1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52 struct workqueue_struct *iavf_wq;
53
54 /**
55 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
56 * @hw: pointer to the HW structure
57 * @mem: ptr to mem struct to fill out
58 * @size: size of memory requested
59 * @alignment: what to align the allocation to
60 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)61 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
62 struct iavf_dma_mem *mem,
63 u64 size, u32 alignment)
64 {
65 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
66
67 if (!mem)
68 return IAVF_ERR_PARAM;
69
70 mem->size = ALIGN(size, alignment);
71 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
72 (dma_addr_t *)&mem->pa, GFP_KERNEL);
73 if (mem->va)
74 return 0;
75 else
76 return IAVF_ERR_NO_MEMORY;
77 }
78
79 /**
80 * iavf_free_dma_mem_d - OS specific memory free for shared code
81 * @hw: pointer to the HW structure
82 * @mem: ptr to mem struct to free
83 **/
iavf_free_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem)84 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
85 struct iavf_dma_mem *mem)
86 {
87 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
88
89 if (!mem || !mem->va)
90 return IAVF_ERR_PARAM;
91 dma_free_coherent(&adapter->pdev->dev, mem->size,
92 mem->va, (dma_addr_t)mem->pa);
93 return 0;
94 }
95
96 /**
97 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
98 * @hw: pointer to the HW structure
99 * @mem: ptr to mem struct to fill out
100 * @size: size of memory requested
101 **/
iavf_allocate_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)102 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
103 struct iavf_virt_mem *mem, u32 size)
104 {
105 if (!mem)
106 return IAVF_ERR_PARAM;
107
108 mem->size = size;
109 mem->va = kzalloc(size, GFP_KERNEL);
110
111 if (mem->va)
112 return 0;
113 else
114 return IAVF_ERR_NO_MEMORY;
115 }
116
117 /**
118 * iavf_free_virt_mem_d - OS specific memory free for shared code
119 * @hw: pointer to the HW structure
120 * @mem: ptr to mem struct to free
121 **/
iavf_free_virt_mem_d(struct iavf_hw * hw,struct iavf_virt_mem * mem)122 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
123 struct iavf_virt_mem *mem)
124 {
125 if (!mem)
126 return IAVF_ERR_PARAM;
127
128 /* it's ok to kfree a NULL pointer */
129 kfree(mem->va);
130
131 return 0;
132 }
133
134 /**
135 * iavf_lock_timeout - try to set bit but give up after timeout
136 * @adapter: board private structure
137 * @bit: bit to set
138 * @msecs: timeout in msecs
139 *
140 * Returns 0 on success, negative on failure
141 **/
iavf_lock_timeout(struct iavf_adapter * adapter,enum iavf_critical_section_t bit,unsigned int msecs)142 static int iavf_lock_timeout(struct iavf_adapter *adapter,
143 enum iavf_critical_section_t bit,
144 unsigned int msecs)
145 {
146 unsigned int wait, delay = 10;
147
148 for (wait = 0; wait < msecs; wait += delay) {
149 if (!test_and_set_bit(bit, &adapter->crit_section))
150 return 0;
151
152 msleep(delay);
153 }
154
155 return -1;
156 }
157
158 /**
159 * iavf_schedule_reset - Set the flags and schedule a reset event
160 * @adapter: board private structure
161 **/
iavf_schedule_reset(struct iavf_adapter * adapter)162 void iavf_schedule_reset(struct iavf_adapter *adapter)
163 {
164 if (!(adapter->flags &
165 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
166 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
167 queue_work(iavf_wq, &adapter->reset_task);
168 }
169 }
170
171 /**
172 * iavf_tx_timeout - Respond to a Tx Hang
173 * @netdev: network interface device structure
174 * @txqueue: queue number that is timing out
175 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)176 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
177 {
178 struct iavf_adapter *adapter = netdev_priv(netdev);
179
180 adapter->tx_timeout_count++;
181 iavf_schedule_reset(adapter);
182 }
183
184 /**
185 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
186 * @adapter: board private structure
187 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)188 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
189 {
190 struct iavf_hw *hw = &adapter->hw;
191
192 if (!adapter->msix_entries)
193 return;
194
195 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
196
197 iavf_flush(hw);
198
199 synchronize_irq(adapter->msix_entries[0].vector);
200 }
201
202 /**
203 * iavf_misc_irq_enable - Enable default interrupt generation settings
204 * @adapter: board private structure
205 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)206 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
207 {
208 struct iavf_hw *hw = &adapter->hw;
209
210 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
211 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
212 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
213
214 iavf_flush(hw);
215 }
216
217 /**
218 * iavf_irq_disable - Mask off interrupt generation on the NIC
219 * @adapter: board private structure
220 **/
iavf_irq_disable(struct iavf_adapter * adapter)221 static void iavf_irq_disable(struct iavf_adapter *adapter)
222 {
223 int i;
224 struct iavf_hw *hw = &adapter->hw;
225
226 if (!adapter->msix_entries)
227 return;
228
229 for (i = 1; i < adapter->num_msix_vectors; i++) {
230 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
231 synchronize_irq(adapter->msix_entries[i].vector);
232 }
233 iavf_flush(hw);
234 }
235
236 /**
237 * iavf_irq_enable_queues - Enable interrupt for specified queues
238 * @adapter: board private structure
239 * @mask: bitmap of queues to enable
240 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter,u32 mask)241 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
242 {
243 struct iavf_hw *hw = &adapter->hw;
244 int i;
245
246 for (i = 1; i < adapter->num_msix_vectors; i++) {
247 if (mask & BIT(i - 1)) {
248 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
249 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
250 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
251 }
252 }
253 }
254
255 /**
256 * iavf_irq_enable - Enable default interrupt generation settings
257 * @adapter: board private structure
258 * @flush: boolean value whether to run rd32()
259 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)260 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
261 {
262 struct iavf_hw *hw = &adapter->hw;
263
264 iavf_misc_irq_enable(adapter);
265 iavf_irq_enable_queues(adapter, ~0);
266
267 if (flush)
268 iavf_flush(hw);
269 }
270
271 /**
272 * iavf_msix_aq - Interrupt handler for vector 0
273 * @irq: interrupt number
274 * @data: pointer to netdev
275 **/
iavf_msix_aq(int irq,void * data)276 static irqreturn_t iavf_msix_aq(int irq, void *data)
277 {
278 struct net_device *netdev = data;
279 struct iavf_adapter *adapter = netdev_priv(netdev);
280 struct iavf_hw *hw = &adapter->hw;
281
282 /* handle non-queue interrupts, these reads clear the registers */
283 rd32(hw, IAVF_VFINT_ICR01);
284 rd32(hw, IAVF_VFINT_ICR0_ENA1);
285
286 /* schedule work on the private workqueue */
287 queue_work(iavf_wq, &adapter->adminq_task);
288
289 return IRQ_HANDLED;
290 }
291
292 /**
293 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
294 * @irq: interrupt number
295 * @data: pointer to a q_vector
296 **/
iavf_msix_clean_rings(int irq,void * data)297 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
298 {
299 struct iavf_q_vector *q_vector = data;
300
301 if (!q_vector->tx.ring && !q_vector->rx.ring)
302 return IRQ_HANDLED;
303
304 napi_schedule_irqoff(&q_vector->napi);
305
306 return IRQ_HANDLED;
307 }
308
309 /**
310 * iavf_map_vector_to_rxq - associate irqs with rx queues
311 * @adapter: board private structure
312 * @v_idx: interrupt number
313 * @r_idx: queue number
314 **/
315 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)316 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
317 {
318 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
319 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
320 struct iavf_hw *hw = &adapter->hw;
321
322 rx_ring->q_vector = q_vector;
323 rx_ring->next = q_vector->rx.ring;
324 rx_ring->vsi = &adapter->vsi;
325 q_vector->rx.ring = rx_ring;
326 q_vector->rx.count++;
327 q_vector->rx.next_update = jiffies + 1;
328 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
329 q_vector->ring_mask |= BIT(r_idx);
330 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
331 q_vector->rx.current_itr >> 1);
332 q_vector->rx.current_itr = q_vector->rx.target_itr;
333 }
334
335 /**
336 * iavf_map_vector_to_txq - associate irqs with tx queues
337 * @adapter: board private structure
338 * @v_idx: interrupt number
339 * @t_idx: queue number
340 **/
341 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)342 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
343 {
344 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
345 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
346 struct iavf_hw *hw = &adapter->hw;
347
348 tx_ring->q_vector = q_vector;
349 tx_ring->next = q_vector->tx.ring;
350 tx_ring->vsi = &adapter->vsi;
351 q_vector->tx.ring = tx_ring;
352 q_vector->tx.count++;
353 q_vector->tx.next_update = jiffies + 1;
354 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
355 q_vector->num_ringpairs++;
356 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
357 q_vector->tx.target_itr >> 1);
358 q_vector->tx.current_itr = q_vector->tx.target_itr;
359 }
360
361 /**
362 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
363 * @adapter: board private structure to initialize
364 *
365 * This function maps descriptor rings to the queue-specific vectors
366 * we were allotted through the MSI-X enabling code. Ideally, we'd have
367 * one vector per ring/queue, but on a constrained vector budget, we
368 * group the rings as "efficiently" as possible. You would add new
369 * mapping configurations in here.
370 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)371 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
372 {
373 int rings_remaining = adapter->num_active_queues;
374 int ridx = 0, vidx = 0;
375 int q_vectors;
376
377 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
378
379 for (; ridx < rings_remaining; ridx++) {
380 iavf_map_vector_to_rxq(adapter, vidx, ridx);
381 iavf_map_vector_to_txq(adapter, vidx, ridx);
382
383 /* In the case where we have more queues than vectors, continue
384 * round-robin on vectors until all queues are mapped.
385 */
386 if (++vidx >= q_vectors)
387 vidx = 0;
388 }
389
390 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
391 }
392
393 /**
394 * iavf_irq_affinity_notify - Callback for affinity changes
395 * @notify: context as to what irq was changed
396 * @mask: the new affinity mask
397 *
398 * This is a callback function used by the irq_set_affinity_notifier function
399 * so that we may register to receive changes to the irq affinity masks.
400 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)401 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
402 const cpumask_t *mask)
403 {
404 struct iavf_q_vector *q_vector =
405 container_of(notify, struct iavf_q_vector, affinity_notify);
406
407 cpumask_copy(&q_vector->affinity_mask, mask);
408 }
409
410 /**
411 * iavf_irq_affinity_release - Callback for affinity notifier release
412 * @ref: internal core kernel usage
413 *
414 * This is a callback function used by the irq_set_affinity_notifier function
415 * to inform the current notification subscriber that they will no longer
416 * receive notifications.
417 **/
iavf_irq_affinity_release(struct kref * ref)418 static void iavf_irq_affinity_release(struct kref *ref) {}
419
420 /**
421 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
422 * @adapter: board private structure
423 * @basename: device basename
424 *
425 * Allocates MSI-X vectors for tx and rx handling, and requests
426 * interrupts from the kernel.
427 **/
428 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)429 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
430 {
431 unsigned int vector, q_vectors;
432 unsigned int rx_int_idx = 0, tx_int_idx = 0;
433 int irq_num, err;
434 int cpu;
435
436 iavf_irq_disable(adapter);
437 /* Decrement for Other and TCP Timer vectors */
438 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
439
440 for (vector = 0; vector < q_vectors; vector++) {
441 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
442
443 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
444
445 if (q_vector->tx.ring && q_vector->rx.ring) {
446 snprintf(q_vector->name, sizeof(q_vector->name),
447 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
448 tx_int_idx++;
449 } else if (q_vector->rx.ring) {
450 snprintf(q_vector->name, sizeof(q_vector->name),
451 "iavf-%s-rx-%d", basename, rx_int_idx++);
452 } else if (q_vector->tx.ring) {
453 snprintf(q_vector->name, sizeof(q_vector->name),
454 "iavf-%s-tx-%d", basename, tx_int_idx++);
455 } else {
456 /* skip this unused q_vector */
457 continue;
458 }
459 err = request_irq(irq_num,
460 iavf_msix_clean_rings,
461 0,
462 q_vector->name,
463 q_vector);
464 if (err) {
465 dev_info(&adapter->pdev->dev,
466 "Request_irq failed, error: %d\n", err);
467 goto free_queue_irqs;
468 }
469 /* register for affinity change notifications */
470 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
471 q_vector->affinity_notify.release =
472 iavf_irq_affinity_release;
473 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
474 /* Spread the IRQ affinity hints across online CPUs. Note that
475 * get_cpu_mask returns a mask with a permanent lifetime so
476 * it's safe to use as a hint for irq_set_affinity_hint.
477 */
478 cpu = cpumask_local_spread(q_vector->v_idx, -1);
479 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
480 }
481
482 return 0;
483
484 free_queue_irqs:
485 while (vector) {
486 vector--;
487 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
488 irq_set_affinity_notifier(irq_num, NULL);
489 irq_set_affinity_hint(irq_num, NULL);
490 free_irq(irq_num, &adapter->q_vectors[vector]);
491 }
492 return err;
493 }
494
495 /**
496 * iavf_request_misc_irq - Initialize MSI-X interrupts
497 * @adapter: board private structure
498 *
499 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
500 * vector is only for the admin queue, and stays active even when the netdev
501 * is closed.
502 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)503 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
504 {
505 struct net_device *netdev = adapter->netdev;
506 int err;
507
508 snprintf(adapter->misc_vector_name,
509 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
510 dev_name(&adapter->pdev->dev));
511 err = request_irq(adapter->msix_entries[0].vector,
512 &iavf_msix_aq, 0,
513 adapter->misc_vector_name, netdev);
514 if (err) {
515 dev_err(&adapter->pdev->dev,
516 "request_irq for %s failed: %d\n",
517 adapter->misc_vector_name, err);
518 free_irq(adapter->msix_entries[0].vector, netdev);
519 }
520 return err;
521 }
522
523 /**
524 * iavf_free_traffic_irqs - Free MSI-X interrupts
525 * @adapter: board private structure
526 *
527 * Frees all MSI-X vectors other than 0.
528 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)529 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
530 {
531 int vector, irq_num, q_vectors;
532
533 if (!adapter->msix_entries)
534 return;
535
536 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
537
538 for (vector = 0; vector < q_vectors; vector++) {
539 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
540 irq_set_affinity_notifier(irq_num, NULL);
541 irq_set_affinity_hint(irq_num, NULL);
542 free_irq(irq_num, &adapter->q_vectors[vector]);
543 }
544 }
545
546 /**
547 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
548 * @adapter: board private structure
549 *
550 * Frees MSI-X vector 0.
551 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)552 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
553 {
554 struct net_device *netdev = adapter->netdev;
555
556 if (!adapter->msix_entries)
557 return;
558
559 free_irq(adapter->msix_entries[0].vector, netdev);
560 }
561
562 /**
563 * iavf_configure_tx - Configure Transmit Unit after Reset
564 * @adapter: board private structure
565 *
566 * Configure the Tx unit of the MAC after a reset.
567 **/
iavf_configure_tx(struct iavf_adapter * adapter)568 static void iavf_configure_tx(struct iavf_adapter *adapter)
569 {
570 struct iavf_hw *hw = &adapter->hw;
571 int i;
572
573 for (i = 0; i < adapter->num_active_queues; i++)
574 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
575 }
576
577 /**
578 * iavf_configure_rx - Configure Receive Unit after Reset
579 * @adapter: board private structure
580 *
581 * Configure the Rx unit of the MAC after a reset.
582 **/
iavf_configure_rx(struct iavf_adapter * adapter)583 static void iavf_configure_rx(struct iavf_adapter *adapter)
584 {
585 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
586 struct iavf_hw *hw = &adapter->hw;
587 int i;
588
589 /* Legacy Rx will always default to a 2048 buffer size. */
590 #if (PAGE_SIZE < 8192)
591 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
592 struct net_device *netdev = adapter->netdev;
593
594 /* For jumbo frames on systems with 4K pages we have to use
595 * an order 1 page, so we might as well increase the size
596 * of our Rx buffer to make better use of the available space
597 */
598 rx_buf_len = IAVF_RXBUFFER_3072;
599
600 /* We use a 1536 buffer size for configurations with
601 * standard Ethernet mtu. On x86 this gives us enough room
602 * for shared info and 192 bytes of padding.
603 */
604 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
605 (netdev->mtu <= ETH_DATA_LEN))
606 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
607 }
608 #endif
609
610 for (i = 0; i < adapter->num_active_queues; i++) {
611 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
612 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
613
614 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
615 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
616 else
617 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
618 }
619 }
620
621 /**
622 * iavf_find_vlan - Search filter list for specific vlan filter
623 * @adapter: board private structure
624 * @vlan: vlan tag
625 *
626 * Returns ptr to the filter object or NULL. Must be called while holding the
627 * mac_vlan_list_lock.
628 **/
629 static struct
iavf_find_vlan(struct iavf_adapter * adapter,u16 vlan)630 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
631 {
632 struct iavf_vlan_filter *f;
633
634 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
635 if (vlan == f->vlan)
636 return f;
637 }
638 return NULL;
639 }
640
641 /**
642 * iavf_add_vlan - Add a vlan filter to the list
643 * @adapter: board private structure
644 * @vlan: VLAN tag
645 *
646 * Returns ptr to the filter object or NULL when no memory available.
647 **/
648 static struct
iavf_add_vlan(struct iavf_adapter * adapter,u16 vlan)649 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
650 {
651 struct iavf_vlan_filter *f = NULL;
652
653 spin_lock_bh(&adapter->mac_vlan_list_lock);
654
655 f = iavf_find_vlan(adapter, vlan);
656 if (!f) {
657 f = kzalloc(sizeof(*f), GFP_ATOMIC);
658 if (!f)
659 goto clearout;
660
661 f->vlan = vlan;
662
663 list_add_tail(&f->list, &adapter->vlan_filter_list);
664 f->add = true;
665 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
666 }
667
668 clearout:
669 spin_unlock_bh(&adapter->mac_vlan_list_lock);
670 return f;
671 }
672
673 /**
674 * iavf_del_vlan - Remove a vlan filter from the list
675 * @adapter: board private structure
676 * @vlan: VLAN tag
677 **/
iavf_del_vlan(struct iavf_adapter * adapter,u16 vlan)678 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
679 {
680 struct iavf_vlan_filter *f;
681
682 spin_lock_bh(&adapter->mac_vlan_list_lock);
683
684 f = iavf_find_vlan(adapter, vlan);
685 if (f) {
686 f->remove = true;
687 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
688 }
689
690 spin_unlock_bh(&adapter->mac_vlan_list_lock);
691 }
692
693 /**
694 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
695 * @netdev: network device struct
696 * @proto: unused protocol data
697 * @vid: VLAN tag
698 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)699 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
700 __always_unused __be16 proto, u16 vid)
701 {
702 struct iavf_adapter *adapter = netdev_priv(netdev);
703
704 if (!VLAN_ALLOWED(adapter))
705 return -EIO;
706 if (iavf_add_vlan(adapter, vid) == NULL)
707 return -ENOMEM;
708 return 0;
709 }
710
711 /**
712 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
713 * @netdev: network device struct
714 * @proto: unused protocol data
715 * @vid: VLAN tag
716 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)717 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
718 __always_unused __be16 proto, u16 vid)
719 {
720 struct iavf_adapter *adapter = netdev_priv(netdev);
721
722 if (VLAN_ALLOWED(adapter)) {
723 iavf_del_vlan(adapter, vid);
724 return 0;
725 }
726 return -EIO;
727 }
728
729 /**
730 * iavf_find_filter - Search filter list for specific mac filter
731 * @adapter: board private structure
732 * @macaddr: the MAC address
733 *
734 * Returns ptr to the filter object or NULL. Must be called while holding the
735 * mac_vlan_list_lock.
736 **/
737 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)738 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
739 const u8 *macaddr)
740 {
741 struct iavf_mac_filter *f;
742
743 if (!macaddr)
744 return NULL;
745
746 list_for_each_entry(f, &adapter->mac_filter_list, list) {
747 if (ether_addr_equal(macaddr, f->macaddr))
748 return f;
749 }
750 return NULL;
751 }
752
753 /**
754 * iavf_add_filter - Add a mac filter to the filter list
755 * @adapter: board private structure
756 * @macaddr: the MAC address
757 *
758 * Returns ptr to the filter object or NULL when no memory available.
759 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)760 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
761 const u8 *macaddr)
762 {
763 struct iavf_mac_filter *f;
764
765 if (!macaddr)
766 return NULL;
767
768 f = iavf_find_filter(adapter, macaddr);
769 if (!f) {
770 f = kzalloc(sizeof(*f), GFP_ATOMIC);
771 if (!f)
772 return f;
773
774 ether_addr_copy(f->macaddr, macaddr);
775
776 list_add_tail(&f->list, &adapter->mac_filter_list);
777 f->add = true;
778 f->is_new_mac = true;
779 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
780 } else {
781 f->remove = false;
782 }
783
784 return f;
785 }
786
787 /**
788 * iavf_set_mac - NDO callback to set port mac address
789 * @netdev: network interface device structure
790 * @p: pointer to an address structure
791 *
792 * Returns 0 on success, negative on failure
793 **/
iavf_set_mac(struct net_device * netdev,void * p)794 static int iavf_set_mac(struct net_device *netdev, void *p)
795 {
796 struct iavf_adapter *adapter = netdev_priv(netdev);
797 struct iavf_hw *hw = &adapter->hw;
798 struct iavf_mac_filter *f;
799 struct sockaddr *addr = p;
800
801 if (!is_valid_ether_addr(addr->sa_data))
802 return -EADDRNOTAVAIL;
803
804 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
805 return 0;
806
807 spin_lock_bh(&adapter->mac_vlan_list_lock);
808
809 f = iavf_find_filter(adapter, hw->mac.addr);
810 if (f) {
811 f->remove = true;
812 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
813 }
814
815 f = iavf_add_filter(adapter, addr->sa_data);
816
817 spin_unlock_bh(&adapter->mac_vlan_list_lock);
818
819 if (f) {
820 ether_addr_copy(hw->mac.addr, addr->sa_data);
821 }
822
823 return (f == NULL) ? -ENOMEM : 0;
824 }
825
826 /**
827 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
828 * @netdev: the netdevice
829 * @addr: address to add
830 *
831 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
832 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
833 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)834 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
835 {
836 struct iavf_adapter *adapter = netdev_priv(netdev);
837
838 if (iavf_add_filter(adapter, addr))
839 return 0;
840 else
841 return -ENOMEM;
842 }
843
844 /**
845 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
846 * @netdev: the netdevice
847 * @addr: address to add
848 *
849 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
850 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
851 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)852 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
853 {
854 struct iavf_adapter *adapter = netdev_priv(netdev);
855 struct iavf_mac_filter *f;
856
857 /* Under some circumstances, we might receive a request to delete
858 * our own device address from our uc list. Because we store the
859 * device address in the VSI's MAC/VLAN filter list, we need to ignore
860 * such requests and not delete our device address from this list.
861 */
862 if (ether_addr_equal(addr, netdev->dev_addr))
863 return 0;
864
865 f = iavf_find_filter(adapter, addr);
866 if (f) {
867 f->remove = true;
868 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
869 }
870 return 0;
871 }
872
873 /**
874 * iavf_set_rx_mode - NDO callback to set the netdev filters
875 * @netdev: network interface device structure
876 **/
iavf_set_rx_mode(struct net_device * netdev)877 static void iavf_set_rx_mode(struct net_device *netdev)
878 {
879 struct iavf_adapter *adapter = netdev_priv(netdev);
880
881 spin_lock_bh(&adapter->mac_vlan_list_lock);
882 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
883 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
884 spin_unlock_bh(&adapter->mac_vlan_list_lock);
885
886 if (netdev->flags & IFF_PROMISC &&
887 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
888 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
889 else if (!(netdev->flags & IFF_PROMISC) &&
890 adapter->flags & IAVF_FLAG_PROMISC_ON)
891 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
892
893 if (netdev->flags & IFF_ALLMULTI &&
894 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
895 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
896 else if (!(netdev->flags & IFF_ALLMULTI) &&
897 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
898 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
899 }
900
901 /**
902 * iavf_napi_enable_all - enable NAPI on all queue vectors
903 * @adapter: board private structure
904 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)905 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
906 {
907 int q_idx;
908 struct iavf_q_vector *q_vector;
909 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
910
911 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
912 struct napi_struct *napi;
913
914 q_vector = &adapter->q_vectors[q_idx];
915 napi = &q_vector->napi;
916 napi_enable(napi);
917 }
918 }
919
920 /**
921 * iavf_napi_disable_all - disable NAPI on all queue vectors
922 * @adapter: board private structure
923 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)924 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
925 {
926 int q_idx;
927 struct iavf_q_vector *q_vector;
928 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
929
930 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
931 q_vector = &adapter->q_vectors[q_idx];
932 napi_disable(&q_vector->napi);
933 }
934 }
935
936 /**
937 * iavf_configure - set up transmit and receive data structures
938 * @adapter: board private structure
939 **/
iavf_configure(struct iavf_adapter * adapter)940 static void iavf_configure(struct iavf_adapter *adapter)
941 {
942 struct net_device *netdev = adapter->netdev;
943 int i;
944
945 iavf_set_rx_mode(netdev);
946
947 iavf_configure_tx(adapter);
948 iavf_configure_rx(adapter);
949 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
950
951 for (i = 0; i < adapter->num_active_queues; i++) {
952 struct iavf_ring *ring = &adapter->rx_rings[i];
953
954 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
955 }
956 }
957
958 /**
959 * iavf_up_complete - Finish the last steps of bringing up a connection
960 * @adapter: board private structure
961 *
962 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
963 **/
iavf_up_complete(struct iavf_adapter * adapter)964 static void iavf_up_complete(struct iavf_adapter *adapter)
965 {
966 adapter->state = __IAVF_RUNNING;
967 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
968
969 iavf_napi_enable_all(adapter);
970
971 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
972 if (CLIENT_ENABLED(adapter))
973 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
974 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
975 }
976
977 /**
978 * iavf_down - Shutdown the connection processing
979 * @adapter: board private structure
980 *
981 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
982 **/
iavf_down(struct iavf_adapter * adapter)983 void iavf_down(struct iavf_adapter *adapter)
984 {
985 struct net_device *netdev = adapter->netdev;
986 struct iavf_vlan_filter *vlf;
987 struct iavf_mac_filter *f;
988 struct iavf_cloud_filter *cf;
989
990 if (adapter->state <= __IAVF_DOWN_PENDING)
991 return;
992
993 netif_carrier_off(netdev);
994 netif_tx_disable(netdev);
995 adapter->link_up = false;
996 iavf_napi_disable_all(adapter);
997 iavf_irq_disable(adapter);
998
999 spin_lock_bh(&adapter->mac_vlan_list_lock);
1000
1001 /* clear the sync flag on all filters */
1002 __dev_uc_unsync(adapter->netdev, NULL);
1003 __dev_mc_unsync(adapter->netdev, NULL);
1004
1005 /* remove all MAC filters */
1006 list_for_each_entry(f, &adapter->mac_filter_list, list) {
1007 f->remove = true;
1008 }
1009
1010 /* remove all VLAN filters */
1011 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1012 vlf->remove = true;
1013 }
1014
1015 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1016
1017 /* remove all cloud filters */
1018 spin_lock_bh(&adapter->cloud_filter_list_lock);
1019 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1020 cf->del = true;
1021 }
1022 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1023
1024 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1025 adapter->state != __IAVF_RESETTING) {
1026 /* cancel any current operation */
1027 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1028 /* Schedule operations to close down the HW. Don't wait
1029 * here for this to complete. The watchdog is still running
1030 * and it will take care of this.
1031 */
1032 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1033 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1034 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1035 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1036 }
1037
1038 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1039 }
1040
1041 /**
1042 * iavf_acquire_msix_vectors - Setup the MSIX capability
1043 * @adapter: board private structure
1044 * @vectors: number of vectors to request
1045 *
1046 * Work with the OS to set up the MSIX vectors needed.
1047 *
1048 * Returns 0 on success, negative on failure
1049 **/
1050 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1051 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1052 {
1053 int err, vector_threshold;
1054
1055 /* We'll want at least 3 (vector_threshold):
1056 * 0) Other (Admin Queue and link, mostly)
1057 * 1) TxQ[0] Cleanup
1058 * 2) RxQ[0] Cleanup
1059 */
1060 vector_threshold = MIN_MSIX_COUNT;
1061
1062 /* The more we get, the more we will assign to Tx/Rx Cleanup
1063 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1064 * Right now, we simply care about how many we'll get; we'll
1065 * set them up later while requesting irq's.
1066 */
1067 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1068 vector_threshold, vectors);
1069 if (err < 0) {
1070 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1071 kfree(adapter->msix_entries);
1072 adapter->msix_entries = NULL;
1073 return err;
1074 }
1075
1076 /* Adjust for only the vectors we'll use, which is minimum
1077 * of max_msix_q_vectors + NONQ_VECS, or the number of
1078 * vectors we were allocated.
1079 */
1080 adapter->num_msix_vectors = err;
1081 return 0;
1082 }
1083
1084 /**
1085 * iavf_free_queues - Free memory for all rings
1086 * @adapter: board private structure to initialize
1087 *
1088 * Free all of the memory associated with queue pairs.
1089 **/
iavf_free_queues(struct iavf_adapter * adapter)1090 static void iavf_free_queues(struct iavf_adapter *adapter)
1091 {
1092 if (!adapter->vsi_res)
1093 return;
1094 adapter->num_active_queues = 0;
1095 kfree(adapter->tx_rings);
1096 adapter->tx_rings = NULL;
1097 kfree(adapter->rx_rings);
1098 adapter->rx_rings = NULL;
1099 }
1100
1101 /**
1102 * iavf_alloc_queues - Allocate memory for all rings
1103 * @adapter: board private structure to initialize
1104 *
1105 * We allocate one ring per queue at run-time since we don't know the
1106 * number of queues at compile-time. The polling_netdev array is
1107 * intended for Multiqueue, but should work fine with a single queue.
1108 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1109 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1110 {
1111 int i, num_active_queues;
1112
1113 /* If we're in reset reallocating queues we don't actually know yet for
1114 * certain the PF gave us the number of queues we asked for but we'll
1115 * assume it did. Once basic reset is finished we'll confirm once we
1116 * start negotiating config with PF.
1117 */
1118 if (adapter->num_req_queues)
1119 num_active_queues = adapter->num_req_queues;
1120 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1121 adapter->num_tc)
1122 num_active_queues = adapter->ch_config.total_qps;
1123 else
1124 num_active_queues = min_t(int,
1125 adapter->vsi_res->num_queue_pairs,
1126 (int)(num_online_cpus()));
1127
1128
1129 adapter->tx_rings = kcalloc(num_active_queues,
1130 sizeof(struct iavf_ring), GFP_KERNEL);
1131 if (!adapter->tx_rings)
1132 goto err_out;
1133 adapter->rx_rings = kcalloc(num_active_queues,
1134 sizeof(struct iavf_ring), GFP_KERNEL);
1135 if (!adapter->rx_rings)
1136 goto err_out;
1137
1138 for (i = 0; i < num_active_queues; i++) {
1139 struct iavf_ring *tx_ring;
1140 struct iavf_ring *rx_ring;
1141
1142 tx_ring = &adapter->tx_rings[i];
1143
1144 tx_ring->queue_index = i;
1145 tx_ring->netdev = adapter->netdev;
1146 tx_ring->dev = &adapter->pdev->dev;
1147 tx_ring->count = adapter->tx_desc_count;
1148 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1149 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1150 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1151
1152 rx_ring = &adapter->rx_rings[i];
1153 rx_ring->queue_index = i;
1154 rx_ring->netdev = adapter->netdev;
1155 rx_ring->dev = &adapter->pdev->dev;
1156 rx_ring->count = adapter->rx_desc_count;
1157 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1158 }
1159
1160 adapter->num_active_queues = num_active_queues;
1161
1162 return 0;
1163
1164 err_out:
1165 iavf_free_queues(adapter);
1166 return -ENOMEM;
1167 }
1168
1169 /**
1170 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1171 * @adapter: board private structure to initialize
1172 *
1173 * Attempt to configure the interrupts using the best available
1174 * capabilities of the hardware and the kernel.
1175 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1176 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1177 {
1178 int vector, v_budget;
1179 int pairs = 0;
1180 int err = 0;
1181
1182 if (!adapter->vsi_res) {
1183 err = -EIO;
1184 goto out;
1185 }
1186 pairs = adapter->num_active_queues;
1187
1188 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1189 * us much good if we have more vectors than CPUs. However, we already
1190 * limit the total number of queues by the number of CPUs so we do not
1191 * need any further limiting here.
1192 */
1193 v_budget = min_t(int, pairs + NONQ_VECS,
1194 (int)adapter->vf_res->max_vectors);
1195
1196 adapter->msix_entries = kcalloc(v_budget,
1197 sizeof(struct msix_entry), GFP_KERNEL);
1198 if (!adapter->msix_entries) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
1202
1203 for (vector = 0; vector < v_budget; vector++)
1204 adapter->msix_entries[vector].entry = vector;
1205
1206 err = iavf_acquire_msix_vectors(adapter, v_budget);
1207
1208 out:
1209 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1210 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1211 return err;
1212 }
1213
1214 /**
1215 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1216 * @adapter: board private structure
1217 *
1218 * Return 0 on success, negative on failure
1219 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1220 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1221 {
1222 struct iavf_aqc_get_set_rss_key_data *rss_key =
1223 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1224 struct iavf_hw *hw = &adapter->hw;
1225 int ret = 0;
1226
1227 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1228 /* bail because we already have a command pending */
1229 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1230 adapter->current_op);
1231 return -EBUSY;
1232 }
1233
1234 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1235 if (ret) {
1236 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1237 iavf_stat_str(hw, ret),
1238 iavf_aq_str(hw, hw->aq.asq_last_status));
1239 return ret;
1240
1241 }
1242
1243 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1244 adapter->rss_lut, adapter->rss_lut_size);
1245 if (ret) {
1246 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1247 iavf_stat_str(hw, ret),
1248 iavf_aq_str(hw, hw->aq.asq_last_status));
1249 }
1250
1251 return ret;
1252
1253 }
1254
1255 /**
1256 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1257 * @adapter: board private structure
1258 *
1259 * Returns 0 on success, negative on failure
1260 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1261 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1262 {
1263 struct iavf_hw *hw = &adapter->hw;
1264 u32 *dw;
1265 u16 i;
1266
1267 dw = (u32 *)adapter->rss_key;
1268 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1269 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1270
1271 dw = (u32 *)adapter->rss_lut;
1272 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1273 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1274
1275 iavf_flush(hw);
1276
1277 return 0;
1278 }
1279
1280 /**
1281 * iavf_config_rss - Configure RSS keys and lut
1282 * @adapter: board private structure
1283 *
1284 * Returns 0 on success, negative on failure
1285 **/
iavf_config_rss(struct iavf_adapter * adapter)1286 int iavf_config_rss(struct iavf_adapter *adapter)
1287 {
1288
1289 if (RSS_PF(adapter)) {
1290 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1291 IAVF_FLAG_AQ_SET_RSS_KEY;
1292 return 0;
1293 } else if (RSS_AQ(adapter)) {
1294 return iavf_config_rss_aq(adapter);
1295 } else {
1296 return iavf_config_rss_reg(adapter);
1297 }
1298 }
1299
1300 /**
1301 * iavf_fill_rss_lut - Fill the lut with default values
1302 * @adapter: board private structure
1303 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1304 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1305 {
1306 u16 i;
1307
1308 for (i = 0; i < adapter->rss_lut_size; i++)
1309 adapter->rss_lut[i] = i % adapter->num_active_queues;
1310 }
1311
1312 /**
1313 * iavf_init_rss - Prepare for RSS
1314 * @adapter: board private structure
1315 *
1316 * Return 0 on success, negative on failure
1317 **/
iavf_init_rss(struct iavf_adapter * adapter)1318 static int iavf_init_rss(struct iavf_adapter *adapter)
1319 {
1320 struct iavf_hw *hw = &adapter->hw;
1321 int ret;
1322
1323 if (!RSS_PF(adapter)) {
1324 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1325 if (adapter->vf_res->vf_cap_flags &
1326 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1327 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1328 else
1329 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1330
1331 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1332 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1333 }
1334
1335 iavf_fill_rss_lut(adapter);
1336 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1337 ret = iavf_config_rss(adapter);
1338
1339 return ret;
1340 }
1341
1342 /**
1343 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1344 * @adapter: board private structure to initialize
1345 *
1346 * We allocate one q_vector per queue interrupt. If allocation fails we
1347 * return -ENOMEM.
1348 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1349 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1350 {
1351 int q_idx = 0, num_q_vectors;
1352 struct iavf_q_vector *q_vector;
1353
1354 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1355 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1356 GFP_KERNEL);
1357 if (!adapter->q_vectors)
1358 return -ENOMEM;
1359
1360 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1361 q_vector = &adapter->q_vectors[q_idx];
1362 q_vector->adapter = adapter;
1363 q_vector->vsi = &adapter->vsi;
1364 q_vector->v_idx = q_idx;
1365 q_vector->reg_idx = q_idx;
1366 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1367 netif_napi_add(adapter->netdev, &q_vector->napi,
1368 iavf_napi_poll, NAPI_POLL_WEIGHT);
1369 }
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1376 * @adapter: board private structure to initialize
1377 *
1378 * This function frees the memory allocated to the q_vectors. In addition if
1379 * NAPI is enabled it will delete any references to the NAPI struct prior
1380 * to freeing the q_vector.
1381 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1382 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1383 {
1384 int q_idx, num_q_vectors;
1385 int napi_vectors;
1386
1387 if (!adapter->q_vectors)
1388 return;
1389
1390 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1391 napi_vectors = adapter->num_active_queues;
1392
1393 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1394 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1395
1396 if (q_idx < napi_vectors)
1397 netif_napi_del(&q_vector->napi);
1398 }
1399 kfree(adapter->q_vectors);
1400 adapter->q_vectors = NULL;
1401 }
1402
1403 /**
1404 * iavf_reset_interrupt_capability - Reset MSIX setup
1405 * @adapter: board private structure
1406 *
1407 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1408 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1409 {
1410 if (!adapter->msix_entries)
1411 return;
1412
1413 pci_disable_msix(adapter->pdev);
1414 kfree(adapter->msix_entries);
1415 adapter->msix_entries = NULL;
1416 }
1417
1418 /**
1419 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1420 * @adapter: board private structure to initialize
1421 *
1422 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1423 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1424 {
1425 int err;
1426
1427 err = iavf_alloc_queues(adapter);
1428 if (err) {
1429 dev_err(&adapter->pdev->dev,
1430 "Unable to allocate memory for queues\n");
1431 goto err_alloc_queues;
1432 }
1433
1434 rtnl_lock();
1435 err = iavf_set_interrupt_capability(adapter);
1436 rtnl_unlock();
1437 if (err) {
1438 dev_err(&adapter->pdev->dev,
1439 "Unable to setup interrupt capabilities\n");
1440 goto err_set_interrupt;
1441 }
1442
1443 err = iavf_alloc_q_vectors(adapter);
1444 if (err) {
1445 dev_err(&adapter->pdev->dev,
1446 "Unable to allocate memory for queue vectors\n");
1447 goto err_alloc_q_vectors;
1448 }
1449
1450 /* If we've made it so far while ADq flag being ON, then we haven't
1451 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1452 * resources have been allocated in the reset path.
1453 * Now we can truly claim that ADq is enabled.
1454 */
1455 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1456 adapter->num_tc)
1457 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1458 adapter->num_tc);
1459
1460 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1461 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1462 adapter->num_active_queues);
1463
1464 return 0;
1465 err_alloc_q_vectors:
1466 iavf_reset_interrupt_capability(adapter);
1467 err_set_interrupt:
1468 iavf_free_queues(adapter);
1469 err_alloc_queues:
1470 return err;
1471 }
1472
1473 /**
1474 * iavf_free_rss - Free memory used by RSS structs
1475 * @adapter: board private structure
1476 **/
iavf_free_rss(struct iavf_adapter * adapter)1477 static void iavf_free_rss(struct iavf_adapter *adapter)
1478 {
1479 kfree(adapter->rss_key);
1480 adapter->rss_key = NULL;
1481
1482 kfree(adapter->rss_lut);
1483 adapter->rss_lut = NULL;
1484 }
1485
1486 /**
1487 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1488 * @adapter: board private structure
1489 *
1490 * Returns 0 on success, negative on failure
1491 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter)1492 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1493 {
1494 struct net_device *netdev = adapter->netdev;
1495 int err;
1496
1497 if (netif_running(netdev))
1498 iavf_free_traffic_irqs(adapter);
1499 iavf_free_misc_irq(adapter);
1500 iavf_reset_interrupt_capability(adapter);
1501 iavf_free_q_vectors(adapter);
1502 iavf_free_queues(adapter);
1503
1504 err = iavf_init_interrupt_scheme(adapter);
1505 if (err)
1506 goto err;
1507
1508 netif_tx_stop_all_queues(netdev);
1509
1510 err = iavf_request_misc_irq(adapter);
1511 if (err)
1512 goto err;
1513
1514 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1515
1516 iavf_map_rings_to_vectors(adapter);
1517 err:
1518 return err;
1519 }
1520
1521 /**
1522 * iavf_process_aq_command - process aq_required flags
1523 * and sends aq command
1524 * @adapter: pointer to iavf adapter structure
1525 *
1526 * Returns 0 on success
1527 * Returns error code if no command was sent
1528 * or error code if the command failed.
1529 **/
iavf_process_aq_command(struct iavf_adapter * adapter)1530 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1531 {
1532 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1533 return iavf_send_vf_config_msg(adapter);
1534 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1535 iavf_disable_queues(adapter);
1536 return 0;
1537 }
1538
1539 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1540 iavf_map_queues(adapter);
1541 return 0;
1542 }
1543
1544 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1545 iavf_add_ether_addrs(adapter);
1546 return 0;
1547 }
1548
1549 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1550 iavf_add_vlans(adapter);
1551 return 0;
1552 }
1553
1554 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1555 iavf_del_ether_addrs(adapter);
1556 return 0;
1557 }
1558
1559 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1560 iavf_del_vlans(adapter);
1561 return 0;
1562 }
1563
1564 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1565 iavf_enable_vlan_stripping(adapter);
1566 return 0;
1567 }
1568
1569 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1570 iavf_disable_vlan_stripping(adapter);
1571 return 0;
1572 }
1573
1574 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1575 iavf_configure_queues(adapter);
1576 return 0;
1577 }
1578
1579 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1580 iavf_enable_queues(adapter);
1581 return 0;
1582 }
1583
1584 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1585 /* This message goes straight to the firmware, not the
1586 * PF, so we don't have to set current_op as we will
1587 * not get a response through the ARQ.
1588 */
1589 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1590 return 0;
1591 }
1592 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1593 iavf_get_hena(adapter);
1594 return 0;
1595 }
1596 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1597 iavf_set_hena(adapter);
1598 return 0;
1599 }
1600 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1601 iavf_set_rss_key(adapter);
1602 return 0;
1603 }
1604 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1605 iavf_set_rss_lut(adapter);
1606 return 0;
1607 }
1608
1609 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1610 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1611 FLAG_VF_MULTICAST_PROMISC);
1612 return 0;
1613 }
1614
1615 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1616 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1617 return 0;
1618 }
1619 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
1620 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1621 iavf_set_promiscuous(adapter, 0);
1622 return 0;
1623 }
1624
1625 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1626 iavf_enable_channels(adapter);
1627 return 0;
1628 }
1629
1630 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1631 iavf_disable_channels(adapter);
1632 return 0;
1633 }
1634 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1635 iavf_add_cloud_filter(adapter);
1636 return 0;
1637 }
1638
1639 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1640 iavf_del_cloud_filter(adapter);
1641 return 0;
1642 }
1643 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1644 iavf_del_cloud_filter(adapter);
1645 return 0;
1646 }
1647 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1648 iavf_add_cloud_filter(adapter);
1649 return 0;
1650 }
1651 return -EAGAIN;
1652 }
1653
1654 /**
1655 * iavf_startup - first step of driver startup
1656 * @adapter: board private structure
1657 *
1658 * Function process __IAVF_STARTUP driver state.
1659 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1660 * when fails it returns -EAGAIN
1661 **/
iavf_startup(struct iavf_adapter * adapter)1662 static int iavf_startup(struct iavf_adapter *adapter)
1663 {
1664 struct pci_dev *pdev = adapter->pdev;
1665 struct iavf_hw *hw = &adapter->hw;
1666 int err;
1667
1668 WARN_ON(adapter->state != __IAVF_STARTUP);
1669
1670 /* driver loaded, probe complete */
1671 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1672 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1673 err = iavf_set_mac_type(hw);
1674 if (err) {
1675 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1676 goto err;
1677 }
1678
1679 err = iavf_check_reset_complete(hw);
1680 if (err) {
1681 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1682 err);
1683 goto err;
1684 }
1685 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1686 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1687 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1688 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1689
1690 err = iavf_init_adminq(hw);
1691 if (err) {
1692 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1693 goto err;
1694 }
1695 err = iavf_send_api_ver(adapter);
1696 if (err) {
1697 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1698 iavf_shutdown_adminq(hw);
1699 goto err;
1700 }
1701 adapter->state = __IAVF_INIT_VERSION_CHECK;
1702 err:
1703 return err;
1704 }
1705
1706 /**
1707 * iavf_init_version_check - second step of driver startup
1708 * @adapter: board private structure
1709 *
1710 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1711 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1712 * when fails it returns -EAGAIN
1713 **/
iavf_init_version_check(struct iavf_adapter * adapter)1714 static int iavf_init_version_check(struct iavf_adapter *adapter)
1715 {
1716 struct pci_dev *pdev = adapter->pdev;
1717 struct iavf_hw *hw = &adapter->hw;
1718 int err = -EAGAIN;
1719
1720 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1721
1722 if (!iavf_asq_done(hw)) {
1723 dev_err(&pdev->dev, "Admin queue command never completed\n");
1724 iavf_shutdown_adminq(hw);
1725 adapter->state = __IAVF_STARTUP;
1726 goto err;
1727 }
1728
1729 /* aq msg sent, awaiting reply */
1730 err = iavf_verify_api_ver(adapter);
1731 if (err) {
1732 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1733 err = iavf_send_api_ver(adapter);
1734 else
1735 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1736 adapter->pf_version.major,
1737 adapter->pf_version.minor,
1738 VIRTCHNL_VERSION_MAJOR,
1739 VIRTCHNL_VERSION_MINOR);
1740 goto err;
1741 }
1742 err = iavf_send_vf_config_msg(adapter);
1743 if (err) {
1744 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1745 err);
1746 goto err;
1747 }
1748 adapter->state = __IAVF_INIT_GET_RESOURCES;
1749
1750 err:
1751 return err;
1752 }
1753
1754 /**
1755 * iavf_init_get_resources - third step of driver startup
1756 * @adapter: board private structure
1757 *
1758 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1759 * finishes driver initialization procedure.
1760 * When success the state is changed to __IAVF_DOWN
1761 * when fails it returns -EAGAIN
1762 **/
iavf_init_get_resources(struct iavf_adapter * adapter)1763 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1764 {
1765 struct net_device *netdev = adapter->netdev;
1766 struct pci_dev *pdev = adapter->pdev;
1767 struct iavf_hw *hw = &adapter->hw;
1768 int err;
1769
1770 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1771 /* aq msg sent, awaiting reply */
1772 if (!adapter->vf_res) {
1773 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
1774 GFP_KERNEL);
1775 if (!adapter->vf_res) {
1776 err = -ENOMEM;
1777 goto err;
1778 }
1779 }
1780 err = iavf_get_vf_config(adapter);
1781 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1782 err = iavf_send_vf_config_msg(adapter);
1783 goto err;
1784 } else if (err == IAVF_ERR_PARAM) {
1785 /* We only get ERR_PARAM if the device is in a very bad
1786 * state or if we've been disabled for previous bad
1787 * behavior. Either way, we're done now.
1788 */
1789 iavf_shutdown_adminq(hw);
1790 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1791 return 0;
1792 }
1793 if (err) {
1794 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1795 goto err_alloc;
1796 }
1797
1798 err = iavf_process_config(adapter);
1799 if (err)
1800 goto err_alloc;
1801 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1802
1803 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1804
1805 netdev->netdev_ops = &iavf_netdev_ops;
1806 iavf_set_ethtool_ops(netdev);
1807 netdev->watchdog_timeo = 5 * HZ;
1808
1809 /* MTU range: 68 - 9710 */
1810 netdev->min_mtu = ETH_MIN_MTU;
1811 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1812
1813 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1814 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1815 adapter->hw.mac.addr);
1816 eth_hw_addr_random(netdev);
1817 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1818 } else {
1819 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1820 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1821 }
1822
1823 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1824 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1825 err = iavf_init_interrupt_scheme(adapter);
1826 if (err)
1827 goto err_sw_init;
1828 iavf_map_rings_to_vectors(adapter);
1829 if (adapter->vf_res->vf_cap_flags &
1830 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1831 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1832
1833 err = iavf_request_misc_irq(adapter);
1834 if (err)
1835 goto err_sw_init;
1836
1837 netif_carrier_off(netdev);
1838 adapter->link_up = false;
1839
1840 /* set the semaphore to prevent any callbacks after device registration
1841 * up to time when state of driver will be set to __IAVF_DOWN
1842 */
1843 rtnl_lock();
1844 if (!adapter->netdev_registered) {
1845 err = register_netdevice(netdev);
1846 if (err) {
1847 rtnl_unlock();
1848 goto err_register;
1849 }
1850 }
1851
1852 adapter->netdev_registered = true;
1853
1854 netif_tx_stop_all_queues(netdev);
1855 if (CLIENT_ALLOWED(adapter)) {
1856 err = iavf_lan_add_device(adapter);
1857 if (err)
1858 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1859 err);
1860 }
1861 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1862 if (netdev->features & NETIF_F_GRO)
1863 dev_info(&pdev->dev, "GRO is enabled\n");
1864
1865 adapter->state = __IAVF_DOWN;
1866 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1867 rtnl_unlock();
1868
1869 iavf_misc_irq_enable(adapter);
1870 wake_up(&adapter->down_waitqueue);
1871
1872 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1873 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1874 if (!adapter->rss_key || !adapter->rss_lut) {
1875 err = -ENOMEM;
1876 goto err_mem;
1877 }
1878 if (RSS_AQ(adapter))
1879 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1880 else
1881 iavf_init_rss(adapter);
1882
1883 return err;
1884 err_mem:
1885 iavf_free_rss(adapter);
1886 err_register:
1887 iavf_free_misc_irq(adapter);
1888 err_sw_init:
1889 iavf_reset_interrupt_capability(adapter);
1890 err_alloc:
1891 kfree(adapter->vf_res);
1892 adapter->vf_res = NULL;
1893 err:
1894 return err;
1895 }
1896
1897 /**
1898 * iavf_watchdog_task - Periodic call-back task
1899 * @work: pointer to work_struct
1900 **/
iavf_watchdog_task(struct work_struct * work)1901 static void iavf_watchdog_task(struct work_struct *work)
1902 {
1903 struct iavf_adapter *adapter = container_of(work,
1904 struct iavf_adapter,
1905 watchdog_task.work);
1906 struct iavf_hw *hw = &adapter->hw;
1907 u32 reg_val;
1908
1909 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1910 goto restart_watchdog;
1911
1912 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1913 adapter->state = __IAVF_COMM_FAILED;
1914
1915 switch (adapter->state) {
1916 case __IAVF_COMM_FAILED:
1917 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1918 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1919 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1920 reg_val == VIRTCHNL_VFR_COMPLETED) {
1921 /* A chance for redemption! */
1922 dev_err(&adapter->pdev->dev,
1923 "Hardware came out of reset. Attempting reinit.\n");
1924 adapter->state = __IAVF_STARTUP;
1925 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1926 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1927 clear_bit(__IAVF_IN_CRITICAL_TASK,
1928 &adapter->crit_section);
1929 /* Don't reschedule the watchdog, since we've restarted
1930 * the init task. When init_task contacts the PF and
1931 * gets everything set up again, it'll restart the
1932 * watchdog for us. Down, boy. Sit. Stay. Woof.
1933 */
1934 return;
1935 }
1936 adapter->aq_required = 0;
1937 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1938 clear_bit(__IAVF_IN_CRITICAL_TASK,
1939 &adapter->crit_section);
1940 queue_delayed_work(iavf_wq,
1941 &adapter->watchdog_task,
1942 msecs_to_jiffies(10));
1943 goto watchdog_done;
1944 case __IAVF_RESETTING:
1945 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1946 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1947 return;
1948 case __IAVF_DOWN:
1949 case __IAVF_DOWN_PENDING:
1950 case __IAVF_TESTING:
1951 case __IAVF_RUNNING:
1952 if (adapter->current_op) {
1953 if (!iavf_asq_done(hw)) {
1954 dev_dbg(&adapter->pdev->dev,
1955 "Admin queue timeout\n");
1956 iavf_send_api_ver(adapter);
1957 }
1958 } else {
1959 /* An error will be returned if no commands were
1960 * processed; use this opportunity to update stats
1961 */
1962 if (iavf_process_aq_command(adapter) &&
1963 adapter->state == __IAVF_RUNNING)
1964 iavf_request_stats(adapter);
1965 }
1966 break;
1967 case __IAVF_REMOVE:
1968 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1969 return;
1970 default:
1971 goto restart_watchdog;
1972 }
1973
1974 /* check for hw reset */
1975 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1976 if (!reg_val) {
1977 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1978 adapter->aq_required = 0;
1979 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1980 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1981 queue_work(iavf_wq, &adapter->reset_task);
1982 goto watchdog_done;
1983 }
1984
1985 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1986 watchdog_done:
1987 if (adapter->state == __IAVF_RUNNING ||
1988 adapter->state == __IAVF_COMM_FAILED)
1989 iavf_detect_recover_hung(&adapter->vsi);
1990 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1991 restart_watchdog:
1992 if (adapter->aq_required)
1993 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1994 msecs_to_jiffies(20));
1995 else
1996 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1997 queue_work(iavf_wq, &adapter->adminq_task);
1998 }
1999
iavf_disable_vf(struct iavf_adapter * adapter)2000 static void iavf_disable_vf(struct iavf_adapter *adapter)
2001 {
2002 struct iavf_mac_filter *f, *ftmp;
2003 struct iavf_vlan_filter *fv, *fvtmp;
2004 struct iavf_cloud_filter *cf, *cftmp;
2005
2006 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2007
2008 /* We don't use netif_running() because it may be true prior to
2009 * ndo_open() returning, so we can't assume it means all our open
2010 * tasks have finished, since we're not holding the rtnl_lock here.
2011 */
2012 if (adapter->state == __IAVF_RUNNING) {
2013 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2014 netif_carrier_off(adapter->netdev);
2015 netif_tx_disable(adapter->netdev);
2016 adapter->link_up = false;
2017 iavf_napi_disable_all(adapter);
2018 iavf_irq_disable(adapter);
2019 iavf_free_traffic_irqs(adapter);
2020 iavf_free_all_tx_resources(adapter);
2021 iavf_free_all_rx_resources(adapter);
2022 }
2023
2024 spin_lock_bh(&adapter->mac_vlan_list_lock);
2025
2026 /* Delete all of the filters */
2027 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2028 list_del(&f->list);
2029 kfree(f);
2030 }
2031
2032 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2033 list_del(&fv->list);
2034 kfree(fv);
2035 }
2036
2037 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2038
2039 spin_lock_bh(&adapter->cloud_filter_list_lock);
2040 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2041 list_del(&cf->list);
2042 kfree(cf);
2043 adapter->num_cloud_filters--;
2044 }
2045 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2046
2047 iavf_free_misc_irq(adapter);
2048 iavf_reset_interrupt_capability(adapter);
2049 iavf_free_q_vectors(adapter);
2050 iavf_free_queues(adapter);
2051 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2052 iavf_shutdown_adminq(&adapter->hw);
2053 adapter->netdev->flags &= ~IFF_UP;
2054 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2055 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2056 adapter->state = __IAVF_DOWN;
2057 wake_up(&adapter->down_waitqueue);
2058 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2059 }
2060
2061 /**
2062 * iavf_reset_task - Call-back task to handle hardware reset
2063 * @work: pointer to work_struct
2064 *
2065 * During reset we need to shut down and reinitialize the admin queue
2066 * before we can use it to communicate with the PF again. We also clear
2067 * and reinit the rings because that context is lost as well.
2068 **/
iavf_reset_task(struct work_struct * work)2069 static void iavf_reset_task(struct work_struct *work)
2070 {
2071 struct iavf_adapter *adapter = container_of(work,
2072 struct iavf_adapter,
2073 reset_task);
2074 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2075 struct net_device *netdev = adapter->netdev;
2076 struct iavf_hw *hw = &adapter->hw;
2077 struct iavf_mac_filter *f, *ftmp;
2078 struct iavf_vlan_filter *vlf;
2079 struct iavf_cloud_filter *cf;
2080 u32 reg_val;
2081 int i = 0, err;
2082 bool running;
2083
2084 /* When device is being removed it doesn't make sense to run the reset
2085 * task, just return in such a case.
2086 */
2087 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2088 return;
2089
2090 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200)) {
2091 schedule_work(&adapter->reset_task);
2092 return;
2093 }
2094 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2095 &adapter->crit_section))
2096 usleep_range(500, 1000);
2097 if (CLIENT_ENABLED(adapter)) {
2098 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2099 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2100 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2101 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2102 cancel_delayed_work_sync(&adapter->client_task);
2103 iavf_notify_client_close(&adapter->vsi, true);
2104 }
2105 iavf_misc_irq_disable(adapter);
2106 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2107 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2108 /* Restart the AQ here. If we have been reset but didn't
2109 * detect it, or if the PF had to reinit, our AQ will be hosed.
2110 */
2111 iavf_shutdown_adminq(hw);
2112 iavf_init_adminq(hw);
2113 iavf_request_reset(adapter);
2114 }
2115 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2116
2117 /* poll until we see the reset actually happen */
2118 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
2119 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2120 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2121 if (!reg_val)
2122 break;
2123 usleep_range(5000, 10000);
2124 }
2125 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
2126 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2127 goto continue_reset; /* act like the reset happened */
2128 }
2129
2130 /* wait until the reset is complete and the PF is responding to us */
2131 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
2132 /* sleep first to make sure a minimum wait time is met */
2133 msleep(IAVF_RESET_WAIT_MS);
2134
2135 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2136 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2137 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2138 break;
2139 }
2140
2141 pci_set_master(adapter->pdev);
2142 pci_restore_msi_state(adapter->pdev);
2143
2144 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
2145 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2146 reg_val);
2147 iavf_disable_vf(adapter);
2148 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2149 return; /* Do not attempt to reinit. It's dead, Jim. */
2150 }
2151
2152 continue_reset:
2153 /* We don't use netif_running() because it may be true prior to
2154 * ndo_open() returning, so we can't assume it means all our open
2155 * tasks have finished, since we're not holding the rtnl_lock here.
2156 */
2157 running = ((adapter->state == __IAVF_RUNNING) ||
2158 (adapter->state == __IAVF_RESETTING));
2159
2160 if (running) {
2161 netif_carrier_off(netdev);
2162 netif_tx_stop_all_queues(netdev);
2163 adapter->link_up = false;
2164 iavf_napi_disable_all(adapter);
2165 }
2166 iavf_irq_disable(adapter);
2167
2168 adapter->state = __IAVF_RESETTING;
2169 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2170
2171 /* free the Tx/Rx rings and descriptors, might be better to just
2172 * re-use them sometime in the future
2173 */
2174 iavf_free_all_rx_resources(adapter);
2175 iavf_free_all_tx_resources(adapter);
2176
2177 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2178 /* kill and reinit the admin queue */
2179 iavf_shutdown_adminq(hw);
2180 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2181 err = iavf_init_adminq(hw);
2182 if (err)
2183 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2184 err);
2185 adapter->aq_required = 0;
2186
2187 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2188 err = iavf_reinit_interrupt_scheme(adapter);
2189 if (err)
2190 goto reset_err;
2191 }
2192
2193 if (RSS_AQ(adapter)) {
2194 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2195 } else {
2196 err = iavf_init_rss(adapter);
2197 if (err)
2198 goto reset_err;
2199 }
2200
2201 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2202 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2203
2204 spin_lock_bh(&adapter->mac_vlan_list_lock);
2205
2206 /* Delete filter for the current MAC address, it could have
2207 * been changed by the PF via administratively set MAC.
2208 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
2209 */
2210 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2211 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
2212 list_del(&f->list);
2213 kfree(f);
2214 }
2215 }
2216 /* re-add all MAC filters */
2217 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2218 f->add = true;
2219 }
2220 /* re-add all VLAN filters */
2221 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2222 vlf->add = true;
2223 }
2224
2225 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2226
2227 /* check if TCs are running and re-add all cloud filters */
2228 spin_lock_bh(&adapter->cloud_filter_list_lock);
2229 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2230 adapter->num_tc) {
2231 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2232 cf->add = true;
2233 }
2234 }
2235 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2236
2237 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2238 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2239 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2240 iavf_misc_irq_enable(adapter);
2241
2242 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2243
2244 /* We were running when the reset started, so we need to restore some
2245 * state here.
2246 */
2247 if (running) {
2248 /* allocate transmit descriptors */
2249 err = iavf_setup_all_tx_resources(adapter);
2250 if (err)
2251 goto reset_err;
2252
2253 /* allocate receive descriptors */
2254 err = iavf_setup_all_rx_resources(adapter);
2255 if (err)
2256 goto reset_err;
2257
2258 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2259 err = iavf_request_traffic_irqs(adapter, netdev->name);
2260 if (err)
2261 goto reset_err;
2262
2263 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2264 }
2265
2266 iavf_configure(adapter);
2267
2268 iavf_up_complete(adapter);
2269
2270 iavf_irq_enable(adapter, true);
2271 } else {
2272 adapter->state = __IAVF_DOWN;
2273 wake_up(&adapter->down_waitqueue);
2274 }
2275 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2276 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2277
2278 return;
2279 reset_err:
2280 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2281 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2282 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2283 iavf_close(netdev);
2284 }
2285
2286 /**
2287 * iavf_adminq_task - worker thread to clean the admin queue
2288 * @work: pointer to work_struct containing our data
2289 **/
iavf_adminq_task(struct work_struct * work)2290 static void iavf_adminq_task(struct work_struct *work)
2291 {
2292 struct iavf_adapter *adapter =
2293 container_of(work, struct iavf_adapter, adminq_task);
2294 struct iavf_hw *hw = &adapter->hw;
2295 struct iavf_arq_event_info event;
2296 enum virtchnl_ops v_op;
2297 enum iavf_status ret, v_ret;
2298 u32 val, oldval;
2299 u16 pending;
2300
2301 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2302 goto out;
2303
2304 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2305 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2306 if (!event.msg_buf)
2307 goto out;
2308
2309 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 200))
2310 goto freedom;
2311 do {
2312 ret = iavf_clean_arq_element(hw, &event, &pending);
2313 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2314 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2315
2316 if (ret || !v_op)
2317 break; /* No event to process or error cleaning ARQ */
2318
2319 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2320 event.msg_len);
2321 if (pending != 0)
2322 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2323 } while (pending);
2324 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2325
2326 if ((adapter->flags &
2327 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2328 adapter->state == __IAVF_RESETTING)
2329 goto freedom;
2330
2331 /* check for error indications */
2332 val = rd32(hw, hw->aq.arq.len);
2333 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
2334 goto freedom;
2335 oldval = val;
2336 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2337 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2338 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2339 }
2340 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2341 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2342 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2343 }
2344 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2345 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2346 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2347 }
2348 if (oldval != val)
2349 wr32(hw, hw->aq.arq.len, val);
2350
2351 val = rd32(hw, hw->aq.asq.len);
2352 oldval = val;
2353 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2354 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2355 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2356 }
2357 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2358 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2359 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2360 }
2361 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2362 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2363 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2364 }
2365 if (oldval != val)
2366 wr32(hw, hw->aq.asq.len, val);
2367
2368 freedom:
2369 kfree(event.msg_buf);
2370 out:
2371 /* re-enable Admin queue interrupt cause */
2372 iavf_misc_irq_enable(adapter);
2373 }
2374
2375 /**
2376 * iavf_client_task - worker thread to perform client work
2377 * @work: pointer to work_struct containing our data
2378 *
2379 * This task handles client interactions. Because client calls can be
2380 * reentrant, we can't handle them in the watchdog.
2381 **/
iavf_client_task(struct work_struct * work)2382 static void iavf_client_task(struct work_struct *work)
2383 {
2384 struct iavf_adapter *adapter =
2385 container_of(work, struct iavf_adapter, client_task.work);
2386
2387 /* If we can't get the client bit, just give up. We'll be rescheduled
2388 * later.
2389 */
2390
2391 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2392 return;
2393
2394 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2395 iavf_client_subtask(adapter);
2396 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2397 goto out;
2398 }
2399 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2400 iavf_notify_client_l2_params(&adapter->vsi);
2401 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2402 goto out;
2403 }
2404 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2405 iavf_notify_client_close(&adapter->vsi, false);
2406 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2407 goto out;
2408 }
2409 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2410 iavf_notify_client_open(&adapter->vsi);
2411 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2412 }
2413 out:
2414 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2415 }
2416
2417 /**
2418 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2419 * @adapter: board private structure
2420 *
2421 * Free all transmit software resources
2422 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)2423 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2424 {
2425 int i;
2426
2427 if (!adapter->tx_rings)
2428 return;
2429
2430 for (i = 0; i < adapter->num_active_queues; i++)
2431 if (adapter->tx_rings[i].desc)
2432 iavf_free_tx_resources(&adapter->tx_rings[i]);
2433 }
2434
2435 /**
2436 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2437 * @adapter: board private structure
2438 *
2439 * If this function returns with an error, then it's possible one or
2440 * more of the rings is populated (while the rest are not). It is the
2441 * callers duty to clean those orphaned rings.
2442 *
2443 * Return 0 on success, negative on failure
2444 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)2445 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2446 {
2447 int i, err = 0;
2448
2449 for (i = 0; i < adapter->num_active_queues; i++) {
2450 adapter->tx_rings[i].count = adapter->tx_desc_count;
2451 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2452 if (!err)
2453 continue;
2454 dev_err(&adapter->pdev->dev,
2455 "Allocation for Tx Queue %u failed\n", i);
2456 break;
2457 }
2458
2459 return err;
2460 }
2461
2462 /**
2463 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2464 * @adapter: board private structure
2465 *
2466 * If this function returns with an error, then it's possible one or
2467 * more of the rings is populated (while the rest are not). It is the
2468 * callers duty to clean those orphaned rings.
2469 *
2470 * Return 0 on success, negative on failure
2471 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)2472 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2473 {
2474 int i, err = 0;
2475
2476 for (i = 0; i < adapter->num_active_queues; i++) {
2477 adapter->rx_rings[i].count = adapter->rx_desc_count;
2478 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2479 if (!err)
2480 continue;
2481 dev_err(&adapter->pdev->dev,
2482 "Allocation for Rx Queue %u failed\n", i);
2483 break;
2484 }
2485 return err;
2486 }
2487
2488 /**
2489 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2490 * @adapter: board private structure
2491 *
2492 * Free all receive software resources
2493 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)2494 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2495 {
2496 int i;
2497
2498 if (!adapter->rx_rings)
2499 return;
2500
2501 for (i = 0; i < adapter->num_active_queues; i++)
2502 if (adapter->rx_rings[i].desc)
2503 iavf_free_rx_resources(&adapter->rx_rings[i]);
2504 }
2505
2506 /**
2507 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2508 * @adapter: board private structure
2509 * @max_tx_rate: max Tx bw for a tc
2510 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)2511 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2512 u64 max_tx_rate)
2513 {
2514 int speed = 0, ret = 0;
2515
2516 if (ADV_LINK_SUPPORT(adapter)) {
2517 if (adapter->link_speed_mbps < U32_MAX) {
2518 speed = adapter->link_speed_mbps;
2519 goto validate_bw;
2520 } else {
2521 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
2522 return -EINVAL;
2523 }
2524 }
2525
2526 switch (adapter->link_speed) {
2527 case VIRTCHNL_LINK_SPEED_40GB:
2528 speed = SPEED_40000;
2529 break;
2530 case VIRTCHNL_LINK_SPEED_25GB:
2531 speed = SPEED_25000;
2532 break;
2533 case VIRTCHNL_LINK_SPEED_20GB:
2534 speed = SPEED_20000;
2535 break;
2536 case VIRTCHNL_LINK_SPEED_10GB:
2537 speed = SPEED_10000;
2538 break;
2539 case VIRTCHNL_LINK_SPEED_5GB:
2540 speed = SPEED_5000;
2541 break;
2542 case VIRTCHNL_LINK_SPEED_2_5GB:
2543 speed = SPEED_2500;
2544 break;
2545 case VIRTCHNL_LINK_SPEED_1GB:
2546 speed = SPEED_1000;
2547 break;
2548 case VIRTCHNL_LINK_SPEED_100MB:
2549 speed = SPEED_100;
2550 break;
2551 default:
2552 break;
2553 }
2554
2555 validate_bw:
2556 if (max_tx_rate > speed) {
2557 dev_err(&adapter->pdev->dev,
2558 "Invalid tx rate specified\n");
2559 ret = -EINVAL;
2560 }
2561
2562 return ret;
2563 }
2564
2565 /**
2566 * iavf_validate_channel_config - validate queue mapping info
2567 * @adapter: board private structure
2568 * @mqprio_qopt: queue parameters
2569 *
2570 * This function validates if the config provided by the user to
2571 * configure queue channels is valid or not. Returns 0 on a valid
2572 * config.
2573 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)2574 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2575 struct tc_mqprio_qopt_offload *mqprio_qopt)
2576 {
2577 u64 total_max_rate = 0;
2578 int i, num_qps = 0;
2579 u64 tx_rate = 0;
2580 int ret = 0;
2581
2582 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2583 mqprio_qopt->qopt.num_tc < 1)
2584 return -EINVAL;
2585
2586 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2587 if (!mqprio_qopt->qopt.count[i] ||
2588 mqprio_qopt->qopt.offset[i] != num_qps)
2589 return -EINVAL;
2590 if (mqprio_qopt->min_rate[i]) {
2591 dev_err(&adapter->pdev->dev,
2592 "Invalid min tx rate (greater than 0) specified\n");
2593 return -EINVAL;
2594 }
2595 /*convert to Mbps */
2596 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2597 IAVF_MBPS_DIVISOR);
2598 total_max_rate += tx_rate;
2599 num_qps += mqprio_qopt->qopt.count[i];
2600 }
2601 if (num_qps > adapter->num_active_queues) {
2602 dev_err(&adapter->pdev->dev,
2603 "Cannot support requested number of queues\n");
2604 return -EINVAL;
2605 }
2606
2607 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2608 return ret;
2609 }
2610
2611 /**
2612 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
2613 * @adapter: board private structure
2614 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)2615 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2616 {
2617 struct iavf_cloud_filter *cf, *cftmp;
2618
2619 spin_lock_bh(&adapter->cloud_filter_list_lock);
2620 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2621 list) {
2622 list_del(&cf->list);
2623 kfree(cf);
2624 adapter->num_cloud_filters--;
2625 }
2626 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2627 }
2628
2629 /**
2630 * __iavf_setup_tc - configure multiple traffic classes
2631 * @netdev: network interface device structure
2632 * @type_data: tc offload data
2633 *
2634 * This function processes the config information provided by the
2635 * user to configure traffic classes/queue channels and packages the
2636 * information to request the PF to setup traffic classes.
2637 *
2638 * Returns 0 on success.
2639 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)2640 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2641 {
2642 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2643 struct iavf_adapter *adapter = netdev_priv(netdev);
2644 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2645 u8 num_tc = 0, total_qps = 0;
2646 int ret = 0, netdev_tc = 0;
2647 u64 max_tx_rate;
2648 u16 mode;
2649 int i;
2650
2651 num_tc = mqprio_qopt->qopt.num_tc;
2652 mode = mqprio_qopt->mode;
2653
2654 /* delete queue_channel */
2655 if (!mqprio_qopt->qopt.hw) {
2656 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2657 /* reset the tc configuration */
2658 netdev_reset_tc(netdev);
2659 adapter->num_tc = 0;
2660 netif_tx_stop_all_queues(netdev);
2661 netif_tx_disable(netdev);
2662 iavf_del_all_cloud_filters(adapter);
2663 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2664 goto exit;
2665 } else {
2666 return -EINVAL;
2667 }
2668 }
2669
2670 /* add queue channel */
2671 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2672 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2673 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2674 return -EOPNOTSUPP;
2675 }
2676 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2677 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2678 return -EINVAL;
2679 }
2680
2681 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2682 if (ret)
2683 return ret;
2684 /* Return if same TC config is requested */
2685 if (adapter->num_tc == num_tc)
2686 return 0;
2687 adapter->num_tc = num_tc;
2688
2689 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2690 if (i < num_tc) {
2691 adapter->ch_config.ch_info[i].count =
2692 mqprio_qopt->qopt.count[i];
2693 adapter->ch_config.ch_info[i].offset =
2694 mqprio_qopt->qopt.offset[i];
2695 total_qps += mqprio_qopt->qopt.count[i];
2696 max_tx_rate = mqprio_qopt->max_rate[i];
2697 /* convert to Mbps */
2698 max_tx_rate = div_u64(max_tx_rate,
2699 IAVF_MBPS_DIVISOR);
2700 adapter->ch_config.ch_info[i].max_tx_rate =
2701 max_tx_rate;
2702 } else {
2703 adapter->ch_config.ch_info[i].count = 1;
2704 adapter->ch_config.ch_info[i].offset = 0;
2705 }
2706 }
2707 adapter->ch_config.total_qps = total_qps;
2708 netif_tx_stop_all_queues(netdev);
2709 netif_tx_disable(netdev);
2710 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2711 netdev_reset_tc(netdev);
2712 /* Report the tc mapping up the stack */
2713 netdev_set_num_tc(adapter->netdev, num_tc);
2714 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2715 u16 qcount = mqprio_qopt->qopt.count[i];
2716 u16 qoffset = mqprio_qopt->qopt.offset[i];
2717
2718 if (i < num_tc)
2719 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2720 qoffset);
2721 }
2722 }
2723 exit:
2724 return ret;
2725 }
2726
2727 /**
2728 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2729 * @adapter: board private structure
2730 * @f: pointer to struct flow_cls_offload
2731 * @filter: pointer to cloud filter structure
2732 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)2733 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2734 struct flow_cls_offload *f,
2735 struct iavf_cloud_filter *filter)
2736 {
2737 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2738 struct flow_dissector *dissector = rule->match.dissector;
2739 u16 n_proto_mask = 0;
2740 u16 n_proto_key = 0;
2741 u8 field_flags = 0;
2742 u16 addr_type = 0;
2743 u16 n_proto = 0;
2744 int i = 0;
2745 struct virtchnl_filter *vf = &filter->f;
2746
2747 if (dissector->used_keys &
2748 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2749 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2750 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2751 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2752 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2753 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2754 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2755 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2756 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2757 dissector->used_keys);
2758 return -EOPNOTSUPP;
2759 }
2760
2761 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2762 struct flow_match_enc_keyid match;
2763
2764 flow_rule_match_enc_keyid(rule, &match);
2765 if (match.mask->keyid != 0)
2766 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2767 }
2768
2769 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2770 struct flow_match_basic match;
2771
2772 flow_rule_match_basic(rule, &match);
2773 n_proto_key = ntohs(match.key->n_proto);
2774 n_proto_mask = ntohs(match.mask->n_proto);
2775
2776 if (n_proto_key == ETH_P_ALL) {
2777 n_proto_key = 0;
2778 n_proto_mask = 0;
2779 }
2780 n_proto = n_proto_key & n_proto_mask;
2781 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2782 return -EINVAL;
2783 if (n_proto == ETH_P_IPV6) {
2784 /* specify flow type as TCP IPv6 */
2785 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2786 }
2787
2788 if (match.key->ip_proto != IPPROTO_TCP) {
2789 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2790 return -EINVAL;
2791 }
2792 }
2793
2794 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2795 struct flow_match_eth_addrs match;
2796
2797 flow_rule_match_eth_addrs(rule, &match);
2798
2799 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2800 if (!is_zero_ether_addr(match.mask->dst)) {
2801 if (is_broadcast_ether_addr(match.mask->dst)) {
2802 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2803 } else {
2804 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2805 match.mask->dst);
2806 return IAVF_ERR_CONFIG;
2807 }
2808 }
2809
2810 if (!is_zero_ether_addr(match.mask->src)) {
2811 if (is_broadcast_ether_addr(match.mask->src)) {
2812 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2813 } else {
2814 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2815 match.mask->src);
2816 return IAVF_ERR_CONFIG;
2817 }
2818 }
2819
2820 if (!is_zero_ether_addr(match.key->dst))
2821 if (is_valid_ether_addr(match.key->dst) ||
2822 is_multicast_ether_addr(match.key->dst)) {
2823 /* set the mask if a valid dst_mac address */
2824 for (i = 0; i < ETH_ALEN; i++)
2825 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2826 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2827 match.key->dst);
2828 }
2829
2830 if (!is_zero_ether_addr(match.key->src))
2831 if (is_valid_ether_addr(match.key->src) ||
2832 is_multicast_ether_addr(match.key->src)) {
2833 /* set the mask if a valid dst_mac address */
2834 for (i = 0; i < ETH_ALEN; i++)
2835 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2836 ether_addr_copy(vf->data.tcp_spec.src_mac,
2837 match.key->src);
2838 }
2839 }
2840
2841 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2842 struct flow_match_vlan match;
2843
2844 flow_rule_match_vlan(rule, &match);
2845 if (match.mask->vlan_id) {
2846 if (match.mask->vlan_id == VLAN_VID_MASK) {
2847 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2848 } else {
2849 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2850 match.mask->vlan_id);
2851 return IAVF_ERR_CONFIG;
2852 }
2853 }
2854 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2855 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2856 }
2857
2858 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2859 struct flow_match_control match;
2860
2861 flow_rule_match_control(rule, &match);
2862 addr_type = match.key->addr_type;
2863 }
2864
2865 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2866 struct flow_match_ipv4_addrs match;
2867
2868 flow_rule_match_ipv4_addrs(rule, &match);
2869 if (match.mask->dst) {
2870 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2871 field_flags |= IAVF_CLOUD_FIELD_IIP;
2872 } else {
2873 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2874 be32_to_cpu(match.mask->dst));
2875 return IAVF_ERR_CONFIG;
2876 }
2877 }
2878
2879 if (match.mask->src) {
2880 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2881 field_flags |= IAVF_CLOUD_FIELD_IIP;
2882 } else {
2883 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2884 be32_to_cpu(match.mask->dst));
2885 return IAVF_ERR_CONFIG;
2886 }
2887 }
2888
2889 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2890 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2891 return IAVF_ERR_CONFIG;
2892 }
2893 if (match.key->dst) {
2894 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2895 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2896 }
2897 if (match.key->src) {
2898 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2899 vf->data.tcp_spec.src_ip[0] = match.key->src;
2900 }
2901 }
2902
2903 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2904 struct flow_match_ipv6_addrs match;
2905
2906 flow_rule_match_ipv6_addrs(rule, &match);
2907
2908 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2909 if (ipv6_addr_any(&match.mask->dst)) {
2910 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2911 IPV6_ADDR_ANY);
2912 return IAVF_ERR_CONFIG;
2913 }
2914
2915 /* src and dest IPv6 address should not be LOOPBACK
2916 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2917 */
2918 if (ipv6_addr_loopback(&match.key->dst) ||
2919 ipv6_addr_loopback(&match.key->src)) {
2920 dev_err(&adapter->pdev->dev,
2921 "ipv6 addr should not be loopback\n");
2922 return IAVF_ERR_CONFIG;
2923 }
2924 if (!ipv6_addr_any(&match.mask->dst) ||
2925 !ipv6_addr_any(&match.mask->src))
2926 field_flags |= IAVF_CLOUD_FIELD_IIP;
2927
2928 for (i = 0; i < 4; i++)
2929 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2930 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2931 sizeof(vf->data.tcp_spec.dst_ip));
2932 for (i = 0; i < 4; i++)
2933 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2934 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2935 sizeof(vf->data.tcp_spec.src_ip));
2936 }
2937 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2938 struct flow_match_ports match;
2939
2940 flow_rule_match_ports(rule, &match);
2941 if (match.mask->src) {
2942 if (match.mask->src == cpu_to_be16(0xffff)) {
2943 field_flags |= IAVF_CLOUD_FIELD_IIP;
2944 } else {
2945 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2946 be16_to_cpu(match.mask->src));
2947 return IAVF_ERR_CONFIG;
2948 }
2949 }
2950
2951 if (match.mask->dst) {
2952 if (match.mask->dst == cpu_to_be16(0xffff)) {
2953 field_flags |= IAVF_CLOUD_FIELD_IIP;
2954 } else {
2955 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2956 be16_to_cpu(match.mask->dst));
2957 return IAVF_ERR_CONFIG;
2958 }
2959 }
2960 if (match.key->dst) {
2961 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2962 vf->data.tcp_spec.dst_port = match.key->dst;
2963 }
2964
2965 if (match.key->src) {
2966 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2967 vf->data.tcp_spec.src_port = match.key->src;
2968 }
2969 }
2970 vf->field_flags = field_flags;
2971
2972 return 0;
2973 }
2974
2975 /**
2976 * iavf_handle_tclass - Forward to a traffic class on the device
2977 * @adapter: board private structure
2978 * @tc: traffic class index on the device
2979 * @filter: pointer to cloud filter structure
2980 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)2981 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2982 struct iavf_cloud_filter *filter)
2983 {
2984 if (tc == 0)
2985 return 0;
2986 if (tc < adapter->num_tc) {
2987 if (!filter->f.data.tcp_spec.dst_port) {
2988 dev_err(&adapter->pdev->dev,
2989 "Specify destination port to redirect to traffic class other than TC0\n");
2990 return -EINVAL;
2991 }
2992 }
2993 /* redirect to a traffic class on the same device */
2994 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2995 filter->f.action_meta = tc;
2996 return 0;
2997 }
2998
2999 /**
3000 * iavf_configure_clsflower - Add tc flower filters
3001 * @adapter: board private structure
3002 * @cls_flower: Pointer to struct flow_cls_offload
3003 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3004 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
3005 struct flow_cls_offload *cls_flower)
3006 {
3007 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
3008 struct iavf_cloud_filter *filter = NULL;
3009 int err = -EINVAL, count = 50;
3010
3011 if (tc < 0) {
3012 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
3013 return -EINVAL;
3014 }
3015
3016 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
3017 if (!filter)
3018 return -ENOMEM;
3019
3020 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3021 &adapter->crit_section)) {
3022 if (--count == 0)
3023 goto err;
3024 udelay(1);
3025 }
3026
3027 filter->cookie = cls_flower->cookie;
3028
3029 /* set the mask to all zeroes to begin with */
3030 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
3031 /* start out with flow type and eth type IPv4 to begin with */
3032 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
3033 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
3034 if (err)
3035 goto err;
3036
3037 err = iavf_handle_tclass(adapter, tc, filter);
3038 if (err)
3039 goto err;
3040
3041 /* add filter to the list */
3042 spin_lock_bh(&adapter->cloud_filter_list_lock);
3043 list_add_tail(&filter->list, &adapter->cloud_filter_list);
3044 adapter->num_cloud_filters++;
3045 filter->add = true;
3046 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3047 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3048 err:
3049 if (err)
3050 kfree(filter);
3051
3052 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3053 return err;
3054 }
3055
3056 /* iavf_find_cf - Find the cloud filter in the list
3057 * @adapter: Board private structure
3058 * @cookie: filter specific cookie
3059 *
3060 * Returns ptr to the filter object or NULL. Must be called while holding the
3061 * cloud_filter_list_lock.
3062 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)3063 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3064 unsigned long *cookie)
3065 {
3066 struct iavf_cloud_filter *filter = NULL;
3067
3068 if (!cookie)
3069 return NULL;
3070
3071 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3072 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3073 return filter;
3074 }
3075 return NULL;
3076 }
3077
3078 /**
3079 * iavf_delete_clsflower - Remove tc flower filters
3080 * @adapter: board private structure
3081 * @cls_flower: Pointer to struct flow_cls_offload
3082 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3083 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3084 struct flow_cls_offload *cls_flower)
3085 {
3086 struct iavf_cloud_filter *filter = NULL;
3087 int err = 0;
3088
3089 spin_lock_bh(&adapter->cloud_filter_list_lock);
3090 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3091 if (filter) {
3092 filter->del = true;
3093 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3094 } else {
3095 err = -EINVAL;
3096 }
3097 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3098
3099 return err;
3100 }
3101
3102 /**
3103 * iavf_setup_tc_cls_flower - flower classifier offloads
3104 * @adapter: board private structure
3105 * @cls_flower: pointer to flow_cls_offload struct with flow info
3106 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)3107 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3108 struct flow_cls_offload *cls_flower)
3109 {
3110 switch (cls_flower->command) {
3111 case FLOW_CLS_REPLACE:
3112 return iavf_configure_clsflower(adapter, cls_flower);
3113 case FLOW_CLS_DESTROY:
3114 return iavf_delete_clsflower(adapter, cls_flower);
3115 case FLOW_CLS_STATS:
3116 return -EOPNOTSUPP;
3117 default:
3118 return -EOPNOTSUPP;
3119 }
3120 }
3121
3122 /**
3123 * iavf_setup_tc_block_cb - block callback for tc
3124 * @type: type of offload
3125 * @type_data: offload data
3126 * @cb_priv:
3127 *
3128 * This function is the block callback for traffic classes
3129 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3130 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3131 void *cb_priv)
3132 {
3133 struct iavf_adapter *adapter = cb_priv;
3134
3135 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
3136 return -EOPNOTSUPP;
3137
3138 switch (type) {
3139 case TC_SETUP_CLSFLOWER:
3140 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3141 default:
3142 return -EOPNOTSUPP;
3143 }
3144 }
3145
3146 static LIST_HEAD(iavf_block_cb_list);
3147
3148 /**
3149 * iavf_setup_tc - configure multiple traffic classes
3150 * @netdev: network interface device structure
3151 * @type: type of offload
3152 * @type_data: tc offload data
3153 *
3154 * This function is the callback to ndo_setup_tc in the
3155 * netdev_ops.
3156 *
3157 * Returns 0 on success
3158 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)3159 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3160 void *type_data)
3161 {
3162 struct iavf_adapter *adapter = netdev_priv(netdev);
3163
3164 switch (type) {
3165 case TC_SETUP_QDISC_MQPRIO:
3166 return __iavf_setup_tc(netdev, type_data);
3167 case TC_SETUP_BLOCK:
3168 return flow_block_cb_setup_simple(type_data,
3169 &iavf_block_cb_list,
3170 iavf_setup_tc_block_cb,
3171 adapter, adapter, true);
3172 default:
3173 return -EOPNOTSUPP;
3174 }
3175 }
3176
3177 /**
3178 * iavf_open - Called when a network interface is made active
3179 * @netdev: network interface device structure
3180 *
3181 * Returns 0 on success, negative value on failure
3182 *
3183 * The open entry point is called when a network interface is made
3184 * active by the system (IFF_UP). At this point all resources needed
3185 * for transmit and receive operations are allocated, the interrupt
3186 * handler is registered with the OS, the watchdog is started,
3187 * and the stack is notified that the interface is ready.
3188 **/
iavf_open(struct net_device * netdev)3189 static int iavf_open(struct net_device *netdev)
3190 {
3191 struct iavf_adapter *adapter = netdev_priv(netdev);
3192 int err;
3193
3194 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3195 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3196 return -EIO;
3197 }
3198
3199 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3200 &adapter->crit_section))
3201 usleep_range(500, 1000);
3202
3203 if (adapter->state != __IAVF_DOWN) {
3204 err = -EBUSY;
3205 goto err_unlock;
3206 }
3207
3208 /* allocate transmit descriptors */
3209 err = iavf_setup_all_tx_resources(adapter);
3210 if (err)
3211 goto err_setup_tx;
3212
3213 /* allocate receive descriptors */
3214 err = iavf_setup_all_rx_resources(adapter);
3215 if (err)
3216 goto err_setup_rx;
3217
3218 /* clear any pending interrupts, may auto mask */
3219 err = iavf_request_traffic_irqs(adapter, netdev->name);
3220 if (err)
3221 goto err_req_irq;
3222
3223 spin_lock_bh(&adapter->mac_vlan_list_lock);
3224
3225 iavf_add_filter(adapter, adapter->hw.mac.addr);
3226
3227 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3228
3229 iavf_configure(adapter);
3230
3231 iavf_up_complete(adapter);
3232
3233 iavf_irq_enable(adapter, true);
3234
3235 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3236
3237 return 0;
3238
3239 err_req_irq:
3240 iavf_down(adapter);
3241 iavf_free_traffic_irqs(adapter);
3242 err_setup_rx:
3243 iavf_free_all_rx_resources(adapter);
3244 err_setup_tx:
3245 iavf_free_all_tx_resources(adapter);
3246 err_unlock:
3247 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3248
3249 return err;
3250 }
3251
3252 /**
3253 * iavf_close - Disables a network interface
3254 * @netdev: network interface device structure
3255 *
3256 * Returns 0, this is not allowed to fail
3257 *
3258 * The close entry point is called when an interface is de-activated
3259 * by the OS. The hardware is still under the drivers control, but
3260 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3261 * are freed, along with all transmit and receive resources.
3262 **/
iavf_close(struct net_device * netdev)3263 static int iavf_close(struct net_device *netdev)
3264 {
3265 struct iavf_adapter *adapter = netdev_priv(netdev);
3266 int status;
3267
3268 if (adapter->state <= __IAVF_DOWN_PENDING)
3269 return 0;
3270
3271 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3272 &adapter->crit_section))
3273 usleep_range(500, 1000);
3274
3275 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3276 if (CLIENT_ENABLED(adapter))
3277 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3278
3279 iavf_down(adapter);
3280 adapter->state = __IAVF_DOWN_PENDING;
3281 iavf_free_traffic_irqs(adapter);
3282
3283 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3284
3285 /* We explicitly don't free resources here because the hardware is
3286 * still active and can DMA into memory. Resources are cleared in
3287 * iavf_virtchnl_completion() after we get confirmation from the PF
3288 * driver that the rings have been stopped.
3289 *
3290 * Also, we wait for state to transition to __IAVF_DOWN before
3291 * returning. State change occurs in iavf_virtchnl_completion() after
3292 * VF resources are released (which occurs after PF driver processes and
3293 * responds to admin queue commands).
3294 */
3295
3296 status = wait_event_timeout(adapter->down_waitqueue,
3297 adapter->state == __IAVF_DOWN,
3298 msecs_to_jiffies(500));
3299 if (!status)
3300 netdev_warn(netdev, "Device resources not yet released\n");
3301 return 0;
3302 }
3303
3304 /**
3305 * iavf_change_mtu - Change the Maximum Transfer Unit
3306 * @netdev: network interface device structure
3307 * @new_mtu: new value for maximum frame size
3308 *
3309 * Returns 0 on success, negative on failure
3310 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)3311 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3312 {
3313 struct iavf_adapter *adapter = netdev_priv(netdev);
3314
3315 netdev->mtu = new_mtu;
3316 if (CLIENT_ENABLED(adapter)) {
3317 iavf_notify_client_l2_params(&adapter->vsi);
3318 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3319 }
3320 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3321 queue_work(iavf_wq, &adapter->reset_task);
3322
3323 return 0;
3324 }
3325
3326 /**
3327 * iavf_set_features - set the netdev feature flags
3328 * @netdev: ptr to the netdev being adjusted
3329 * @features: the feature set that the stack is suggesting
3330 * Note: expects to be called while under rtnl_lock()
3331 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)3332 static int iavf_set_features(struct net_device *netdev,
3333 netdev_features_t features)
3334 {
3335 struct iavf_adapter *adapter = netdev_priv(netdev);
3336
3337 /* Don't allow changing VLAN_RX flag when adapter is not capable
3338 * of VLAN offload
3339 */
3340 if (!VLAN_ALLOWED(adapter)) {
3341 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3342 return -EINVAL;
3343 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3344 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3345 adapter->aq_required |=
3346 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3347 else
3348 adapter->aq_required |=
3349 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3350 }
3351
3352 return 0;
3353 }
3354
3355 /**
3356 * iavf_features_check - Validate encapsulated packet conforms to limits
3357 * @skb: skb buff
3358 * @dev: This physical port's netdev
3359 * @features: Offload features that the stack believes apply
3360 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3361 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3362 struct net_device *dev,
3363 netdev_features_t features)
3364 {
3365 size_t len;
3366
3367 /* No point in doing any of this if neither checksum nor GSO are
3368 * being requested for this frame. We can rule out both by just
3369 * checking for CHECKSUM_PARTIAL
3370 */
3371 if (skb->ip_summed != CHECKSUM_PARTIAL)
3372 return features;
3373
3374 /* We cannot support GSO if the MSS is going to be less than
3375 * 64 bytes. If it is then we need to drop support for GSO.
3376 */
3377 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3378 features &= ~NETIF_F_GSO_MASK;
3379
3380 /* MACLEN can support at most 63 words */
3381 len = skb_network_header(skb) - skb->data;
3382 if (len & ~(63 * 2))
3383 goto out_err;
3384
3385 /* IPLEN and EIPLEN can support at most 127 dwords */
3386 len = skb_transport_header(skb) - skb_network_header(skb);
3387 if (len & ~(127 * 4))
3388 goto out_err;
3389
3390 if (skb->encapsulation) {
3391 /* L4TUNLEN can support 127 words */
3392 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3393 if (len & ~(127 * 2))
3394 goto out_err;
3395
3396 /* IPLEN can support at most 127 dwords */
3397 len = skb_inner_transport_header(skb) -
3398 skb_inner_network_header(skb);
3399 if (len & ~(127 * 4))
3400 goto out_err;
3401 }
3402
3403 /* No need to validate L4LEN as TCP is the only protocol with a
3404 * a flexible value and we support all possible values supported
3405 * by TCP, which is at most 15 dwords
3406 */
3407
3408 return features;
3409 out_err:
3410 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3411 }
3412
3413 /**
3414 * iavf_fix_features - fix up the netdev feature bits
3415 * @netdev: our net device
3416 * @features: desired feature bits
3417 *
3418 * Returns fixed-up features bits
3419 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)3420 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3421 netdev_features_t features)
3422 {
3423 struct iavf_adapter *adapter = netdev_priv(netdev);
3424
3425 if (adapter->vf_res &&
3426 !(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3427 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3428 NETIF_F_HW_VLAN_CTAG_RX |
3429 NETIF_F_HW_VLAN_CTAG_FILTER);
3430
3431 return features;
3432 }
3433
3434 static const struct net_device_ops iavf_netdev_ops = {
3435 .ndo_open = iavf_open,
3436 .ndo_stop = iavf_close,
3437 .ndo_start_xmit = iavf_xmit_frame,
3438 .ndo_set_rx_mode = iavf_set_rx_mode,
3439 .ndo_validate_addr = eth_validate_addr,
3440 .ndo_set_mac_address = iavf_set_mac,
3441 .ndo_change_mtu = iavf_change_mtu,
3442 .ndo_tx_timeout = iavf_tx_timeout,
3443 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3444 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3445 .ndo_features_check = iavf_features_check,
3446 .ndo_fix_features = iavf_fix_features,
3447 .ndo_set_features = iavf_set_features,
3448 .ndo_setup_tc = iavf_setup_tc,
3449 };
3450
3451 /**
3452 * iavf_check_reset_complete - check that VF reset is complete
3453 * @hw: pointer to hw struct
3454 *
3455 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3456 **/
iavf_check_reset_complete(struct iavf_hw * hw)3457 static int iavf_check_reset_complete(struct iavf_hw *hw)
3458 {
3459 u32 rstat;
3460 int i;
3461
3462 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3463 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3464 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3465 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3466 (rstat == VIRTCHNL_VFR_COMPLETED))
3467 return 0;
3468 usleep_range(10, 20);
3469 }
3470 return -EBUSY;
3471 }
3472
3473 /**
3474 * iavf_process_config - Process the config information we got from the PF
3475 * @adapter: board private structure
3476 *
3477 * Verify that we have a valid config struct, and set up our netdev features
3478 * and our VSI struct.
3479 **/
iavf_process_config(struct iavf_adapter * adapter)3480 int iavf_process_config(struct iavf_adapter *adapter)
3481 {
3482 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3483 int i, num_req_queues = adapter->num_req_queues;
3484 struct net_device *netdev = adapter->netdev;
3485 struct iavf_vsi *vsi = &adapter->vsi;
3486 netdev_features_t hw_enc_features;
3487 netdev_features_t hw_features;
3488
3489 /* got VF config message back from PF, now we can parse it */
3490 for (i = 0; i < vfres->num_vsis; i++) {
3491 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3492 adapter->vsi_res = &vfres->vsi_res[i];
3493 }
3494 if (!adapter->vsi_res) {
3495 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3496 return -ENODEV;
3497 }
3498
3499 if (num_req_queues &&
3500 num_req_queues > adapter->vsi_res->num_queue_pairs) {
3501 /* Problem. The PF gave us fewer queues than what we had
3502 * negotiated in our request. Need a reset to see if we can't
3503 * get back to a working state.
3504 */
3505 dev_err(&adapter->pdev->dev,
3506 "Requested %d queues, but PF only gave us %d.\n",
3507 num_req_queues,
3508 adapter->vsi_res->num_queue_pairs);
3509 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3510 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3511 iavf_schedule_reset(adapter);
3512 return -ENODEV;
3513 }
3514 adapter->num_req_queues = 0;
3515
3516 hw_enc_features = NETIF_F_SG |
3517 NETIF_F_IP_CSUM |
3518 NETIF_F_IPV6_CSUM |
3519 NETIF_F_HIGHDMA |
3520 NETIF_F_SOFT_FEATURES |
3521 NETIF_F_TSO |
3522 NETIF_F_TSO_ECN |
3523 NETIF_F_TSO6 |
3524 NETIF_F_SCTP_CRC |
3525 NETIF_F_RXHASH |
3526 NETIF_F_RXCSUM |
3527 0;
3528
3529 /* advertise to stack only if offloads for encapsulated packets is
3530 * supported
3531 */
3532 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3533 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3534 NETIF_F_GSO_GRE |
3535 NETIF_F_GSO_GRE_CSUM |
3536 NETIF_F_GSO_IPXIP4 |
3537 NETIF_F_GSO_IPXIP6 |
3538 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3539 NETIF_F_GSO_PARTIAL |
3540 0;
3541
3542 if (!(vfres->vf_cap_flags &
3543 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3544 netdev->gso_partial_features |=
3545 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3546
3547 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3548 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3549 netdev->hw_enc_features |= hw_enc_features;
3550 }
3551 /* record features VLANs can make use of */
3552 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3553
3554 /* Write features and hw_features separately to avoid polluting
3555 * with, or dropping, features that are set when we registered.
3556 */
3557 hw_features = hw_enc_features;
3558
3559 /* Enable VLAN features if supported */
3560 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3561 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3562 NETIF_F_HW_VLAN_CTAG_RX);
3563 /* Enable cloud filter if ADQ is supported */
3564 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3565 hw_features |= NETIF_F_HW_TC;
3566
3567 netdev->hw_features |= hw_features;
3568
3569 netdev->features |= hw_features;
3570
3571 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3572 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3573
3574 netdev->priv_flags |= IFF_UNICAST_FLT;
3575
3576 /* Do not turn on offloads when they are requested to be turned off.
3577 * TSO needs minimum 576 bytes to work correctly.
3578 */
3579 if (netdev->wanted_features) {
3580 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3581 netdev->mtu < 576)
3582 netdev->features &= ~NETIF_F_TSO;
3583 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3584 netdev->mtu < 576)
3585 netdev->features &= ~NETIF_F_TSO6;
3586 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3587 netdev->features &= ~NETIF_F_TSO_ECN;
3588 if (!(netdev->wanted_features & NETIF_F_GRO))
3589 netdev->features &= ~NETIF_F_GRO;
3590 if (!(netdev->wanted_features & NETIF_F_GSO))
3591 netdev->features &= ~NETIF_F_GSO;
3592 }
3593
3594 adapter->vsi.id = adapter->vsi_res->vsi_id;
3595
3596 adapter->vsi.back = adapter;
3597 adapter->vsi.base_vector = 1;
3598 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3599 vsi->netdev = adapter->netdev;
3600 vsi->qs_handle = adapter->vsi_res->qset_handle;
3601 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3602 adapter->rss_key_size = vfres->rss_key_size;
3603 adapter->rss_lut_size = vfres->rss_lut_size;
3604 } else {
3605 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3606 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3607 }
3608
3609 return 0;
3610 }
3611
3612 /**
3613 * iavf_init_task - worker thread to perform delayed initialization
3614 * @work: pointer to work_struct containing our data
3615 *
3616 * This task completes the work that was begun in probe. Due to the nature
3617 * of VF-PF communications, we may need to wait tens of milliseconds to get
3618 * responses back from the PF. Rather than busy-wait in probe and bog down the
3619 * whole system, we'll do it in a task so we can sleep.
3620 * This task only runs during driver init. Once we've established
3621 * communications with the PF driver and set up our netdev, the watchdog
3622 * takes over.
3623 **/
iavf_init_task(struct work_struct * work)3624 static void iavf_init_task(struct work_struct *work)
3625 {
3626 struct iavf_adapter *adapter = container_of(work,
3627 struct iavf_adapter,
3628 init_task.work);
3629 struct iavf_hw *hw = &adapter->hw;
3630
3631 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000)) {
3632 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3633 return;
3634 }
3635 switch (adapter->state) {
3636 case __IAVF_STARTUP:
3637 if (iavf_startup(adapter) < 0)
3638 goto init_failed;
3639 break;
3640 case __IAVF_INIT_VERSION_CHECK:
3641 if (iavf_init_version_check(adapter) < 0)
3642 goto init_failed;
3643 break;
3644 case __IAVF_INIT_GET_RESOURCES:
3645 if (iavf_init_get_resources(adapter) < 0)
3646 goto init_failed;
3647 goto out;
3648 default:
3649 goto init_failed;
3650 }
3651
3652 queue_delayed_work(iavf_wq, &adapter->init_task,
3653 msecs_to_jiffies(30));
3654 goto out;
3655 init_failed:
3656 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3657 dev_err(&adapter->pdev->dev,
3658 "Failed to communicate with PF; waiting before retry\n");
3659 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3660 iavf_shutdown_adminq(hw);
3661 adapter->state = __IAVF_STARTUP;
3662 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3663 goto out;
3664 }
3665 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3666 out:
3667 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3668 }
3669
3670 /**
3671 * iavf_shutdown - Shutdown the device in preparation for a reboot
3672 * @pdev: pci device structure
3673 **/
iavf_shutdown(struct pci_dev * pdev)3674 static void iavf_shutdown(struct pci_dev *pdev)
3675 {
3676 struct net_device *netdev = pci_get_drvdata(pdev);
3677 struct iavf_adapter *adapter = netdev_priv(netdev);
3678
3679 netif_device_detach(netdev);
3680
3681 if (netif_running(netdev))
3682 iavf_close(netdev);
3683
3684 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3685 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3686 /* Prevent the watchdog from running. */
3687 adapter->state = __IAVF_REMOVE;
3688 adapter->aq_required = 0;
3689 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3690
3691 #ifdef CONFIG_PM
3692 pci_save_state(pdev);
3693
3694 #endif
3695 pci_disable_device(pdev);
3696 }
3697
3698 /**
3699 * iavf_probe - Device Initialization Routine
3700 * @pdev: PCI device information struct
3701 * @ent: entry in iavf_pci_tbl
3702 *
3703 * Returns 0 on success, negative on failure
3704 *
3705 * iavf_probe initializes an adapter identified by a pci_dev structure.
3706 * The OS initialization, configuring of the adapter private structure,
3707 * and a hardware reset occur.
3708 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3709 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3710 {
3711 struct net_device *netdev;
3712 struct iavf_adapter *adapter = NULL;
3713 struct iavf_hw *hw = NULL;
3714 int err;
3715
3716 err = pci_enable_device(pdev);
3717 if (err)
3718 return err;
3719
3720 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3721 if (err) {
3722 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3723 if (err) {
3724 dev_err(&pdev->dev,
3725 "DMA configuration failed: 0x%x\n", err);
3726 goto err_dma;
3727 }
3728 }
3729
3730 err = pci_request_regions(pdev, iavf_driver_name);
3731 if (err) {
3732 dev_err(&pdev->dev,
3733 "pci_request_regions failed 0x%x\n", err);
3734 goto err_pci_reg;
3735 }
3736
3737 pci_enable_pcie_error_reporting(pdev);
3738
3739 pci_set_master(pdev);
3740
3741 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3742 IAVF_MAX_REQ_QUEUES);
3743 if (!netdev) {
3744 err = -ENOMEM;
3745 goto err_alloc_etherdev;
3746 }
3747
3748 SET_NETDEV_DEV(netdev, &pdev->dev);
3749
3750 pci_set_drvdata(pdev, netdev);
3751 adapter = netdev_priv(netdev);
3752
3753 adapter->netdev = netdev;
3754 adapter->pdev = pdev;
3755
3756 hw = &adapter->hw;
3757 hw->back = adapter;
3758
3759 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3760 adapter->state = __IAVF_STARTUP;
3761
3762 /* Call save state here because it relies on the adapter struct. */
3763 pci_save_state(pdev);
3764
3765 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3766 pci_resource_len(pdev, 0));
3767 if (!hw->hw_addr) {
3768 err = -EIO;
3769 goto err_ioremap;
3770 }
3771 hw->vendor_id = pdev->vendor;
3772 hw->device_id = pdev->device;
3773 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3774 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3775 hw->subsystem_device_id = pdev->subsystem_device;
3776 hw->bus.device = PCI_SLOT(pdev->devfn);
3777 hw->bus.func = PCI_FUNC(pdev->devfn);
3778 hw->bus.bus_id = pdev->bus->number;
3779
3780 /* set up the locks for the AQ, do this only once in probe
3781 * and destroy them only once in remove
3782 */
3783 mutex_init(&hw->aq.asq_mutex);
3784 mutex_init(&hw->aq.arq_mutex);
3785
3786 spin_lock_init(&adapter->mac_vlan_list_lock);
3787 spin_lock_init(&adapter->cloud_filter_list_lock);
3788
3789 INIT_LIST_HEAD(&adapter->mac_filter_list);
3790 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3791 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3792
3793 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3794 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3795 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3796 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3797 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3798 queue_delayed_work(iavf_wq, &adapter->init_task,
3799 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3800
3801 /* Setup the wait queue for indicating transition to down status */
3802 init_waitqueue_head(&adapter->down_waitqueue);
3803
3804 return 0;
3805
3806 err_ioremap:
3807 free_netdev(netdev);
3808 err_alloc_etherdev:
3809 pci_disable_pcie_error_reporting(pdev);
3810 pci_release_regions(pdev);
3811 err_pci_reg:
3812 err_dma:
3813 pci_disable_device(pdev);
3814 return err;
3815 }
3816
3817 /**
3818 * iavf_suspend - Power management suspend routine
3819 * @dev_d: device info pointer
3820 *
3821 * Called when the system (VM) is entering sleep/suspend.
3822 **/
iavf_suspend(struct device * dev_d)3823 static int __maybe_unused iavf_suspend(struct device *dev_d)
3824 {
3825 struct net_device *netdev = dev_get_drvdata(dev_d);
3826 struct iavf_adapter *adapter = netdev_priv(netdev);
3827
3828 netif_device_detach(netdev);
3829
3830 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3831 &adapter->crit_section))
3832 usleep_range(500, 1000);
3833
3834 if (netif_running(netdev)) {
3835 rtnl_lock();
3836 iavf_down(adapter);
3837 rtnl_unlock();
3838 }
3839 iavf_free_misc_irq(adapter);
3840 iavf_reset_interrupt_capability(adapter);
3841
3842 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3843
3844 return 0;
3845 }
3846
3847 /**
3848 * iavf_resume - Power management resume routine
3849 * @dev_d: device info pointer
3850 *
3851 * Called when the system (VM) is resumed from sleep/suspend.
3852 **/
iavf_resume(struct device * dev_d)3853 static int __maybe_unused iavf_resume(struct device *dev_d)
3854 {
3855 struct pci_dev *pdev = to_pci_dev(dev_d);
3856 struct net_device *netdev = pci_get_drvdata(pdev);
3857 struct iavf_adapter *adapter = netdev_priv(netdev);
3858 u32 err;
3859
3860 pci_set_master(pdev);
3861
3862 rtnl_lock();
3863 err = iavf_set_interrupt_capability(adapter);
3864 if (err) {
3865 rtnl_unlock();
3866 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3867 return err;
3868 }
3869 err = iavf_request_misc_irq(adapter);
3870 rtnl_unlock();
3871 if (err) {
3872 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3873 return err;
3874 }
3875
3876 queue_work(iavf_wq, &adapter->reset_task);
3877
3878 netif_device_attach(netdev);
3879
3880 return err;
3881 }
3882
3883 /**
3884 * iavf_remove - Device Removal Routine
3885 * @pdev: PCI device information struct
3886 *
3887 * iavf_remove is called by the PCI subsystem to alert the driver
3888 * that it should release a PCI device. The could be caused by a
3889 * Hot-Plug event, or because the driver is going to be removed from
3890 * memory.
3891 **/
iavf_remove(struct pci_dev * pdev)3892 static void iavf_remove(struct pci_dev *pdev)
3893 {
3894 struct net_device *netdev = pci_get_drvdata(pdev);
3895 struct iavf_adapter *adapter = netdev_priv(netdev);
3896 struct iavf_vlan_filter *vlf, *vlftmp;
3897 struct iavf_mac_filter *f, *ftmp;
3898 struct iavf_cloud_filter *cf, *cftmp;
3899 struct iavf_hw *hw = &adapter->hw;
3900 int err;
3901 /* Indicate we are in remove and not to run reset_task */
3902 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3903 cancel_delayed_work_sync(&adapter->init_task);
3904 cancel_work_sync(&adapter->reset_task);
3905 cancel_delayed_work_sync(&adapter->client_task);
3906 if (adapter->netdev_registered) {
3907 unregister_netdev(netdev);
3908 adapter->netdev_registered = false;
3909 }
3910 if (CLIENT_ALLOWED(adapter)) {
3911 err = iavf_lan_del_device(adapter);
3912 if (err)
3913 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3914 err);
3915 }
3916
3917 iavf_request_reset(adapter);
3918 msleep(50);
3919 /* If the FW isn't responding, kick it once, but only once. */
3920 if (!iavf_asq_done(hw)) {
3921 iavf_request_reset(adapter);
3922 msleep(50);
3923 }
3924 if (iavf_lock_timeout(adapter, __IAVF_IN_CRITICAL_TASK, 5000))
3925 dev_warn(&adapter->pdev->dev, "failed to set __IAVF_IN_CRITICAL_TASK in %s\n", __FUNCTION__);
3926
3927 /* Shut down all the garbage mashers on the detention level */
3928 adapter->state = __IAVF_REMOVE;
3929 adapter->aq_required = 0;
3930 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3931 iavf_free_all_tx_resources(adapter);
3932 iavf_free_all_rx_resources(adapter);
3933 iavf_misc_irq_disable(adapter);
3934 iavf_free_misc_irq(adapter);
3935 iavf_reset_interrupt_capability(adapter);
3936 iavf_free_q_vectors(adapter);
3937
3938 cancel_delayed_work_sync(&adapter->watchdog_task);
3939
3940 cancel_work_sync(&adapter->adminq_task);
3941
3942 iavf_free_rss(adapter);
3943
3944 if (hw->aq.asq.count)
3945 iavf_shutdown_adminq(hw);
3946
3947 /* destroy the locks only once, here */
3948 mutex_destroy(&hw->aq.arq_mutex);
3949 mutex_destroy(&hw->aq.asq_mutex);
3950
3951 iounmap(hw->hw_addr);
3952 pci_release_regions(pdev);
3953 iavf_free_queues(adapter);
3954 kfree(adapter->vf_res);
3955 spin_lock_bh(&adapter->mac_vlan_list_lock);
3956 /* If we got removed before an up/down sequence, we've got a filter
3957 * hanging out there that we need to get rid of.
3958 */
3959 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3960 list_del(&f->list);
3961 kfree(f);
3962 }
3963 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3964 list) {
3965 list_del(&vlf->list);
3966 kfree(vlf);
3967 }
3968
3969 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3970
3971 spin_lock_bh(&adapter->cloud_filter_list_lock);
3972 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3973 list_del(&cf->list);
3974 kfree(cf);
3975 }
3976 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3977
3978 free_netdev(netdev);
3979
3980 pci_disable_pcie_error_reporting(pdev);
3981
3982 pci_disable_device(pdev);
3983 }
3984
3985 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
3986
3987 static struct pci_driver iavf_driver = {
3988 .name = iavf_driver_name,
3989 .id_table = iavf_pci_tbl,
3990 .probe = iavf_probe,
3991 .remove = iavf_remove,
3992 .driver.pm = &iavf_pm_ops,
3993 .shutdown = iavf_shutdown,
3994 };
3995
3996 /**
3997 * iavf_init_module - Driver Registration Routine
3998 *
3999 * iavf_init_module is the first routine called when the driver is
4000 * loaded. All it does is register with the PCI subsystem.
4001 **/
iavf_init_module(void)4002 static int __init iavf_init_module(void)
4003 {
4004 int ret;
4005
4006 pr_info("iavf: %s\n", iavf_driver_string);
4007
4008 pr_info("%s\n", iavf_copyright);
4009
4010 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
4011 iavf_driver_name);
4012 if (!iavf_wq) {
4013 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
4014 return -ENOMEM;
4015 }
4016 ret = pci_register_driver(&iavf_driver);
4017 return ret;
4018 }
4019
4020 module_init(iavf_init_module);
4021
4022 /**
4023 * iavf_exit_module - Driver Exit Cleanup Routine
4024 *
4025 * iavf_exit_module is called just before the driver is removed
4026 * from memory.
4027 **/
iavf_exit_module(void)4028 static void __exit iavf_exit_module(void)
4029 {
4030 pci_unregister_driver(&iavf_driver);
4031 destroy_workqueue(iavf_wq);
4032 }
4033
4034 module_exit(iavf_exit_module);
4035
4036 /* iavf_main.c */
4037