1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16
17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45 static void ice_vsi_release_all(struct ice_pf *pf);
46
47 /**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
ice_get_tx_pending(struct ice_ring * ring)51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62 }
63
64 /**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
ice_check_for_hang_subtask(struct ice_pf * pf)68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116 }
117
118 /**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
ice_init_mac_fltr(struct ice_pf * pf)126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153 }
154
155 /**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175 }
176
177 /**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 /* Under some circumstances, we might receive a request to delete our
193 * own device address from our uc list. Because we store the device
194 * address in the VSI's MAC filter list, we need to ignore such
195 * requests and not delete our device address from this list.
196 */
197 if (ether_addr_equal(addr, netdev->dev_addr))
198 return 0;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_vsi_fltr_changed - check if filter state changed
209 * @vsi: VSI to be checked
210 *
211 * returns true if filter state has changed, false otherwise.
212 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)213 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
214 {
215 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
216 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
217 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
218 }
219
220 /**
221 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
222 * @vsi: the VSI being configured
223 * @promisc_m: mask of promiscuous config bits
224 * @set_promisc: enable or disable promisc flag request
225 *
226 */
ice_cfg_promisc(struct ice_vsi * vsi,u8 promisc_m,bool set_promisc)227 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
228 {
229 struct ice_hw *hw = &vsi->back->hw;
230 enum ice_status status = 0;
231
232 if (vsi->type != ICE_VSI_PF)
233 return 0;
234
235 if (vsi->vlan_ena) {
236 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
237 set_promisc);
238 } else {
239 if (set_promisc)
240 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
241 0);
242 else
243 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
244 0);
245 }
246
247 if (status)
248 return -EIO;
249
250 return 0;
251 }
252
253 /**
254 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
255 * @vsi: ptr to the VSI
256 *
257 * Push any outstanding VSI filter changes through the AdminQ.
258 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)259 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
260 {
261 struct device *dev = ice_pf_to_dev(vsi->back);
262 struct net_device *netdev = vsi->netdev;
263 bool promisc_forced_on = false;
264 struct ice_pf *pf = vsi->back;
265 struct ice_hw *hw = &pf->hw;
266 enum ice_status status = 0;
267 u32 changed_flags = 0;
268 u8 promisc_m;
269 int err = 0;
270
271 if (!vsi->netdev)
272 return -EINVAL;
273
274 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
275 usleep_range(1000, 2000);
276
277 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
278 vsi->current_netdev_flags = vsi->netdev->flags;
279
280 INIT_LIST_HEAD(&vsi->tmp_sync_list);
281 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
282
283 if (ice_vsi_fltr_changed(vsi)) {
284 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
285 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
286 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
287
288 /* grab the netdev's addr_list_lock */
289 netif_addr_lock_bh(netdev);
290 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
291 ice_add_mac_to_unsync_list);
292 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
293 ice_add_mac_to_unsync_list);
294 /* our temp lists are populated. release lock */
295 netif_addr_unlock_bh(netdev);
296 }
297
298 /* Remove MAC addresses in the unsync list */
299 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
300 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
301 if (status) {
302 netdev_err(netdev, "Failed to delete MAC filters\n");
303 /* if we failed because of alloc failures, just bail */
304 if (status == ICE_ERR_NO_MEMORY) {
305 err = -ENOMEM;
306 goto out;
307 }
308 }
309
310 /* Add MAC addresses in the sync list */
311 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
312 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
313 /* If filter is added successfully or already exists, do not go into
314 * 'if' condition and report it as error. Instead continue processing
315 * rest of the function.
316 */
317 if (status && status != ICE_ERR_ALREADY_EXISTS) {
318 netdev_err(netdev, "Failed to add MAC filters\n");
319 /* If there is no more space for new umac filters, VSI
320 * should go into promiscuous mode. There should be some
321 * space reserved for promiscuous filters.
322 */
323 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
324 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
325 vsi->state)) {
326 promisc_forced_on = true;
327 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
328 vsi->vsi_num);
329 } else {
330 err = -EIO;
331 goto out;
332 }
333 }
334 /* check for changes in promiscuous modes */
335 if (changed_flags & IFF_ALLMULTI) {
336 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
337 if (vsi->vlan_ena)
338 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
339 else
340 promisc_m = ICE_MCAST_PROMISC_BITS;
341
342 err = ice_cfg_promisc(vsi, promisc_m, true);
343 if (err) {
344 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
345 vsi->vsi_num);
346 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
347 goto out_promisc;
348 }
349 } else {
350 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
351 if (vsi->vlan_ena)
352 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
353 else
354 promisc_m = ICE_MCAST_PROMISC_BITS;
355
356 err = ice_cfg_promisc(vsi, promisc_m, false);
357 if (err) {
358 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
359 vsi->vsi_num);
360 vsi->current_netdev_flags |= IFF_ALLMULTI;
361 goto out_promisc;
362 }
363 }
364 }
365
366 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
367 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
368 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
369 if (vsi->current_netdev_flags & IFF_PROMISC) {
370 /* Apply Rx filter rule to get traffic from wire */
371 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
372 err = ice_set_dflt_vsi(pf->first_sw, vsi);
373 if (err && err != -EEXIST) {
374 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
375 err, vsi->vsi_num);
376 vsi->current_netdev_flags &=
377 ~IFF_PROMISC;
378 goto out_promisc;
379 }
380 ice_cfg_vlan_pruning(vsi, false, false);
381 }
382 } else {
383 /* Clear Rx filter to remove traffic from wire */
384 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
385 err = ice_clear_dflt_vsi(pf->first_sw);
386 if (err) {
387 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
388 err, vsi->vsi_num);
389 vsi->current_netdev_flags |=
390 IFF_PROMISC;
391 goto out_promisc;
392 }
393 if (vsi->num_vlan > 1)
394 ice_cfg_vlan_pruning(vsi, true, false);
395 }
396 }
397 }
398 goto exit;
399
400 out_promisc:
401 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
402 goto exit;
403 out:
404 /* if something went wrong then set the changed flag so we try again */
405 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
406 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
407 exit:
408 clear_bit(__ICE_CFG_BUSY, vsi->state);
409 return err;
410 }
411
412 /**
413 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
414 * @pf: board private structure
415 */
ice_sync_fltr_subtask(struct ice_pf * pf)416 static void ice_sync_fltr_subtask(struct ice_pf *pf)
417 {
418 int v;
419
420 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
421 return;
422
423 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
424
425 ice_for_each_vsi(pf, v)
426 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
427 ice_vsi_sync_fltr(pf->vsi[v])) {
428 /* come back and try again later */
429 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 break;
431 }
432 }
433
434 /**
435 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
436 * @pf: the PF
437 * @locked: is the rtnl_lock already held
438 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)439 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
440 {
441 int v;
442
443 ice_for_each_vsi(pf, v)
444 if (pf->vsi[v])
445 ice_dis_vsi(pf->vsi[v], locked);
446 }
447
448 /**
449 * ice_prepare_for_reset - prep for the core to reset
450 * @pf: board private structure
451 *
452 * Inform or close all dependent features in prep for reset.
453 */
454 static void
ice_prepare_for_reset(struct ice_pf * pf)455 ice_prepare_for_reset(struct ice_pf *pf)
456 {
457 struct ice_hw *hw = &pf->hw;
458 unsigned int i;
459
460 /* already prepared for reset */
461 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
462 return;
463
464 /* Notify VFs of impending reset */
465 if (ice_check_sq_alive(hw, &hw->mailboxq))
466 ice_vc_notify_reset(pf);
467
468 /* Disable VFs until reset is completed */
469 ice_for_each_vf(pf, i)
470 ice_set_vf_state_qs_dis(&pf->vf[i]);
471
472 /* clear SW filtering DB */
473 ice_clear_hw_tbls(hw);
474 /* disable the VSIs and their queues that are not already DOWN */
475 ice_pf_dis_all_vsi(pf, false);
476
477 if (hw->port_info)
478 ice_sched_clear_port(hw->port_info);
479
480 ice_shutdown_all_ctrlq(hw);
481
482 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
483 }
484
485 /**
486 * ice_do_reset - Initiate one of many types of resets
487 * @pf: board private structure
488 * @reset_type: reset type requested
489 * before this function was called.
490 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)491 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
492 {
493 struct device *dev = ice_pf_to_dev(pf);
494 struct ice_hw *hw = &pf->hw;
495
496 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
497
498 ice_prepare_for_reset(pf);
499
500 /* trigger the reset */
501 if (ice_reset(hw, reset_type)) {
502 dev_err(dev, "reset %d failed\n", reset_type);
503 set_bit(__ICE_RESET_FAILED, pf->state);
504 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
505 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
506 clear_bit(__ICE_PFR_REQ, pf->state);
507 clear_bit(__ICE_CORER_REQ, pf->state);
508 clear_bit(__ICE_GLOBR_REQ, pf->state);
509 return;
510 }
511
512 /* PFR is a bit of a special case because it doesn't result in an OICR
513 * interrupt. So for PFR, rebuild after the reset and clear the reset-
514 * associated state bits.
515 */
516 if (reset_type == ICE_RESET_PFR) {
517 pf->pfr_count++;
518 ice_rebuild(pf, reset_type);
519 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
520 clear_bit(__ICE_PFR_REQ, pf->state);
521 ice_reset_all_vfs(pf, true);
522 }
523 }
524
525 /**
526 * ice_reset_subtask - Set up for resetting the device and driver
527 * @pf: board private structure
528 */
ice_reset_subtask(struct ice_pf * pf)529 static void ice_reset_subtask(struct ice_pf *pf)
530 {
531 enum ice_reset_req reset_type = ICE_RESET_INVAL;
532
533 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
534 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
535 * of reset is pending and sets bits in pf->state indicating the reset
536 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
537 * prepare for pending reset if not already (for PF software-initiated
538 * global resets the software should already be prepared for it as
539 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
540 * by firmware or software on other PFs, that bit is not set so prepare
541 * for the reset now), poll for reset done, rebuild and return.
542 */
543 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
544 /* Perform the largest reset requested */
545 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
546 reset_type = ICE_RESET_CORER;
547 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
550 reset_type = ICE_RESET_EMPR;
551 /* return if no valid reset type requested */
552 if (reset_type == ICE_RESET_INVAL)
553 return;
554 ice_prepare_for_reset(pf);
555
556 /* make sure we are ready to rebuild */
557 if (ice_check_reset(&pf->hw)) {
558 set_bit(__ICE_RESET_FAILED, pf->state);
559 } else {
560 /* done with reset. start rebuild */
561 pf->hw.reset_ongoing = false;
562 ice_rebuild(pf, reset_type);
563 /* clear bit to resume normal operations, but
564 * ICE_NEEDS_RESTART bit is set in case rebuild failed
565 */
566 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
567 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
568 clear_bit(__ICE_PFR_REQ, pf->state);
569 clear_bit(__ICE_CORER_REQ, pf->state);
570 clear_bit(__ICE_GLOBR_REQ, pf->state);
571 ice_reset_all_vfs(pf, true);
572 }
573
574 return;
575 }
576
577 /* No pending resets to finish processing. Check for new resets */
578 if (test_bit(__ICE_PFR_REQ, pf->state))
579 reset_type = ICE_RESET_PFR;
580 if (test_bit(__ICE_CORER_REQ, pf->state))
581 reset_type = ICE_RESET_CORER;
582 if (test_bit(__ICE_GLOBR_REQ, pf->state))
583 reset_type = ICE_RESET_GLOBR;
584 /* If no valid reset type requested just return */
585 if (reset_type == ICE_RESET_INVAL)
586 return;
587
588 /* reset if not already down or busy */
589 if (!test_bit(__ICE_DOWN, pf->state) &&
590 !test_bit(__ICE_CFG_BUSY, pf->state)) {
591 ice_do_reset(pf, reset_type);
592 }
593 }
594
595 /**
596 * ice_print_topo_conflict - print topology conflict message
597 * @vsi: the VSI whose topology status is being checked
598 */
ice_print_topo_conflict(struct ice_vsi * vsi)599 static void ice_print_topo_conflict(struct ice_vsi *vsi)
600 {
601 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
602 case ICE_AQ_LINK_TOPO_CONFLICT:
603 case ICE_AQ_LINK_MEDIA_CONFLICT:
604 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
605 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
606 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
607 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
608 break;
609 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
610 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
611 break;
612 default:
613 break;
614 }
615 }
616
617 /**
618 * ice_print_link_msg - print link up or down message
619 * @vsi: the VSI whose link status is being queried
620 * @isup: boolean for if the link is now up or down
621 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
623 {
624 struct ice_aqc_get_phy_caps_data *caps;
625 const char *an_advertised;
626 enum ice_status status;
627 const char *fec_req;
628 const char *speed;
629 const char *fec;
630 const char *fc;
631 const char *an;
632
633 if (!vsi)
634 return;
635
636 if (vsi->current_isup == isup)
637 return;
638
639 vsi->current_isup = isup;
640
641 if (!isup) {
642 netdev_info(vsi->netdev, "NIC Link is Down\n");
643 return;
644 }
645
646 switch (vsi->port_info->phy.link_info.link_speed) {
647 case ICE_AQ_LINK_SPEED_100GB:
648 speed = "100 G";
649 break;
650 case ICE_AQ_LINK_SPEED_50GB:
651 speed = "50 G";
652 break;
653 case ICE_AQ_LINK_SPEED_40GB:
654 speed = "40 G";
655 break;
656 case ICE_AQ_LINK_SPEED_25GB:
657 speed = "25 G";
658 break;
659 case ICE_AQ_LINK_SPEED_20GB:
660 speed = "20 G";
661 break;
662 case ICE_AQ_LINK_SPEED_10GB:
663 speed = "10 G";
664 break;
665 case ICE_AQ_LINK_SPEED_5GB:
666 speed = "5 G";
667 break;
668 case ICE_AQ_LINK_SPEED_2500MB:
669 speed = "2.5 G";
670 break;
671 case ICE_AQ_LINK_SPEED_1000MB:
672 speed = "1 G";
673 break;
674 case ICE_AQ_LINK_SPEED_100MB:
675 speed = "100 M";
676 break;
677 default:
678 speed = "Unknown";
679 break;
680 }
681
682 switch (vsi->port_info->fc.current_mode) {
683 case ICE_FC_FULL:
684 fc = "Rx/Tx";
685 break;
686 case ICE_FC_TX_PAUSE:
687 fc = "Tx";
688 break;
689 case ICE_FC_RX_PAUSE:
690 fc = "Rx";
691 break;
692 case ICE_FC_NONE:
693 fc = "None";
694 break;
695 default:
696 fc = "Unknown";
697 break;
698 }
699
700 /* Get FEC mode based on negotiated link info */
701 switch (vsi->port_info->phy.link_info.fec_info) {
702 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
703 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
704 fec = "RS-FEC";
705 break;
706 case ICE_AQ_LINK_25G_KR_FEC_EN:
707 fec = "FC-FEC/BASE-R";
708 break;
709 default:
710 fec = "NONE";
711 break;
712 }
713
714 /* check if autoneg completed, might be false due to not supported */
715 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
716 an = "True";
717 else
718 an = "False";
719
720 /* Get FEC mode requested based on PHY caps last SW configuration */
721 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
722 if (!caps) {
723 fec_req = "Unknown";
724 an_advertised = "Unknown";
725 goto done;
726 }
727
728 status = ice_aq_get_phy_caps(vsi->port_info, false,
729 ICE_AQC_REPORT_SW_CFG, caps, NULL);
730 if (status)
731 netdev_info(vsi->netdev, "Get phy capability failed.\n");
732
733 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
734
735 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
736 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
737 fec_req = "RS-FEC";
738 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
740 fec_req = "FC-FEC/BASE-R";
741 else
742 fec_req = "NONE";
743
744 kfree(caps);
745
746 done:
747 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
748 speed, fec_req, fec, an_advertised, an, fc);
749 ice_print_topo_conflict(vsi);
750 }
751
752 /**
753 * ice_vsi_link_event - update the VSI's netdev
754 * @vsi: the VSI on which the link event occurred
755 * @link_up: whether or not the VSI needs to be set up or down
756 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
758 {
759 if (!vsi)
760 return;
761
762 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
763 return;
764
765 if (vsi->type == ICE_VSI_PF) {
766 if (link_up == netif_carrier_ok(vsi->netdev))
767 return;
768
769 if (link_up) {
770 netif_carrier_on(vsi->netdev);
771 netif_tx_wake_all_queues(vsi->netdev);
772 } else {
773 netif_carrier_off(vsi->netdev);
774 netif_tx_stop_all_queues(vsi->netdev);
775 }
776 }
777 }
778
779 /**
780 * ice_set_dflt_mib - send a default config MIB to the FW
781 * @pf: private PF struct
782 *
783 * This function sends a default configuration MIB to the FW.
784 *
785 * If this function errors out at any point, the driver is still able to
786 * function. The main impact is that LFC may not operate as expected.
787 * Therefore an error state in this function should be treated with a DBG
788 * message and continue on with driver rebuild/reenable.
789 */
ice_set_dflt_mib(struct ice_pf * pf)790 static void ice_set_dflt_mib(struct ice_pf *pf)
791 {
792 struct device *dev = ice_pf_to_dev(pf);
793 u8 mib_type, *buf, *lldpmib = NULL;
794 u16 len, typelen, offset = 0;
795 struct ice_lldp_org_tlv *tlv;
796 struct ice_hw *hw;
797 u32 ouisubtype;
798
799 if (!pf) {
800 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
801 return;
802 }
803
804 hw = &pf->hw;
805 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
806 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
807 if (!lldpmib) {
808 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
809 __func__);
810 return;
811 }
812
813 /* Add ETS CFG TLV */
814 tlv = (struct ice_lldp_org_tlv *)lldpmib;
815 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
816 ICE_IEEE_ETS_TLV_LEN);
817 tlv->typelen = htons(typelen);
818 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
819 ICE_IEEE_SUBTYPE_ETS_CFG);
820 tlv->ouisubtype = htonl(ouisubtype);
821
822 buf = tlv->tlvinfo;
823 buf[0] = 0;
824
825 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
826 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
827 * Octets 13 - 20 are TSA values - leave as zeros
828 */
829 buf[5] = 0x64;
830 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
831 offset += len + 2;
832 tlv = (struct ice_lldp_org_tlv *)
833 ((char *)tlv + sizeof(tlv->typelen) + len);
834
835 /* Add ETS REC TLV */
836 buf = tlv->tlvinfo;
837 tlv->typelen = htons(typelen);
838
839 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
840 ICE_IEEE_SUBTYPE_ETS_REC);
841 tlv->ouisubtype = htonl(ouisubtype);
842
843 /* First octet of buf is reserved
844 * Octets 1 - 4 map UP to TC - all UPs map to zero
845 * Octets 5 - 12 are BW values - set TC 0 to 100%.
846 * Octets 13 - 20 are TSA value - leave as zeros
847 */
848 buf[5] = 0x64;
849 offset += len + 2;
850 tlv = (struct ice_lldp_org_tlv *)
851 ((char *)tlv + sizeof(tlv->typelen) + len);
852
853 /* Add PFC CFG TLV */
854 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
855 ICE_IEEE_PFC_TLV_LEN);
856 tlv->typelen = htons(typelen);
857
858 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
859 ICE_IEEE_SUBTYPE_PFC_CFG);
860 tlv->ouisubtype = htonl(ouisubtype);
861
862 /* Octet 1 left as all zeros - PFC disabled */
863 buf[0] = 0x08;
864 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
865 offset += len + 2;
866
867 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
868 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
869
870 kfree(lldpmib);
871 }
872
873 /**
874 * ice_link_event - process the link event
875 * @pf: PF that the link event is associated with
876 * @pi: port_info for the port that the link event is associated with
877 * @link_up: true if the physical link is up and false if it is down
878 * @link_speed: current link speed received from the link event
879 *
880 * Returns 0 on success and negative on failure
881 */
882 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)883 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
884 u16 link_speed)
885 {
886 struct device *dev = ice_pf_to_dev(pf);
887 struct ice_phy_info *phy_info;
888 struct ice_vsi *vsi;
889 u16 old_link_speed;
890 bool old_link;
891 int result;
892
893 phy_info = &pi->phy;
894 phy_info->link_info_old = phy_info->link_info;
895
896 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
897 old_link_speed = phy_info->link_info_old.link_speed;
898
899 /* update the link info structures and re-enable link events,
900 * don't bail on failure due to other book keeping needed
901 */
902 result = ice_update_link_info(pi);
903 if (result)
904 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
905 pi->lport);
906
907 /* Check if the link state is up after updating link info, and treat
908 * this event as an UP event since the link is actually UP now.
909 */
910 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
911 link_up = true;
912
913 vsi = ice_get_main_vsi(pf);
914 if (!vsi || !vsi->port_info)
915 return -EINVAL;
916
917 /* turn off PHY if media was removed */
918 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
919 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
921
922 result = ice_aq_set_link_restart_an(pi, false, NULL);
923 if (result) {
924 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
925 vsi->vsi_num, result);
926 return result;
927 }
928 }
929
930 /* if the old link up/down and speed is the same as the new */
931 if (link_up == old_link && link_speed == old_link_speed)
932 return result;
933
934 if (ice_is_dcb_active(pf)) {
935 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
936 ice_dcb_rebuild(pf);
937 } else {
938 if (link_up)
939 ice_set_dflt_mib(pf);
940 }
941 ice_vsi_link_event(vsi, link_up);
942 ice_print_link_msg(vsi, link_up);
943
944 ice_vc_notify_link_state(pf);
945
946 return result;
947 }
948
949 /**
950 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
951 * @pf: board private structure
952 */
ice_watchdog_subtask(struct ice_pf * pf)953 static void ice_watchdog_subtask(struct ice_pf *pf)
954 {
955 int i;
956
957 /* if interface is down do nothing */
958 if (test_bit(__ICE_DOWN, pf->state) ||
959 test_bit(__ICE_CFG_BUSY, pf->state))
960 return;
961
962 /* make sure we don't do these things too often */
963 if (time_before(jiffies,
964 pf->serv_tmr_prev + pf->serv_tmr_period))
965 return;
966
967 pf->serv_tmr_prev = jiffies;
968
969 /* Update the stats for active netdevs so the network stack
970 * can look at updated numbers whenever it cares to
971 */
972 ice_update_pf_stats(pf);
973 ice_for_each_vsi(pf, i)
974 if (pf->vsi[i] && pf->vsi[i]->netdev)
975 ice_update_vsi_stats(pf->vsi[i]);
976 }
977
978 /**
979 * ice_init_link_events - enable/initialize link events
980 * @pi: pointer to the port_info instance
981 *
982 * Returns -EIO on failure, 0 on success
983 */
ice_init_link_events(struct ice_port_info * pi)984 static int ice_init_link_events(struct ice_port_info *pi)
985 {
986 u16 mask;
987
988 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
989 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
990
991 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
992 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
993 pi->lport);
994 return -EIO;
995 }
996
997 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
998 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
999 pi->lport);
1000 return -EIO;
1001 }
1002
1003 return 0;
1004 }
1005
1006 /**
1007 * ice_handle_link_event - handle link event via ARQ
1008 * @pf: PF that the link event is associated with
1009 * @event: event structure containing link status info
1010 */
1011 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1012 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1013 {
1014 struct ice_aqc_get_link_status_data *link_data;
1015 struct ice_port_info *port_info;
1016 int status;
1017
1018 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1019 port_info = pf->hw.port_info;
1020 if (!port_info)
1021 return -EINVAL;
1022
1023 status = ice_link_event(pf, port_info,
1024 !!(link_data->link_info & ICE_AQ_LINK_UP),
1025 le16_to_cpu(link_data->link_speed));
1026 if (status)
1027 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1028 status);
1029
1030 return status;
1031 }
1032
1033 enum ice_aq_task_state {
1034 ICE_AQ_TASK_WAITING = 0,
1035 ICE_AQ_TASK_COMPLETE,
1036 ICE_AQ_TASK_CANCELED,
1037 };
1038
1039 struct ice_aq_task {
1040 struct hlist_node entry;
1041
1042 u16 opcode;
1043 struct ice_rq_event_info *event;
1044 enum ice_aq_task_state state;
1045 };
1046
1047 /**
1048 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1049 * @pf: pointer to the PF private structure
1050 * @opcode: the opcode to wait for
1051 * @timeout: how long to wait, in jiffies
1052 * @event: storage for the event info
1053 *
1054 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1055 * current thread will be put to sleep until the specified event occurs or
1056 * until the given timeout is reached.
1057 *
1058 * To obtain only the descriptor contents, pass an event without an allocated
1059 * msg_buf. If the complete data buffer is desired, allocate the
1060 * event->msg_buf with enough space ahead of time.
1061 *
1062 * Returns: zero on success, or a negative error code on failure.
1063 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1064 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1065 struct ice_rq_event_info *event)
1066 {
1067 struct device *dev = ice_pf_to_dev(pf);
1068 struct ice_aq_task *task;
1069 unsigned long start;
1070 long ret;
1071 int err;
1072
1073 task = kzalloc(sizeof(*task), GFP_KERNEL);
1074 if (!task)
1075 return -ENOMEM;
1076
1077 INIT_HLIST_NODE(&task->entry);
1078 task->opcode = opcode;
1079 task->event = event;
1080 task->state = ICE_AQ_TASK_WAITING;
1081
1082 spin_lock_bh(&pf->aq_wait_lock);
1083 hlist_add_head(&task->entry, &pf->aq_wait_list);
1084 spin_unlock_bh(&pf->aq_wait_lock);
1085
1086 start = jiffies;
1087
1088 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1089 timeout);
1090 switch (task->state) {
1091 case ICE_AQ_TASK_WAITING:
1092 err = ret < 0 ? ret : -ETIMEDOUT;
1093 break;
1094 case ICE_AQ_TASK_CANCELED:
1095 err = ret < 0 ? ret : -ECANCELED;
1096 break;
1097 case ICE_AQ_TASK_COMPLETE:
1098 err = ret < 0 ? ret : 0;
1099 break;
1100 default:
1101 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1102 err = -EINVAL;
1103 break;
1104 }
1105
1106 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1107 jiffies_to_msecs(jiffies - start),
1108 jiffies_to_msecs(timeout),
1109 opcode);
1110
1111 spin_lock_bh(&pf->aq_wait_lock);
1112 hlist_del(&task->entry);
1113 spin_unlock_bh(&pf->aq_wait_lock);
1114 kfree(task);
1115
1116 return err;
1117 }
1118
1119 /**
1120 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1121 * @pf: pointer to the PF private structure
1122 * @opcode: the opcode of the event
1123 * @event: the event to check
1124 *
1125 * Loops over the current list of pending threads waiting for an AdminQ event.
1126 * For each matching task, copy the contents of the event into the task
1127 * structure and wake up the thread.
1128 *
1129 * If multiple threads wait for the same opcode, they will all be woken up.
1130 *
1131 * Note that event->msg_buf will only be duplicated if the event has a buffer
1132 * with enough space already allocated. Otherwise, only the descriptor and
1133 * message length will be copied.
1134 *
1135 * Returns: true if an event was found, false otherwise
1136 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1137 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1138 struct ice_rq_event_info *event)
1139 {
1140 struct ice_aq_task *task;
1141 bool found = false;
1142
1143 spin_lock_bh(&pf->aq_wait_lock);
1144 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1145 if (task->state || task->opcode != opcode)
1146 continue;
1147
1148 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1149 task->event->msg_len = event->msg_len;
1150
1151 /* Only copy the data buffer if a destination was set */
1152 if (task->event->msg_buf &&
1153 task->event->buf_len > event->buf_len) {
1154 memcpy(task->event->msg_buf, event->msg_buf,
1155 event->buf_len);
1156 task->event->buf_len = event->buf_len;
1157 }
1158
1159 task->state = ICE_AQ_TASK_COMPLETE;
1160 found = true;
1161 }
1162 spin_unlock_bh(&pf->aq_wait_lock);
1163
1164 if (found)
1165 wake_up(&pf->aq_wait_queue);
1166 }
1167
1168 /**
1169 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1170 * @pf: the PF private structure
1171 *
1172 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1173 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1174 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1175 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1176 {
1177 struct ice_aq_task *task;
1178
1179 spin_lock_bh(&pf->aq_wait_lock);
1180 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1181 task->state = ICE_AQ_TASK_CANCELED;
1182 spin_unlock_bh(&pf->aq_wait_lock);
1183
1184 wake_up(&pf->aq_wait_queue);
1185 }
1186
1187 /**
1188 * __ice_clean_ctrlq - helper function to clean controlq rings
1189 * @pf: ptr to struct ice_pf
1190 * @q_type: specific Control queue type
1191 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1192 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1193 {
1194 struct device *dev = ice_pf_to_dev(pf);
1195 struct ice_rq_event_info event;
1196 struct ice_hw *hw = &pf->hw;
1197 struct ice_ctl_q_info *cq;
1198 u16 pending, i = 0;
1199 const char *qtype;
1200 u32 oldval, val;
1201
1202 /* Do not clean control queue if/when PF reset fails */
1203 if (test_bit(__ICE_RESET_FAILED, pf->state))
1204 return 0;
1205
1206 switch (q_type) {
1207 case ICE_CTL_Q_ADMIN:
1208 cq = &hw->adminq;
1209 qtype = "Admin";
1210 break;
1211 case ICE_CTL_Q_MAILBOX:
1212 cq = &hw->mailboxq;
1213 qtype = "Mailbox";
1214 break;
1215 default:
1216 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1217 return 0;
1218 }
1219
1220 /* check for error indications - PF_xx_AxQLEN register layout for
1221 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1222 */
1223 val = rd32(hw, cq->rq.len);
1224 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1225 PF_FW_ARQLEN_ARQCRIT_M)) {
1226 oldval = val;
1227 if (val & PF_FW_ARQLEN_ARQVFE_M)
1228 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1229 qtype);
1230 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1231 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1232 qtype);
1233 }
1234 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1235 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1236 qtype);
1237 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1238 PF_FW_ARQLEN_ARQCRIT_M);
1239 if (oldval != val)
1240 wr32(hw, cq->rq.len, val);
1241 }
1242
1243 val = rd32(hw, cq->sq.len);
1244 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1245 PF_FW_ATQLEN_ATQCRIT_M)) {
1246 oldval = val;
1247 if (val & PF_FW_ATQLEN_ATQVFE_M)
1248 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1249 qtype);
1250 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1251 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1252 qtype);
1253 }
1254 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1255 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1256 qtype);
1257 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1258 PF_FW_ATQLEN_ATQCRIT_M);
1259 if (oldval != val)
1260 wr32(hw, cq->sq.len, val);
1261 }
1262
1263 event.buf_len = cq->rq_buf_size;
1264 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1265 if (!event.msg_buf)
1266 return 0;
1267
1268 do {
1269 enum ice_status ret;
1270 u16 opcode;
1271
1272 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1273 if (ret == ICE_ERR_AQ_NO_WORK)
1274 break;
1275 if (ret) {
1276 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1277 ice_stat_str(ret));
1278 break;
1279 }
1280
1281 opcode = le16_to_cpu(event.desc.opcode);
1282
1283 /* Notify any thread that might be waiting for this event */
1284 ice_aq_check_events(pf, opcode, &event);
1285
1286 switch (opcode) {
1287 case ice_aqc_opc_get_link_status:
1288 if (ice_handle_link_event(pf, &event))
1289 dev_err(dev, "Could not handle link event\n");
1290 break;
1291 case ice_aqc_opc_event_lan_overflow:
1292 ice_vf_lan_overflow_event(pf, &event);
1293 break;
1294 case ice_mbx_opc_send_msg_to_pf:
1295 ice_vc_process_vf_msg(pf, &event);
1296 break;
1297 case ice_aqc_opc_fw_logging:
1298 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1299 break;
1300 case ice_aqc_opc_lldp_set_mib_change:
1301 ice_dcb_process_lldp_set_mib_change(pf, &event);
1302 break;
1303 default:
1304 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1305 qtype, opcode);
1306 break;
1307 }
1308 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1309
1310 kfree(event.msg_buf);
1311
1312 return pending && (i == ICE_DFLT_IRQ_WORK);
1313 }
1314
1315 /**
1316 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1317 * @hw: pointer to hardware info
1318 * @cq: control queue information
1319 *
1320 * returns true if there are pending messages in a queue, false if there aren't
1321 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1322 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1323 {
1324 u16 ntu;
1325
1326 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1327 return cq->rq.next_to_clean != ntu;
1328 }
1329
1330 /**
1331 * ice_clean_adminq_subtask - clean the AdminQ rings
1332 * @pf: board private structure
1333 */
ice_clean_adminq_subtask(struct ice_pf * pf)1334 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1335 {
1336 struct ice_hw *hw = &pf->hw;
1337
1338 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1339 return;
1340
1341 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1342 return;
1343
1344 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1345
1346 /* There might be a situation where new messages arrive to a control
1347 * queue between processing the last message and clearing the
1348 * EVENT_PENDING bit. So before exiting, check queue head again (using
1349 * ice_ctrlq_pending) and process new messages if any.
1350 */
1351 if (ice_ctrlq_pending(hw, &hw->adminq))
1352 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1353
1354 ice_flush(hw);
1355 }
1356
1357 /**
1358 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1359 * @pf: board private structure
1360 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1361 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1362 {
1363 struct ice_hw *hw = &pf->hw;
1364
1365 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1366 return;
1367
1368 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1369 return;
1370
1371 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1372
1373 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1374 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1375
1376 ice_flush(hw);
1377 }
1378
1379 /**
1380 * ice_service_task_schedule - schedule the service task to wake up
1381 * @pf: board private structure
1382 *
1383 * If not already scheduled, this puts the task into the work queue.
1384 */
ice_service_task_schedule(struct ice_pf * pf)1385 void ice_service_task_schedule(struct ice_pf *pf)
1386 {
1387 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1388 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1389 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1390 queue_work(ice_wq, &pf->serv_task);
1391 }
1392
1393 /**
1394 * ice_service_task_complete - finish up the service task
1395 * @pf: board private structure
1396 */
ice_service_task_complete(struct ice_pf * pf)1397 static void ice_service_task_complete(struct ice_pf *pf)
1398 {
1399 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1400
1401 /* force memory (pf->state) to sync before next service task */
1402 smp_mb__before_atomic();
1403 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1404 }
1405
1406 /**
1407 * ice_service_task_stop - stop service task and cancel works
1408 * @pf: board private structure
1409 *
1410 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1411 * 1 otherwise.
1412 */
ice_service_task_stop(struct ice_pf * pf)1413 static int ice_service_task_stop(struct ice_pf *pf)
1414 {
1415 int ret;
1416
1417 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1418
1419 if (pf->serv_tmr.function)
1420 del_timer_sync(&pf->serv_tmr);
1421 if (pf->serv_task.func)
1422 cancel_work_sync(&pf->serv_task);
1423
1424 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1425 return ret;
1426 }
1427
1428 /**
1429 * ice_service_task_restart - restart service task and schedule works
1430 * @pf: board private structure
1431 *
1432 * This function is needed for suspend and resume works (e.g WoL scenario)
1433 */
ice_service_task_restart(struct ice_pf * pf)1434 static void ice_service_task_restart(struct ice_pf *pf)
1435 {
1436 clear_bit(__ICE_SERVICE_DIS, pf->state);
1437 ice_service_task_schedule(pf);
1438 }
1439
1440 /**
1441 * ice_service_timer - timer callback to schedule service task
1442 * @t: pointer to timer_list
1443 */
ice_service_timer(struct timer_list * t)1444 static void ice_service_timer(struct timer_list *t)
1445 {
1446 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1447
1448 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1449 ice_service_task_schedule(pf);
1450 }
1451
1452 /**
1453 * ice_handle_mdd_event - handle malicious driver detect event
1454 * @pf: pointer to the PF structure
1455 *
1456 * Called from service task. OICR interrupt handler indicates MDD event.
1457 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1458 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1459 * disable the queue, the PF can be configured to reset the VF using ethtool
1460 * private flag mdd-auto-reset-vf.
1461 */
ice_handle_mdd_event(struct ice_pf * pf)1462 static void ice_handle_mdd_event(struct ice_pf *pf)
1463 {
1464 struct device *dev = ice_pf_to_dev(pf);
1465 struct ice_hw *hw = &pf->hw;
1466 unsigned int i;
1467 u32 reg;
1468
1469 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1470 /* Since the VF MDD event logging is rate limited, check if
1471 * there are pending MDD events.
1472 */
1473 ice_print_vfs_mdd_events(pf);
1474 return;
1475 }
1476
1477 /* find what triggered an MDD event */
1478 reg = rd32(hw, GL_MDET_TX_PQM);
1479 if (reg & GL_MDET_TX_PQM_VALID_M) {
1480 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1481 GL_MDET_TX_PQM_PF_NUM_S;
1482 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1483 GL_MDET_TX_PQM_VF_NUM_S;
1484 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1485 GL_MDET_TX_PQM_MAL_TYPE_S;
1486 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1487 GL_MDET_TX_PQM_QNUM_S);
1488
1489 if (netif_msg_tx_err(pf))
1490 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1491 event, queue, pf_num, vf_num);
1492 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1493 }
1494
1495 reg = rd32(hw, GL_MDET_TX_TCLAN);
1496 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1497 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1498 GL_MDET_TX_TCLAN_PF_NUM_S;
1499 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1500 GL_MDET_TX_TCLAN_VF_NUM_S;
1501 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1502 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1503 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1504 GL_MDET_TX_TCLAN_QNUM_S);
1505
1506 if (netif_msg_tx_err(pf))
1507 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1508 event, queue, pf_num, vf_num);
1509 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1510 }
1511
1512 reg = rd32(hw, GL_MDET_RX);
1513 if (reg & GL_MDET_RX_VALID_M) {
1514 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1515 GL_MDET_RX_PF_NUM_S;
1516 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1517 GL_MDET_RX_VF_NUM_S;
1518 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1519 GL_MDET_RX_MAL_TYPE_S;
1520 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1521 GL_MDET_RX_QNUM_S);
1522
1523 if (netif_msg_rx_err(pf))
1524 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1525 event, queue, pf_num, vf_num);
1526 wr32(hw, GL_MDET_RX, 0xffffffff);
1527 }
1528
1529 /* check to see if this PF caused an MDD event */
1530 reg = rd32(hw, PF_MDET_TX_PQM);
1531 if (reg & PF_MDET_TX_PQM_VALID_M) {
1532 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1533 if (netif_msg_tx_err(pf))
1534 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1535 }
1536
1537 reg = rd32(hw, PF_MDET_TX_TCLAN);
1538 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1539 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1540 if (netif_msg_tx_err(pf))
1541 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1542 }
1543
1544 reg = rd32(hw, PF_MDET_RX);
1545 if (reg & PF_MDET_RX_VALID_M) {
1546 wr32(hw, PF_MDET_RX, 0xFFFF);
1547 if (netif_msg_rx_err(pf))
1548 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1549 }
1550
1551 /* Check to see if one of the VFs caused an MDD event, and then
1552 * increment counters and set print pending
1553 */
1554 ice_for_each_vf(pf, i) {
1555 struct ice_vf *vf = &pf->vf[i];
1556
1557 reg = rd32(hw, VP_MDET_TX_PQM(i));
1558 if (reg & VP_MDET_TX_PQM_VALID_M) {
1559 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1560 vf->mdd_tx_events.count++;
1561 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1562 if (netif_msg_tx_err(pf))
1563 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1564 i);
1565 }
1566
1567 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1568 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1569 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1570 vf->mdd_tx_events.count++;
1571 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1572 if (netif_msg_tx_err(pf))
1573 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1574 i);
1575 }
1576
1577 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1578 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1579 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1580 vf->mdd_tx_events.count++;
1581 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1582 if (netif_msg_tx_err(pf))
1583 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1584 i);
1585 }
1586
1587 reg = rd32(hw, VP_MDET_RX(i));
1588 if (reg & VP_MDET_RX_VALID_M) {
1589 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1590 vf->mdd_rx_events.count++;
1591 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1592 if (netif_msg_rx_err(pf))
1593 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1594 i);
1595
1596 /* Since the queue is disabled on VF Rx MDD events, the
1597 * PF can be configured to reset the VF through ethtool
1598 * private flag mdd-auto-reset-vf.
1599 */
1600 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1601 /* VF MDD event counters will be cleared by
1602 * reset, so print the event prior to reset.
1603 */
1604 ice_print_vf_rx_mdd_event(vf);
1605 ice_reset_vf(&pf->vf[i], false);
1606 }
1607 }
1608 }
1609
1610 ice_print_vfs_mdd_events(pf);
1611 }
1612
1613 /**
1614 * ice_force_phys_link_state - Force the physical link state
1615 * @vsi: VSI to force the physical link state to up/down
1616 * @link_up: true/false indicates to set the physical link to up/down
1617 *
1618 * Force the physical link state by getting the current PHY capabilities from
1619 * hardware and setting the PHY config based on the determined capabilities. If
1620 * link changes a link event will be triggered because both the Enable Automatic
1621 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1622 *
1623 * Returns 0 on success, negative on failure
1624 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1625 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1626 {
1627 struct ice_aqc_get_phy_caps_data *pcaps;
1628 struct ice_aqc_set_phy_cfg_data *cfg;
1629 struct ice_port_info *pi;
1630 struct device *dev;
1631 int retcode;
1632
1633 if (!vsi || !vsi->port_info || !vsi->back)
1634 return -EINVAL;
1635 if (vsi->type != ICE_VSI_PF)
1636 return 0;
1637
1638 dev = ice_pf_to_dev(vsi->back);
1639
1640 pi = vsi->port_info;
1641
1642 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1643 if (!pcaps)
1644 return -ENOMEM;
1645
1646 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1647 NULL);
1648 if (retcode) {
1649 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1650 vsi->vsi_num, retcode);
1651 retcode = -EIO;
1652 goto out;
1653 }
1654
1655 /* No change in link */
1656 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1657 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1658 goto out;
1659
1660 /* Use the current user PHY configuration. The current user PHY
1661 * configuration is initialized during probe from PHY capabilities
1662 * software mode, and updated on set PHY configuration.
1663 */
1664 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1665 if (!cfg) {
1666 retcode = -ENOMEM;
1667 goto out;
1668 }
1669
1670 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1671 if (link_up)
1672 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1673 else
1674 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1675
1676 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1677 if (retcode) {
1678 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1679 vsi->vsi_num, retcode);
1680 retcode = -EIO;
1681 }
1682
1683 kfree(cfg);
1684 out:
1685 kfree(pcaps);
1686 return retcode;
1687 }
1688
1689 /**
1690 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1691 * @pi: port info structure
1692 *
1693 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1694 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1695 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1696 {
1697 struct ice_aqc_get_phy_caps_data *pcaps;
1698 struct ice_pf *pf = pi->hw->back;
1699 enum ice_status status;
1700 int err = 0;
1701
1702 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1703 if (!pcaps)
1704 return -ENOMEM;
1705
1706 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1707 NULL);
1708
1709 if (status) {
1710 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1711 err = -EIO;
1712 goto out;
1713 }
1714
1715 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1716 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1717
1718 out:
1719 kfree(pcaps);
1720 return err;
1721 }
1722
1723 /**
1724 * ice_init_link_dflt_override - Initialize link default override
1725 * @pi: port info structure
1726 *
1727 * Initialize link default override and PHY total port shutdown during probe
1728 */
ice_init_link_dflt_override(struct ice_port_info * pi)1729 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1730 {
1731 struct ice_link_default_override_tlv *ldo;
1732 struct ice_pf *pf = pi->hw->back;
1733
1734 ldo = &pf->link_dflt_override;
1735 if (ice_get_link_default_override(ldo, pi))
1736 return;
1737
1738 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1739 return;
1740
1741 /* Enable Total Port Shutdown (override/replace link-down-on-close
1742 * ethtool private flag) for ports with Port Disable bit set.
1743 */
1744 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1745 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1746 }
1747
1748 /**
1749 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1750 * @pi: port info structure
1751 *
1752 * If default override is enabled, initialized the user PHY cfg speed and FEC
1753 * settings using the default override mask from the NVM.
1754 *
1755 * The PHY should only be configured with the default override settings the
1756 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1757 * is used to indicate that the user PHY cfg default override is initialized
1758 * and the PHY has not been configured with the default override settings. The
1759 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1760 * configured.
1761 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1762 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1763 {
1764 struct ice_link_default_override_tlv *ldo;
1765 struct ice_aqc_set_phy_cfg_data *cfg;
1766 struct ice_phy_info *phy = &pi->phy;
1767 struct ice_pf *pf = pi->hw->back;
1768
1769 ldo = &pf->link_dflt_override;
1770
1771 /* If link default override is enabled, use to mask NVM PHY capabilities
1772 * for speed and FEC default configuration.
1773 */
1774 cfg = &phy->curr_user_phy_cfg;
1775
1776 if (ldo->phy_type_low || ldo->phy_type_high) {
1777 cfg->phy_type_low = pf->nvm_phy_type_lo &
1778 cpu_to_le64(ldo->phy_type_low);
1779 cfg->phy_type_high = pf->nvm_phy_type_hi &
1780 cpu_to_le64(ldo->phy_type_high);
1781 }
1782 cfg->link_fec_opt = ldo->fec_options;
1783 phy->curr_user_fec_req = ICE_FEC_AUTO;
1784
1785 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1786 }
1787
1788 /**
1789 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1790 * @pi: port info structure
1791 *
1792 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1793 * mode to default. The PHY defaults are from get PHY capabilities topology
1794 * with media so call when media is first available. An error is returned if
1795 * called when media is not available. The PHY initialization completed state is
1796 * set here.
1797 *
1798 * These configurations are used when setting PHY
1799 * configuration. The user PHY configuration is updated on set PHY
1800 * configuration. Returns 0 on success, negative on failure
1801 */
ice_init_phy_user_cfg(struct ice_port_info * pi)1802 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1803 {
1804 struct ice_aqc_get_phy_caps_data *pcaps;
1805 struct ice_phy_info *phy = &pi->phy;
1806 struct ice_pf *pf = pi->hw->back;
1807 enum ice_status status;
1808 struct ice_vsi *vsi;
1809 int err = 0;
1810
1811 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1812 return -EIO;
1813
1814 vsi = ice_get_main_vsi(pf);
1815 if (!vsi)
1816 return -EINVAL;
1817
1818 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1819 if (!pcaps)
1820 return -ENOMEM;
1821
1822 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1823 NULL);
1824 if (status) {
1825 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1826 err = -EIO;
1827 goto err_out;
1828 }
1829
1830 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1831
1832 /* check if lenient mode is supported and enabled */
1833 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1834 !(pcaps->module_compliance_enforcement &
1835 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1836 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1837
1838 /* if link default override is enabled, initialize user PHY
1839 * configuration with link default override values
1840 */
1841 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1842 ice_init_phy_cfg_dflt_override(pi);
1843 goto out;
1844 }
1845 }
1846
1847 /* if link default override is not enabled, initialize PHY using
1848 * topology with media
1849 */
1850 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1851 pcaps->link_fec_options);
1852 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1853
1854 out:
1855 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1856 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1857 err_out:
1858 kfree(pcaps);
1859 return err;
1860 }
1861
1862 /**
1863 * ice_configure_phy - configure PHY
1864 * @vsi: VSI of PHY
1865 *
1866 * Set the PHY configuration. If the current PHY configuration is the same as
1867 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1868 * configure the based get PHY capabilities for topology with media.
1869 */
ice_configure_phy(struct ice_vsi * vsi)1870 static int ice_configure_phy(struct ice_vsi *vsi)
1871 {
1872 struct device *dev = ice_pf_to_dev(vsi->back);
1873 struct ice_aqc_get_phy_caps_data *pcaps;
1874 struct ice_aqc_set_phy_cfg_data *cfg;
1875 struct ice_port_info *pi;
1876 enum ice_status status;
1877 int err = 0;
1878
1879 pi = vsi->port_info;
1880 if (!pi)
1881 return -EINVAL;
1882
1883 /* Ensure we have media as we cannot configure a medialess port */
1884 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1885 return -EPERM;
1886
1887 ice_print_topo_conflict(vsi);
1888
1889 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1890 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1891 return -EPERM;
1892
1893 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1894 return ice_force_phys_link_state(vsi, true);
1895
1896 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1897 if (!pcaps)
1898 return -ENOMEM;
1899
1900 /* Get current PHY config */
1901 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1902 NULL);
1903 if (status) {
1904 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1905 vsi->vsi_num, ice_stat_str(status));
1906 err = -EIO;
1907 goto done;
1908 }
1909
1910 /* If PHY enable link is configured and configuration has not changed,
1911 * there's nothing to do
1912 */
1913 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1914 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1915 goto done;
1916
1917 /* Use PHY topology as baseline for configuration */
1918 memset(pcaps, 0, sizeof(*pcaps));
1919 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1920 NULL);
1921 if (status) {
1922 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1923 vsi->vsi_num, ice_stat_str(status));
1924 err = -EIO;
1925 goto done;
1926 }
1927
1928 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1929 if (!cfg) {
1930 err = -ENOMEM;
1931 goto done;
1932 }
1933
1934 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1935
1936 /* Speed - If default override pending, use curr_user_phy_cfg set in
1937 * ice_init_phy_user_cfg_ldo.
1938 */
1939 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1940 vsi->back->state)) {
1941 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1942 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1943 } else {
1944 u64 phy_low = 0, phy_high = 0;
1945
1946 ice_update_phy_type(&phy_low, &phy_high,
1947 pi->phy.curr_user_speed_req);
1948 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1949 cfg->phy_type_high = pcaps->phy_type_high &
1950 cpu_to_le64(phy_high);
1951 }
1952
1953 /* Can't provide what was requested; use PHY capabilities */
1954 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1955 cfg->phy_type_low = pcaps->phy_type_low;
1956 cfg->phy_type_high = pcaps->phy_type_high;
1957 }
1958
1959 /* FEC */
1960 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1961
1962 /* Can't provide what was requested; use PHY capabilities */
1963 if (cfg->link_fec_opt !=
1964 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1965 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1966 cfg->link_fec_opt = pcaps->link_fec_options;
1967 }
1968
1969 /* Flow Control - always supported; no need to check against
1970 * capabilities
1971 */
1972 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1973
1974 /* Enable link and link update */
1975 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1976
1977 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1978 if (status) {
1979 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1980 vsi->vsi_num, ice_stat_str(status));
1981 err = -EIO;
1982 }
1983
1984 kfree(cfg);
1985 done:
1986 kfree(pcaps);
1987 return err;
1988 }
1989
1990 /**
1991 * ice_check_media_subtask - Check for media
1992 * @pf: pointer to PF struct
1993 *
1994 * If media is available, then initialize PHY user configuration if it is not
1995 * been, and configure the PHY if the interface is up.
1996 */
ice_check_media_subtask(struct ice_pf * pf)1997 static void ice_check_media_subtask(struct ice_pf *pf)
1998 {
1999 struct ice_port_info *pi;
2000 struct ice_vsi *vsi;
2001 int err;
2002
2003 /* No need to check for media if it's already present */
2004 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2005 return;
2006
2007 vsi = ice_get_main_vsi(pf);
2008 if (!vsi)
2009 return;
2010
2011 /* Refresh link info and check if media is present */
2012 pi = vsi->port_info;
2013 err = ice_update_link_info(pi);
2014 if (err)
2015 return;
2016
2017 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2018 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2019 ice_init_phy_user_cfg(pi);
2020
2021 /* PHY settings are reset on media insertion, reconfigure
2022 * PHY to preserve settings.
2023 */
2024 if (test_bit(__ICE_DOWN, vsi->state) &&
2025 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2026 return;
2027
2028 err = ice_configure_phy(vsi);
2029 if (!err)
2030 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2031
2032 /* A Link Status Event will be generated; the event handler
2033 * will complete bringing the interface up
2034 */
2035 }
2036 }
2037
2038 /**
2039 * ice_service_task - manage and run subtasks
2040 * @work: pointer to work_struct contained by the PF struct
2041 */
ice_service_task(struct work_struct * work)2042 static void ice_service_task(struct work_struct *work)
2043 {
2044 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2045 unsigned long start_time = jiffies;
2046
2047 /* subtasks */
2048
2049 /* process reset requests first */
2050 ice_reset_subtask(pf);
2051
2052 /* bail if a reset/recovery cycle is pending or rebuild failed */
2053 if (ice_is_reset_in_progress(pf->state) ||
2054 test_bit(__ICE_SUSPENDED, pf->state) ||
2055 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2056 ice_service_task_complete(pf);
2057 return;
2058 }
2059
2060 ice_clean_adminq_subtask(pf);
2061 ice_check_media_subtask(pf);
2062 ice_check_for_hang_subtask(pf);
2063 ice_sync_fltr_subtask(pf);
2064 ice_handle_mdd_event(pf);
2065 ice_watchdog_subtask(pf);
2066
2067 if (ice_is_safe_mode(pf)) {
2068 ice_service_task_complete(pf);
2069 return;
2070 }
2071
2072 ice_process_vflr_event(pf);
2073 ice_clean_mailboxq_subtask(pf);
2074 ice_sync_arfs_fltrs(pf);
2075 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2076 ice_service_task_complete(pf);
2077
2078 /* If the tasks have taken longer than one service timer period
2079 * or there is more work to be done, reset the service timer to
2080 * schedule the service task now.
2081 */
2082 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2083 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2084 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2085 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2086 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2087 mod_timer(&pf->serv_tmr, jiffies);
2088 }
2089
2090 /**
2091 * ice_set_ctrlq_len - helper function to set controlq length
2092 * @hw: pointer to the HW instance
2093 */
ice_set_ctrlq_len(struct ice_hw * hw)2094 static void ice_set_ctrlq_len(struct ice_hw *hw)
2095 {
2096 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2097 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2098 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2099 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2100 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2101 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2102 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2103 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2104 }
2105
2106 /**
2107 * ice_schedule_reset - schedule a reset
2108 * @pf: board private structure
2109 * @reset: reset being requested
2110 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2111 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2112 {
2113 struct device *dev = ice_pf_to_dev(pf);
2114
2115 /* bail out if earlier reset has failed */
2116 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2117 dev_dbg(dev, "earlier reset has failed\n");
2118 return -EIO;
2119 }
2120 /* bail if reset/recovery already in progress */
2121 if (ice_is_reset_in_progress(pf->state)) {
2122 dev_dbg(dev, "Reset already in progress\n");
2123 return -EBUSY;
2124 }
2125
2126 switch (reset) {
2127 case ICE_RESET_PFR:
2128 set_bit(__ICE_PFR_REQ, pf->state);
2129 break;
2130 case ICE_RESET_CORER:
2131 set_bit(__ICE_CORER_REQ, pf->state);
2132 break;
2133 case ICE_RESET_GLOBR:
2134 set_bit(__ICE_GLOBR_REQ, pf->state);
2135 break;
2136 default:
2137 return -EINVAL;
2138 }
2139
2140 ice_service_task_schedule(pf);
2141 return 0;
2142 }
2143
2144 /**
2145 * ice_irq_affinity_notify - Callback for affinity changes
2146 * @notify: context as to what irq was changed
2147 * @mask: the new affinity mask
2148 *
2149 * This is a callback function used by the irq_set_affinity_notifier function
2150 * so that we may register to receive changes to the irq affinity masks.
2151 */
2152 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2153 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2154 const cpumask_t *mask)
2155 {
2156 struct ice_q_vector *q_vector =
2157 container_of(notify, struct ice_q_vector, affinity_notify);
2158
2159 cpumask_copy(&q_vector->affinity_mask, mask);
2160 }
2161
2162 /**
2163 * ice_irq_affinity_release - Callback for affinity notifier release
2164 * @ref: internal core kernel usage
2165 *
2166 * This is a callback function used by the irq_set_affinity_notifier function
2167 * to inform the current notification subscriber that they will no longer
2168 * receive notifications.
2169 */
ice_irq_affinity_release(struct kref __always_unused * ref)2170 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2171
2172 /**
2173 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2174 * @vsi: the VSI being configured
2175 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2176 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2177 {
2178 struct ice_hw *hw = &vsi->back->hw;
2179 int i;
2180
2181 ice_for_each_q_vector(vsi, i)
2182 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2183
2184 ice_flush(hw);
2185 return 0;
2186 }
2187
2188 /**
2189 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2190 * @vsi: the VSI being configured
2191 * @basename: name for the vector
2192 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2193 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2194 {
2195 int q_vectors = vsi->num_q_vectors;
2196 struct ice_pf *pf = vsi->back;
2197 int base = vsi->base_vector;
2198 struct device *dev;
2199 int rx_int_idx = 0;
2200 int tx_int_idx = 0;
2201 int vector, err;
2202 int irq_num;
2203
2204 dev = ice_pf_to_dev(pf);
2205 for (vector = 0; vector < q_vectors; vector++) {
2206 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2207
2208 irq_num = pf->msix_entries[base + vector].vector;
2209
2210 if (q_vector->tx.ring && q_vector->rx.ring) {
2211 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2212 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2213 tx_int_idx++;
2214 } else if (q_vector->rx.ring) {
2215 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2216 "%s-%s-%d", basename, "rx", rx_int_idx++);
2217 } else if (q_vector->tx.ring) {
2218 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2219 "%s-%s-%d", basename, "tx", tx_int_idx++);
2220 } else {
2221 /* skip this unused q_vector */
2222 continue;
2223 }
2224 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2225 q_vector->name, q_vector);
2226 if (err) {
2227 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2228 err);
2229 goto free_q_irqs;
2230 }
2231
2232 /* register for affinity change notifications */
2233 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2234 struct irq_affinity_notify *affinity_notify;
2235
2236 affinity_notify = &q_vector->affinity_notify;
2237 affinity_notify->notify = ice_irq_affinity_notify;
2238 affinity_notify->release = ice_irq_affinity_release;
2239 irq_set_affinity_notifier(irq_num, affinity_notify);
2240 }
2241
2242 /* assign the mask for this irq */
2243 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2244 }
2245
2246 vsi->irqs_ready = true;
2247 return 0;
2248
2249 free_q_irqs:
2250 while (vector) {
2251 vector--;
2252 irq_num = pf->msix_entries[base + vector].vector;
2253 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2254 irq_set_affinity_notifier(irq_num, NULL);
2255 irq_set_affinity_hint(irq_num, NULL);
2256 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2257 }
2258 return err;
2259 }
2260
2261 /**
2262 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2263 * @vsi: VSI to setup Tx rings used by XDP
2264 *
2265 * Return 0 on success and negative value on error
2266 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2267 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2268 {
2269 struct device *dev = ice_pf_to_dev(vsi->back);
2270 int i;
2271
2272 for (i = 0; i < vsi->num_xdp_txq; i++) {
2273 u16 xdp_q_idx = vsi->alloc_txq + i;
2274 struct ice_ring *xdp_ring;
2275
2276 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2277
2278 if (!xdp_ring)
2279 goto free_xdp_rings;
2280
2281 xdp_ring->q_index = xdp_q_idx;
2282 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2283 xdp_ring->ring_active = false;
2284 xdp_ring->vsi = vsi;
2285 xdp_ring->netdev = NULL;
2286 xdp_ring->dev = dev;
2287 xdp_ring->count = vsi->num_tx_desc;
2288 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2289 if (ice_setup_tx_ring(xdp_ring))
2290 goto free_xdp_rings;
2291 ice_set_ring_xdp(xdp_ring);
2292 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2293 }
2294
2295 return 0;
2296
2297 free_xdp_rings:
2298 for (; i >= 0; i--)
2299 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2300 ice_free_tx_ring(vsi->xdp_rings[i]);
2301 return -ENOMEM;
2302 }
2303
2304 /**
2305 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2306 * @vsi: VSI to set the bpf prog on
2307 * @prog: the bpf prog pointer
2308 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2309 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2310 {
2311 struct bpf_prog *old_prog;
2312 int i;
2313
2314 old_prog = xchg(&vsi->xdp_prog, prog);
2315 if (old_prog)
2316 bpf_prog_put(old_prog);
2317
2318 ice_for_each_rxq(vsi, i)
2319 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2320 }
2321
2322 /**
2323 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2324 * @vsi: VSI to bring up Tx rings used by XDP
2325 * @prog: bpf program that will be assigned to VSI
2326 *
2327 * Return 0 on success and negative value on error
2328 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2329 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2330 {
2331 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2332 int xdp_rings_rem = vsi->num_xdp_txq;
2333 struct ice_pf *pf = vsi->back;
2334 struct ice_qs_cfg xdp_qs_cfg = {
2335 .qs_mutex = &pf->avail_q_mutex,
2336 .pf_map = pf->avail_txqs,
2337 .pf_map_size = pf->max_pf_txqs,
2338 .q_count = vsi->num_xdp_txq,
2339 .scatter_count = ICE_MAX_SCATTER_TXQS,
2340 .vsi_map = vsi->txq_map,
2341 .vsi_map_offset = vsi->alloc_txq,
2342 .mapping_mode = ICE_VSI_MAP_CONTIG
2343 };
2344 enum ice_status status;
2345 struct device *dev;
2346 int i, v_idx;
2347
2348 dev = ice_pf_to_dev(pf);
2349 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2350 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2351 if (!vsi->xdp_rings)
2352 return -ENOMEM;
2353
2354 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2355 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2356 goto err_map_xdp;
2357
2358 if (ice_xdp_alloc_setup_rings(vsi))
2359 goto clear_xdp_rings;
2360
2361 /* follow the logic from ice_vsi_map_rings_to_vectors */
2362 ice_for_each_q_vector(vsi, v_idx) {
2363 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2364 int xdp_rings_per_v, q_id, q_base;
2365
2366 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2367 vsi->num_q_vectors - v_idx);
2368 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2369
2370 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2371 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2372
2373 xdp_ring->q_vector = q_vector;
2374 xdp_ring->next = q_vector->tx.ring;
2375 q_vector->tx.ring = xdp_ring;
2376 }
2377 xdp_rings_rem -= xdp_rings_per_v;
2378 }
2379
2380 /* omit the scheduler update if in reset path; XDP queues will be
2381 * taken into account at the end of ice_vsi_rebuild, where
2382 * ice_cfg_vsi_lan is being called
2383 */
2384 if (ice_is_reset_in_progress(pf->state))
2385 return 0;
2386
2387 /* tell the Tx scheduler that right now we have
2388 * additional queues
2389 */
2390 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2391 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2392
2393 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2394 max_txqs);
2395 if (status) {
2396 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2397 ice_stat_str(status));
2398 goto clear_xdp_rings;
2399 }
2400
2401 /* assign the prog only when it's not already present on VSI;
2402 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2403 * VSI rebuild that happens under ethtool -L can expose us to
2404 * the bpf_prog refcount issues as we would be swapping same
2405 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2406 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2407 * this is not harmful as dev_xdp_install bumps the refcount
2408 * before calling the op exposed by the driver;
2409 */
2410 if (!ice_is_xdp_ena_vsi(vsi))
2411 ice_vsi_assign_bpf_prog(vsi, prog);
2412
2413 return 0;
2414 clear_xdp_rings:
2415 for (i = 0; i < vsi->num_xdp_txq; i++)
2416 if (vsi->xdp_rings[i]) {
2417 kfree_rcu(vsi->xdp_rings[i], rcu);
2418 vsi->xdp_rings[i] = NULL;
2419 }
2420
2421 err_map_xdp:
2422 mutex_lock(&pf->avail_q_mutex);
2423 for (i = 0; i < vsi->num_xdp_txq; i++) {
2424 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2425 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2426 }
2427 mutex_unlock(&pf->avail_q_mutex);
2428
2429 devm_kfree(dev, vsi->xdp_rings);
2430 return -ENOMEM;
2431 }
2432
2433 /**
2434 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2435 * @vsi: VSI to remove XDP rings
2436 *
2437 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2438 * resources
2439 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2440 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2441 {
2442 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2443 struct ice_pf *pf = vsi->back;
2444 int i, v_idx;
2445
2446 /* q_vectors are freed in reset path so there's no point in detaching
2447 * rings; in case of rebuild being triggered not from reset bits
2448 * in pf->state won't be set, so additionally check first q_vector
2449 * against NULL
2450 */
2451 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2452 goto free_qmap;
2453
2454 ice_for_each_q_vector(vsi, v_idx) {
2455 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2456 struct ice_ring *ring;
2457
2458 ice_for_each_ring(ring, q_vector->tx)
2459 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2460 break;
2461
2462 /* restore the value of last node prior to XDP setup */
2463 q_vector->tx.ring = ring;
2464 }
2465
2466 free_qmap:
2467 mutex_lock(&pf->avail_q_mutex);
2468 for (i = 0; i < vsi->num_xdp_txq; i++) {
2469 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2470 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2471 }
2472 mutex_unlock(&pf->avail_q_mutex);
2473
2474 for (i = 0; i < vsi->num_xdp_txq; i++)
2475 if (vsi->xdp_rings[i]) {
2476 if (vsi->xdp_rings[i]->desc)
2477 ice_free_tx_ring(vsi->xdp_rings[i]);
2478 kfree_rcu(vsi->xdp_rings[i], rcu);
2479 vsi->xdp_rings[i] = NULL;
2480 }
2481
2482 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2483 vsi->xdp_rings = NULL;
2484
2485 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2486 return 0;
2487
2488 ice_vsi_assign_bpf_prog(vsi, NULL);
2489
2490 /* notify Tx scheduler that we destroyed XDP queues and bring
2491 * back the old number of child nodes
2492 */
2493 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2494 max_txqs[i] = vsi->num_txq;
2495
2496 /* change number of XDP Tx queues to 0 */
2497 vsi->num_xdp_txq = 0;
2498
2499 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2500 max_txqs);
2501 }
2502
2503 /**
2504 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2505 * @vsi: VSI to setup XDP for
2506 * @prog: XDP program
2507 * @extack: netlink extended ack
2508 */
2509 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2510 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2511 struct netlink_ext_ack *extack)
2512 {
2513 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2514 bool if_running = netif_running(vsi->netdev);
2515 int ret = 0, xdp_ring_err = 0;
2516
2517 if (frame_size > vsi->rx_buf_len) {
2518 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2519 return -EOPNOTSUPP;
2520 }
2521
2522 /* need to stop netdev while setting up the program for Rx rings */
2523 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2524 ret = ice_down(vsi);
2525 if (ret) {
2526 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2527 return ret;
2528 }
2529 }
2530
2531 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2532 vsi->num_xdp_txq = vsi->alloc_rxq;
2533 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2534 if (xdp_ring_err)
2535 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2536 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2537 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2538 if (xdp_ring_err)
2539 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2540 } else {
2541 /* safe to call even when prog == vsi->xdp_prog as
2542 * dev_xdp_install in net/core/dev.c incremented prog's
2543 * refcount so corresponding bpf_prog_put won't cause
2544 * underflow
2545 */
2546 ice_vsi_assign_bpf_prog(vsi, prog);
2547 }
2548
2549 if (if_running)
2550 ret = ice_up(vsi);
2551
2552 if (!ret && prog && vsi->xsk_pools) {
2553 int i;
2554
2555 ice_for_each_rxq(vsi, i) {
2556 struct ice_ring *rx_ring = vsi->rx_rings[i];
2557
2558 if (rx_ring->xsk_pool)
2559 napi_schedule(&rx_ring->q_vector->napi);
2560 }
2561 }
2562
2563 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2564 }
2565
2566 /**
2567 * ice_xdp_safe_mode - XDP handler for safe mode
2568 * @dev: netdevice
2569 * @xdp: XDP command
2570 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2571 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2572 struct netdev_bpf *xdp)
2573 {
2574 NL_SET_ERR_MSG_MOD(xdp->extack,
2575 "Please provide working DDP firmware package in order to use XDP\n"
2576 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2577 return -EOPNOTSUPP;
2578 }
2579
2580 /**
2581 * ice_xdp - implements XDP handler
2582 * @dev: netdevice
2583 * @xdp: XDP command
2584 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2585 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2586 {
2587 struct ice_netdev_priv *np = netdev_priv(dev);
2588 struct ice_vsi *vsi = np->vsi;
2589
2590 if (vsi->type != ICE_VSI_PF) {
2591 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2592 return -EINVAL;
2593 }
2594
2595 switch (xdp->command) {
2596 case XDP_SETUP_PROG:
2597 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2598 case XDP_SETUP_XSK_POOL:
2599 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2600 xdp->xsk.queue_id);
2601 default:
2602 return -EINVAL;
2603 }
2604 }
2605
2606 /**
2607 * ice_ena_misc_vector - enable the non-queue interrupts
2608 * @pf: board private structure
2609 */
ice_ena_misc_vector(struct ice_pf * pf)2610 static void ice_ena_misc_vector(struct ice_pf *pf)
2611 {
2612 struct ice_hw *hw = &pf->hw;
2613 u32 val;
2614
2615 /* Disable anti-spoof detection interrupt to prevent spurious event
2616 * interrupts during a function reset. Anti-spoof functionally is
2617 * still supported.
2618 */
2619 val = rd32(hw, GL_MDCK_TX_TDPU);
2620 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2621 wr32(hw, GL_MDCK_TX_TDPU, val);
2622
2623 /* clear things first */
2624 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2625 rd32(hw, PFINT_OICR); /* read to clear */
2626
2627 val = (PFINT_OICR_ECC_ERR_M |
2628 PFINT_OICR_MAL_DETECT_M |
2629 PFINT_OICR_GRST_M |
2630 PFINT_OICR_PCI_EXCEPTION_M |
2631 PFINT_OICR_VFLR_M |
2632 PFINT_OICR_HMC_ERR_M |
2633 PFINT_OICR_PE_CRITERR_M);
2634
2635 wr32(hw, PFINT_OICR_ENA, val);
2636
2637 /* SW_ITR_IDX = 0, but don't change INTENA */
2638 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2639 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2640 }
2641
2642 /**
2643 * ice_misc_intr - misc interrupt handler
2644 * @irq: interrupt number
2645 * @data: pointer to a q_vector
2646 */
ice_misc_intr(int __always_unused irq,void * data)2647 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2648 {
2649 struct ice_pf *pf = (struct ice_pf *)data;
2650 struct ice_hw *hw = &pf->hw;
2651 irqreturn_t ret = IRQ_NONE;
2652 struct device *dev;
2653 u32 oicr, ena_mask;
2654
2655 dev = ice_pf_to_dev(pf);
2656 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2657 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2658
2659 oicr = rd32(hw, PFINT_OICR);
2660 ena_mask = rd32(hw, PFINT_OICR_ENA);
2661
2662 if (oicr & PFINT_OICR_SWINT_M) {
2663 ena_mask &= ~PFINT_OICR_SWINT_M;
2664 pf->sw_int_count++;
2665 }
2666
2667 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2668 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2669 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2670 }
2671 if (oicr & PFINT_OICR_VFLR_M) {
2672 /* disable any further VFLR event notifications */
2673 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2674 u32 reg = rd32(hw, PFINT_OICR_ENA);
2675
2676 reg &= ~PFINT_OICR_VFLR_M;
2677 wr32(hw, PFINT_OICR_ENA, reg);
2678 } else {
2679 ena_mask &= ~PFINT_OICR_VFLR_M;
2680 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2681 }
2682 }
2683
2684 if (oicr & PFINT_OICR_GRST_M) {
2685 u32 reset;
2686
2687 /* we have a reset warning */
2688 ena_mask &= ~PFINT_OICR_GRST_M;
2689 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2690 GLGEN_RSTAT_RESET_TYPE_S;
2691
2692 if (reset == ICE_RESET_CORER)
2693 pf->corer_count++;
2694 else if (reset == ICE_RESET_GLOBR)
2695 pf->globr_count++;
2696 else if (reset == ICE_RESET_EMPR)
2697 pf->empr_count++;
2698 else
2699 dev_dbg(dev, "Invalid reset type %d\n", reset);
2700
2701 /* If a reset cycle isn't already in progress, we set a bit in
2702 * pf->state so that the service task can start a reset/rebuild.
2703 * We also make note of which reset happened so that peer
2704 * devices/drivers can be informed.
2705 */
2706 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2707 if (reset == ICE_RESET_CORER)
2708 set_bit(__ICE_CORER_RECV, pf->state);
2709 else if (reset == ICE_RESET_GLOBR)
2710 set_bit(__ICE_GLOBR_RECV, pf->state);
2711 else
2712 set_bit(__ICE_EMPR_RECV, pf->state);
2713
2714 /* There are couple of different bits at play here.
2715 * hw->reset_ongoing indicates whether the hardware is
2716 * in reset. This is set to true when a reset interrupt
2717 * is received and set back to false after the driver
2718 * has determined that the hardware is out of reset.
2719 *
2720 * __ICE_RESET_OICR_RECV in pf->state indicates
2721 * that a post reset rebuild is required before the
2722 * driver is operational again. This is set above.
2723 *
2724 * As this is the start of the reset/rebuild cycle, set
2725 * both to indicate that.
2726 */
2727 hw->reset_ongoing = true;
2728 }
2729 }
2730
2731 if (oicr & PFINT_OICR_HMC_ERR_M) {
2732 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2733 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2734 rd32(hw, PFHMC_ERRORINFO),
2735 rd32(hw, PFHMC_ERRORDATA));
2736 }
2737
2738 /* Report any remaining unexpected interrupts */
2739 oicr &= ena_mask;
2740 if (oicr) {
2741 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2742 /* If a critical error is pending there is no choice but to
2743 * reset the device.
2744 */
2745 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2746 PFINT_OICR_PCI_EXCEPTION_M |
2747 PFINT_OICR_ECC_ERR_M)) {
2748 set_bit(__ICE_PFR_REQ, pf->state);
2749 ice_service_task_schedule(pf);
2750 }
2751 }
2752 ret = IRQ_HANDLED;
2753
2754 ice_service_task_schedule(pf);
2755 ice_irq_dynamic_ena(hw, NULL, NULL);
2756
2757 return ret;
2758 }
2759
2760 /**
2761 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2762 * @hw: pointer to HW structure
2763 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)2764 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2765 {
2766 /* disable Admin queue Interrupt causes */
2767 wr32(hw, PFINT_FW_CTL,
2768 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2769
2770 /* disable Mailbox queue Interrupt causes */
2771 wr32(hw, PFINT_MBX_CTL,
2772 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2773
2774 /* disable Control queue Interrupt causes */
2775 wr32(hw, PFINT_OICR_CTL,
2776 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2777
2778 ice_flush(hw);
2779 }
2780
2781 /**
2782 * ice_free_irq_msix_misc - Unroll misc vector setup
2783 * @pf: board private structure
2784 */
ice_free_irq_msix_misc(struct ice_pf * pf)2785 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2786 {
2787 struct ice_hw *hw = &pf->hw;
2788
2789 ice_dis_ctrlq_interrupts(hw);
2790
2791 /* disable OICR interrupt */
2792 wr32(hw, PFINT_OICR_ENA, 0);
2793 ice_flush(hw);
2794
2795 if (pf->msix_entries) {
2796 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2797 devm_free_irq(ice_pf_to_dev(pf),
2798 pf->msix_entries[pf->oicr_idx].vector, pf);
2799 }
2800
2801 pf->num_avail_sw_msix += 1;
2802 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2803 }
2804
2805 /**
2806 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2807 * @hw: pointer to HW structure
2808 * @reg_idx: HW vector index to associate the control queue interrupts with
2809 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)2810 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2811 {
2812 u32 val;
2813
2814 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2815 PFINT_OICR_CTL_CAUSE_ENA_M);
2816 wr32(hw, PFINT_OICR_CTL, val);
2817
2818 /* enable Admin queue Interrupt causes */
2819 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2820 PFINT_FW_CTL_CAUSE_ENA_M);
2821 wr32(hw, PFINT_FW_CTL, val);
2822
2823 /* enable Mailbox queue Interrupt causes */
2824 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2825 PFINT_MBX_CTL_CAUSE_ENA_M);
2826 wr32(hw, PFINT_MBX_CTL, val);
2827
2828 ice_flush(hw);
2829 }
2830
2831 /**
2832 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2833 * @pf: board private structure
2834 *
2835 * This sets up the handler for MSIX 0, which is used to manage the
2836 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2837 * when in MSI or Legacy interrupt mode.
2838 */
ice_req_irq_msix_misc(struct ice_pf * pf)2839 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2840 {
2841 struct device *dev = ice_pf_to_dev(pf);
2842 struct ice_hw *hw = &pf->hw;
2843 int oicr_idx, err = 0;
2844
2845 if (!pf->int_name[0])
2846 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2847 dev_driver_string(dev), dev_name(dev));
2848
2849 /* Do not request IRQ but do enable OICR interrupt since settings are
2850 * lost during reset. Note that this function is called only during
2851 * rebuild path and not while reset is in progress.
2852 */
2853 if (ice_is_reset_in_progress(pf->state))
2854 goto skip_req_irq;
2855
2856 /* reserve one vector in irq_tracker for misc interrupts */
2857 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2858 if (oicr_idx < 0)
2859 return oicr_idx;
2860
2861 pf->num_avail_sw_msix -= 1;
2862 pf->oicr_idx = (u16)oicr_idx;
2863
2864 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2865 ice_misc_intr, 0, pf->int_name, pf);
2866 if (err) {
2867 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2868 pf->int_name, err);
2869 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2870 pf->num_avail_sw_msix += 1;
2871 return err;
2872 }
2873
2874 skip_req_irq:
2875 ice_ena_misc_vector(pf);
2876
2877 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2878 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2879 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2880
2881 ice_flush(hw);
2882 ice_irq_dynamic_ena(hw, NULL, NULL);
2883
2884 return 0;
2885 }
2886
2887 /**
2888 * ice_napi_add - register NAPI handler for the VSI
2889 * @vsi: VSI for which NAPI handler is to be registered
2890 *
2891 * This function is only called in the driver's load path. Registering the NAPI
2892 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2893 * reset/rebuild, etc.)
2894 */
ice_napi_add(struct ice_vsi * vsi)2895 static void ice_napi_add(struct ice_vsi *vsi)
2896 {
2897 int v_idx;
2898
2899 if (!vsi->netdev)
2900 return;
2901
2902 ice_for_each_q_vector(vsi, v_idx)
2903 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2904 ice_napi_poll, NAPI_POLL_WEIGHT);
2905 }
2906
2907 /**
2908 * ice_set_ops - set netdev and ethtools ops for the given netdev
2909 * @netdev: netdev instance
2910 */
ice_set_ops(struct net_device * netdev)2911 static void ice_set_ops(struct net_device *netdev)
2912 {
2913 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2914
2915 if (ice_is_safe_mode(pf)) {
2916 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2917 ice_set_ethtool_safe_mode_ops(netdev);
2918 return;
2919 }
2920
2921 netdev->netdev_ops = &ice_netdev_ops;
2922 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2923 ice_set_ethtool_ops(netdev);
2924 }
2925
2926 /**
2927 * ice_set_netdev_features - set features for the given netdev
2928 * @netdev: netdev instance
2929 */
ice_set_netdev_features(struct net_device * netdev)2930 static void ice_set_netdev_features(struct net_device *netdev)
2931 {
2932 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2933 netdev_features_t csumo_features;
2934 netdev_features_t vlano_features;
2935 netdev_features_t dflt_features;
2936 netdev_features_t tso_features;
2937
2938 if (ice_is_safe_mode(pf)) {
2939 /* safe mode */
2940 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2941 netdev->hw_features = netdev->features;
2942 return;
2943 }
2944
2945 dflt_features = NETIF_F_SG |
2946 NETIF_F_HIGHDMA |
2947 NETIF_F_NTUPLE |
2948 NETIF_F_RXHASH;
2949
2950 csumo_features = NETIF_F_RXCSUM |
2951 NETIF_F_IP_CSUM |
2952 NETIF_F_SCTP_CRC |
2953 NETIF_F_IPV6_CSUM;
2954
2955 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2956 NETIF_F_HW_VLAN_CTAG_TX |
2957 NETIF_F_HW_VLAN_CTAG_RX;
2958
2959 tso_features = NETIF_F_TSO |
2960 NETIF_F_TSO_ECN |
2961 NETIF_F_TSO6 |
2962 NETIF_F_GSO_GRE |
2963 NETIF_F_GSO_UDP_TUNNEL |
2964 NETIF_F_GSO_GRE_CSUM |
2965 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2966 NETIF_F_GSO_PARTIAL |
2967 NETIF_F_GSO_IPXIP4 |
2968 NETIF_F_GSO_IPXIP6 |
2969 NETIF_F_GSO_UDP_L4;
2970
2971 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2972 NETIF_F_GSO_GRE_CSUM;
2973 /* set features that user can change */
2974 netdev->hw_features = dflt_features | csumo_features |
2975 vlano_features | tso_features;
2976
2977 /* add support for HW_CSUM on packets with MPLS header */
2978 netdev->mpls_features = NETIF_F_HW_CSUM;
2979
2980 /* enable features */
2981 netdev->features |= netdev->hw_features;
2982 /* encap and VLAN devices inherit default, csumo and tso features */
2983 netdev->hw_enc_features |= dflt_features | csumo_features |
2984 tso_features;
2985 netdev->vlan_features |= dflt_features | csumo_features |
2986 tso_features;
2987 }
2988
2989 /**
2990 * ice_cfg_netdev - Allocate, configure and register a netdev
2991 * @vsi: the VSI associated with the new netdev
2992 *
2993 * Returns 0 on success, negative value on failure
2994 */
ice_cfg_netdev(struct ice_vsi * vsi)2995 static int ice_cfg_netdev(struct ice_vsi *vsi)
2996 {
2997 struct ice_pf *pf = vsi->back;
2998 struct ice_netdev_priv *np;
2999 struct net_device *netdev;
3000 u8 mac_addr[ETH_ALEN];
3001 int err;
3002
3003 err = ice_devlink_create_port(vsi);
3004 if (err)
3005 return err;
3006
3007 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3008 vsi->alloc_rxq);
3009 if (!netdev) {
3010 err = -ENOMEM;
3011 goto err_destroy_devlink_port;
3012 }
3013
3014 vsi->netdev = netdev;
3015 np = netdev_priv(netdev);
3016 np->vsi = vsi;
3017
3018 ice_set_netdev_features(netdev);
3019
3020 ice_set_ops(netdev);
3021
3022 if (vsi->type == ICE_VSI_PF) {
3023 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
3024 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3025 ether_addr_copy(netdev->dev_addr, mac_addr);
3026 ether_addr_copy(netdev->perm_addr, mac_addr);
3027 }
3028
3029 netdev->priv_flags |= IFF_UNICAST_FLT;
3030
3031 /* Setup netdev TC information */
3032 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3033
3034 /* setup watchdog timeout value to be 5 second */
3035 netdev->watchdog_timeo = 5 * HZ;
3036
3037 netdev->min_mtu = ETH_MIN_MTU;
3038 netdev->max_mtu = ICE_MAX_MTU;
3039
3040 err = register_netdev(vsi->netdev);
3041 if (err)
3042 goto err_free_netdev;
3043
3044 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3045
3046 netif_carrier_off(vsi->netdev);
3047
3048 /* make sure transmit queues start off as stopped */
3049 netif_tx_stop_all_queues(vsi->netdev);
3050
3051 return 0;
3052
3053 err_free_netdev:
3054 free_netdev(vsi->netdev);
3055 vsi->netdev = NULL;
3056 err_destroy_devlink_port:
3057 ice_devlink_destroy_port(vsi);
3058 return err;
3059 }
3060
3061 /**
3062 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3063 * @lut: Lookup table
3064 * @rss_table_size: Lookup table size
3065 * @rss_size: Range of queue number for hashing
3066 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3067 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3068 {
3069 u16 i;
3070
3071 for (i = 0; i < rss_table_size; i++)
3072 lut[i] = i % rss_size;
3073 }
3074
3075 /**
3076 * ice_pf_vsi_setup - Set up a PF VSI
3077 * @pf: board private structure
3078 * @pi: pointer to the port_info instance
3079 *
3080 * Returns pointer to the successfully allocated VSI software struct
3081 * on success, otherwise returns NULL on failure.
3082 */
3083 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3084 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3085 {
3086 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3087 }
3088
3089 /**
3090 * ice_ctrl_vsi_setup - Set up a control VSI
3091 * @pf: board private structure
3092 * @pi: pointer to the port_info instance
3093 *
3094 * Returns pointer to the successfully allocated VSI software struct
3095 * on success, otherwise returns NULL on failure.
3096 */
3097 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3098 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3099 {
3100 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3101 }
3102
3103 /**
3104 * ice_lb_vsi_setup - Set up a loopback VSI
3105 * @pf: board private structure
3106 * @pi: pointer to the port_info instance
3107 *
3108 * Returns pointer to the successfully allocated VSI software struct
3109 * on success, otherwise returns NULL on failure.
3110 */
3111 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3112 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3113 {
3114 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3115 }
3116
3117 /**
3118 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3119 * @netdev: network interface to be adjusted
3120 * @proto: unused protocol
3121 * @vid: VLAN ID to be added
3122 *
3123 * net_device_ops implementation for adding VLAN IDs
3124 */
3125 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3126 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3127 u16 vid)
3128 {
3129 struct ice_netdev_priv *np = netdev_priv(netdev);
3130 struct ice_vsi *vsi = np->vsi;
3131 int ret;
3132
3133 if (vid >= VLAN_N_VID) {
3134 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3135 vid, VLAN_N_VID);
3136 return -EINVAL;
3137 }
3138
3139 if (vsi->info.pvid)
3140 return -EINVAL;
3141
3142 /* VLAN 0 is added by default during load/reset */
3143 if (!vid)
3144 return 0;
3145
3146 /* Enable VLAN pruning when a VLAN other than 0 is added */
3147 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3148 ret = ice_cfg_vlan_pruning(vsi, true, false);
3149 if (ret)
3150 return ret;
3151 }
3152
3153 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3154 * packets aren't pruned by the device's internal switch on Rx
3155 */
3156 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3157 if (!ret) {
3158 vsi->vlan_ena = true;
3159 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3160 }
3161
3162 return ret;
3163 }
3164
3165 /**
3166 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3167 * @netdev: network interface to be adjusted
3168 * @proto: unused protocol
3169 * @vid: VLAN ID to be removed
3170 *
3171 * net_device_ops implementation for removing VLAN IDs
3172 */
3173 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)3174 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3175 u16 vid)
3176 {
3177 struct ice_netdev_priv *np = netdev_priv(netdev);
3178 struct ice_vsi *vsi = np->vsi;
3179 int ret;
3180
3181 if (vsi->info.pvid)
3182 return -EINVAL;
3183
3184 /* don't allow removal of VLAN 0 */
3185 if (!vid)
3186 return 0;
3187
3188 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3189 * information
3190 */
3191 ret = ice_vsi_kill_vlan(vsi, vid);
3192 if (ret)
3193 return ret;
3194
3195 /* Disable pruning when VLAN 0 is the only VLAN rule */
3196 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3197 ret = ice_cfg_vlan_pruning(vsi, false, false);
3198
3199 vsi->vlan_ena = false;
3200 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3201 return ret;
3202 }
3203
3204 /**
3205 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3206 * @pf: board private structure
3207 *
3208 * Returns 0 on success, negative value on failure
3209 */
ice_setup_pf_sw(struct ice_pf * pf)3210 static int ice_setup_pf_sw(struct ice_pf *pf)
3211 {
3212 struct ice_vsi *vsi;
3213 int status = 0;
3214
3215 if (ice_is_reset_in_progress(pf->state))
3216 return -EBUSY;
3217
3218 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3219 if (!vsi)
3220 return -ENOMEM;
3221
3222 status = ice_cfg_netdev(vsi);
3223 if (status) {
3224 status = -ENODEV;
3225 goto unroll_vsi_setup;
3226 }
3227 /* netdev has to be configured before setting frame size */
3228 ice_vsi_cfg_frame_size(vsi);
3229
3230 /* Setup DCB netlink interface */
3231 ice_dcbnl_setup(vsi);
3232
3233 /* registering the NAPI handler requires both the queues and
3234 * netdev to be created, which are done in ice_pf_vsi_setup()
3235 * and ice_cfg_netdev() respectively
3236 */
3237 ice_napi_add(vsi);
3238
3239 status = ice_set_cpu_rx_rmap(vsi);
3240 if (status) {
3241 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3242 vsi->vsi_num, status);
3243 status = -EINVAL;
3244 goto unroll_napi_add;
3245 }
3246 status = ice_init_mac_fltr(pf);
3247 if (status)
3248 goto free_cpu_rx_map;
3249
3250 return status;
3251
3252 free_cpu_rx_map:
3253 ice_free_cpu_rx_rmap(vsi);
3254
3255 unroll_napi_add:
3256 if (vsi) {
3257 ice_napi_del(vsi);
3258 if (vsi->netdev) {
3259 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3260 unregister_netdev(vsi->netdev);
3261 free_netdev(vsi->netdev);
3262 vsi->netdev = NULL;
3263 }
3264 }
3265
3266 unroll_vsi_setup:
3267 ice_vsi_release(vsi);
3268 return status;
3269 }
3270
3271 /**
3272 * ice_get_avail_q_count - Get count of queues in use
3273 * @pf_qmap: bitmap to get queue use count from
3274 * @lock: pointer to a mutex that protects access to pf_qmap
3275 * @size: size of the bitmap
3276 */
3277 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3278 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3279 {
3280 unsigned long bit;
3281 u16 count = 0;
3282
3283 mutex_lock(lock);
3284 for_each_clear_bit(bit, pf_qmap, size)
3285 count++;
3286 mutex_unlock(lock);
3287
3288 return count;
3289 }
3290
3291 /**
3292 * ice_get_avail_txq_count - Get count of Tx queues in use
3293 * @pf: pointer to an ice_pf instance
3294 */
ice_get_avail_txq_count(struct ice_pf * pf)3295 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3296 {
3297 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3298 pf->max_pf_txqs);
3299 }
3300
3301 /**
3302 * ice_get_avail_rxq_count - Get count of Rx queues in use
3303 * @pf: pointer to an ice_pf instance
3304 */
ice_get_avail_rxq_count(struct ice_pf * pf)3305 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3306 {
3307 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3308 pf->max_pf_rxqs);
3309 }
3310
3311 /**
3312 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3313 * @pf: board private structure to initialize
3314 */
ice_deinit_pf(struct ice_pf * pf)3315 static void ice_deinit_pf(struct ice_pf *pf)
3316 {
3317 ice_service_task_stop(pf);
3318 mutex_destroy(&pf->sw_mutex);
3319 mutex_destroy(&pf->tc_mutex);
3320 mutex_destroy(&pf->avail_q_mutex);
3321
3322 if (pf->avail_txqs) {
3323 bitmap_free(pf->avail_txqs);
3324 pf->avail_txqs = NULL;
3325 }
3326
3327 if (pf->avail_rxqs) {
3328 bitmap_free(pf->avail_rxqs);
3329 pf->avail_rxqs = NULL;
3330 }
3331 }
3332
3333 /**
3334 * ice_set_pf_caps - set PFs capability flags
3335 * @pf: pointer to the PF instance
3336 */
ice_set_pf_caps(struct ice_pf * pf)3337 static void ice_set_pf_caps(struct ice_pf *pf)
3338 {
3339 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3340
3341 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3342 if (func_caps->common_cap.dcb)
3343 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3344 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3345 if (func_caps->common_cap.sr_iov_1_1) {
3346 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3347 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3348 ICE_MAX_VF_COUNT);
3349 }
3350 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3351 if (func_caps->common_cap.rss_table_size)
3352 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3353
3354 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3355 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3356 u16 unused;
3357
3358 /* ctrl_vsi_idx will be set to a valid value when flow director
3359 * is setup by ice_init_fdir
3360 */
3361 pf->ctrl_vsi_idx = ICE_NO_VSI;
3362 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3363 /* force guaranteed filter pool for PF */
3364 ice_alloc_fd_guar_item(&pf->hw, &unused,
3365 func_caps->fd_fltr_guar);
3366 /* force shared filter pool for PF */
3367 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3368 func_caps->fd_fltr_best_effort);
3369 }
3370
3371 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3372 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3373 }
3374
3375 /**
3376 * ice_init_pf - Initialize general software structures (struct ice_pf)
3377 * @pf: board private structure to initialize
3378 */
ice_init_pf(struct ice_pf * pf)3379 static int ice_init_pf(struct ice_pf *pf)
3380 {
3381 ice_set_pf_caps(pf);
3382
3383 mutex_init(&pf->sw_mutex);
3384 mutex_init(&pf->tc_mutex);
3385
3386 INIT_HLIST_HEAD(&pf->aq_wait_list);
3387 spin_lock_init(&pf->aq_wait_lock);
3388 init_waitqueue_head(&pf->aq_wait_queue);
3389
3390 /* setup service timer and periodic service task */
3391 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3392 pf->serv_tmr_period = HZ;
3393 INIT_WORK(&pf->serv_task, ice_service_task);
3394 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3395
3396 mutex_init(&pf->avail_q_mutex);
3397 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3398 if (!pf->avail_txqs)
3399 return -ENOMEM;
3400
3401 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3402 if (!pf->avail_rxqs) {
3403 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3404 pf->avail_txqs = NULL;
3405 return -ENOMEM;
3406 }
3407
3408 return 0;
3409 }
3410
3411 /**
3412 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3413 * @pf: board private structure
3414 *
3415 * compute the number of MSIX vectors required (v_budget) and request from
3416 * the OS. Return the number of vectors reserved or negative on failure
3417 */
ice_ena_msix_range(struct ice_pf * pf)3418 static int ice_ena_msix_range(struct ice_pf *pf)
3419 {
3420 struct device *dev = ice_pf_to_dev(pf);
3421 int v_left, v_actual, v_budget = 0;
3422 int needed, err, i;
3423
3424 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3425
3426 /* reserve one vector for miscellaneous handler */
3427 needed = 1;
3428 if (v_left < needed)
3429 goto no_hw_vecs_left_err;
3430 v_budget += needed;
3431 v_left -= needed;
3432
3433 /* reserve vectors for LAN traffic */
3434 needed = min_t(int, num_online_cpus(), v_left);
3435 if (v_left < needed)
3436 goto no_hw_vecs_left_err;
3437 pf->num_lan_msix = needed;
3438 v_budget += needed;
3439 v_left -= needed;
3440
3441 /* reserve one vector for flow director */
3442 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3443 needed = ICE_FDIR_MSIX;
3444 if (v_left < needed)
3445 goto no_hw_vecs_left_err;
3446 v_budget += needed;
3447 v_left -= needed;
3448 }
3449
3450 pf->msix_entries = devm_kcalloc(dev, v_budget,
3451 sizeof(*pf->msix_entries), GFP_KERNEL);
3452
3453 if (!pf->msix_entries) {
3454 err = -ENOMEM;
3455 goto exit_err;
3456 }
3457
3458 for (i = 0; i < v_budget; i++)
3459 pf->msix_entries[i].entry = i;
3460
3461 /* actually reserve the vectors */
3462 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3463 ICE_MIN_MSIX, v_budget);
3464
3465 if (v_actual < 0) {
3466 dev_err(dev, "unable to reserve MSI-X vectors\n");
3467 err = v_actual;
3468 goto msix_err;
3469 }
3470
3471 if (v_actual < v_budget) {
3472 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3473 v_budget, v_actual);
3474
3475 if (v_actual < ICE_MIN_MSIX) {
3476 /* error if we can't get minimum vectors */
3477 pci_disable_msix(pf->pdev);
3478 err = -ERANGE;
3479 goto msix_err;
3480 } else {
3481 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3482 }
3483 }
3484
3485 return v_actual;
3486
3487 msix_err:
3488 devm_kfree(dev, pf->msix_entries);
3489 goto exit_err;
3490
3491 no_hw_vecs_left_err:
3492 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3493 needed, v_left);
3494 err = -ERANGE;
3495 exit_err:
3496 pf->num_lan_msix = 0;
3497 return err;
3498 }
3499
3500 /**
3501 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3502 * @pf: board private structure
3503 */
ice_dis_msix(struct ice_pf * pf)3504 static void ice_dis_msix(struct ice_pf *pf)
3505 {
3506 pci_disable_msix(pf->pdev);
3507 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3508 pf->msix_entries = NULL;
3509 }
3510
3511 /**
3512 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3513 * @pf: board private structure
3514 */
ice_clear_interrupt_scheme(struct ice_pf * pf)3515 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3516 {
3517 ice_dis_msix(pf);
3518
3519 if (pf->irq_tracker) {
3520 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3521 pf->irq_tracker = NULL;
3522 }
3523 }
3524
3525 /**
3526 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3527 * @pf: board private structure to initialize
3528 */
ice_init_interrupt_scheme(struct ice_pf * pf)3529 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3530 {
3531 int vectors;
3532
3533 vectors = ice_ena_msix_range(pf);
3534
3535 if (vectors < 0)
3536 return vectors;
3537
3538 /* set up vector assignment tracking */
3539 pf->irq_tracker =
3540 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3541 (sizeof(u16) * vectors), GFP_KERNEL);
3542 if (!pf->irq_tracker) {
3543 ice_dis_msix(pf);
3544 return -ENOMEM;
3545 }
3546
3547 /* populate SW interrupts pool with number of OS granted IRQs. */
3548 pf->num_avail_sw_msix = (u16)vectors;
3549 pf->irq_tracker->num_entries = (u16)vectors;
3550 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3551
3552 return 0;
3553 }
3554
3555 /**
3556 * ice_is_wol_supported - check if WoL is supported
3557 * @hw: pointer to hardware info
3558 *
3559 * Check if WoL is supported based on the HW configuration.
3560 * Returns true if NVM supports and enables WoL for this port, false otherwise
3561 */
ice_is_wol_supported(struct ice_hw * hw)3562 bool ice_is_wol_supported(struct ice_hw *hw)
3563 {
3564 u16 wol_ctrl;
3565
3566 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3567 * word) indicates WoL is not supported on the corresponding PF ID.
3568 */
3569 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3570 return false;
3571
3572 return !(BIT(hw->port_info->lport) & wol_ctrl);
3573 }
3574
3575 /**
3576 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3577 * @vsi: VSI being changed
3578 * @new_rx: new number of Rx queues
3579 * @new_tx: new number of Tx queues
3580 *
3581 * Only change the number of queues if new_tx, or new_rx is non-0.
3582 *
3583 * Returns 0 on success.
3584 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)3585 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3586 {
3587 struct ice_pf *pf = vsi->back;
3588 int err = 0, timeout = 50;
3589
3590 if (!new_rx && !new_tx)
3591 return -EINVAL;
3592
3593 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3594 timeout--;
3595 if (!timeout)
3596 return -EBUSY;
3597 usleep_range(1000, 2000);
3598 }
3599
3600 if (new_tx)
3601 vsi->req_txq = (u16)new_tx;
3602 if (new_rx)
3603 vsi->req_rxq = (u16)new_rx;
3604
3605 /* set for the next time the netdev is started */
3606 if (!netif_running(vsi->netdev)) {
3607 ice_vsi_rebuild(vsi, false);
3608 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3609 goto done;
3610 }
3611
3612 ice_vsi_close(vsi);
3613 ice_vsi_rebuild(vsi, false);
3614 ice_pf_dcb_recfg(pf);
3615 ice_vsi_open(vsi);
3616 done:
3617 clear_bit(__ICE_CFG_BUSY, pf->state);
3618 return err;
3619 }
3620
3621 /**
3622 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3623 * @pf: PF to configure
3624 *
3625 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3626 * VSI can still Tx/Rx VLAN tagged packets.
3627 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)3628 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3629 {
3630 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3631 struct ice_vsi_ctx *ctxt;
3632 enum ice_status status;
3633 struct ice_hw *hw;
3634
3635 if (!vsi)
3636 return;
3637
3638 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3639 if (!ctxt)
3640 return;
3641
3642 hw = &pf->hw;
3643 ctxt->info = vsi->info;
3644
3645 ctxt->info.valid_sections =
3646 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3647 ICE_AQ_VSI_PROP_SECURITY_VALID |
3648 ICE_AQ_VSI_PROP_SW_VALID);
3649
3650 /* disable VLAN anti-spoof */
3651 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3652 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3653
3654 /* disable VLAN pruning and keep all other settings */
3655 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3656
3657 /* allow all VLANs on Tx and don't strip on Rx */
3658 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3659 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3660
3661 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3662 if (status) {
3663 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3664 ice_stat_str(status),
3665 ice_aq_str(hw->adminq.sq_last_status));
3666 } else {
3667 vsi->info.sec_flags = ctxt->info.sec_flags;
3668 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3669 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3670 }
3671
3672 kfree(ctxt);
3673 }
3674
3675 /**
3676 * ice_log_pkg_init - log result of DDP package load
3677 * @hw: pointer to hardware info
3678 * @status: status of package load
3679 */
3680 static void
ice_log_pkg_init(struct ice_hw * hw,enum ice_status * status)3681 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3682 {
3683 struct ice_pf *pf = (struct ice_pf *)hw->back;
3684 struct device *dev = ice_pf_to_dev(pf);
3685
3686 switch (*status) {
3687 case ICE_SUCCESS:
3688 /* The package download AdminQ command returned success because
3689 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3690 * already a package loaded on the device.
3691 */
3692 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3693 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3694 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3695 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3696 !memcmp(hw->pkg_name, hw->active_pkg_name,
3697 sizeof(hw->pkg_name))) {
3698 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3699 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3700 hw->active_pkg_name,
3701 hw->active_pkg_ver.major,
3702 hw->active_pkg_ver.minor,
3703 hw->active_pkg_ver.update,
3704 hw->active_pkg_ver.draft);
3705 else
3706 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3707 hw->active_pkg_name,
3708 hw->active_pkg_ver.major,
3709 hw->active_pkg_ver.minor,
3710 hw->active_pkg_ver.update,
3711 hw->active_pkg_ver.draft);
3712 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3713 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3714 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3715 hw->active_pkg_name,
3716 hw->active_pkg_ver.major,
3717 hw->active_pkg_ver.minor,
3718 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3719 *status = ICE_ERR_NOT_SUPPORTED;
3720 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3721 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3722 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3723 hw->active_pkg_name,
3724 hw->active_pkg_ver.major,
3725 hw->active_pkg_ver.minor,
3726 hw->active_pkg_ver.update,
3727 hw->active_pkg_ver.draft,
3728 hw->pkg_name,
3729 hw->pkg_ver.major,
3730 hw->pkg_ver.minor,
3731 hw->pkg_ver.update,
3732 hw->pkg_ver.draft);
3733 } else {
3734 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3735 *status = ICE_ERR_NOT_SUPPORTED;
3736 }
3737 break;
3738 case ICE_ERR_FW_DDP_MISMATCH:
3739 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3740 break;
3741 case ICE_ERR_BUF_TOO_SHORT:
3742 case ICE_ERR_CFG:
3743 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3744 break;
3745 case ICE_ERR_NOT_SUPPORTED:
3746 /* Package File version not supported */
3747 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3748 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3749 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3750 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3751 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3752 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3753 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3754 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3755 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3756 break;
3757 case ICE_ERR_AQ_ERROR:
3758 switch (hw->pkg_dwnld_status) {
3759 case ICE_AQ_RC_ENOSEC:
3760 case ICE_AQ_RC_EBADSIG:
3761 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3762 return;
3763 case ICE_AQ_RC_ESVN:
3764 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3765 return;
3766 case ICE_AQ_RC_EBADMAN:
3767 case ICE_AQ_RC_EBADBUF:
3768 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3769 /* poll for reset to complete */
3770 if (ice_check_reset(hw))
3771 dev_err(dev, "Error resetting device. Please reload the driver\n");
3772 return;
3773 default:
3774 break;
3775 }
3776 fallthrough;
3777 default:
3778 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3779 *status);
3780 break;
3781 }
3782 }
3783
3784 /**
3785 * ice_load_pkg - load/reload the DDP Package file
3786 * @firmware: firmware structure when firmware requested or NULL for reload
3787 * @pf: pointer to the PF instance
3788 *
3789 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3790 * initialize HW tables.
3791 */
3792 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)3793 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3794 {
3795 enum ice_status status = ICE_ERR_PARAM;
3796 struct device *dev = ice_pf_to_dev(pf);
3797 struct ice_hw *hw = &pf->hw;
3798
3799 /* Load DDP Package */
3800 if (firmware && !hw->pkg_copy) {
3801 status = ice_copy_and_init_pkg(hw, firmware->data,
3802 firmware->size);
3803 ice_log_pkg_init(hw, &status);
3804 } else if (!firmware && hw->pkg_copy) {
3805 /* Reload package during rebuild after CORER/GLOBR reset */
3806 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3807 ice_log_pkg_init(hw, &status);
3808 } else {
3809 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3810 }
3811
3812 if (status) {
3813 /* Safe Mode */
3814 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3815 return;
3816 }
3817
3818 /* Successful download package is the precondition for advanced
3819 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3820 */
3821 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3822 }
3823
3824 /**
3825 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3826 * @pf: pointer to the PF structure
3827 *
3828 * There is no error returned here because the driver should be able to handle
3829 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3830 * specifically with Tx.
3831 */
ice_verify_cacheline_size(struct ice_pf * pf)3832 static void ice_verify_cacheline_size(struct ice_pf *pf)
3833 {
3834 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3835 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3836 ICE_CACHE_LINE_BYTES);
3837 }
3838
3839 /**
3840 * ice_send_version - update firmware with driver version
3841 * @pf: PF struct
3842 *
3843 * Returns ICE_SUCCESS on success, else error code
3844 */
ice_send_version(struct ice_pf * pf)3845 static enum ice_status ice_send_version(struct ice_pf *pf)
3846 {
3847 struct ice_driver_ver dv;
3848
3849 dv.major_ver = 0xff;
3850 dv.minor_ver = 0xff;
3851 dv.build_ver = 0xff;
3852 dv.subbuild_ver = 0;
3853 strscpy((char *)dv.driver_string, UTS_RELEASE,
3854 sizeof(dv.driver_string));
3855 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3856 }
3857
3858 /**
3859 * ice_init_fdir - Initialize flow director VSI and configuration
3860 * @pf: pointer to the PF instance
3861 *
3862 * returns 0 on success, negative on error
3863 */
ice_init_fdir(struct ice_pf * pf)3864 static int ice_init_fdir(struct ice_pf *pf)
3865 {
3866 struct device *dev = ice_pf_to_dev(pf);
3867 struct ice_vsi *ctrl_vsi;
3868 int err;
3869
3870 /* Side Band Flow Director needs to have a control VSI.
3871 * Allocate it and store it in the PF.
3872 */
3873 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3874 if (!ctrl_vsi) {
3875 dev_dbg(dev, "could not create control VSI\n");
3876 return -ENOMEM;
3877 }
3878
3879 err = ice_vsi_open_ctrl(ctrl_vsi);
3880 if (err) {
3881 dev_dbg(dev, "could not open control VSI\n");
3882 goto err_vsi_open;
3883 }
3884
3885 mutex_init(&pf->hw.fdir_fltr_lock);
3886
3887 err = ice_fdir_create_dflt_rules(pf);
3888 if (err)
3889 goto err_fdir_rule;
3890
3891 return 0;
3892
3893 err_fdir_rule:
3894 ice_fdir_release_flows(&pf->hw);
3895 ice_vsi_close(ctrl_vsi);
3896 err_vsi_open:
3897 ice_vsi_release(ctrl_vsi);
3898 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3899 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3900 pf->ctrl_vsi_idx = ICE_NO_VSI;
3901 }
3902 return err;
3903 }
3904
3905 /**
3906 * ice_get_opt_fw_name - return optional firmware file name or NULL
3907 * @pf: pointer to the PF instance
3908 */
ice_get_opt_fw_name(struct ice_pf * pf)3909 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3910 {
3911 /* Optional firmware name same as default with additional dash
3912 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3913 */
3914 struct pci_dev *pdev = pf->pdev;
3915 char *opt_fw_filename;
3916 u64 dsn;
3917
3918 /* Determine the name of the optional file using the DSN (two
3919 * dwords following the start of the DSN Capability).
3920 */
3921 dsn = pci_get_dsn(pdev);
3922 if (!dsn)
3923 return NULL;
3924
3925 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3926 if (!opt_fw_filename)
3927 return NULL;
3928
3929 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3930 ICE_DDP_PKG_PATH, dsn);
3931
3932 return opt_fw_filename;
3933 }
3934
3935 /**
3936 * ice_request_fw - Device initialization routine
3937 * @pf: pointer to the PF instance
3938 */
ice_request_fw(struct ice_pf * pf)3939 static void ice_request_fw(struct ice_pf *pf)
3940 {
3941 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3942 const struct firmware *firmware = NULL;
3943 struct device *dev = ice_pf_to_dev(pf);
3944 int err = 0;
3945
3946 /* optional device-specific DDP (if present) overrides the default DDP
3947 * package file. kernel logs a debug message if the file doesn't exist,
3948 * and warning messages for other errors.
3949 */
3950 if (opt_fw_filename) {
3951 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3952 if (err) {
3953 kfree(opt_fw_filename);
3954 goto dflt_pkg_load;
3955 }
3956
3957 /* request for firmware was successful. Download to device */
3958 ice_load_pkg(firmware, pf);
3959 kfree(opt_fw_filename);
3960 release_firmware(firmware);
3961 return;
3962 }
3963
3964 dflt_pkg_load:
3965 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3966 if (err) {
3967 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3968 return;
3969 }
3970
3971 /* request for firmware was successful. Download to device */
3972 ice_load_pkg(firmware, pf);
3973 release_firmware(firmware);
3974 }
3975
3976 /**
3977 * ice_print_wake_reason - show the wake up cause in the log
3978 * @pf: pointer to the PF struct
3979 */
ice_print_wake_reason(struct ice_pf * pf)3980 static void ice_print_wake_reason(struct ice_pf *pf)
3981 {
3982 u32 wus = pf->wakeup_reason;
3983 const char *wake_str;
3984
3985 /* if no wake event, nothing to print */
3986 if (!wus)
3987 return;
3988
3989 if (wus & PFPM_WUS_LNKC_M)
3990 wake_str = "Link\n";
3991 else if (wus & PFPM_WUS_MAG_M)
3992 wake_str = "Magic Packet\n";
3993 else if (wus & PFPM_WUS_MNG_M)
3994 wake_str = "Management\n";
3995 else if (wus & PFPM_WUS_FW_RST_WK_M)
3996 wake_str = "Firmware Reset\n";
3997 else
3998 wake_str = "Unknown\n";
3999
4000 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4001 }
4002
4003 /**
4004 * ice_probe - Device initialization routine
4005 * @pdev: PCI device information struct
4006 * @ent: entry in ice_pci_tbl
4007 *
4008 * Returns 0 on success, negative on failure
4009 */
4010 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4011 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4012 {
4013 struct device *dev = &pdev->dev;
4014 struct ice_pf *pf;
4015 struct ice_hw *hw;
4016 int i, err;
4017
4018 if (pdev->is_virtfn) {
4019 dev_err(dev, "can't probe a virtual function\n");
4020 return -EINVAL;
4021 }
4022
4023 /* this driver uses devres, see
4024 * Documentation/driver-api/driver-model/devres.rst
4025 */
4026 err = pcim_enable_device(pdev);
4027 if (err)
4028 return err;
4029
4030 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
4031 if (err) {
4032 dev_err(dev, "BAR0 I/O map error %d\n", err);
4033 return err;
4034 }
4035
4036 pf = ice_allocate_pf(dev);
4037 if (!pf)
4038 return -ENOMEM;
4039
4040 /* set up for high or low DMA */
4041 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4042 if (err)
4043 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4044 if (err) {
4045 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4046 return err;
4047 }
4048
4049 pci_enable_pcie_error_reporting(pdev);
4050 pci_set_master(pdev);
4051
4052 pf->pdev = pdev;
4053 pci_set_drvdata(pdev, pf);
4054 set_bit(__ICE_DOWN, pf->state);
4055 /* Disable service task until DOWN bit is cleared */
4056 set_bit(__ICE_SERVICE_DIS, pf->state);
4057
4058 hw = &pf->hw;
4059 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4060 pci_save_state(pdev);
4061
4062 hw->back = pf;
4063 hw->vendor_id = pdev->vendor;
4064 hw->device_id = pdev->device;
4065 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4066 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4067 hw->subsystem_device_id = pdev->subsystem_device;
4068 hw->bus.device = PCI_SLOT(pdev->devfn);
4069 hw->bus.func = PCI_FUNC(pdev->devfn);
4070 ice_set_ctrlq_len(hw);
4071
4072 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4073
4074 err = ice_devlink_register(pf);
4075 if (err) {
4076 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4077 goto err_exit_unroll;
4078 }
4079
4080 #ifndef CONFIG_DYNAMIC_DEBUG
4081 if (debug < -1)
4082 hw->debug_mask = debug;
4083 #endif
4084
4085 err = ice_init_hw(hw);
4086 if (err) {
4087 dev_err(dev, "ice_init_hw failed: %d\n", err);
4088 err = -EIO;
4089 goto err_exit_unroll;
4090 }
4091
4092 ice_request_fw(pf);
4093
4094 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4095 * set in pf->state, which will cause ice_is_safe_mode to return
4096 * true
4097 */
4098 if (ice_is_safe_mode(pf)) {
4099 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4100 /* we already got function/device capabilities but these don't
4101 * reflect what the driver needs to do in safe mode. Instead of
4102 * adding conditional logic everywhere to ignore these
4103 * device/function capabilities, override them.
4104 */
4105 ice_set_safe_mode_caps(hw);
4106 }
4107
4108 err = ice_init_pf(pf);
4109 if (err) {
4110 dev_err(dev, "ice_init_pf failed: %d\n", err);
4111 goto err_init_pf_unroll;
4112 }
4113
4114 ice_devlink_init_regions(pf);
4115
4116 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4117 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4118 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4119 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4120 i = 0;
4121 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4122 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4123 pf->hw.tnl.valid_count[TNL_VXLAN];
4124 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4125 UDP_TUNNEL_TYPE_VXLAN;
4126 i++;
4127 }
4128 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4129 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4130 pf->hw.tnl.valid_count[TNL_GENEVE];
4131 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4132 UDP_TUNNEL_TYPE_GENEVE;
4133 i++;
4134 }
4135
4136 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4137 if (!pf->num_alloc_vsi) {
4138 err = -EIO;
4139 goto err_init_pf_unroll;
4140 }
4141 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4142 dev_warn(&pf->pdev->dev,
4143 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4144 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4145 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4146 }
4147
4148 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4149 GFP_KERNEL);
4150 if (!pf->vsi) {
4151 err = -ENOMEM;
4152 goto err_init_pf_unroll;
4153 }
4154
4155 err = ice_init_interrupt_scheme(pf);
4156 if (err) {
4157 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4158 err = -EIO;
4159 goto err_init_vsi_unroll;
4160 }
4161
4162 /* In case of MSIX we are going to setup the misc vector right here
4163 * to handle admin queue events etc. In case of legacy and MSI
4164 * the misc functionality and queue processing is combined in
4165 * the same vector and that gets setup at open.
4166 */
4167 err = ice_req_irq_msix_misc(pf);
4168 if (err) {
4169 dev_err(dev, "setup of misc vector failed: %d\n", err);
4170 goto err_init_interrupt_unroll;
4171 }
4172
4173 /* create switch struct for the switch element created by FW on boot */
4174 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4175 if (!pf->first_sw) {
4176 err = -ENOMEM;
4177 goto err_msix_misc_unroll;
4178 }
4179
4180 if (hw->evb_veb)
4181 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4182 else
4183 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4184
4185 pf->first_sw->pf = pf;
4186
4187 /* record the sw_id available for later use */
4188 pf->first_sw->sw_id = hw->port_info->sw_id;
4189
4190 err = ice_setup_pf_sw(pf);
4191 if (err) {
4192 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4193 goto err_alloc_sw_unroll;
4194 }
4195
4196 clear_bit(__ICE_SERVICE_DIS, pf->state);
4197
4198 /* tell the firmware we are up */
4199 err = ice_send_version(pf);
4200 if (err) {
4201 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4202 UTS_RELEASE, err);
4203 goto err_send_version_unroll;
4204 }
4205
4206 /* since everything is good, start the service timer */
4207 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4208
4209 err = ice_init_link_events(pf->hw.port_info);
4210 if (err) {
4211 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4212 goto err_send_version_unroll;
4213 }
4214
4215 /* not a fatal error if this fails */
4216 err = ice_init_nvm_phy_type(pf->hw.port_info);
4217 if (err)
4218 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4219
4220 /* not a fatal error if this fails */
4221 err = ice_update_link_info(pf->hw.port_info);
4222 if (err)
4223 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4224
4225 ice_init_link_dflt_override(pf->hw.port_info);
4226
4227 /* if media available, initialize PHY settings */
4228 if (pf->hw.port_info->phy.link_info.link_info &
4229 ICE_AQ_MEDIA_AVAILABLE) {
4230 /* not a fatal error if this fails */
4231 err = ice_init_phy_user_cfg(pf->hw.port_info);
4232 if (err)
4233 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4234
4235 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4236 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4237
4238 if (vsi)
4239 ice_configure_phy(vsi);
4240 }
4241 } else {
4242 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4243 }
4244
4245 ice_verify_cacheline_size(pf);
4246
4247 /* Save wakeup reason register for later use */
4248 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4249
4250 /* check for a power management event */
4251 ice_print_wake_reason(pf);
4252
4253 /* clear wake status, all bits */
4254 wr32(hw, PFPM_WUS, U32_MAX);
4255
4256 /* Disable WoL at init, wait for user to enable */
4257 device_set_wakeup_enable(dev, false);
4258
4259 if (ice_is_safe_mode(pf)) {
4260 ice_set_safe_mode_vlan_cfg(pf);
4261 goto probe_done;
4262 }
4263
4264 /* initialize DDP driven features */
4265
4266 /* Note: Flow director init failure is non-fatal to load */
4267 if (ice_init_fdir(pf))
4268 dev_err(dev, "could not initialize flow director\n");
4269
4270 /* Note: DCB init failure is non-fatal to load */
4271 if (ice_init_pf_dcb(pf, false)) {
4272 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4273 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4274 } else {
4275 ice_cfg_lldp_mib_change(&pf->hw, true);
4276 }
4277
4278 /* print PCI link speed and width */
4279 pcie_print_link_status(pf->pdev);
4280
4281 probe_done:
4282 /* ready to go, so clear down state bit */
4283 clear_bit(__ICE_DOWN, pf->state);
4284 return 0;
4285
4286 err_send_version_unroll:
4287 ice_vsi_release_all(pf);
4288 err_alloc_sw_unroll:
4289 set_bit(__ICE_SERVICE_DIS, pf->state);
4290 set_bit(__ICE_DOWN, pf->state);
4291 devm_kfree(dev, pf->first_sw);
4292 err_msix_misc_unroll:
4293 ice_free_irq_msix_misc(pf);
4294 err_init_interrupt_unroll:
4295 ice_clear_interrupt_scheme(pf);
4296 err_init_vsi_unroll:
4297 devm_kfree(dev, pf->vsi);
4298 err_init_pf_unroll:
4299 ice_deinit_pf(pf);
4300 ice_devlink_destroy_regions(pf);
4301 ice_deinit_hw(hw);
4302 err_exit_unroll:
4303 ice_devlink_unregister(pf);
4304 pci_disable_pcie_error_reporting(pdev);
4305 pci_disable_device(pdev);
4306 return err;
4307 }
4308
4309 /**
4310 * ice_set_wake - enable or disable Wake on LAN
4311 * @pf: pointer to the PF struct
4312 *
4313 * Simple helper for WoL control
4314 */
ice_set_wake(struct ice_pf * pf)4315 static void ice_set_wake(struct ice_pf *pf)
4316 {
4317 struct ice_hw *hw = &pf->hw;
4318 bool wol = pf->wol_ena;
4319
4320 /* clear wake state, otherwise new wake events won't fire */
4321 wr32(hw, PFPM_WUS, U32_MAX);
4322
4323 /* enable / disable APM wake up, no RMW needed */
4324 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4325
4326 /* set magic packet filter enabled */
4327 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4328 }
4329
4330 /**
4331 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4332 * @pf: pointer to the PF struct
4333 *
4334 * Issue firmware command to enable multicast magic wake, making
4335 * sure that any locally administered address (LAA) is used for
4336 * wake, and that PF reset doesn't undo the LAA.
4337 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4338 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4339 {
4340 struct device *dev = ice_pf_to_dev(pf);
4341 struct ice_hw *hw = &pf->hw;
4342 enum ice_status status;
4343 u8 mac_addr[ETH_ALEN];
4344 struct ice_vsi *vsi;
4345 u8 flags;
4346
4347 if (!pf->wol_ena)
4348 return;
4349
4350 vsi = ice_get_main_vsi(pf);
4351 if (!vsi)
4352 return;
4353
4354 /* Get current MAC address in case it's an LAA */
4355 if (vsi->netdev)
4356 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4357 else
4358 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4359
4360 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4361 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4362 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4363
4364 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4365 if (status)
4366 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4367 ice_stat_str(status),
4368 ice_aq_str(hw->adminq.sq_last_status));
4369 }
4370
4371 /**
4372 * ice_remove - Device removal routine
4373 * @pdev: PCI device information struct
4374 */
ice_remove(struct pci_dev * pdev)4375 static void ice_remove(struct pci_dev *pdev)
4376 {
4377 struct ice_pf *pf = pci_get_drvdata(pdev);
4378 int i;
4379
4380 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4381 if (!ice_is_reset_in_progress(pf->state))
4382 break;
4383 msleep(100);
4384 }
4385
4386 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4387 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4388 ice_free_vfs(pf);
4389 }
4390
4391 set_bit(__ICE_DOWN, pf->state);
4392 ice_service_task_stop(pf);
4393
4394 ice_aq_cancel_waiting_tasks(pf);
4395
4396 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4397 if (!ice_is_safe_mode(pf))
4398 ice_remove_arfs(pf);
4399 ice_setup_mc_magic_wake(pf);
4400 ice_vsi_release_all(pf);
4401 ice_set_wake(pf);
4402 ice_free_irq_msix_misc(pf);
4403 ice_for_each_vsi(pf, i) {
4404 if (!pf->vsi[i])
4405 continue;
4406 ice_vsi_free_q_vectors(pf->vsi[i]);
4407 }
4408 ice_deinit_pf(pf);
4409 ice_devlink_destroy_regions(pf);
4410 ice_deinit_hw(&pf->hw);
4411 ice_devlink_unregister(pf);
4412
4413 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4414 * do it via ice_schedule_reset() since there is no need to rebuild
4415 * and the service task is already stopped.
4416 */
4417 ice_reset(&pf->hw, ICE_RESET_PFR);
4418 pci_wait_for_pending_transaction(pdev);
4419 ice_clear_interrupt_scheme(pf);
4420 pci_disable_pcie_error_reporting(pdev);
4421 pci_disable_device(pdev);
4422 }
4423
4424 /**
4425 * ice_shutdown - PCI callback for shutting down device
4426 * @pdev: PCI device information struct
4427 */
ice_shutdown(struct pci_dev * pdev)4428 static void ice_shutdown(struct pci_dev *pdev)
4429 {
4430 struct ice_pf *pf = pci_get_drvdata(pdev);
4431
4432 ice_remove(pdev);
4433
4434 if (system_state == SYSTEM_POWER_OFF) {
4435 pci_wake_from_d3(pdev, pf->wol_ena);
4436 pci_set_power_state(pdev, PCI_D3hot);
4437 }
4438 }
4439
4440 #ifdef CONFIG_PM
4441 /**
4442 * ice_prepare_for_shutdown - prep for PCI shutdown
4443 * @pf: board private structure
4444 *
4445 * Inform or close all dependent features in prep for PCI device shutdown
4446 */
ice_prepare_for_shutdown(struct ice_pf * pf)4447 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4448 {
4449 struct ice_hw *hw = &pf->hw;
4450 u32 v;
4451
4452 /* Notify VFs of impending reset */
4453 if (ice_check_sq_alive(hw, &hw->mailboxq))
4454 ice_vc_notify_reset(pf);
4455
4456 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4457
4458 /* disable the VSIs and their queues that are not already DOWN */
4459 ice_pf_dis_all_vsi(pf, false);
4460
4461 ice_for_each_vsi(pf, v)
4462 if (pf->vsi[v])
4463 pf->vsi[v]->vsi_num = 0;
4464
4465 ice_shutdown_all_ctrlq(hw);
4466 }
4467
4468 /**
4469 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4470 * @pf: board private structure to reinitialize
4471 *
4472 * This routine reinitialize interrupt scheme that was cleared during
4473 * power management suspend callback.
4474 *
4475 * This should be called during resume routine to re-allocate the q_vectors
4476 * and reacquire interrupts.
4477 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)4478 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4479 {
4480 struct device *dev = ice_pf_to_dev(pf);
4481 int ret, v;
4482
4483 /* Since we clear MSIX flag during suspend, we need to
4484 * set it back during resume...
4485 */
4486
4487 ret = ice_init_interrupt_scheme(pf);
4488 if (ret) {
4489 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4490 return ret;
4491 }
4492
4493 /* Remap vectors and rings, after successful re-init interrupts */
4494 ice_for_each_vsi(pf, v) {
4495 if (!pf->vsi[v])
4496 continue;
4497
4498 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4499 if (ret)
4500 goto err_reinit;
4501 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4502 }
4503
4504 ret = ice_req_irq_msix_misc(pf);
4505 if (ret) {
4506 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4507 ret);
4508 goto err_reinit;
4509 }
4510
4511 return 0;
4512
4513 err_reinit:
4514 while (v--)
4515 if (pf->vsi[v])
4516 ice_vsi_free_q_vectors(pf->vsi[v]);
4517
4518 return ret;
4519 }
4520
4521 /**
4522 * ice_suspend
4523 * @dev: generic device information structure
4524 *
4525 * Power Management callback to quiesce the device and prepare
4526 * for D3 transition.
4527 */
ice_suspend(struct device * dev)4528 static int __maybe_unused ice_suspend(struct device *dev)
4529 {
4530 struct pci_dev *pdev = to_pci_dev(dev);
4531 struct ice_pf *pf;
4532 int disabled, v;
4533
4534 pf = pci_get_drvdata(pdev);
4535
4536 if (!ice_pf_state_is_nominal(pf)) {
4537 dev_err(dev, "Device is not ready, no need to suspend it\n");
4538 return -EBUSY;
4539 }
4540
4541 /* Stop watchdog tasks until resume completion.
4542 * Even though it is most likely that the service task is
4543 * disabled if the device is suspended or down, the service task's
4544 * state is controlled by a different state bit, and we should
4545 * store and honor whatever state that bit is in at this point.
4546 */
4547 disabled = ice_service_task_stop(pf);
4548
4549 /* Already suspended?, then there is nothing to do */
4550 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4551 if (!disabled)
4552 ice_service_task_restart(pf);
4553 return 0;
4554 }
4555
4556 if (test_bit(__ICE_DOWN, pf->state) ||
4557 ice_is_reset_in_progress(pf->state)) {
4558 dev_err(dev, "can't suspend device in reset or already down\n");
4559 if (!disabled)
4560 ice_service_task_restart(pf);
4561 return 0;
4562 }
4563
4564 ice_setup_mc_magic_wake(pf);
4565
4566 ice_prepare_for_shutdown(pf);
4567
4568 ice_set_wake(pf);
4569
4570 /* Free vectors, clear the interrupt scheme and release IRQs
4571 * for proper hibernation, especially with large number of CPUs.
4572 * Otherwise hibernation might fail when mapping all the vectors back
4573 * to CPU0.
4574 */
4575 ice_free_irq_msix_misc(pf);
4576 ice_for_each_vsi(pf, v) {
4577 if (!pf->vsi[v])
4578 continue;
4579 ice_vsi_free_q_vectors(pf->vsi[v]);
4580 }
4581 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4582 ice_clear_interrupt_scheme(pf);
4583
4584 pci_save_state(pdev);
4585 pci_wake_from_d3(pdev, pf->wol_ena);
4586 pci_set_power_state(pdev, PCI_D3hot);
4587 return 0;
4588 }
4589
4590 /**
4591 * ice_resume - PM callback for waking up from D3
4592 * @dev: generic device information structure
4593 */
ice_resume(struct device * dev)4594 static int __maybe_unused ice_resume(struct device *dev)
4595 {
4596 struct pci_dev *pdev = to_pci_dev(dev);
4597 enum ice_reset_req reset_type;
4598 struct ice_pf *pf;
4599 struct ice_hw *hw;
4600 int ret;
4601
4602 pci_set_power_state(pdev, PCI_D0);
4603 pci_restore_state(pdev);
4604 pci_save_state(pdev);
4605
4606 if (!pci_device_is_present(pdev))
4607 return -ENODEV;
4608
4609 ret = pci_enable_device_mem(pdev);
4610 if (ret) {
4611 dev_err(dev, "Cannot enable device after suspend\n");
4612 return ret;
4613 }
4614
4615 pf = pci_get_drvdata(pdev);
4616 hw = &pf->hw;
4617
4618 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4619 ice_print_wake_reason(pf);
4620
4621 /* We cleared the interrupt scheme when we suspended, so we need to
4622 * restore it now to resume device functionality.
4623 */
4624 ret = ice_reinit_interrupt_scheme(pf);
4625 if (ret)
4626 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4627
4628 clear_bit(__ICE_DOWN, pf->state);
4629 /* Now perform PF reset and rebuild */
4630 reset_type = ICE_RESET_PFR;
4631 /* re-enable service task for reset, but allow reset to schedule it */
4632 clear_bit(__ICE_SERVICE_DIS, pf->state);
4633
4634 if (ice_schedule_reset(pf, reset_type))
4635 dev_err(dev, "Reset during resume failed.\n");
4636
4637 clear_bit(__ICE_SUSPENDED, pf->state);
4638 ice_service_task_restart(pf);
4639
4640 /* Restart the service task */
4641 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4642
4643 return 0;
4644 }
4645 #endif /* CONFIG_PM */
4646
4647 /**
4648 * ice_pci_err_detected - warning that PCI error has been detected
4649 * @pdev: PCI device information struct
4650 * @err: the type of PCI error
4651 *
4652 * Called to warn that something happened on the PCI bus and the error handling
4653 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4654 */
4655 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)4656 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4657 {
4658 struct ice_pf *pf = pci_get_drvdata(pdev);
4659
4660 if (!pf) {
4661 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4662 __func__, err);
4663 return PCI_ERS_RESULT_DISCONNECT;
4664 }
4665
4666 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4667 ice_service_task_stop(pf);
4668
4669 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4670 set_bit(__ICE_PFR_REQ, pf->state);
4671 ice_prepare_for_reset(pf);
4672 }
4673 }
4674
4675 return PCI_ERS_RESULT_NEED_RESET;
4676 }
4677
4678 /**
4679 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4680 * @pdev: PCI device information struct
4681 *
4682 * Called to determine if the driver can recover from the PCI slot reset by
4683 * using a register read to determine if the device is recoverable.
4684 */
ice_pci_err_slot_reset(struct pci_dev * pdev)4685 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4686 {
4687 struct ice_pf *pf = pci_get_drvdata(pdev);
4688 pci_ers_result_t result;
4689 int err;
4690 u32 reg;
4691
4692 err = pci_enable_device_mem(pdev);
4693 if (err) {
4694 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4695 err);
4696 result = PCI_ERS_RESULT_DISCONNECT;
4697 } else {
4698 pci_set_master(pdev);
4699 pci_restore_state(pdev);
4700 pci_save_state(pdev);
4701 pci_wake_from_d3(pdev, false);
4702
4703 /* Check for life */
4704 reg = rd32(&pf->hw, GLGEN_RTRIG);
4705 if (!reg)
4706 result = PCI_ERS_RESULT_RECOVERED;
4707 else
4708 result = PCI_ERS_RESULT_DISCONNECT;
4709 }
4710
4711 err = pci_aer_clear_nonfatal_status(pdev);
4712 if (err)
4713 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4714 err);
4715 /* non-fatal, continue */
4716
4717 return result;
4718 }
4719
4720 /**
4721 * ice_pci_err_resume - restart operations after PCI error recovery
4722 * @pdev: PCI device information struct
4723 *
4724 * Called to allow the driver to bring things back up after PCI error and/or
4725 * reset recovery have finished
4726 */
ice_pci_err_resume(struct pci_dev * pdev)4727 static void ice_pci_err_resume(struct pci_dev *pdev)
4728 {
4729 struct ice_pf *pf = pci_get_drvdata(pdev);
4730
4731 if (!pf) {
4732 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4733 __func__);
4734 return;
4735 }
4736
4737 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4738 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4739 __func__);
4740 return;
4741 }
4742
4743 ice_restore_all_vfs_msi_state(pdev);
4744
4745 ice_do_reset(pf, ICE_RESET_PFR);
4746 ice_service_task_restart(pf);
4747 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4748 }
4749
4750 /**
4751 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4752 * @pdev: PCI device information struct
4753 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)4754 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4755 {
4756 struct ice_pf *pf = pci_get_drvdata(pdev);
4757
4758 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4759 ice_service_task_stop(pf);
4760
4761 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4762 set_bit(__ICE_PFR_REQ, pf->state);
4763 ice_prepare_for_reset(pf);
4764 }
4765 }
4766 }
4767
4768 /**
4769 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4770 * @pdev: PCI device information struct
4771 */
ice_pci_err_reset_done(struct pci_dev * pdev)4772 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4773 {
4774 ice_pci_err_resume(pdev);
4775 }
4776
4777 /* ice_pci_tbl - PCI Device ID Table
4778 *
4779 * Wildcard entries (PCI_ANY_ID) should come last
4780 * Last entry must be all 0s
4781 *
4782 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4783 * Class, Class Mask, private data (not used) }
4784 */
4785 static const struct pci_device_id ice_pci_tbl[] = {
4786 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4787 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4788 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4789 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
4790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
4791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4811 /* required last entry */
4812 { 0, }
4813 };
4814 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4815
4816 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4817
4818 static const struct pci_error_handlers ice_pci_err_handler = {
4819 .error_detected = ice_pci_err_detected,
4820 .slot_reset = ice_pci_err_slot_reset,
4821 .reset_prepare = ice_pci_err_reset_prepare,
4822 .reset_done = ice_pci_err_reset_done,
4823 .resume = ice_pci_err_resume
4824 };
4825
4826 static struct pci_driver ice_driver = {
4827 .name = KBUILD_MODNAME,
4828 .id_table = ice_pci_tbl,
4829 .probe = ice_probe,
4830 .remove = ice_remove,
4831 #ifdef CONFIG_PM
4832 .driver.pm = &ice_pm_ops,
4833 #endif /* CONFIG_PM */
4834 .shutdown = ice_shutdown,
4835 .sriov_configure = ice_sriov_configure,
4836 .err_handler = &ice_pci_err_handler
4837 };
4838
4839 /**
4840 * ice_module_init - Driver registration routine
4841 *
4842 * ice_module_init is the first routine called when the driver is
4843 * loaded. All it does is register with the PCI subsystem.
4844 */
ice_module_init(void)4845 static int __init ice_module_init(void)
4846 {
4847 int status;
4848
4849 pr_info("%s\n", ice_driver_string);
4850 pr_info("%s\n", ice_copyright);
4851
4852 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4853 if (!ice_wq) {
4854 pr_err("Failed to create workqueue\n");
4855 return -ENOMEM;
4856 }
4857
4858 status = pci_register_driver(&ice_driver);
4859 if (status) {
4860 pr_err("failed to register PCI driver, err %d\n", status);
4861 destroy_workqueue(ice_wq);
4862 }
4863
4864 return status;
4865 }
4866 module_init(ice_module_init);
4867
4868 /**
4869 * ice_module_exit - Driver exit cleanup routine
4870 *
4871 * ice_module_exit is called just before the driver is removed
4872 * from memory.
4873 */
ice_module_exit(void)4874 static void __exit ice_module_exit(void)
4875 {
4876 pci_unregister_driver(&ice_driver);
4877 destroy_workqueue(ice_wq);
4878 pr_info("module unloaded\n");
4879 }
4880 module_exit(ice_module_exit);
4881
4882 /**
4883 * ice_set_mac_address - NDO callback to set MAC address
4884 * @netdev: network interface device structure
4885 * @pi: pointer to an address structure
4886 *
4887 * Returns 0 on success, negative on failure
4888 */
ice_set_mac_address(struct net_device * netdev,void * pi)4889 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4890 {
4891 struct ice_netdev_priv *np = netdev_priv(netdev);
4892 struct ice_vsi *vsi = np->vsi;
4893 struct ice_pf *pf = vsi->back;
4894 struct ice_hw *hw = &pf->hw;
4895 struct sockaddr *addr = pi;
4896 enum ice_status status;
4897 u8 old_mac[ETH_ALEN];
4898 u8 flags = 0;
4899 int err = 0;
4900 u8 *mac;
4901
4902 mac = (u8 *)addr->sa_data;
4903
4904 if (!is_valid_ether_addr(mac))
4905 return -EADDRNOTAVAIL;
4906
4907 if (ether_addr_equal(netdev->dev_addr, mac)) {
4908 netdev_dbg(netdev, "already using mac %pM\n", mac);
4909 return 0;
4910 }
4911
4912 if (test_bit(__ICE_DOWN, pf->state) ||
4913 ice_is_reset_in_progress(pf->state)) {
4914 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4915 mac);
4916 return -EBUSY;
4917 }
4918
4919 netif_addr_lock_bh(netdev);
4920 ether_addr_copy(old_mac, netdev->dev_addr);
4921 /* change the netdev's MAC address */
4922 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4923 netif_addr_unlock_bh(netdev);
4924
4925 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4926 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
4927 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4928 err = -EADDRNOTAVAIL;
4929 goto err_update_filters;
4930 }
4931
4932 /* Add filter for new MAC. If filter exists, return success */
4933 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4934 if (status == ICE_ERR_ALREADY_EXISTS)
4935 /* Although this MAC filter is already present in hardware it's
4936 * possible in some cases (e.g. bonding) that dev_addr was
4937 * modified outside of the driver and needs to be restored back
4938 * to this value.
4939 */
4940 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4941 else if (status)
4942 /* error if the new filter addition failed */
4943 err = -EADDRNOTAVAIL;
4944
4945 err_update_filters:
4946 if (err) {
4947 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4948 mac);
4949 netif_addr_lock_bh(netdev);
4950 ether_addr_copy(netdev->dev_addr, old_mac);
4951 netif_addr_unlock_bh(netdev);
4952 return err;
4953 }
4954
4955 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4956 netdev->dev_addr);
4957
4958 /* write new MAC address to the firmware */
4959 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4960 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4961 if (status) {
4962 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4963 mac, ice_stat_str(status));
4964 }
4965 return 0;
4966 }
4967
4968 /**
4969 * ice_set_rx_mode - NDO callback to set the netdev filters
4970 * @netdev: network interface device structure
4971 */
ice_set_rx_mode(struct net_device * netdev)4972 static void ice_set_rx_mode(struct net_device *netdev)
4973 {
4974 struct ice_netdev_priv *np = netdev_priv(netdev);
4975 struct ice_vsi *vsi = np->vsi;
4976
4977 if (!vsi)
4978 return;
4979
4980 /* Set the flags to synchronize filters
4981 * ndo_set_rx_mode may be triggered even without a change in netdev
4982 * flags
4983 */
4984 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4985 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4986 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4987
4988 /* schedule our worker thread which will take care of
4989 * applying the new filter changes
4990 */
4991 ice_service_task_schedule(vsi->back);
4992 }
4993
4994 /**
4995 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4996 * @netdev: network interface device structure
4997 * @queue_index: Queue ID
4998 * @maxrate: maximum bandwidth in Mbps
4999 */
5000 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5001 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5002 {
5003 struct ice_netdev_priv *np = netdev_priv(netdev);
5004 struct ice_vsi *vsi = np->vsi;
5005 enum ice_status status;
5006 u16 q_handle;
5007 u8 tc;
5008
5009 /* Validate maxrate requested is within permitted range */
5010 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5011 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5012 maxrate, queue_index);
5013 return -EINVAL;
5014 }
5015
5016 q_handle = vsi->tx_rings[queue_index]->q_handle;
5017 tc = ice_dcb_get_tc(vsi, queue_index);
5018
5019 /* Set BW back to default, when user set maxrate to 0 */
5020 if (!maxrate)
5021 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5022 q_handle, ICE_MAX_BW);
5023 else
5024 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5025 q_handle, ICE_MAX_BW, maxrate * 1000);
5026 if (status) {
5027 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5028 ice_stat_str(status));
5029 return -EIO;
5030 }
5031
5032 return 0;
5033 }
5034
5035 /**
5036 * ice_fdb_add - add an entry to the hardware database
5037 * @ndm: the input from the stack
5038 * @tb: pointer to array of nladdr (unused)
5039 * @dev: the net device pointer
5040 * @addr: the MAC address entry being added
5041 * @vid: VLAN ID
5042 * @flags: instructions from stack about fdb operation
5043 * @extack: netlink extended ack
5044 */
5045 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5046 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5047 struct net_device *dev, const unsigned char *addr, u16 vid,
5048 u16 flags, struct netlink_ext_ack __always_unused *extack)
5049 {
5050 int err;
5051
5052 if (vid) {
5053 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5054 return -EINVAL;
5055 }
5056 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5057 netdev_err(dev, "FDB only supports static addresses\n");
5058 return -EINVAL;
5059 }
5060
5061 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5062 err = dev_uc_add_excl(dev, addr);
5063 else if (is_multicast_ether_addr(addr))
5064 err = dev_mc_add_excl(dev, addr);
5065 else
5066 err = -EINVAL;
5067
5068 /* Only return duplicate errors if NLM_F_EXCL is set */
5069 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5070 err = 0;
5071
5072 return err;
5073 }
5074
5075 /**
5076 * ice_fdb_del - delete an entry from the hardware database
5077 * @ndm: the input from the stack
5078 * @tb: pointer to array of nladdr (unused)
5079 * @dev: the net device pointer
5080 * @addr: the MAC address entry being added
5081 * @vid: VLAN ID
5082 */
5083 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid)5084 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5085 struct net_device *dev, const unsigned char *addr,
5086 __always_unused u16 vid)
5087 {
5088 int err;
5089
5090 if (ndm->ndm_state & NUD_PERMANENT) {
5091 netdev_err(dev, "FDB only supports static addresses\n");
5092 return -EINVAL;
5093 }
5094
5095 if (is_unicast_ether_addr(addr))
5096 err = dev_uc_del(dev, addr);
5097 else if (is_multicast_ether_addr(addr))
5098 err = dev_mc_del(dev, addr);
5099 else
5100 err = -EINVAL;
5101
5102 return err;
5103 }
5104
5105 /**
5106 * ice_set_features - set the netdev feature flags
5107 * @netdev: ptr to the netdev being adjusted
5108 * @features: the feature set that the stack is suggesting
5109 */
5110 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5111 ice_set_features(struct net_device *netdev, netdev_features_t features)
5112 {
5113 struct ice_netdev_priv *np = netdev_priv(netdev);
5114 struct ice_vsi *vsi = np->vsi;
5115 struct ice_pf *pf = vsi->back;
5116 int ret = 0;
5117
5118 /* Don't set any netdev advanced features with device in Safe Mode */
5119 if (ice_is_safe_mode(vsi->back)) {
5120 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5121 return ret;
5122 }
5123
5124 /* Do not change setting during reset */
5125 if (ice_is_reset_in_progress(pf->state)) {
5126 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5127 return -EBUSY;
5128 }
5129
5130 /* Multiple features can be changed in one call so keep features in
5131 * separate if/else statements to guarantee each feature is checked
5132 */
5133 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5134 ret = ice_vsi_manage_rss_lut(vsi, true);
5135 else if (!(features & NETIF_F_RXHASH) &&
5136 netdev->features & NETIF_F_RXHASH)
5137 ret = ice_vsi_manage_rss_lut(vsi, false);
5138
5139 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5140 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5141 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5142 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5143 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5144 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5145
5146 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5147 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5148 ret = ice_vsi_manage_vlan_insertion(vsi);
5149 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5150 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5151 ret = ice_vsi_manage_vlan_insertion(vsi);
5152
5153 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5154 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5155 ret = ice_cfg_vlan_pruning(vsi, true, false);
5156 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5157 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5158 ret = ice_cfg_vlan_pruning(vsi, false, false);
5159
5160 if ((features & NETIF_F_NTUPLE) &&
5161 !(netdev->features & NETIF_F_NTUPLE)) {
5162 ice_vsi_manage_fdir(vsi, true);
5163 ice_init_arfs(vsi);
5164 } else if (!(features & NETIF_F_NTUPLE) &&
5165 (netdev->features & NETIF_F_NTUPLE)) {
5166 ice_vsi_manage_fdir(vsi, false);
5167 ice_clear_arfs(vsi);
5168 }
5169
5170 return ret;
5171 }
5172
5173 /**
5174 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5175 * @vsi: VSI to setup VLAN properties for
5176 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)5177 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5178 {
5179 int ret = 0;
5180
5181 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5182 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5183 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5184 ret = ice_vsi_manage_vlan_insertion(vsi);
5185
5186 return ret;
5187 }
5188
5189 /**
5190 * ice_vsi_cfg - Setup the VSI
5191 * @vsi: the VSI being configured
5192 *
5193 * Return 0 on success and negative value on error
5194 */
ice_vsi_cfg(struct ice_vsi * vsi)5195 int ice_vsi_cfg(struct ice_vsi *vsi)
5196 {
5197 int err;
5198
5199 if (vsi->netdev) {
5200 ice_set_rx_mode(vsi->netdev);
5201
5202 err = ice_vsi_vlan_setup(vsi);
5203
5204 if (err)
5205 return err;
5206 }
5207 ice_vsi_cfg_dcb_rings(vsi);
5208
5209 err = ice_vsi_cfg_lan_txqs(vsi);
5210 if (!err && ice_is_xdp_ena_vsi(vsi))
5211 err = ice_vsi_cfg_xdp_txqs(vsi);
5212 if (!err)
5213 err = ice_vsi_cfg_rxqs(vsi);
5214
5215 return err;
5216 }
5217
5218 /**
5219 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5220 * @vsi: the VSI being configured
5221 */
ice_napi_enable_all(struct ice_vsi * vsi)5222 static void ice_napi_enable_all(struct ice_vsi *vsi)
5223 {
5224 int q_idx;
5225
5226 if (!vsi->netdev)
5227 return;
5228
5229 ice_for_each_q_vector(vsi, q_idx) {
5230 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5231
5232 if (q_vector->rx.ring || q_vector->tx.ring)
5233 napi_enable(&q_vector->napi);
5234 }
5235 }
5236
5237 /**
5238 * ice_up_complete - Finish the last steps of bringing up a connection
5239 * @vsi: The VSI being configured
5240 *
5241 * Return 0 on success and negative value on error
5242 */
ice_up_complete(struct ice_vsi * vsi)5243 static int ice_up_complete(struct ice_vsi *vsi)
5244 {
5245 struct ice_pf *pf = vsi->back;
5246 int err;
5247
5248 ice_vsi_cfg_msix(vsi);
5249
5250 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5251 * Tx queue group list was configured and the context bits were
5252 * programmed using ice_vsi_cfg_txqs
5253 */
5254 err = ice_vsi_start_all_rx_rings(vsi);
5255 if (err)
5256 return err;
5257
5258 clear_bit(__ICE_DOWN, vsi->state);
5259 ice_napi_enable_all(vsi);
5260 ice_vsi_ena_irq(vsi);
5261
5262 if (vsi->port_info &&
5263 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5264 vsi->netdev) {
5265 ice_print_link_msg(vsi, true);
5266 netif_tx_start_all_queues(vsi->netdev);
5267 netif_carrier_on(vsi->netdev);
5268 }
5269
5270 /* clear this now, and the first stats read will be used as baseline */
5271 vsi->stat_offsets_loaded = false;
5272
5273 ice_service_task_schedule(pf);
5274
5275 return 0;
5276 }
5277
5278 /**
5279 * ice_up - Bring the connection back up after being down
5280 * @vsi: VSI being configured
5281 */
ice_up(struct ice_vsi * vsi)5282 int ice_up(struct ice_vsi *vsi)
5283 {
5284 int err;
5285
5286 err = ice_vsi_cfg(vsi);
5287 if (!err)
5288 err = ice_up_complete(vsi);
5289
5290 return err;
5291 }
5292
5293 /**
5294 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5295 * @ring: Tx or Rx ring to read stats from
5296 * @pkts: packets stats counter
5297 * @bytes: bytes stats counter
5298 *
5299 * This function fetches stats from the ring considering the atomic operations
5300 * that needs to be performed to read u64 values in 32 bit machine.
5301 */
5302 static void
ice_fetch_u64_stats_per_ring(struct ice_ring * ring,u64 * pkts,u64 * bytes)5303 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5304 {
5305 unsigned int start;
5306 *pkts = 0;
5307 *bytes = 0;
5308
5309 if (!ring)
5310 return;
5311 do {
5312 start = u64_stats_fetch_begin_irq(&ring->syncp);
5313 *pkts = ring->stats.pkts;
5314 *bytes = ring->stats.bytes;
5315 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5316 }
5317
5318 /**
5319 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5320 * @vsi: the VSI to be updated
5321 * @rings: rings to work on
5322 * @count: number of rings
5323 */
5324 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct ice_ring ** rings,u16 count)5325 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5326 u16 count)
5327 {
5328 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5329 u16 i;
5330
5331 for (i = 0; i < count; i++) {
5332 struct ice_ring *ring;
5333 u64 pkts, bytes;
5334
5335 ring = READ_ONCE(rings[i]);
5336 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5337 vsi_stats->tx_packets += pkts;
5338 vsi_stats->tx_bytes += bytes;
5339 vsi->tx_restart += ring->tx_stats.restart_q;
5340 vsi->tx_busy += ring->tx_stats.tx_busy;
5341 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5342 }
5343 }
5344
5345 /**
5346 * ice_update_vsi_ring_stats - Update VSI stats counters
5347 * @vsi: the VSI to be updated
5348 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)5349 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5350 {
5351 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5352 struct ice_ring *ring;
5353 u64 pkts, bytes;
5354 int i;
5355
5356 /* reset netdev stats */
5357 vsi_stats->tx_packets = 0;
5358 vsi_stats->tx_bytes = 0;
5359 vsi_stats->rx_packets = 0;
5360 vsi_stats->rx_bytes = 0;
5361
5362 /* reset non-netdev (extended) stats */
5363 vsi->tx_restart = 0;
5364 vsi->tx_busy = 0;
5365 vsi->tx_linearize = 0;
5366 vsi->rx_buf_failed = 0;
5367 vsi->rx_page_failed = 0;
5368 vsi->rx_gro_dropped = 0;
5369
5370 rcu_read_lock();
5371
5372 /* update Tx rings counters */
5373 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5374
5375 /* update Rx rings counters */
5376 ice_for_each_rxq(vsi, i) {
5377 ring = READ_ONCE(vsi->rx_rings[i]);
5378 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5379 vsi_stats->rx_packets += pkts;
5380 vsi_stats->rx_bytes += bytes;
5381 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5382 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5383 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5384 }
5385
5386 /* update XDP Tx rings counters */
5387 if (ice_is_xdp_ena_vsi(vsi))
5388 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5389 vsi->num_xdp_txq);
5390
5391 rcu_read_unlock();
5392 }
5393
5394 /**
5395 * ice_update_vsi_stats - Update VSI stats counters
5396 * @vsi: the VSI to be updated
5397 */
ice_update_vsi_stats(struct ice_vsi * vsi)5398 void ice_update_vsi_stats(struct ice_vsi *vsi)
5399 {
5400 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5401 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5402 struct ice_pf *pf = vsi->back;
5403
5404 if (test_bit(__ICE_DOWN, vsi->state) ||
5405 test_bit(__ICE_CFG_BUSY, pf->state))
5406 return;
5407
5408 /* get stats as recorded by Tx/Rx rings */
5409 ice_update_vsi_ring_stats(vsi);
5410
5411 /* get VSI stats as recorded by the hardware */
5412 ice_update_eth_stats(vsi);
5413
5414 cur_ns->tx_errors = cur_es->tx_errors;
5415 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5416 cur_ns->tx_dropped = cur_es->tx_discards;
5417 cur_ns->multicast = cur_es->rx_multicast;
5418
5419 /* update some more netdev stats if this is main VSI */
5420 if (vsi->type == ICE_VSI_PF) {
5421 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5422 cur_ns->rx_errors = pf->stats.crc_errors +
5423 pf->stats.illegal_bytes +
5424 pf->stats.rx_len_errors +
5425 pf->stats.rx_undersize +
5426 pf->hw_csum_rx_error +
5427 pf->stats.rx_jabber +
5428 pf->stats.rx_fragments +
5429 pf->stats.rx_oversize;
5430 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5431 /* record drops from the port level */
5432 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5433 }
5434 }
5435
5436 /**
5437 * ice_update_pf_stats - Update PF port stats counters
5438 * @pf: PF whose stats needs to be updated
5439 */
ice_update_pf_stats(struct ice_pf * pf)5440 void ice_update_pf_stats(struct ice_pf *pf)
5441 {
5442 struct ice_hw_port_stats *prev_ps, *cur_ps;
5443 struct ice_hw *hw = &pf->hw;
5444 u16 fd_ctr_base;
5445 u8 port;
5446
5447 port = hw->port_info->lport;
5448 prev_ps = &pf->stats_prev;
5449 cur_ps = &pf->stats;
5450
5451 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5452 &prev_ps->eth.rx_bytes,
5453 &cur_ps->eth.rx_bytes);
5454
5455 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5456 &prev_ps->eth.rx_unicast,
5457 &cur_ps->eth.rx_unicast);
5458
5459 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5460 &prev_ps->eth.rx_multicast,
5461 &cur_ps->eth.rx_multicast);
5462
5463 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5464 &prev_ps->eth.rx_broadcast,
5465 &cur_ps->eth.rx_broadcast);
5466
5467 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5468 &prev_ps->eth.rx_discards,
5469 &cur_ps->eth.rx_discards);
5470
5471 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5472 &prev_ps->eth.tx_bytes,
5473 &cur_ps->eth.tx_bytes);
5474
5475 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5476 &prev_ps->eth.tx_unicast,
5477 &cur_ps->eth.tx_unicast);
5478
5479 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5480 &prev_ps->eth.tx_multicast,
5481 &cur_ps->eth.tx_multicast);
5482
5483 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5484 &prev_ps->eth.tx_broadcast,
5485 &cur_ps->eth.tx_broadcast);
5486
5487 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5488 &prev_ps->tx_dropped_link_down,
5489 &cur_ps->tx_dropped_link_down);
5490
5491 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5492 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5493
5494 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5495 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5496
5497 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5498 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5499
5500 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5501 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5502
5503 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5504 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5505
5506 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5507 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5508
5509 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5510 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5511
5512 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5513 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5514
5515 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5516 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5517
5518 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5519 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5520
5521 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5522 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5523
5524 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5525 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5526
5527 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5528 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5529
5530 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5531 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5532
5533 fd_ctr_base = hw->fd_ctr_base;
5534
5535 ice_stat_update40(hw,
5536 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5537 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5538 &cur_ps->fd_sb_match);
5539 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5540 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5541
5542 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5543 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5544
5545 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5546 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5547
5548 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5549 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5550
5551 ice_update_dcb_stats(pf);
5552
5553 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5554 &prev_ps->crc_errors, &cur_ps->crc_errors);
5555
5556 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5557 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5558
5559 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5560 &prev_ps->mac_local_faults,
5561 &cur_ps->mac_local_faults);
5562
5563 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5564 &prev_ps->mac_remote_faults,
5565 &cur_ps->mac_remote_faults);
5566
5567 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5568 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5569
5570 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5571 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5572
5573 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5574 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5575
5576 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5577 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5578
5579 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5580 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5581
5582 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5583
5584 pf->stat_prev_loaded = true;
5585 }
5586
5587 /**
5588 * ice_get_stats64 - get statistics for network device structure
5589 * @netdev: network interface device structure
5590 * @stats: main device statistics structure
5591 */
5592 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5593 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5594 {
5595 struct ice_netdev_priv *np = netdev_priv(netdev);
5596 struct rtnl_link_stats64 *vsi_stats;
5597 struct ice_vsi *vsi = np->vsi;
5598
5599 vsi_stats = &vsi->net_stats;
5600
5601 if (!vsi->num_txq || !vsi->num_rxq)
5602 return;
5603
5604 /* netdev packet/byte stats come from ring counter. These are obtained
5605 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5606 * But, only call the update routine and read the registers if VSI is
5607 * not down.
5608 */
5609 if (!test_bit(__ICE_DOWN, vsi->state))
5610 ice_update_vsi_ring_stats(vsi);
5611 stats->tx_packets = vsi_stats->tx_packets;
5612 stats->tx_bytes = vsi_stats->tx_bytes;
5613 stats->rx_packets = vsi_stats->rx_packets;
5614 stats->rx_bytes = vsi_stats->rx_bytes;
5615
5616 /* The rest of the stats can be read from the hardware but instead we
5617 * just return values that the watchdog task has already obtained from
5618 * the hardware.
5619 */
5620 stats->multicast = vsi_stats->multicast;
5621 stats->tx_errors = vsi_stats->tx_errors;
5622 stats->tx_dropped = vsi_stats->tx_dropped;
5623 stats->rx_errors = vsi_stats->rx_errors;
5624 stats->rx_dropped = vsi_stats->rx_dropped;
5625 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5626 stats->rx_length_errors = vsi_stats->rx_length_errors;
5627 }
5628
5629 /**
5630 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5631 * @vsi: VSI having NAPI disabled
5632 */
ice_napi_disable_all(struct ice_vsi * vsi)5633 static void ice_napi_disable_all(struct ice_vsi *vsi)
5634 {
5635 int q_idx;
5636
5637 if (!vsi->netdev)
5638 return;
5639
5640 ice_for_each_q_vector(vsi, q_idx) {
5641 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5642
5643 if (q_vector->rx.ring || q_vector->tx.ring)
5644 napi_disable(&q_vector->napi);
5645 }
5646 }
5647
5648 /**
5649 * ice_down - Shutdown the connection
5650 * @vsi: The VSI being stopped
5651 */
ice_down(struct ice_vsi * vsi)5652 int ice_down(struct ice_vsi *vsi)
5653 {
5654 int i, tx_err, rx_err, link_err = 0;
5655
5656 /* Caller of this function is expected to set the
5657 * vsi->state __ICE_DOWN bit
5658 */
5659 if (vsi->netdev) {
5660 netif_carrier_off(vsi->netdev);
5661 netif_tx_disable(vsi->netdev);
5662 }
5663
5664 ice_vsi_dis_irq(vsi);
5665
5666 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5667 if (tx_err)
5668 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5669 vsi->vsi_num, tx_err);
5670 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5671 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5672 if (tx_err)
5673 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5674 vsi->vsi_num, tx_err);
5675 }
5676
5677 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5678 if (rx_err)
5679 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5680 vsi->vsi_num, rx_err);
5681
5682 ice_napi_disable_all(vsi);
5683
5684 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5685 link_err = ice_force_phys_link_state(vsi, false);
5686 if (link_err)
5687 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5688 vsi->vsi_num, link_err);
5689 }
5690
5691 ice_for_each_txq(vsi, i)
5692 ice_clean_tx_ring(vsi->tx_rings[i]);
5693
5694 ice_for_each_rxq(vsi, i)
5695 ice_clean_rx_ring(vsi->rx_rings[i]);
5696
5697 if (tx_err || rx_err || link_err) {
5698 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5699 vsi->vsi_num, vsi->vsw->sw_id);
5700 return -EIO;
5701 }
5702
5703 return 0;
5704 }
5705
5706 /**
5707 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5708 * @vsi: VSI having resources allocated
5709 *
5710 * Return 0 on success, negative on failure
5711 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)5712 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5713 {
5714 int i, err = 0;
5715
5716 if (!vsi->num_txq) {
5717 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5718 vsi->vsi_num);
5719 return -EINVAL;
5720 }
5721
5722 ice_for_each_txq(vsi, i) {
5723 struct ice_ring *ring = vsi->tx_rings[i];
5724
5725 if (!ring)
5726 return -EINVAL;
5727
5728 ring->netdev = vsi->netdev;
5729 err = ice_setup_tx_ring(ring);
5730 if (err)
5731 break;
5732 }
5733
5734 return err;
5735 }
5736
5737 /**
5738 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5739 * @vsi: VSI having resources allocated
5740 *
5741 * Return 0 on success, negative on failure
5742 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)5743 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5744 {
5745 int i, err = 0;
5746
5747 if (!vsi->num_rxq) {
5748 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5749 vsi->vsi_num);
5750 return -EINVAL;
5751 }
5752
5753 ice_for_each_rxq(vsi, i) {
5754 struct ice_ring *ring = vsi->rx_rings[i];
5755
5756 if (!ring)
5757 return -EINVAL;
5758
5759 ring->netdev = vsi->netdev;
5760 err = ice_setup_rx_ring(ring);
5761 if (err)
5762 break;
5763 }
5764
5765 return err;
5766 }
5767
5768 /**
5769 * ice_vsi_open_ctrl - open control VSI for use
5770 * @vsi: the VSI to open
5771 *
5772 * Initialization of the Control VSI
5773 *
5774 * Returns 0 on success, negative value on error
5775 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)5776 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5777 {
5778 char int_name[ICE_INT_NAME_STR_LEN];
5779 struct ice_pf *pf = vsi->back;
5780 struct device *dev;
5781 int err;
5782
5783 dev = ice_pf_to_dev(pf);
5784 /* allocate descriptors */
5785 err = ice_vsi_setup_tx_rings(vsi);
5786 if (err)
5787 goto err_setup_tx;
5788
5789 err = ice_vsi_setup_rx_rings(vsi);
5790 if (err)
5791 goto err_setup_rx;
5792
5793 err = ice_vsi_cfg(vsi);
5794 if (err)
5795 goto err_setup_rx;
5796
5797 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5798 dev_driver_string(dev), dev_name(dev));
5799 err = ice_vsi_req_irq_msix(vsi, int_name);
5800 if (err)
5801 goto err_setup_rx;
5802
5803 ice_vsi_cfg_msix(vsi);
5804
5805 err = ice_vsi_start_all_rx_rings(vsi);
5806 if (err)
5807 goto err_up_complete;
5808
5809 clear_bit(__ICE_DOWN, vsi->state);
5810 ice_vsi_ena_irq(vsi);
5811
5812 return 0;
5813
5814 err_up_complete:
5815 ice_down(vsi);
5816 err_setup_rx:
5817 ice_vsi_free_rx_rings(vsi);
5818 err_setup_tx:
5819 ice_vsi_free_tx_rings(vsi);
5820
5821 return err;
5822 }
5823
5824 /**
5825 * ice_vsi_open - Called when a network interface is made active
5826 * @vsi: the VSI to open
5827 *
5828 * Initialization of the VSI
5829 *
5830 * Returns 0 on success, negative value on error
5831 */
ice_vsi_open(struct ice_vsi * vsi)5832 static int ice_vsi_open(struct ice_vsi *vsi)
5833 {
5834 char int_name[ICE_INT_NAME_STR_LEN];
5835 struct ice_pf *pf = vsi->back;
5836 int err;
5837
5838 /* allocate descriptors */
5839 err = ice_vsi_setup_tx_rings(vsi);
5840 if (err)
5841 goto err_setup_tx;
5842
5843 err = ice_vsi_setup_rx_rings(vsi);
5844 if (err)
5845 goto err_setup_rx;
5846
5847 err = ice_vsi_cfg(vsi);
5848 if (err)
5849 goto err_setup_rx;
5850
5851 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5852 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5853 err = ice_vsi_req_irq_msix(vsi, int_name);
5854 if (err)
5855 goto err_setup_rx;
5856
5857 /* Notify the stack of the actual queue counts. */
5858 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5859 if (err)
5860 goto err_set_qs;
5861
5862 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5863 if (err)
5864 goto err_set_qs;
5865
5866 err = ice_up_complete(vsi);
5867 if (err)
5868 goto err_up_complete;
5869
5870 return 0;
5871
5872 err_up_complete:
5873 ice_down(vsi);
5874 err_set_qs:
5875 ice_vsi_free_irq(vsi);
5876 err_setup_rx:
5877 ice_vsi_free_rx_rings(vsi);
5878 err_setup_tx:
5879 ice_vsi_free_tx_rings(vsi);
5880
5881 return err;
5882 }
5883
5884 /**
5885 * ice_vsi_release_all - Delete all VSIs
5886 * @pf: PF from which all VSIs are being removed
5887 */
ice_vsi_release_all(struct ice_pf * pf)5888 static void ice_vsi_release_all(struct ice_pf *pf)
5889 {
5890 int err, i;
5891
5892 if (!pf->vsi)
5893 return;
5894
5895 ice_for_each_vsi(pf, i) {
5896 if (!pf->vsi[i])
5897 continue;
5898
5899 err = ice_vsi_release(pf->vsi[i]);
5900 if (err)
5901 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5902 i, err, pf->vsi[i]->vsi_num);
5903 }
5904 }
5905
5906 /**
5907 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5908 * @pf: pointer to the PF instance
5909 * @type: VSI type to rebuild
5910 *
5911 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5912 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)5913 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5914 {
5915 struct device *dev = ice_pf_to_dev(pf);
5916 enum ice_status status;
5917 int i, err;
5918
5919 ice_for_each_vsi(pf, i) {
5920 struct ice_vsi *vsi = pf->vsi[i];
5921
5922 if (!vsi || vsi->type != type)
5923 continue;
5924
5925 /* rebuild the VSI */
5926 err = ice_vsi_rebuild(vsi, true);
5927 if (err) {
5928 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5929 err, vsi->idx, ice_vsi_type_str(type));
5930 return err;
5931 }
5932
5933 /* replay filters for the VSI */
5934 status = ice_replay_vsi(&pf->hw, vsi->idx);
5935 if (status) {
5936 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5937 ice_stat_str(status), vsi->idx,
5938 ice_vsi_type_str(type));
5939 return -EIO;
5940 }
5941
5942 /* Re-map HW VSI number, using VSI handle that has been
5943 * previously validated in ice_replay_vsi() call above
5944 */
5945 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5946
5947 /* enable the VSI */
5948 err = ice_ena_vsi(vsi, false);
5949 if (err) {
5950 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5951 err, vsi->idx, ice_vsi_type_str(type));
5952 return err;
5953 }
5954
5955 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5956 ice_vsi_type_str(type));
5957 }
5958
5959 return 0;
5960 }
5961
5962 /**
5963 * ice_update_pf_netdev_link - Update PF netdev link status
5964 * @pf: pointer to the PF instance
5965 */
ice_update_pf_netdev_link(struct ice_pf * pf)5966 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5967 {
5968 bool link_up;
5969 int i;
5970
5971 ice_for_each_vsi(pf, i) {
5972 struct ice_vsi *vsi = pf->vsi[i];
5973
5974 if (!vsi || vsi->type != ICE_VSI_PF)
5975 return;
5976
5977 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5978 if (link_up) {
5979 netif_carrier_on(pf->vsi[i]->netdev);
5980 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5981 } else {
5982 netif_carrier_off(pf->vsi[i]->netdev);
5983 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5984 }
5985 }
5986 }
5987
5988 /**
5989 * ice_rebuild - rebuild after reset
5990 * @pf: PF to rebuild
5991 * @reset_type: type of reset
5992 *
5993 * Do not rebuild VF VSI in this flow because that is already handled via
5994 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5995 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5996 * to reset/rebuild all the VF VSI twice.
5997 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)5998 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5999 {
6000 struct device *dev = ice_pf_to_dev(pf);
6001 struct ice_hw *hw = &pf->hw;
6002 enum ice_status ret;
6003 int err;
6004
6005 if (test_bit(__ICE_DOWN, pf->state))
6006 goto clear_recovery;
6007
6008 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6009
6010 ret = ice_init_all_ctrlq(hw);
6011 if (ret) {
6012 dev_err(dev, "control queues init failed %s\n",
6013 ice_stat_str(ret));
6014 goto err_init_ctrlq;
6015 }
6016
6017 /* if DDP was previously loaded successfully */
6018 if (!ice_is_safe_mode(pf)) {
6019 /* reload the SW DB of filter tables */
6020 if (reset_type == ICE_RESET_PFR)
6021 ice_fill_blk_tbls(hw);
6022 else
6023 /* Reload DDP Package after CORER/GLOBR reset */
6024 ice_load_pkg(NULL, pf);
6025 }
6026
6027 ret = ice_clear_pf_cfg(hw);
6028 if (ret) {
6029 dev_err(dev, "clear PF configuration failed %s\n",
6030 ice_stat_str(ret));
6031 goto err_init_ctrlq;
6032 }
6033
6034 if (pf->first_sw->dflt_vsi_ena)
6035 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6036 /* clear the default VSI configuration if it exists */
6037 pf->first_sw->dflt_vsi = NULL;
6038 pf->first_sw->dflt_vsi_ena = false;
6039
6040 ice_clear_pxe_mode(hw);
6041
6042 ret = ice_get_caps(hw);
6043 if (ret) {
6044 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6045 goto err_init_ctrlq;
6046 }
6047
6048 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6049 if (ret) {
6050 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6051 goto err_init_ctrlq;
6052 }
6053
6054 err = ice_sched_init_port(hw->port_info);
6055 if (err)
6056 goto err_sched_init_port;
6057
6058 /* start misc vector */
6059 err = ice_req_irq_msix_misc(pf);
6060 if (err) {
6061 dev_err(dev, "misc vector setup failed: %d\n", err);
6062 goto err_sched_init_port;
6063 }
6064
6065 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6066 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6067 if (!rd32(hw, PFQF_FD_SIZE)) {
6068 u16 unused, guar, b_effort;
6069
6070 guar = hw->func_caps.fd_fltr_guar;
6071 b_effort = hw->func_caps.fd_fltr_best_effort;
6072
6073 /* force guaranteed filter pool for PF */
6074 ice_alloc_fd_guar_item(hw, &unused, guar);
6075 /* force shared filter pool for PF */
6076 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6077 }
6078 }
6079
6080 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6081 ice_dcb_rebuild(pf);
6082
6083 /* rebuild PF VSI */
6084 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6085 if (err) {
6086 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6087 goto err_vsi_rebuild;
6088 }
6089
6090 /* If Flow Director is active */
6091 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6092 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6093 if (err) {
6094 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6095 goto err_vsi_rebuild;
6096 }
6097
6098 /* replay HW Flow Director recipes */
6099 if (hw->fdir_prof)
6100 ice_fdir_replay_flows(hw);
6101
6102 /* replay Flow Director filters */
6103 ice_fdir_replay_fltrs(pf);
6104
6105 ice_rebuild_arfs(pf);
6106 }
6107
6108 ice_update_pf_netdev_link(pf);
6109
6110 /* tell the firmware we are up */
6111 ret = ice_send_version(pf);
6112 if (ret) {
6113 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6114 ice_stat_str(ret));
6115 goto err_vsi_rebuild;
6116 }
6117
6118 ice_replay_post(hw);
6119
6120 /* if we get here, reset flow is successful */
6121 clear_bit(__ICE_RESET_FAILED, pf->state);
6122 return;
6123
6124 err_vsi_rebuild:
6125 err_sched_init_port:
6126 ice_sched_cleanup_all(hw);
6127 err_init_ctrlq:
6128 ice_shutdown_all_ctrlq(hw);
6129 set_bit(__ICE_RESET_FAILED, pf->state);
6130 clear_recovery:
6131 /* set this bit in PF state to control service task scheduling */
6132 set_bit(__ICE_NEEDS_RESTART, pf->state);
6133 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6134 }
6135
6136 /**
6137 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6138 * @vsi: Pointer to VSI structure
6139 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)6140 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6141 {
6142 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6143 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6144 else
6145 return ICE_RXBUF_3072;
6146 }
6147
6148 /**
6149 * ice_change_mtu - NDO callback to change the MTU
6150 * @netdev: network interface device structure
6151 * @new_mtu: new value for maximum frame size
6152 *
6153 * Returns 0 on success, negative on failure
6154 */
ice_change_mtu(struct net_device * netdev,int new_mtu)6155 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6156 {
6157 struct ice_netdev_priv *np = netdev_priv(netdev);
6158 struct ice_vsi *vsi = np->vsi;
6159 struct ice_pf *pf = vsi->back;
6160 u8 count = 0;
6161
6162 if (new_mtu == (int)netdev->mtu) {
6163 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6164 return 0;
6165 }
6166
6167 if (ice_is_xdp_ena_vsi(vsi)) {
6168 int frame_size = ice_max_xdp_frame_size(vsi);
6169
6170 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6171 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6172 frame_size - ICE_ETH_PKT_HDR_PAD);
6173 return -EINVAL;
6174 }
6175 }
6176
6177 if (new_mtu < (int)netdev->min_mtu) {
6178 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6179 netdev->min_mtu);
6180 return -EINVAL;
6181 } else if (new_mtu > (int)netdev->max_mtu) {
6182 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6183 netdev->min_mtu);
6184 return -EINVAL;
6185 }
6186 /* if a reset is in progress, wait for some time for it to complete */
6187 do {
6188 if (ice_is_reset_in_progress(pf->state)) {
6189 count++;
6190 usleep_range(1000, 2000);
6191 } else {
6192 break;
6193 }
6194
6195 } while (count < 100);
6196
6197 if (count == 100) {
6198 netdev_err(netdev, "can't change MTU. Device is busy\n");
6199 return -EBUSY;
6200 }
6201
6202 netdev->mtu = (unsigned int)new_mtu;
6203
6204 /* if VSI is up, bring it down and then back up */
6205 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6206 int err;
6207
6208 err = ice_down(vsi);
6209 if (err) {
6210 netdev_err(netdev, "change MTU if_up err %d\n", err);
6211 return err;
6212 }
6213
6214 err = ice_up(vsi);
6215 if (err) {
6216 netdev_err(netdev, "change MTU if_up err %d\n", err);
6217 return err;
6218 }
6219 }
6220
6221 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6222 return 0;
6223 }
6224
6225 /**
6226 * ice_aq_str - convert AQ err code to a string
6227 * @aq_err: the AQ error code to convert
6228 */
ice_aq_str(enum ice_aq_err aq_err)6229 const char *ice_aq_str(enum ice_aq_err aq_err)
6230 {
6231 switch (aq_err) {
6232 case ICE_AQ_RC_OK:
6233 return "OK";
6234 case ICE_AQ_RC_EPERM:
6235 return "ICE_AQ_RC_EPERM";
6236 case ICE_AQ_RC_ENOENT:
6237 return "ICE_AQ_RC_ENOENT";
6238 case ICE_AQ_RC_ENOMEM:
6239 return "ICE_AQ_RC_ENOMEM";
6240 case ICE_AQ_RC_EBUSY:
6241 return "ICE_AQ_RC_EBUSY";
6242 case ICE_AQ_RC_EEXIST:
6243 return "ICE_AQ_RC_EEXIST";
6244 case ICE_AQ_RC_EINVAL:
6245 return "ICE_AQ_RC_EINVAL";
6246 case ICE_AQ_RC_ENOSPC:
6247 return "ICE_AQ_RC_ENOSPC";
6248 case ICE_AQ_RC_ENOSYS:
6249 return "ICE_AQ_RC_ENOSYS";
6250 case ICE_AQ_RC_EMODE:
6251 return "ICE_AQ_RC_EMODE";
6252 case ICE_AQ_RC_ENOSEC:
6253 return "ICE_AQ_RC_ENOSEC";
6254 case ICE_AQ_RC_EBADSIG:
6255 return "ICE_AQ_RC_EBADSIG";
6256 case ICE_AQ_RC_ESVN:
6257 return "ICE_AQ_RC_ESVN";
6258 case ICE_AQ_RC_EBADMAN:
6259 return "ICE_AQ_RC_EBADMAN";
6260 case ICE_AQ_RC_EBADBUF:
6261 return "ICE_AQ_RC_EBADBUF";
6262 }
6263
6264 return "ICE_AQ_RC_UNKNOWN";
6265 }
6266
6267 /**
6268 * ice_stat_str - convert status err code to a string
6269 * @stat_err: the status error code to convert
6270 */
ice_stat_str(enum ice_status stat_err)6271 const char *ice_stat_str(enum ice_status stat_err)
6272 {
6273 switch (stat_err) {
6274 case ICE_SUCCESS:
6275 return "OK";
6276 case ICE_ERR_PARAM:
6277 return "ICE_ERR_PARAM";
6278 case ICE_ERR_NOT_IMPL:
6279 return "ICE_ERR_NOT_IMPL";
6280 case ICE_ERR_NOT_READY:
6281 return "ICE_ERR_NOT_READY";
6282 case ICE_ERR_NOT_SUPPORTED:
6283 return "ICE_ERR_NOT_SUPPORTED";
6284 case ICE_ERR_BAD_PTR:
6285 return "ICE_ERR_BAD_PTR";
6286 case ICE_ERR_INVAL_SIZE:
6287 return "ICE_ERR_INVAL_SIZE";
6288 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6289 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6290 case ICE_ERR_RESET_FAILED:
6291 return "ICE_ERR_RESET_FAILED";
6292 case ICE_ERR_FW_API_VER:
6293 return "ICE_ERR_FW_API_VER";
6294 case ICE_ERR_NO_MEMORY:
6295 return "ICE_ERR_NO_MEMORY";
6296 case ICE_ERR_CFG:
6297 return "ICE_ERR_CFG";
6298 case ICE_ERR_OUT_OF_RANGE:
6299 return "ICE_ERR_OUT_OF_RANGE";
6300 case ICE_ERR_ALREADY_EXISTS:
6301 return "ICE_ERR_ALREADY_EXISTS";
6302 case ICE_ERR_NVM_CHECKSUM:
6303 return "ICE_ERR_NVM_CHECKSUM";
6304 case ICE_ERR_BUF_TOO_SHORT:
6305 return "ICE_ERR_BUF_TOO_SHORT";
6306 case ICE_ERR_NVM_BLANK_MODE:
6307 return "ICE_ERR_NVM_BLANK_MODE";
6308 case ICE_ERR_IN_USE:
6309 return "ICE_ERR_IN_USE";
6310 case ICE_ERR_MAX_LIMIT:
6311 return "ICE_ERR_MAX_LIMIT";
6312 case ICE_ERR_RESET_ONGOING:
6313 return "ICE_ERR_RESET_ONGOING";
6314 case ICE_ERR_HW_TABLE:
6315 return "ICE_ERR_HW_TABLE";
6316 case ICE_ERR_DOES_NOT_EXIST:
6317 return "ICE_ERR_DOES_NOT_EXIST";
6318 case ICE_ERR_FW_DDP_MISMATCH:
6319 return "ICE_ERR_FW_DDP_MISMATCH";
6320 case ICE_ERR_AQ_ERROR:
6321 return "ICE_ERR_AQ_ERROR";
6322 case ICE_ERR_AQ_TIMEOUT:
6323 return "ICE_ERR_AQ_TIMEOUT";
6324 case ICE_ERR_AQ_FULL:
6325 return "ICE_ERR_AQ_FULL";
6326 case ICE_ERR_AQ_NO_WORK:
6327 return "ICE_ERR_AQ_NO_WORK";
6328 case ICE_ERR_AQ_EMPTY:
6329 return "ICE_ERR_AQ_EMPTY";
6330 case ICE_ERR_AQ_FW_CRITICAL:
6331 return "ICE_ERR_AQ_FW_CRITICAL";
6332 }
6333
6334 return "ICE_ERR_UNKNOWN";
6335 }
6336
6337 /**
6338 * ice_set_rss - Set RSS keys and lut
6339 * @vsi: Pointer to VSI structure
6340 * @seed: RSS hash seed
6341 * @lut: Lookup table
6342 * @lut_size: Lookup table size
6343 *
6344 * Returns 0 on success, negative on failure
6345 */
ice_set_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6346 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6347 {
6348 struct ice_pf *pf = vsi->back;
6349 struct ice_hw *hw = &pf->hw;
6350 enum ice_status status;
6351 struct device *dev;
6352
6353 dev = ice_pf_to_dev(pf);
6354 if (seed) {
6355 struct ice_aqc_get_set_rss_keys *buf =
6356 (struct ice_aqc_get_set_rss_keys *)seed;
6357
6358 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6359
6360 if (status) {
6361 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6362 ice_stat_str(status),
6363 ice_aq_str(hw->adminq.sq_last_status));
6364 return -EIO;
6365 }
6366 }
6367
6368 if (lut) {
6369 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6370 lut, lut_size);
6371 if (status) {
6372 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6373 ice_stat_str(status),
6374 ice_aq_str(hw->adminq.sq_last_status));
6375 return -EIO;
6376 }
6377 }
6378
6379 return 0;
6380 }
6381
6382 /**
6383 * ice_get_rss - Get RSS keys and lut
6384 * @vsi: Pointer to VSI structure
6385 * @seed: Buffer to store the keys
6386 * @lut: Buffer to store the lookup table entries
6387 * @lut_size: Size of buffer to store the lookup table entries
6388 *
6389 * Returns 0 on success, negative on failure
6390 */
ice_get_rss(struct ice_vsi * vsi,u8 * seed,u8 * lut,u16 lut_size)6391 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6392 {
6393 struct ice_pf *pf = vsi->back;
6394 struct ice_hw *hw = &pf->hw;
6395 enum ice_status status;
6396 struct device *dev;
6397
6398 dev = ice_pf_to_dev(pf);
6399 if (seed) {
6400 struct ice_aqc_get_set_rss_keys *buf =
6401 (struct ice_aqc_get_set_rss_keys *)seed;
6402
6403 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6404 if (status) {
6405 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6406 ice_stat_str(status),
6407 ice_aq_str(hw->adminq.sq_last_status));
6408 return -EIO;
6409 }
6410 }
6411
6412 if (lut) {
6413 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6414 lut, lut_size);
6415 if (status) {
6416 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6417 ice_stat_str(status),
6418 ice_aq_str(hw->adminq.sq_last_status));
6419 return -EIO;
6420 }
6421 }
6422
6423 return 0;
6424 }
6425
6426 /**
6427 * ice_bridge_getlink - Get the hardware bridge mode
6428 * @skb: skb buff
6429 * @pid: process ID
6430 * @seq: RTNL message seq
6431 * @dev: the netdev being configured
6432 * @filter_mask: filter mask passed in
6433 * @nlflags: netlink flags passed in
6434 *
6435 * Return the bridge mode (VEB/VEPA)
6436 */
6437 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)6438 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6439 struct net_device *dev, u32 filter_mask, int nlflags)
6440 {
6441 struct ice_netdev_priv *np = netdev_priv(dev);
6442 struct ice_vsi *vsi = np->vsi;
6443 struct ice_pf *pf = vsi->back;
6444 u16 bmode;
6445
6446 bmode = pf->first_sw->bridge_mode;
6447
6448 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6449 filter_mask, NULL);
6450 }
6451
6452 /**
6453 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6454 * @vsi: Pointer to VSI structure
6455 * @bmode: Hardware bridge mode (VEB/VEPA)
6456 *
6457 * Returns 0 on success, negative on failure
6458 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)6459 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6460 {
6461 struct ice_aqc_vsi_props *vsi_props;
6462 struct ice_hw *hw = &vsi->back->hw;
6463 struct ice_vsi_ctx *ctxt;
6464 enum ice_status status;
6465 int ret = 0;
6466
6467 vsi_props = &vsi->info;
6468
6469 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6470 if (!ctxt)
6471 return -ENOMEM;
6472
6473 ctxt->info = vsi->info;
6474
6475 if (bmode == BRIDGE_MODE_VEB)
6476 /* change from VEPA to VEB mode */
6477 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6478 else
6479 /* change from VEB to VEPA mode */
6480 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6481 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6482
6483 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6484 if (status) {
6485 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6486 bmode, ice_stat_str(status),
6487 ice_aq_str(hw->adminq.sq_last_status));
6488 ret = -EIO;
6489 goto out;
6490 }
6491 /* Update sw flags for book keeping */
6492 vsi_props->sw_flags = ctxt->info.sw_flags;
6493
6494 out:
6495 kfree(ctxt);
6496 return ret;
6497 }
6498
6499 /**
6500 * ice_bridge_setlink - Set the hardware bridge mode
6501 * @dev: the netdev being configured
6502 * @nlh: RTNL message
6503 * @flags: bridge setlink flags
6504 * @extack: netlink extended ack
6505 *
6506 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6507 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6508 * not already set for all VSIs connected to this switch. And also update the
6509 * unicast switch filter rules for the corresponding switch of the netdev.
6510 */
6511 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)6512 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6513 u16 __always_unused flags,
6514 struct netlink_ext_ack __always_unused *extack)
6515 {
6516 struct ice_netdev_priv *np = netdev_priv(dev);
6517 struct ice_pf *pf = np->vsi->back;
6518 struct nlattr *attr, *br_spec;
6519 struct ice_hw *hw = &pf->hw;
6520 enum ice_status status;
6521 struct ice_sw *pf_sw;
6522 int rem, v, err = 0;
6523
6524 pf_sw = pf->first_sw;
6525 /* find the attribute in the netlink message */
6526 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6527
6528 nla_for_each_nested(attr, br_spec, rem) {
6529 __u16 mode;
6530
6531 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6532 continue;
6533 mode = nla_get_u16(attr);
6534 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6535 return -EINVAL;
6536 /* Continue if bridge mode is not being flipped */
6537 if (mode == pf_sw->bridge_mode)
6538 continue;
6539 /* Iterates through the PF VSI list and update the loopback
6540 * mode of the VSI
6541 */
6542 ice_for_each_vsi(pf, v) {
6543 if (!pf->vsi[v])
6544 continue;
6545 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6546 if (err)
6547 return err;
6548 }
6549
6550 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6551 /* Update the unicast switch filter rules for the corresponding
6552 * switch of the netdev
6553 */
6554 status = ice_update_sw_rule_bridge_mode(hw);
6555 if (status) {
6556 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6557 mode, ice_stat_str(status),
6558 ice_aq_str(hw->adminq.sq_last_status));
6559 /* revert hw->evb_veb */
6560 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6561 return -EIO;
6562 }
6563
6564 pf_sw->bridge_mode = mode;
6565 }
6566
6567 return 0;
6568 }
6569
6570 /**
6571 * ice_tx_timeout - Respond to a Tx Hang
6572 * @netdev: network interface device structure
6573 * @txqueue: Tx queue
6574 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)6575 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6576 {
6577 struct ice_netdev_priv *np = netdev_priv(netdev);
6578 struct ice_ring *tx_ring = NULL;
6579 struct ice_vsi *vsi = np->vsi;
6580 struct ice_pf *pf = vsi->back;
6581 u32 i;
6582
6583 pf->tx_timeout_count++;
6584
6585 /* Check if PFC is enabled for the TC to which the queue belongs
6586 * to. If yes then Tx timeout is not caused by a hung queue, no
6587 * need to reset and rebuild
6588 */
6589 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6590 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6591 txqueue);
6592 return;
6593 }
6594
6595 /* now that we have an index, find the tx_ring struct */
6596 for (i = 0; i < vsi->num_txq; i++)
6597 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6598 if (txqueue == vsi->tx_rings[i]->q_index) {
6599 tx_ring = vsi->tx_rings[i];
6600 break;
6601 }
6602
6603 /* Reset recovery level if enough time has elapsed after last timeout.
6604 * Also ensure no new reset action happens before next timeout period.
6605 */
6606 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6607 pf->tx_timeout_recovery_level = 1;
6608 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6609 netdev->watchdog_timeo)))
6610 return;
6611
6612 if (tx_ring) {
6613 struct ice_hw *hw = &pf->hw;
6614 u32 head, val = 0;
6615
6616 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6617 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6618 /* Read interrupt register */
6619 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6620
6621 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6622 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6623 head, tx_ring->next_to_use, val);
6624 }
6625
6626 pf->tx_timeout_last_recovery = jiffies;
6627 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6628 pf->tx_timeout_recovery_level, txqueue);
6629
6630 switch (pf->tx_timeout_recovery_level) {
6631 case 1:
6632 set_bit(__ICE_PFR_REQ, pf->state);
6633 break;
6634 case 2:
6635 set_bit(__ICE_CORER_REQ, pf->state);
6636 break;
6637 case 3:
6638 set_bit(__ICE_GLOBR_REQ, pf->state);
6639 break;
6640 default:
6641 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6642 set_bit(__ICE_DOWN, pf->state);
6643 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6644 set_bit(__ICE_SERVICE_DIS, pf->state);
6645 break;
6646 }
6647
6648 ice_service_task_schedule(pf);
6649 pf->tx_timeout_recovery_level++;
6650 }
6651
6652 /**
6653 * ice_open - Called when a network interface becomes active
6654 * @netdev: network interface device structure
6655 *
6656 * The open entry point is called when a network interface is made
6657 * active by the system (IFF_UP). At this point all resources needed
6658 * for transmit and receive operations are allocated, the interrupt
6659 * handler is registered with the OS, the netdev watchdog is enabled,
6660 * and the stack is notified that the interface is ready.
6661 *
6662 * Returns 0 on success, negative value on failure
6663 */
ice_open(struct net_device * netdev)6664 int ice_open(struct net_device *netdev)
6665 {
6666 struct ice_netdev_priv *np = netdev_priv(netdev);
6667 struct ice_pf *pf = np->vsi->back;
6668
6669 if (ice_is_reset_in_progress(pf->state)) {
6670 netdev_err(netdev, "can't open net device while reset is in progress");
6671 return -EBUSY;
6672 }
6673
6674 return ice_open_internal(netdev);
6675 }
6676
6677 /**
6678 * ice_open_internal - Called when a network interface becomes active
6679 * @netdev: network interface device structure
6680 *
6681 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
6682 * handling routine
6683 *
6684 * Returns 0 on success, negative value on failure
6685 */
ice_open_internal(struct net_device * netdev)6686 int ice_open_internal(struct net_device *netdev)
6687 {
6688 struct ice_netdev_priv *np = netdev_priv(netdev);
6689 struct ice_vsi *vsi = np->vsi;
6690 struct ice_pf *pf = vsi->back;
6691 struct ice_port_info *pi;
6692 int err;
6693
6694 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6695 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6696 return -EIO;
6697 }
6698
6699 if (test_bit(__ICE_DOWN, pf->state)) {
6700 netdev_err(netdev, "device is not ready yet\n");
6701 return -EBUSY;
6702 }
6703
6704 netif_carrier_off(netdev);
6705
6706 pi = vsi->port_info;
6707 err = ice_update_link_info(pi);
6708 if (err) {
6709 netdev_err(netdev, "Failed to get link info, error %d\n",
6710 err);
6711 return err;
6712 }
6713
6714 /* Set PHY if there is media, otherwise, turn off PHY */
6715 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6716 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6717 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6718 err = ice_init_phy_user_cfg(pi);
6719 if (err) {
6720 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6721 err);
6722 return err;
6723 }
6724 }
6725
6726 err = ice_configure_phy(vsi);
6727 if (err) {
6728 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6729 err);
6730 return err;
6731 }
6732 } else {
6733 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6734 err = ice_aq_set_link_restart_an(pi, false, NULL);
6735 if (err) {
6736 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6737 vsi->vsi_num, err);
6738 return err;
6739 }
6740 }
6741
6742 err = ice_vsi_open(vsi);
6743 if (err)
6744 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6745 vsi->vsi_num, vsi->vsw->sw_id);
6746
6747 /* Update existing tunnels information */
6748 udp_tunnel_get_rx_info(netdev);
6749
6750 return err;
6751 }
6752
6753 /**
6754 * ice_stop - Disables a network interface
6755 * @netdev: network interface device structure
6756 *
6757 * The stop entry point is called when an interface is de-activated by the OS,
6758 * and the netdevice enters the DOWN state. The hardware is still under the
6759 * driver's control, but the netdev interface is disabled.
6760 *
6761 * Returns success only - not allowed to fail
6762 */
ice_stop(struct net_device * netdev)6763 int ice_stop(struct net_device *netdev)
6764 {
6765 struct ice_netdev_priv *np = netdev_priv(netdev);
6766 struct ice_vsi *vsi = np->vsi;
6767 struct ice_pf *pf = vsi->back;
6768
6769 if (ice_is_reset_in_progress(pf->state)) {
6770 netdev_err(netdev, "can't stop net device while reset is in progress");
6771 return -EBUSY;
6772 }
6773
6774 ice_vsi_close(vsi);
6775
6776 return 0;
6777 }
6778
6779 /**
6780 * ice_features_check - Validate encapsulated packet conforms to limits
6781 * @skb: skb buffer
6782 * @netdev: This port's netdev
6783 * @features: Offload features that the stack believes apply
6784 */
6785 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)6786 ice_features_check(struct sk_buff *skb,
6787 struct net_device __always_unused *netdev,
6788 netdev_features_t features)
6789 {
6790 size_t len;
6791
6792 /* No point in doing any of this if neither checksum nor GSO are
6793 * being requested for this frame. We can rule out both by just
6794 * checking for CHECKSUM_PARTIAL
6795 */
6796 if (skb->ip_summed != CHECKSUM_PARTIAL)
6797 return features;
6798
6799 /* We cannot support GSO if the MSS is going to be less than
6800 * 64 bytes. If it is then we need to drop support for GSO.
6801 */
6802 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6803 features &= ~NETIF_F_GSO_MASK;
6804
6805 len = skb_network_header(skb) - skb->data;
6806 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6807 goto out_rm_features;
6808
6809 len = skb_transport_header(skb) - skb_network_header(skb);
6810 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6811 goto out_rm_features;
6812
6813 if (skb->encapsulation) {
6814 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6815 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6816 goto out_rm_features;
6817
6818 len = skb_inner_transport_header(skb) -
6819 skb_inner_network_header(skb);
6820 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6821 goto out_rm_features;
6822 }
6823
6824 return features;
6825 out_rm_features:
6826 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6827 }
6828
6829 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6830 .ndo_open = ice_open,
6831 .ndo_stop = ice_stop,
6832 .ndo_start_xmit = ice_start_xmit,
6833 .ndo_set_mac_address = ice_set_mac_address,
6834 .ndo_validate_addr = eth_validate_addr,
6835 .ndo_change_mtu = ice_change_mtu,
6836 .ndo_get_stats64 = ice_get_stats64,
6837 .ndo_tx_timeout = ice_tx_timeout,
6838 .ndo_bpf = ice_xdp_safe_mode,
6839 };
6840
6841 static const struct net_device_ops ice_netdev_ops = {
6842 .ndo_open = ice_open,
6843 .ndo_stop = ice_stop,
6844 .ndo_start_xmit = ice_start_xmit,
6845 .ndo_features_check = ice_features_check,
6846 .ndo_set_rx_mode = ice_set_rx_mode,
6847 .ndo_set_mac_address = ice_set_mac_address,
6848 .ndo_validate_addr = eth_validate_addr,
6849 .ndo_change_mtu = ice_change_mtu,
6850 .ndo_get_stats64 = ice_get_stats64,
6851 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6852 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6853 .ndo_set_vf_mac = ice_set_vf_mac,
6854 .ndo_get_vf_config = ice_get_vf_cfg,
6855 .ndo_set_vf_trust = ice_set_vf_trust,
6856 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6857 .ndo_set_vf_link_state = ice_set_vf_link_state,
6858 .ndo_get_vf_stats = ice_get_vf_stats,
6859 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6860 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6861 .ndo_set_features = ice_set_features,
6862 .ndo_bridge_getlink = ice_bridge_getlink,
6863 .ndo_bridge_setlink = ice_bridge_setlink,
6864 .ndo_fdb_add = ice_fdb_add,
6865 .ndo_fdb_del = ice_fdb_del,
6866 #ifdef CONFIG_RFS_ACCEL
6867 .ndo_rx_flow_steer = ice_rx_flow_steer,
6868 #endif
6869 .ndo_tx_timeout = ice_tx_timeout,
6870 .ndo_bpf = ice_xdp,
6871 .ndo_xdp_xmit = ice_xdp_xmit,
6872 .ndo_xsk_wakeup = ice_xsk_wakeup,
6873 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6874 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6875 };
6876