->state = HCLGEVF_MAC_ACTIVE;
1502 			list_del(&mac_node->node);
1503 			kfree(mac_node);
1504 		} else {
1505 			list_del(&mac_node->node);
1506 			list_add_tail(&mac_node->node, mac_list);
1507 		}
1508 	}
1509 }
1510 
hclgevf_clear_list(struct list_head * list)1511 static void hclgevf_clear_list(struct list_head *list)
1512 {
1513 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1514 
1515 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1516 		list_del(&mac_node->node);
1517 		kfree(mac_node);
1518 	}
1519 }
1520 
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1521 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1522 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1523 {
1524 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1525 	struct list_head tmp_add_list, tmp_del_list;
1526 	struct list_head *list;
1527 
1528 	INIT_LIST_HEAD(&tmp_add_list);
1529 	INIT_LIST_HEAD(&tmp_del_list);
1530 
1531 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1532 	 * we can add/delete these mac addr outside the spin lock
1533 	 */
1534 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1535 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1536 
1537 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1538 
1539 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1540 		switch (mac_node->state) {
1541 		case HCLGEVF_MAC_TO_DEL:
1542 			list_del(&mac_node->node);
1543 			list_add_tail(&mac_node->node, &tmp_del_list);
1544 			break;
1545 		case HCLGEVF_MAC_TO_ADD:
1546 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1547 			if (!new_node)
1548 				goto stop_traverse;
1549 
1550 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1551 			new_node->state = mac_node->state;
1552 			list_add_tail(&new_node->node, &tmp_add_list);
1553 			break;
1554 		default:
1555 			break;
1556 		}
1557 	}
1558 
1559 stop_traverse:
1560 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1561 
1562 	/* delete first, in order to get max mac table space for adding */
1563 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1564 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1565 
1566 	/* if some mac addresses were added/deleted fail, move back to the
1567 	 * mac_list, and retry at next time.
1568 	 */
1569 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1570 
1571 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1572 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1573 
1574 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1575 }
1576 
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1577 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1578 {
1579 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1580 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1581 }
1582 
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1583 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1584 {
1585 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1586 
1587 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1588 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1589 
1590 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1591 }
1592 
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1593 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1594 				   __be16 proto, u16 vlan_id,
1595 				   bool is_kill)
1596 {
1597 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1598 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1599 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1600 
1601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1602 	struct hclge_vf_to_pf_msg send_msg;
1603 	int ret;
1604 
1605 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1606 		return -EINVAL;
1607 
1608 	if (proto != htons(ETH_P_8021Q))
1609 		return -EPROTONOSUPPORT;
1610 
1611 	/* When device is resetting or reset failed, firmware is unable to
1612 	 * handle mailbox. Just record the vlan id, and remove it after
1613 	 * reset finished.
1614 	 */
1615 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1616 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1617 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1618 		return -EBUSY;
1619 	}
1620 
1621 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1622 			       HCLGE_MBX_VLAN_FILTER);
1623 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1624 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1625 	       sizeof(vlan_id));
1626 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1627 	       sizeof(proto));
1628 	/* when remove hw vlan filter failed, record the vlan id,
1629 	 * and try to remove it from hw later, to be consistence
1630 	 * with stack.
1631 	 */
1632 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1633 	if (is_kill && ret)
1634 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1635 
1636 	return ret;
1637 }
1638 
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1639 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1640 {
1641 #define HCLGEVF_MAX_SYNC_COUNT	60
1642 	struct hnae3_handle *handle = &hdev->nic;
1643 	int ret, sync_cnt = 0;
1644 	u16 vlan_id;
1645 
1646 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1647 	while (vlan_id != VLAN_N_VID) {
1648 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1649 					      vlan_id, true);
1650 		if (ret)
1651 			return;
1652 
1653 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1654 		sync_cnt++;
1655 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1656 			return;
1657 
1658 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1659 	}
1660 }
1661 
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1662 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1663 {
1664 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1665 	struct hclge_vf_to_pf_msg send_msg;
1666 
1667 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1668 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1669 	send_msg.data[0] = enable ? 1 : 0;
1670 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1671 }
1672 
hclgevf_reset_tqp(struct hnae3_handle * handle,u16 queue_id)1673 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1674 {
1675 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1676 	struct hclge_vf_to_pf_msg send_msg;
1677 	int ret;
1678 
1679 	/* disable vf queue before send queue reset msg to PF */
1680 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1681 	if (ret)
1682 		return ret;
1683 
1684 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1685 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1686 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1687 }
1688 
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1689 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1690 {
1691 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1692 	struct hclge_vf_to_pf_msg send_msg;
1693 
1694 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1695 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1696 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1697 }
1698 
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1699 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1700 				 enum hnae3_reset_notify_type type)
1701 {
1702 	struct hnae3_client *client = hdev->nic_client;
1703 	struct hnae3_handle *handle = &hdev->nic;
1704 	int ret;
1705 
1706 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1707 	    !client)
1708 		return 0;
1709 
1710 	if (!client->ops->reset_notify)
1711 		return -EOPNOTSUPP;
1712 
1713 	ret = client->ops->reset_notify(handle, type);
1714 	if (ret)
1715 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1716 			type, ret);
1717 
1718 	return ret;
1719 }
1720 
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1721 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1722 				      enum hnae3_reset_notify_type type)
1723 {
1724 	struct hnae3_client *client = hdev->roce_client;
1725 	struct hnae3_handle *handle = &hdev->roce;
1726 	int ret;
1727 
1728 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1729 		return 0;
1730 
1731 	if (!client->ops->reset_notify)
1732 		return -EOPNOTSUPP;
1733 
1734 	ret = client->ops->reset_notify(handle, type);
1735 	if (ret)
1736 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1737 			type, ret);
1738 	return ret;
1739 }
1740 
hclgevf_reset_wait(struct hclgevf_dev * hdev)1741 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1742 {
1743 #define HCLGEVF_RESET_WAIT_US	20000
1744 #define HCLGEVF_RESET_WAIT_CNT	2000
1745 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1746 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1747 
1748 	u32 val;
1749 	int ret;
1750 
1751 	if (hdev->reset_type == HNAE3_VF_RESET)
1752 		ret = readl_poll_timeout(hdev->hw.io_base +
1753 					 HCLGEVF_VF_RST_ING, val,
1754 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1755 					 HCLGEVF_RESET_WAIT_US,
1756 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1757 	else
1758 		ret = readl_poll_timeout(hdev->hw.io_base +
1759 					 HCLGEVF_RST_ING, val,
1760 					 !(val & HCLGEVF_RST_ING_BITS),
1761 					 HCLGEVF_RESET_WAIT_US,
1762 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1763 
1764 	/* hardware completion status should be available by this time */
1765 	if (ret) {
1766 		dev_err(&hdev->pdev->dev,
1767 			"couldn't get reset done status from h/w, timeout!\n");
1768 		return ret;
1769 	}
1770 
1771 	/* we will wait a bit more to let reset of the stack to complete. This
1772 	 * might happen in case reset assertion was made by PF. Yes, this also
1773 	 * means we might end up waiting bit more even for VF reset.
1774 	 */
1775 	msleep(5000);
1776 
1777 	return 0;
1778 }
1779 
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1780 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1781 {
1782 	u32 reg_val;
1783 
1784 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1785 	if (enable)
1786 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1787 	else
1788 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1789 
1790 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1791 			  reg_val);
1792 }
1793 
hclgevf_reset_stack(struct hclgevf_dev * hdev)1794 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1795 {
1796 	int ret;
1797 
1798 	/* uninitialize the nic client */
1799 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1800 	if (ret)
1801 		return ret;
1802 
1803 	/* re-initialize the hclge device */
1804 	ret = hclgevf_reset_hdev(hdev);
1805 	if (ret) {
1806 		dev_err(&hdev->pdev->dev,
1807 			"hclge device re-init failed, VF is disabled!\n");
1808 		return ret;
1809 	}
1810 
1811 	/* bring up the nic client again */
1812 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1813 	if (ret)
1814 		return ret;
1815 
1816 	/* clear handshake status with IMP */
1817 	hclgevf_reset_handshake(hdev, false);
1818 
1819 	/* bring up the nic to enable TX/RX again */
1820 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1821 }
1822 
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1823 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1824 {
1825 #define HCLGEVF_RESET_SYNC_TIME 100
1826 
1827 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1828 		struct hclge_vf_to_pf_msg send_msg;
1829 		int ret;
1830 
1831 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1832 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1833 		if (ret) {
1834 			dev_err(&hdev->pdev->dev,
1835 				"failed to assert VF reset, ret = %d\n", ret);
1836 			return ret;
1837 		}
1838 		hdev->rst_stats.vf_func_rst_cnt++;
1839 	}
1840 
1841 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1842 	/* inform hardware that preparatory work is done */
1843 	msleep(HCLGEVF_RESET_SYNC_TIME);
1844 	hclgevf_reset_handshake(hdev, true);
1845 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1846 		 hdev->reset_type);
1847 
1848 	return 0;
1849 }
1850 
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1851 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1852 {
1853 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1854 		 hdev->rst_stats.vf_func_rst_cnt);
1855 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1856 		 hdev->rst_stats.flr_rst_cnt);
1857 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1858 		 hdev->rst_stats.vf_rst_cnt);
1859 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1860 		 hdev->rst_stats.rst_done_cnt);
1861 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1862 		 hdev->rst_stats.hw_rst_done_cnt);
1863 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1864 		 hdev->rst_stats.rst_cnt);
1865 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1866 		 hdev->rst_stats.rst_fail_cnt);
1867 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1868 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1869 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1870 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1871 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1872 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1873 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1874 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1875 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1876 }
1877 
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1878 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1879 {
1880 	/* recover handshake status with IMP when reset fail */
1881 	hclgevf_reset_handshake(hdev, true);
1882 	hdev->rst_stats.rst_fail_cnt++;
1883 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1884 		hdev->rst_stats.rst_fail_cnt);
1885 
1886 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1887 		set_bit(hdev->reset_type, &hdev->reset_pending);
1888 
1889 	if (hclgevf_is_reset_pending(hdev)) {
1890 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1891 		hclgevf_reset_task_schedule(hdev);
1892 	} else {
1893 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1894 		hclgevf_dump_rst_info(hdev);
1895 	}
1896 }
1897 
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1898 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1899 {
1900 	int ret;
1901 
1902 	hdev->rst_stats.rst_cnt++;
1903 
1904 	/* perform reset of the stack & ae device for a client */
1905 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1906 	if (ret)
1907 		return ret;
1908 
1909 	rtnl_lock();
1910 	/* bring down the nic to stop any ongoing TX/RX */
1911 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1912 	rtnl_unlock();
1913 	if (ret)
1914 		return ret;
1915 
1916 	return hclgevf_reset_prepare_wait(hdev);
1917 }
1918 
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1919 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1920 {
1921 	int ret;
1922 
1923 	hdev->rst_stats.hw_rst_done_cnt++;
1924 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1925 	if (ret)
1926 		return ret;
1927 
1928 	rtnl_lock();
1929 	/* now, re-initialize the nic client and ae device */
1930 	ret = hclgevf_reset_stack(hdev);
1931 	rtnl_unlock();
1932 	if (ret) {
1933 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1934 		return ret;
1935 	}
1936 
1937 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1938 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1939 	 * times
1940 	 */
1941 	if (ret &&
1942 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1943 		return ret;
1944 
1945 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1946 	if (ret)
1947 		return ret;
1948 
1949 	hdev->last_reset_time = jiffies;
1950 	hdev->rst_stats.rst_done_cnt++;
1951 	hdev->rst_stats.rst_fail_cnt = 0;
1952 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1953 
1954 	return 0;
1955 }
1956 
hclgevf_reset(struct hclgevf_dev * hdev)1957 static void hclgevf_reset(struct hclgevf_dev *hdev)
1958 {
1959 	if (hclgevf_reset_prepare(hdev))
1960 		goto err_reset;
1961 
1962 	/* check if VF could successfully fetch the hardware reset completion
1963 	 * status from the hardware
1964 	 */
1965 	if (hclgevf_reset_wait(hdev)) {
1966 		/* can't do much in this situation, will disable VF */
1967 		dev_err(&hdev->pdev->dev,
1968 			"failed to fetch H/W reset completion status\n");
1969 		goto err_reset;
1970 	}
1971 
1972 	if (hclgevf_reset_rebuild(hdev))
1973 		goto err_reset;
1974 
1975 	return;
1976 
1977 err_reset:
1978 	hclgevf_reset_err_handle(hdev);
1979 }
1980 
hclgevf_get_reset_level(struct hclgevf_dev * hdev,unsigned long * addr)1981 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1982 						     unsigned long *addr)
1983 {
1984 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1985 
1986 	/* return the highest priority reset level amongst all */
1987 	if (test_bit(HNAE3_VF_RESET, addr)) {
1988 		rst_level = HNAE3_VF_RESET;
1989 		clear_bit(HNAE3_VF_RESET, addr);
1990 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1991 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1992 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1993 		rst_level = HNAE3_VF_FULL_RESET;
1994 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1995 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1996 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1997 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1998 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1999 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2000 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2001 		rst_level = HNAE3_VF_FUNC_RESET;
2002 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2003 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2004 		rst_level = HNAE3_FLR_RESET;
2005 		clear_bit(HNAE3_FLR_RESET, addr);
2006 	}
2007 
2008 	return rst_level;
2009 }
2010 
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)2011 static void hclgevf_reset_event(struct pci_dev *pdev,
2012 				struct hnae3_handle *handle)
2013 {
2014 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2015 	struct hclgevf_dev *hdev = ae_dev->priv;
2016 
2017 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2018 
2019 	if (hdev->default_reset_request)
2020 		hdev->reset_level =
2021 			hclgevf_get_reset_level(hdev,
2022 						&hdev->default_reset_request);
2023 	else
2024 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2025 
2026 	/* reset of this VF requested */
2027 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2028 	hclgevf_reset_task_schedule(hdev);
2029 
2030 	hdev->last_reset_time = jiffies;
2031 }
2032 
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)2033 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2034 					  enum hnae3_reset_type rst_type)
2035 {
2036 	struct hclgevf_dev *hdev = ae_dev->priv;
2037 
2038 	set_bit(rst_type, &hdev->default_reset_request);
2039 }
2040 
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)2041 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2042 {
2043 	writel(en ? 1 : 0, vector->addr);
2044 }
2045 
hclgevf_flr_prepare(struct hnae3_ae_dev * ae_dev)2046 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2047 {
2048 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2049 #define HCLGEVF_FLR_RETRY_CNT		5
2050 
2051 	struct hclgevf_dev *hdev = ae_dev->priv;
2052 	int retry_cnt = 0;
2053 	int ret;
2054 
2055 retry:
2056 	down(&hdev->reset_sem);
2057 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2058 	hdev->reset_type = HNAE3_FLR_RESET;
2059 	ret = hclgevf_reset_prepare(hdev);
2060 	if (ret) {
2061 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2062 			ret);
2063 		if (hdev->reset_pending ||
2064 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2065 			dev_err(&hdev->pdev->dev,
2066 				"reset_pending:0x%lx, retry_cnt:%d\n",
2067 				hdev->reset_pending, retry_cnt);
2068 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2069 			up(&hdev->reset_sem);
2070 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2071 			goto retry;
2072 		}
2073 	}
2074 
2075 	/* disable misc vector before FLR done */
2076 	hclgevf_enable_vector(&hdev->misc_vector, false);
2077 	hdev->rst_stats.flr_rst_cnt++;
2078 }
2079 
hclgevf_flr_done(struct hnae3_ae_dev * ae_dev)2080 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2081 {
2082 	struct hclgevf_dev *hdev = ae_dev->priv;
2083 	int ret;
2084 
2085 	hclgevf_enable_vector(&hdev->misc_vector, true);
2086 
2087 	ret = hclgevf_reset_rebuild(hdev);
2088 	if (ret)
2089 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2090 			 ret);
2091 
2092 	hdev->reset_type = HNAE3_NONE_RESET;
2093 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2094 	up(&hdev->reset_sem);
2095 }
2096 
hclgevf_get_fw_version(struct hnae3_handle * handle)2097 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2098 {
2099 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2100 
2101 	return hdev->fw_version;
2102 }
2103 
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)2104 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2105 {
2106 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2107 
2108 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2109 					    HCLGEVF_MISC_VECTOR_NUM);
2110 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2111 	/* vector status always valid for Vector 0 */
2112 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2113 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2114 
2115 	hdev->num_msi_left -= 1;
2116 	hdev->num_msi_used += 1;
2117 }
2118 
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)2119 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2120 {
2121 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2122 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2123 			      &hdev->state))
2124 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2125 }
2126 
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)2127 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2128 {
2129 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2130 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2131 			      &hdev->state))
2132 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2133 }
2134 
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)2135 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2136 				  unsigned long delay)
2137 {
2138 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2139 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2140 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2141 }
2142 
hclgevf_reset_service_task(struct hclgevf_dev * hdev)2143 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2144 {
2145 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2146 
2147 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2148 		return;
2149 
2150 	down(&hdev->reset_sem);
2151 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2152 
2153 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2154 			       &hdev->reset_state)) {
2155 		/* PF has initmated that it is about to reset the hardware.
2156 		 * We now have to poll & check if hardware has actually
2157 		 * completed the reset sequence. On hardware reset completion,
2158 		 * VF needs to reset the client and ae device.
2159 		 */
2160 		hdev->reset_attempts = 0;
2161 
2162 		hdev->last_reset_time = jiffies;
2163 		hdev->reset_type =
2164 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2165 		if (hdev->reset_type != HNAE3_NONE_RESET)
2166 			hclgevf_reset(hdev);
2167 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2168 				      &hdev->reset_state)) {
2169 		/* we could be here when either of below happens:
2170 		 * 1. reset was initiated due to watchdog timeout caused by
2171 		 *    a. IMP was earlier reset and our TX got choked down and
2172 		 *       which resulted in watchdog reacting and inducing VF
2173 		 *       reset. This also means our cmdq would be unreliable.
2174 		 *    b. problem in TX due to other lower layer(example link
2175 		 *       layer not functioning properly etc.)
2176 		 * 2. VF reset might have been initiated due to some config
2177 		 *    change.
2178 		 *
2179 		 * NOTE: Theres no clear way to detect above cases than to react
2180 		 * to the response of PF for this reset request. PF will ack the
2181 		 * 1b and 2. cases but we will not get any intimation about 1a
2182 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2183 		 * communication between PF and VF would be broken.
2184 		 *
2185 		 * if we are never geting into pending state it means either:
2186 		 * 1. PF is not receiving our request which could be due to IMP
2187 		 *    reset
2188 		 * 2. PF is screwed
2189 		 * We cannot do much for 2. but to check first we can try reset
2190 		 * our PCIe + stack and see if it alleviates the problem.
2191 		 */
2192 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2193 			/* prepare for full reset of stack + pcie interface */
2194 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2195 
2196 			/* "defer" schedule the reset task again */
2197 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2198 		} else {
2199 			hdev->reset_attempts++;
2200 
2201 			set_bit(hdev->reset_level, &hdev->reset_pending);
2202 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2203 		}
2204 		hclgevf_reset_task_schedule(hdev);
2205 	}
2206 
2207 	hdev->reset_type = HNAE3_NONE_RESET;
2208 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2209 	up(&hdev->reset_sem);
2210 }
2211 
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)2212 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2213 {
2214 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2215 		return;
2216 
2217 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2218 		return;
2219 
2220 	hclgevf_mbx_async_handler(hdev);
2221 
2222 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2223 }
2224 
hclgevf_keep_alive(struct hclgevf_dev * hdev)2225 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2226 {
2227 	struct hclge_vf_to_pf_msg send_msg;
2228 	int ret;
2229 
2230 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2231 		return;
2232 
2233 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2234 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2235 	if (ret)
2236 		dev_err(&hdev->pdev->dev,
2237 			"VF sends keep alive cmd failed(=%d)\n", ret);
2238 }
2239 
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)2240 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2241 {
2242 	unsigned long delta = round_jiffies_relative(HZ);
2243 	struct hnae3_handle *handle = &hdev->nic;
2244 
2245 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2246 		return;
2247 
2248 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2249 		delta = jiffies - hdev->last_serv_processed;
2250 
2251 		if (delta < round_jiffies_relative(HZ)) {
2252 			delta = round_jiffies_relative(HZ) - delta;
2253 			goto out;
2254 		}
2255 	}
2256 
2257 	hdev->serv_processed_cnt++;
2258 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2259 		hclgevf_keep_alive(hdev);
2260 
2261 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2262 		hdev->last_serv_processed = jiffies;
2263 		goto out;
2264 	}
2265 
2266 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2267 		hclgevf_tqps_update_stats(handle);
2268 
2269 	/* request the link status from the PF. PF would be able to tell VF
2270 	 * about such updates in future so we might remove this later
2271 	 */
2272 	hclgevf_request_link_info(hdev);
2273 
2274 	hclgevf_update_link_mode(hdev);
2275 
2276 	hclgevf_sync_vlan_filter(hdev);
2277 
2278 	hclgevf_sync_mac_table(hdev);
2279 
2280 	hclgevf_sync_promisc_mode(hdev);
2281 
2282 	hdev->last_serv_processed = jiffies;
2283 
2284 out:
2285 	hclgevf_task_schedule(hdev, delta);
2286 }
2287 
hclgevf_service_task(struct work_struct * work)2288 static void hclgevf_service_task(struct work_struct *work)
2289 {
2290 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2291 						service_task.work);
2292 
2293 	hclgevf_reset_service_task(hdev);
2294 	hclgevf_mailbox_service_task(hdev);
2295 	hclgevf_periodic_service_task(hdev);
2296 
2297 	/* Handle reset and mbx again in case periodical task delays the
2298 	 * handling by calling hclgevf_task_schedule() in
2299 	 * hclgevf_periodic_service_task()
2300 	 */
2301 	hclgevf_reset_service_task(hdev);
2302 	hclgevf_mailbox_service_task(hdev);
2303 }
2304 
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2305 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2306 {
2307 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2308 }
2309 
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2310 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2311 						      u32 *clearval)
2312 {
2313 	u32 val, cmdq_stat_reg, rst_ing_reg;
2314 
2315 	/* fetch the events from their corresponding regs */
2316 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2317 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2318 
2319 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2320 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2321 		dev_info(&hdev->pdev->dev,
2322 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2323 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2324 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2325 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2326 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2327 		hdev->rst_stats.vf_rst_cnt++;
2328 		/* set up VF hardware reset status, its PF will clear
2329 		 * this status when PF has initialized done.
2330 		 */
2331 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2332 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2333 				  val | HCLGEVF_VF_RST_ING_BIT);
2334 		return HCLGEVF_VECTOR0_EVENT_RST;
2335 	}
2336 
2337 	/* check for vector0 mailbox(=CMDQ RX) event source */
2338 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2339 		/* for revision 0x21, clearing interrupt is writing bit 0
2340 		 * to the clear register, writing bit 1 means to keep the
2341 		 * old value.
2342 		 * for revision 0x20, the clear register is a read & write
2343 		 * register, so we should just write 0 to the bit we are
2344 		 * handling, and keep other bits as cmdq_stat_reg.
2345 		 */
2346 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2347 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2348 		else
2349 			*clearval = cmdq_stat_reg &
2350 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2351 
2352 		return HCLGEVF_VECTOR0_EVENT_MBX;
2353 	}
2354 
2355 	/* print other vector0 event source */
2356 	dev_info(&hdev->pdev->dev,
2357 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2358 		 cmdq_stat_reg);
2359 
2360 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2361 }
2362 
hclgevf_misc_irq_handle(int irq,void * data)2363 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2364 {
2365 	enum hclgevf_evt_cause event_cause;
2366 	struct hclgevf_dev *hdev = data;
2367 	u32 clearval;
2368 
2369 	hclgevf_enable_vector(&hdev->misc_vector, false);
2370 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2371 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2372 		hclgevf_clear_event_cause(hdev, clearval);
2373 
2374 	switch (event_cause) {
2375 	case HCLGEVF_VECTOR0_EVENT_RST:
2376 		hclgevf_reset_task_schedule(hdev);
2377 		break;
2378 	case HCLGEVF_VECTOR0_EVENT_MBX:
2379 		hclgevf_mbx_handler(hdev);
2380 		break;
2381 	default:
2382 		break;
2383 	}
2384 
2385 	hclgevf_enable_vector(&hdev->misc_vector, true);
2386 
2387 	return IRQ_HANDLED;
2388 }
2389 
hclgevf_configure(struct hclgevf_dev * hdev)2390 static int hclgevf_configure(struct hclgevf_dev *hdev)
2391 {
2392 	int ret;
2393 
2394 	/* get current port based vlan state from PF */
2395 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2396 	if (ret)
2397 		return ret;
2398 
2399 	/* get queue configuration from PF */
2400 	ret = hclgevf_get_queue_info(hdev);
2401 	if (ret)
2402 		return ret;
2403 
2404 	/* get queue depth info from PF */
2405 	ret = hclgevf_get_queue_depth(hdev);
2406 	if (ret)
2407 		return ret;
2408 
2409 	ret = hclgevf_get_pf_media_type(hdev);
2410 	if (ret)
2411 		return ret;
2412 
2413 	/* get tc configuration from PF */
2414 	return hclgevf_get_tc_info(hdev);
2415 }
2416 
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2417 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2418 {
2419 	struct pci_dev *pdev = ae_dev->pdev;
2420 	struct hclgevf_dev *hdev;
2421 
2422 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2423 	if (!hdev)
2424 		return -ENOMEM;
2425 
2426 	hdev->pdev = pdev;
2427 	hdev->ae_dev = ae_dev;
2428 	ae_dev->priv = hdev;
2429 
2430 	return 0;
2431 }
2432 
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2433 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2434 {
2435 	struct hnae3_handle *roce = &hdev->roce;
2436 	struct hnae3_handle *nic = &hdev->nic;
2437 
2438 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2439 
2440 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2441 	    hdev->num_msi_left == 0)
2442 		return -EINVAL;
2443 
2444 	roce->rinfo.base_vector = hdev->roce_base_vector;
2445 
2446 	roce->rinfo.netdev = nic->kinfo.netdev;
2447 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2448 
2449 	roce->pdev = nic->pdev;
2450 	roce->ae_algo = nic->ae_algo;
2451 	roce->numa_node_mask = nic->numa_node_mask;
2452 
2453 	return 0;
2454 }
2455 
hclgevf_config_gro(struct hclgevf_dev * hdev,bool en)2456 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2457 {
2458 	struct hclgevf_cfg_gro_status_cmd *req;
2459 	struct hclgevf_desc desc;
2460 	int ret;
2461 
2462 	if (!hnae3_dev_gro_supported(hdev))
2463 		return 0;
2464 
2465 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2466 				     false);
2467 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2468 
2469 	req->gro_en = en ? 1 : 0;
2470 
2471 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2472 	if (ret)
2473 		dev_err(&hdev->pdev->dev,
2474 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2475 
2476 	return ret;
2477 }
2478 
hclgevf_rss_init_cfg(struct hclgevf_dev * hdev)2479 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2480 {
2481 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2482 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2483 	u32 i;
2484 
2485 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2486 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2487 	tuple_sets = &rss_cfg->rss_tuple_sets;
2488 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2489 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2490 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2491 		       HCLGEVF_RSS_KEY_SIZE);
2492 
2493 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2494 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2495 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2496 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2497 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2498 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2499 		tuple_sets->ipv6_sctp_en =
2500 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2501 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2502 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2503 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2504 	}
2505 
2506 	/* Initialize RSS indirect table */
2507 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2508 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2509 }
2510 
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2511 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2512 {
2513 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2514 	int ret;
2515 
2516 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2517 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2518 					       rss_cfg->rss_hash_key);
2519 		if (ret)
2520 			return ret;
2521 
2522 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	ret = hclgevf_set_rss_indir_table(hdev);
2528 	if (ret)
2529 		return ret;
2530 
2531 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2532 }
2533 
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2534 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2535 {
2536 	struct hnae3_handle *nic = &hdev->nic;
2537 	int ret;
2538 
2539 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2540 	if (ret) {
2541 		dev_err(&hdev->pdev->dev,
2542 			"failed to enable rx vlan offload, ret = %d\n", ret);
2543 		return ret;
2544 	}
2545 
2546 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2547 				       false);
2548 }
2549 
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2550 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2551 {
2552 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2553 
2554 	unsigned long last = hdev->serv_processed_cnt;
2555 	int i = 0;
2556 
2557 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2558 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2559 	       last == hdev->serv_processed_cnt)
2560 		usleep_range(1, 1);
2561 }
2562 
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2563 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2564 {
2565 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2566 
2567 	if (enable) {
2568 		hclgevf_task_schedule(hdev, 0);
2569 	} else {
2570 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2571 
2572 		/* flush memory to make sure DOWN is seen by service task */
2573 		smp_mb__before_atomic();
2574 		hclgevf_flush_link_update(hdev);
2575 	}
2576 }
2577 
hclgevf_ae_start(struct hnae3_handle * handle)2578 static int hclgevf_ae_start(struct hnae3_handle *handle)
2579 {
2580 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2581 
2582 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2583 
2584 	hclgevf_reset_tqp_stats(handle);
2585 
2586 	hclgevf_request_link_info(hdev);
2587 
2588 	hclgevf_update_link_mode(hdev);
2589 
2590 	return 0;
2591 }
2592 
hclgevf_ae_stop(struct hnae3_handle * handle)2593 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2594 {
2595 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2596 	int i;
2597 
2598 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2599 
2600 	if (hdev->reset_type != HNAE3_VF_RESET)
2601 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2602 			if (hclgevf_reset_tqp(handle, i))
2603 				break;
2604 
2605 	hclgevf_reset_tqp_stats(handle);
2606 	hclgevf_update_link_status(hdev, 0);
2607 }
2608 
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2609 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2610 {
2611 #define HCLGEVF_STATE_ALIVE	1
2612 #define HCLGEVF_STATE_NOT_ALIVE	0
2613 
2614 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2615 	struct hclge_vf_to_pf_msg send_msg;
2616 
2617 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2618 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2619 				HCLGEVF_STATE_NOT_ALIVE;
2620 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2621 }
2622 
hclgevf_client_start(struct hnae3_handle * handle)2623 static int hclgevf_client_start(struct hnae3_handle *handle)
2624 {
2625 	return hclgevf_set_alive(handle, true);
2626 }
2627 
hclgevf_client_stop(struct hnae3_handle * handle)2628 static void hclgevf_client_stop(struct hnae3_handle *handle)
2629 {
2630 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2631 	int ret;
2632 
2633 	ret = hclgevf_set_alive(handle, false);
2634 	if (ret)
2635 		dev_warn(&hdev->pdev->dev,
2636 			 "%s failed %d\n", __func__, ret);
2637 }
2638 
hclgevf_state_init(struct hclgevf_dev * hdev)2639 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2640 {
2641 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2642 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2643 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2644 
2645 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2646 
2647 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2648 	sema_init(&hdev->reset_sem, 1);
2649 
2650 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2651 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2652 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2653 
2654 	/* bring the device down */
2655 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2656 }
2657 
hclgevf_state_uninit(struct hclgevf_dev * hdev)2658 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2659 {
2660 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2661 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2662 
2663 	if (hdev->service_task.work.func)
2664 		cancel_delayed_work_sync(&hdev->service_task);
2665 
2666 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2667 }
2668 
hclgevf_init_msi(struct hclgevf_dev * hdev)2669 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2670 {
2671 	struct pci_dev *pdev = hdev->pdev;
2672 	int vectors;
2673 	int i;
2674 
2675 	if (hnae3_dev_roce_supported(hdev))
2676 		vectors = pci_alloc_irq_vectors(pdev,
2677 						hdev->roce_base_msix_offset + 1,
2678 						hdev->num_msi,
2679 						PCI_IRQ_MSIX);
2680 	else
2681 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2682 						hdev->num_msi,
2683 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2684 
2685 	if (vectors < 0) {
2686 		dev_err(&pdev->dev,
2687 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2688 			vectors);
2689 		return vectors;
2690 	}
2691 	if (vectors < hdev->num_msi)
2692 		dev_warn(&hdev->pdev->dev,
2693 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2694 			 hdev->num_msi, vectors);
2695 
2696 	hdev->num_msi = vectors;
2697 	hdev->num_msi_left = vectors;
2698 
2699 	hdev->base_msi_vector = pdev->irq;
2700 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2701 
2702 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2703 					   sizeof(u16), GFP_KERNEL);
2704 	if (!hdev->vector_status) {
2705 		pci_free_irq_vectors(pdev);
2706 		return -ENOMEM;
2707 	}
2708 
2709 	for (i = 0; i < hdev->num_msi; i++)
2710 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2711 
2712 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2713 					sizeof(int), GFP_KERNEL);
2714 	if (!hdev->vector_irq) {
2715 		devm_kfree(&pdev->dev, hdev->vector_status);
2716 		pci_free_irq_vectors(pdev);
2717 		return -ENOMEM;
2718 	}
2719 
2720 	return 0;
2721 }
2722 
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2723 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2724 {
2725 	struct pci_dev *pdev = hdev->pdev;
2726 
2727 	devm_kfree(&pdev->dev, hdev->vector_status);
2728 	devm_kfree(&pdev->dev, hdev->vector_irq);
2729 	pci_free_irq_vectors(pdev);
2730 }
2731 
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2732 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2733 {
2734 	int ret;
2735 
2736 	hclgevf_get_misc_vector(hdev);
2737 
2738 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2739 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2740 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2741 			  0, hdev->misc_vector.name, hdev);
2742 	if (ret) {
2743 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2744 			hdev->misc_vector.vector_irq);
2745 		return ret;
2746 	}
2747 
2748 	hclgevf_clear_event_cause(hdev, 0);
2749 
2750 	/* enable misc. vector(vector 0) */
2751 	hclgevf_enable_vector(&hdev->misc_vector, true);
2752 
2753 	return ret;
2754 }
2755 
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2756 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2757 {
2758 	/* disable misc vector(vector 0) */
2759 	hclgevf_enable_vector(&hdev->misc_vector, false);
2760 	synchronize_irq(hdev->misc_vector.vector_irq);
2761 	free_irq(hdev->misc_vector.vector_irq, hdev);
2762 	hclgevf_free_vector(hdev, 0);
2763 }
2764 
hclgevf_info_show(struct hclgevf_dev * hdev)2765 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2766 {
2767 	struct device *dev = &hdev->pdev->dev;
2768 
2769 	dev_info(dev, "VF info begin:\n");
2770 
2771 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2772 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2773 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2774 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2775 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2776 	dev_info(dev, "PF media type of this VF: %u\n",
2777 		 hdev->hw.mac.media_type);
2778 
2779 	dev_info(dev, "VF info end.\n");
2780 }
2781 
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2782 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2783 					    struct hnae3_client *client)
2784 {
2785 	struct hclgevf_dev *hdev = ae_dev->priv;
2786 	int rst_cnt = hdev->rst_stats.rst_cnt;
2787 	int ret;
2788 
2789 	ret = client->ops->init_instance(&hdev->nic);
2790 	if (ret)
2791 		return ret;
2792 
2793 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2794 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2795 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2796 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2797 
2798 		client->ops->uninit_instance(&hdev->nic, 0);
2799 		return -EBUSY;
2800 	}
2801 
2802 	hnae3_set_client_init_flag(client, ae_dev, 1);
2803 
2804 	if (netif_msg_drv(&hdev->nic))
2805 		hclgevf_info_show(hdev);
2806 
2807 	return 0;
2808 }
2809 
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2810 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2811 					     struct hnae3_client *client)
2812 {
2813 	struct hclgevf_dev *hdev = ae_dev->priv;
2814 	int ret;
2815 
2816 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2817 	    !hdev->nic_client)
2818 		return 0;
2819 
2820 	ret = hclgevf_init_roce_base_info(hdev);
2821 	if (ret)
2822 		return ret;
2823 
2824 	ret = client->ops->init_instance(&hdev->roce);
2825 	if (ret)
2826 		return ret;
2827 
2828 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2829 	hnae3_set_client_init_flag(client, ae_dev, 1);
2830 
2831 	return 0;
2832 }
2833 
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2834 static int hclgevf_init_client_instance(struct hnae3_client *client,
2835 					struct hnae3_ae_dev *ae_dev)
2836 {
2837 	struct hclgevf_dev *hdev = ae_dev->priv;
2838 	int ret;
2839 
2840 	switch (client->type) {
2841 	case HNAE3_CLIENT_KNIC:
2842 		hdev->nic_client = client;
2843 		hdev->nic.client = client;
2844 
2845 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2846 		if (ret)
2847 			goto clear_nic;
2848 
2849 		ret = hclgevf_init_roce_client_instance(ae_dev,
2850 							hdev->roce_client);
2851 		if (ret)
2852 			goto clear_roce;
2853 
2854 		break;
2855 	case HNAE3_CLIENT_ROCE:
2856 		if (hnae3_dev_roce_supported(hdev)) {
2857 			hdev->roce_client = client;
2858 			hdev->roce.client = client;
2859 		}
2860 
2861 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2862 		if (ret)
2863 			goto clear_roce;
2864 
2865 		break;
2866 	default:
2867 		return -EINVAL;
2868 	}
2869 
2870 	return 0;
2871 
2872 clear_nic:
2873 	hdev->nic_client = NULL;
2874 	hdev->nic.client = NULL;
2875 	return ret;
2876 clear_roce:
2877 	hdev->roce_client = NULL;
2878 	hdev->roce.client = NULL;
2879 	return ret;
2880 }
2881 
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2882 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2883 					   struct hnae3_ae_dev *ae_dev)
2884 {
2885 	struct hclgevf_dev *hdev = ae_dev->priv;
2886 
2887 	/* un-init roce, if it exists */
2888 	if (hdev->roce_client) {
2889 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2890 			msleep(HCLGEVF_WAIT_RESET_DONE);
2891 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2892 
2893 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2894 		hdev->roce_client = NULL;
2895 		hdev->roce.client = NULL;
2896 	}
2897 
2898 	/* un-init nic/unic, if this was not called by roce client */
2899 	if (client->ops->uninit_instance && hdev->nic_client &&
2900 	    client->type != HNAE3_CLIENT_ROCE) {
2901 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2902 			msleep(HCLGEVF_WAIT_RESET_DONE);
2903 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2904 
2905 		client->ops->uninit_instance(&hdev->nic, 0);
2906 		hdev->nic_client = NULL;
2907 		hdev->nic.client = NULL;
2908 	}
2909 }
2910 
hclgevf_pci_init(struct hclgevf_dev * hdev)2911 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2912 {
2913 	struct pci_dev *pdev = hdev->pdev;
2914 	struct hclgevf_hw *hw;
2915 	int ret;
2916 
2917 	ret = pci_enable_device(pdev);
2918 	if (ret) {
2919 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2920 		return ret;
2921 	}
2922 
2923 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2924 	if (ret) {
2925 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2926 		goto err_disable_device;
2927 	}
2928 
2929 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2930 	if (ret) {
2931 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2932 		goto err_disable_device;
2933 	}
2934 
2935 	pci_set_master(pdev);
2936 	hw = &hdev->hw;
2937 	hw->hdev = hdev;
2938 	hw->io_base = pci_iomap(pdev, 2, 0);
2939 	if (!hw->io_base) {
2940 		dev_err(&pdev->dev, "can't map configuration register space\n");
2941 		ret = -ENOMEM;
2942 		goto err_clr_master;
2943 	}
2944 
2945 	return 0;
2946 
2947 err_clr_master:
2948 	pci_clear_master(pdev);
2949 	pci_release_regions(pdev);
2950 err_disable_device:
2951 	pci_disable_device(pdev);
2952 
2953 	return ret;
2954 }
2955 
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2956 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2957 {
2958 	struct pci_dev *pdev = hdev->pdev;
2959 
2960 	pci_iounmap(pdev, hdev->hw.io_base);
2961 	pci_clear_master(pdev);
2962 	pci_release_regions(pdev);
2963 	pci_disable_device(pdev);
2964 }
2965 
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2966 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2967 {
2968 	struct hclgevf_query_res_cmd *req;
2969 	struct hclgevf_desc desc;
2970 	int ret;
2971 
2972 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2973 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2974 	if (ret) {
2975 		dev_err(&hdev->pdev->dev,
2976 			"query vf resource failed, ret = %d.\n", ret);
2977 		return ret;
2978 	}
2979 
2980 	req = (struct hclgevf_query_res_cmd *)desc.data;
2981 
2982 	if (hnae3_dev_roce_supported(hdev)) {
2983 		hdev->roce_base_msix_offset =
2984 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2985 				HCLGEVF_MSIX_OFT_ROCEE_M,
2986 				HCLGEVF_MSIX_OFT_ROCEE_S);
2987 		hdev->num_roce_msix =
2988 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2989 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2990 
2991 		/* nic's msix numbers is always equals to the roce's. */
2992 		hdev->num_nic_msix = hdev->num_roce_msix;
2993 
2994 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2995 		 * are queued before Roce vectors. The offset is fixed to 64.
2996 		 */
2997 		hdev->num_msi = hdev->num_roce_msix +
2998 				hdev->roce_base_msix_offset;
2999 	} else {
3000 		hdev->num_msi =
3001 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3002 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3003 
3004 		hdev->num_nic_msix = hdev->num_msi;
3005 	}
3006 
3007 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3008 		dev_err(&hdev->pdev->dev,
3009 			"Just %u msi resources, not enough for vf(min:2).\n",
3010 			hdev->num_nic_msix);
3011 		return -EINVAL;
3012 	}
3013 
3014 	return 0;
3015 }
3016 
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)3017 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3018 {
3019 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3020 
3021 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3022 
3023 	ae_dev->dev_specs.max_non_tso_bd_num =
3024 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3025 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3026 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3027 }
3028 
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclgevf_desc * desc)3029 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3030 				    struct hclgevf_desc *desc)
3031 {
3032 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3033 	struct hclgevf_dev_specs_0_cmd *req0;
3034 
3035 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3036 
3037 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3038 	ae_dev->dev_specs.rss_ind_tbl_size =
3039 					le16_to_cpu(req0->rss_ind_tbl_size);
3040 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3041 }
3042 
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)3043 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3044 {
3045 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3046 
3047 	if (!dev_specs->max_non_tso_bd_num)
3048 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3049 	if (!dev_specs->rss_ind_tbl_size)
3050 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3051 	if (!dev_specs->rss_key_size)
3052 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3053 }
3054 
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)3055 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3056 {
3057 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3058 	int ret;
3059 	int i;
3060 
3061 	/* set default specifications as devices lower than version V3 do not
3062 	 * support querying specifications from firmware.
3063 	 */
3064 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3065 		hclgevf_set_default_dev_specs(hdev);
3066 		return 0;
3067 	}
3068 
3069 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3070 		hclgevf_cmd_setup_basic_desc(&desc[i],
3071 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3072 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3073 	}
3074 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3075 				     true);
3076 
3077 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3078 	if (ret)
3079 		return ret;
3080 
3081 	hclgevf_parse_dev_specs(hdev, desc);
3082 	hclgevf_check_dev_specs(hdev);
3083 
3084 	return 0;
3085 }
3086 
hclgevf_pci_reset(struct hclgevf_dev * hdev)3087 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3088 {
3089 	struct pci_dev *pdev = hdev->pdev;
3090 	int ret = 0;
3091 
3092 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3093 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3094 		hclgevf_misc_irq_uninit(hdev);
3095 		hclgevf_uninit_msi(hdev);
3096 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3097 	}
3098 
3099 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3100 		pci_set_master(pdev);
3101 		ret = hclgevf_init_msi(hdev);
3102 		if (ret) {
3103 			dev_err(&pdev->dev,
3104 				"failed(%d) to init MSI/MSI-X\n", ret);
3105 			return ret;
3106 		}
3107 
3108 		ret = hclgevf_misc_irq_init(hdev);
3109 		if (ret) {
3110 			hclgevf_uninit_msi(hdev);
3111 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3112 				ret);
3113 			return ret;
3114 		}
3115 
3116 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3117 	}
3118 
3119 	return ret;
3120 }
3121 
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)3122 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3123 {
3124 	struct hclge_vf_to_pf_msg send_msg;
3125 
3126 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3127 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3128 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3129 }
3130 
hclgevf_reset_hdev(struct hclgevf_dev * hdev)3131 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3132 {
3133 	struct pci_dev *pdev = hdev->pdev;
3134 	int ret;
3135 
3136 	ret = hclgevf_pci_reset(hdev);
3137 	if (ret) {
3138 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3139 		return ret;
3140 	}
3141 
3142 	ret = hclgevf_cmd_init(hdev);
3143 	if (ret) {
3144 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3145 		return ret;
3146 	}
3147 
3148 	ret = hclgevf_rss_init_hw(hdev);
3149 	if (ret) {
3150 		dev_err(&hdev->pdev->dev,
3151 			"failed(%d) to initialize RSS\n", ret);
3152 		return ret;
3153 	}
3154 
3155 	ret = hclgevf_config_gro(hdev, true);
3156 	if (ret)
3157 		return ret;
3158 
3159 	ret = hclgevf_init_vlan_config(hdev);
3160 	if (ret) {
3161 		dev_err(&hdev->pdev->dev,
3162 			"failed(%d) to initialize VLAN config\n", ret);
3163 		return ret;
3164 	}
3165 
3166 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3167 
3168 	dev_info(&hdev->pdev->dev, "Reset done\n");
3169 
3170 	return 0;
3171 }
3172 
hclgevf_init_hdev(struct hclgevf_dev * hdev)3173 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3174 {
3175 	struct pci_dev *pdev = hdev->pdev;
3176 	int ret;
3177 
3178 	ret = hclgevf_pci_init(hdev);
3179 	if (ret)
3180 		return ret;
3181 
3182 	ret = hclgevf_cmd_queue_init(hdev);
3183 	if (ret)
3184 		goto err_cmd_queue_init;
3185 
3186 	ret = hclgevf_cmd_init(hdev);
3187 	if (ret)
3188 		goto err_cmd_init;
3189 
3190 	/* Get vf resource */
3191 	ret = hclgevf_query_vf_resource(hdev);
3192 	if (ret)
3193 		goto err_cmd_init;
3194 
3195 	ret = hclgevf_query_dev_specs(hdev);
3196 	if (ret) {
3197 		dev_err(&pdev->dev,
3198 			"failed to query dev specifications, ret = %d\n", ret);
3199 		goto err_cmd_init;
3200 	}
3201 
3202 	ret = hclgevf_init_msi(hdev);
3203 	if (ret) {
3204 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3205 		goto err_cmd_init;
3206 	}
3207 
3208 	hclgevf_state_init(hdev);
3209 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3210 	hdev->reset_type = HNAE3_NONE_RESET;
3211 
3212 	ret = hclgevf_misc_irq_init(hdev);
3213 	if (ret)
3214 		goto err_misc_irq_init;
3215 
3216 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3217 
3218 	ret = hclgevf_configure(hdev);
3219 	if (ret) {
3220 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3221 		goto err_config;
3222 	}
3223 
3224 	ret = hclgevf_alloc_tqps(hdev);
3225 	if (ret) {
3226 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3227 		goto err_config;
3228 	}
3229 
3230 	ret = hclgevf_set_handle_info(hdev);
3231 	if (ret)
3232 		goto err_config;
3233 
3234 	ret = hclgevf_config_gro(hdev, true);
3235 	if (ret)
3236 		goto err_config;
3237 
3238 	/* Initialize RSS for this VF */
3239 	hclgevf_rss_init_cfg(hdev);
3240 	ret = hclgevf_rss_init_hw(hdev);
3241 	if (ret) {
3242 		dev_err(&hdev->pdev->dev,
3243 			"failed(%d) to initialize RSS\n", ret);
3244 		goto err_config;
3245 	}
3246 
3247 	/* ensure vf tbl list as empty before init*/
3248 	ret = hclgevf_clear_vport_list(hdev);
3249 	if (ret) {
3250 		dev_err(&pdev->dev,
3251 			"failed to clear tbl list configuration, ret = %d.\n",
3252 			ret);
3253 		goto err_config;
3254 	}
3255 
3256 	ret = hclgevf_init_vlan_config(hdev);
3257 	if (ret) {
3258 		dev_err(&hdev->pdev->dev,
3259 			"failed(%d) to initialize VLAN config\n", ret);
3260 		goto err_config;
3261 	}
3262 
3263 	hdev->last_reset_time = jiffies;
3264 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3265 		 HCLGEVF_DRIVER_NAME);
3266 
3267 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3268 
3269 	return 0;
3270 
3271 err_config:
3272 	hclgevf_misc_irq_uninit(hdev);
3273 err_misc_irq_init:
3274 	hclgevf_state_uninit(hdev);
3275 	hclgevf_uninit_msi(hdev);
3276 err_cmd_init:
3277 	hclgevf_cmd_uninit(hdev);
3278 err_cmd_queue_init:
3279 	hclgevf_pci_uninit(hdev);
3280 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3281 	return ret;
3282 }
3283 
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3284 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3285 {
3286 	struct hclge_vf_to_pf_msg send_msg;
3287 
3288 	hclgevf_state_uninit(hdev);
3289 
3290 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3291 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3292 
3293 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3294 		hclgevf_misc_irq_uninit(hdev);
3295 		hclgevf_uninit_msi(hdev);
3296 	}
3297 
3298 	hclgevf_cmd_uninit(hdev);
3299 	hclgevf_pci_uninit(hdev);
3300 	hclgevf_uninit_mac_list(hdev);
3301 }
3302 
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3303 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3304 {
3305 	struct pci_dev *pdev = ae_dev->pdev;
3306 	int ret;
3307 
3308 	ret = hclgevf_alloc_hdev(ae_dev);
3309 	if (ret) {
3310 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3311 		return ret;
3312 	}
3313 
3314 	ret = hclgevf_init_hdev(ae_dev->priv);
3315 	if (ret) {
3316 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3317 		return ret;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3323 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3324 {
3325 	struct hclgevf_dev *hdev = ae_dev->priv;
3326 
3327 	hclgevf_uninit_hdev(hdev);
3328 	ae_dev->priv = NULL;
3329 }
3330 
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3331 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3332 {
3333 	struct hnae3_handle *nic = &hdev->nic;
3334 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3335 
3336 	return min_t(u32, hdev->rss_size_max,
3337 		     hdev->num_tqps / kinfo->num_tc);
3338 }
3339 
3340 /**
3341  * hclgevf_get_channels - Get the current channels enabled and max supported.
3342  * @handle: hardware information for network interface
3343  * @ch: ethtool channels structure
3344  *
3345  * We don't support separate tx and rx queues as channels. The other count
3346  * represents how many queues are being used for control. max_combined counts
3347  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3348  * q_vectors since we support a lot more queue pairs than q_vectors.
3349  **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3350 static void hclgevf_get_channels(struct hnae3_handle *handle,
3351 				 struct ethtool_channels *ch)
3352 {
3353 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3354 
3355 	ch->max_combined = hclgevf_get_max_channels(hdev);
3356 	ch->other_count = 0;
3357 	ch->max_other = 0;
3358 	ch->combined_count = handle->kinfo.rss_size;
3359 }
3360 
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3361 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3362 					  u16 *alloc_tqps, u16 *max_rss_size)
3363 {
3364 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3365 
3366 	*alloc_tqps = hdev->num_tqps;
3367 	*max_rss_size = hdev->rss_size_max;
3368 }
3369 
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3370 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3371 				    u32 new_tqps_num)
3372 {
3373 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3374 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3375 	u16 max_rss_size;
3376 
3377 	kinfo->req_rss_size = new_tqps_num;
3378 
3379 	max_rss_size = min_t(u16, hdev->rss_size_max,
3380 			     hdev->num_tqps / kinfo->num_tc);
3381 
3382 	/* Use the user's configuration when it is not larger than
3383 	 * max_rss_size, otherwise, use the maximum specification value.
3384 	 */
3385 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3386 	    kinfo->req_rss_size <= max_rss_size)
3387 		kinfo->rss_size = kinfo->req_rss_size;
3388 	else if (kinfo->rss_size > max_rss_size ||
3389 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3390 		kinfo->rss_size = max_rss_size;
3391 
3392 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3393 }
3394 
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3395 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3396 				bool rxfh_configured)
3397 {
3398 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3399 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3400 	u16 cur_rss_size = kinfo->rss_size;
3401 	u16 cur_tqps = kinfo->num_tqps;
3402 	u32 *rss_indir;
3403 	unsigned int i;
3404 	int ret;
3405 
3406 	hclgevf_update_rss_size(handle, new_tqps_num);
3407 
3408 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3409 	if (ret)
3410 		return ret;
3411 
3412 	/* RSS indirection table has been configuared by user */
3413 	if (rxfh_configured)
3414 		goto out;
3415 
3416 	/* Reinitializes the rss indirect table according to the new RSS size */
3417 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3418 	if (!rss_indir)
3419 		return -ENOMEM;
3420 
3421 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3422 		rss_indir[i] = i % kinfo->rss_size;
3423 
3424 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3425 
3426 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3427 	if (ret)
3428 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3429 			ret);
3430 
3431 	kfree(rss_indir);
3432 
3433 out:
3434 	if (!ret)
3435 		dev_info(&hdev->pdev->dev,
3436 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3437 			 cur_rss_size, kinfo->rss_size,
3438 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3439 
3440 	return ret;
3441 }
3442 
hclgevf_get_status(struct hnae3_handle * handle)3443 static int hclgevf_get_status(struct hnae3_handle *handle)
3444 {
3445 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3446 
3447 	return hdev->hw.mac.link;
3448 }
3449 
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex)3450 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3451 					    u8 *auto_neg, u32 *speed,
3452 					    u8 *duplex)
3453 {
3454 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3455 
3456 	if (speed)
3457 		*speed = hdev->hw.mac.speed;
3458 	if (duplex)
3459 		*duplex = hdev->hw.mac.duplex;
3460 	if (auto_neg)
3461 		*auto_neg = AUTONEG_DISABLE;
3462 }
3463 
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3464 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3465 				 u8 duplex)
3466 {
3467 	hdev->hw.mac.speed = speed;
3468 	hdev->hw.mac.duplex = duplex;
3469 }
3470 
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3471 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3472 {
3473 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3474 
3475 	return hclgevf_config_gro(hdev, enable);
3476 }
3477 
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3478 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3479 				   u8 *module_type)
3480 {
3481 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3482 
3483 	if (media_type)
3484 		*media_type = hdev->hw.mac.media_type;
3485 
3486 	if (module_type)
3487 		*module_type = hdev->hw.mac.module_type;
3488 }
3489 
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3490 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3491 {
3492 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3493 
3494 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3495 }
3496 
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3497 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3498 {
3499 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3500 
3501 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3502 }
3503 
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3504 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3505 {
3506 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3507 
3508 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3509 }
3510 
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3511 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3512 {
3513 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3514 
3515 	return hdev->rst_stats.hw_rst_done_cnt;
3516 }
3517 
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3518 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3519 				  unsigned long *supported,
3520 				  unsigned long *advertising)
3521 {
3522 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3523 
3524 	*supported = hdev->hw.mac.supported;
3525 	*advertising = hdev->hw.mac.advertising;
3526 }
3527 
3528 #define MAX_SEPARATE_NUM	4
3529 #define SEPARATOR_VALUE		0xFFFFFFFF
3530 #define REG_NUM_PER_LINE	4
3531 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3532 
hclgevf_get_regs_len(struct hnae3_handle * handle)3533 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3534 {
3535 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3537 
3538 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3539 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3540 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3541 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3542 
3543 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3544 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3545 }
3546 
hclgevf_get_regs(struct hnae3_handle * handle,u32 * version,void * data)3547 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3548 			     void *data)
3549 {
3550 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3551 	int i, j, reg_um, separator_num;
3552 	u32 *reg = data;
3553 
3554 	*version = hdev->fw_version;
3555 
3556 	/* fetching per-VF registers values from VF PCIe register space */
3557 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3558 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3559 	for (i = 0; i < reg_um; i++)
3560 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3561 	for (i = 0; i < separator_num; i++)
3562 		*reg++ = SEPARATOR_VALUE;
3563 
3564 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3565 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3566 	for (i = 0; i < reg_um; i++)
3567 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3568 	for (i = 0; i < separator_num; i++)
3569 		*reg++ = SEPARATOR_VALUE;
3570 
3571 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3572 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3573 	for (j = 0; j < hdev->num_tqps; j++) {
3574 		for (i = 0; i < reg_um; i++)
3575 			*reg++ = hclgevf_read_dev(&hdev->hw,
3576 						  ring_reg_addr_list[i] +
3577 						  0x200 * j);
3578 		for (i = 0; i < separator_num; i++)
3579 			*reg++ = SEPARATOR_VALUE;
3580 	}
3581 
3582 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3583 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3584 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3585 		for (i = 0; i < reg_um; i++)
3586 			*reg++ = hclgevf_read_dev(&hdev->hw,
3587 						  tqp_intr_reg_addr_list[i] +
3588 						  4 * j);
3589 		for (i = 0; i < separator_num; i++)
3590 			*reg++ = SEPARATOR_VALUE;
3591 	}
3592 }
3593 
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,u8 * port_base_vlan_info,u8 data_size)3594 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3595 					u8 *port_base_vlan_info, u8 data_size)
3596 {
3597 	struct hnae3_handle *nic = &hdev->nic;
3598 	struct hclge_vf_to_pf_msg send_msg;
3599 	int ret;
3600 
3601 	rtnl_lock();
3602 
3603 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3604 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3605 		dev_warn(&hdev->pdev->dev,
3606 			 "is resetting when updating port based vlan info\n");
3607 		rtnl_unlock();
3608 		return;
3609 	}
3610 
3611 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3612 	if (ret) {
3613 		rtnl_unlock();
3614 		return;
3615 	}
3616 
3617 	/* send msg to PF and wait update port based vlan info */
3618 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3619 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3620 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3621 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3622 	if (!ret) {
3623 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3624 			nic->port_base_vlan_state = state;
3625 		else
3626 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3627 	}
3628 
3629 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3630 	rtnl_unlock();
3631 }
3632 
3633 static const struct hnae3_ae_ops hclgevf_ops = {
3634 	.init_ae_dev = hclgevf_init_ae_dev,
3635 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3636 	.flr_prepare = hclgevf_flr_prepare,
3637 	.flr_done = hclgevf_flr_done,
3638 	.init_client_instance = hclgevf_init_client_instance,
3639 	.uninit_client_instance = hclgevf_uninit_client_instance,
3640 	.start = hclgevf_ae_start,
3641 	.stop = hclgevf_ae_stop,
3642 	.client_start = hclgevf_client_start,
3643 	.client_stop = hclgevf_client_stop,
3644 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3645 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3646 	.get_vector = hclgevf_get_vector,
3647 	.put_vector = hclgevf_put_vector,
3648 	.reset_queue = hclgevf_reset_tqp,
3649 	.get_mac_addr = hclgevf_get_mac_addr,
3650 	.set_mac_addr = hclgevf_set_mac_addr,
3651 	.add_uc_addr = hclgevf_add_uc_addr,
3652 	.rm_uc_addr = hclgevf_rm_uc_addr,
3653 	.add_mc_addr = hclgevf_add_mc_addr,
3654 	.rm_mc_addr = hclgevf_rm_mc_addr,
3655 	.get_stats = hclgevf_get_stats,
3656 	.update_stats = hclgevf_update_stats,
3657 	.get_strings = hclgevf_get_strings,
3658 	.get_sset_count = hclgevf_get_sset_count,
3659 	.get_rss_key_size = hclgevf_get_rss_key_size,
3660 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3661 	.get_rss = hclgevf_get_rss,
3662 	.set_rss = hclgevf_set_rss,
3663 	.get_rss_tuple = hclgevf_get_rss_tuple,
3664 	.set_rss_tuple = hclgevf_set_rss_tuple,
3665 	.get_tc_size = hclgevf_get_tc_size,
3666 	.get_fw_version = hclgevf_get_fw_version,
3667 	.set_vlan_filter = hclgevf_set_vlan_filter,
3668 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3669 	.reset_event = hclgevf_reset_event,
3670 	.set_default_reset_request = hclgevf_set_def_reset_request,
3671 	.set_channels = hclgevf_set_channels,
3672 	.get_channels = hclgevf_get_channels,
3673 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3674 	.get_regs_len = hclgevf_get_regs_len,
3675 	.get_regs = hclgevf_get_regs,
3676 	.get_status = hclgevf_get_status,
3677 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3678 	.get_media_type = hclgevf_get_media_type,
3679 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3680 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3681 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3682 	.set_gro_en = hclgevf_gro_en,
3683 	.set_mtu = hclgevf_set_mtu,
3684 	.get_global_queue_id = hclgevf_get_qid_global,
3685 	.set_timer_task = hclgevf_set_timer_task,
3686 	.get_link_mode = hclgevf_get_link_mode,
3687 	.set_promisc_mode = hclgevf_set_promisc_mode,
3688 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3689 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3690 };
3691 
3692 static struct hnae3_ae_algo ae_algovf = {
3693 	.ops = &hclgevf_ops,
3694 	.pdev_id_table = ae_algovf_pci_tbl,
3695 };
3696 
hclgevf_init(void)3697 static int hclgevf_init(void)
3698 {
3699 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3700 
3701 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3702 	if (!hclgevf_wq) {
3703 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3704 		return -ENOMEM;
3705 	}
3706 
3707 	hnae3_register_ae_algo(&ae_algovf);
3708 
3709 	return 0;
3710 }
3711 
hclgevf_exit(void)3712 static void hclgevf_exit(void)
3713 {
3714 	hnae3_unregister_ae_algo(&ae_algovf);
3715 	destroy_workqueue(hclgevf_wq);
3716 }
3717 module_init(hclgevf_init);
3718 module_exit(hclgevf_exit);
3719 
3720 MODULE_LICENSE("GPL");
3721 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3722 MODULE_DESCRIPTION("HCLGEVF Driver");
3723 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3724