1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_fltr.h"
8
9 /**
10 * ice_validate_vf_id - helper to check if VF ID is valid
11 * @pf: pointer to the PF structure
12 * @vf_id: the ID of the VF to check
13 */
ice_validate_vf_id(struct ice_pf * pf,u16 vf_id)14 static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id)
15 {
16 /* vf_id range is only valid for 0-255, and should always be unsigned */
17 if (vf_id >= pf->num_alloc_vfs) {
18 dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id);
19 return -EINVAL;
20 }
21 return 0;
22 }
23
24 /**
25 * ice_check_vf_init - helper to check if VF init complete
26 * @pf: pointer to the PF structure
27 * @vf: the pointer to the VF to check
28 */
ice_check_vf_init(struct ice_pf * pf,struct ice_vf * vf)29 static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
30 {
31 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
32 dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
33 vf->vf_id);
34 return -EBUSY;
35 }
36 return 0;
37 }
38
39 /**
40 * ice_err_to_virt_err - translate errors for VF return code
41 * @ice_err: error return code
42 */
ice_err_to_virt_err(enum ice_status ice_err)43 static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
44 {
45 switch (ice_err) {
46 case ICE_SUCCESS:
47 return VIRTCHNL_STATUS_SUCCESS;
48 case ICE_ERR_BAD_PTR:
49 case ICE_ERR_INVAL_SIZE:
50 case ICE_ERR_DEVICE_NOT_SUPPORTED:
51 case ICE_ERR_PARAM:
52 case ICE_ERR_CFG:
53 return VIRTCHNL_STATUS_ERR_PARAM;
54 case ICE_ERR_NO_MEMORY:
55 return VIRTCHNL_STATUS_ERR_NO_MEMORY;
56 case ICE_ERR_NOT_READY:
57 case ICE_ERR_RESET_FAILED:
58 case ICE_ERR_FW_API_VER:
59 case ICE_ERR_AQ_ERROR:
60 case ICE_ERR_AQ_TIMEOUT:
61 case ICE_ERR_AQ_FULL:
62 case ICE_ERR_AQ_NO_WORK:
63 case ICE_ERR_AQ_EMPTY:
64 return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
65 default:
66 return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
67 }
68 }
69
70 /**
71 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
72 * @pf: pointer to the PF structure
73 * @v_opcode: operation code
74 * @v_retval: return value
75 * @msg: pointer to the msg buffer
76 * @msglen: msg length
77 */
78 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)79 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
80 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
81 {
82 struct ice_hw *hw = &pf->hw;
83 unsigned int i;
84
85 ice_for_each_vf(pf, i) {
86 struct ice_vf *vf = &pf->vf[i];
87
88 /* Not all vfs are enabled so skip the ones that are not */
89 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
90 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
91 continue;
92
93 /* Ignore return value on purpose - a given VF may fail, but
94 * we need to keep going and send to all of them
95 */
96 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
97 msglen, NULL);
98 }
99 }
100
101 /**
102 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
103 * @vf: pointer to the VF structure
104 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
105 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
106 * @link_up: whether or not to set the link up/down
107 */
108 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)109 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
110 int ice_link_speed, bool link_up)
111 {
112 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
113 pfe->event_data.link_event_adv.link_status = link_up;
114 /* Speed in Mbps */
115 pfe->event_data.link_event_adv.link_speed =
116 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
117 } else {
118 pfe->event_data.link_event.link_status = link_up;
119 /* Legacy method for virtchnl link speeds */
120 pfe->event_data.link_event.link_speed =
121 (enum virtchnl_link_speed)
122 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
123 }
124 }
125
126 /**
127 * ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
128 * @vf: the VF to check
129 *
130 * Returns true if the VF has no Rx and no Tx queues enabled and returns false
131 * otherwise
132 */
ice_vf_has_no_qs_ena(struct ice_vf * vf)133 static bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
134 {
135 return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
136 !bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
137 }
138
139 /**
140 * ice_is_vf_link_up - check if the VF's link is up
141 * @vf: VF to check if link is up
142 */
ice_is_vf_link_up(struct ice_vf * vf)143 static bool ice_is_vf_link_up(struct ice_vf *vf)
144 {
145 struct ice_pf *pf = vf->pf;
146
147 if (ice_check_vf_init(pf, vf))
148 return false;
149
150 if (ice_vf_has_no_qs_ena(vf))
151 return false;
152 else if (vf->link_forced)
153 return vf->link_up;
154 else
155 return pf->hw.port_info->phy.link_info.link_info &
156 ICE_AQ_LINK_UP;
157 }
158
159 /**
160 * ice_vc_notify_vf_link_state - Inform a VF of link status
161 * @vf: pointer to the VF structure
162 *
163 * send a link status message to a single VF
164 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)165 static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
166 {
167 struct virtchnl_pf_event pfe = { 0 };
168 struct ice_hw *hw = &vf->pf->hw;
169
170 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
171 pfe.severity = PF_EVENT_SEVERITY_INFO;
172
173 if (ice_is_vf_link_up(vf))
174 ice_set_pfe_link(vf, &pfe,
175 hw->port_info->phy.link_info.link_speed, true);
176 else
177 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
178
179 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
180 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
181 sizeof(pfe), NULL);
182 }
183
184 /**
185 * ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
186 * @vf: VF to remove access to VSI for
187 */
ice_vf_invalidate_vsi(struct ice_vf * vf)188 static void ice_vf_invalidate_vsi(struct ice_vf *vf)
189 {
190 vf->lan_vsi_idx = ICE_NO_VSI;
191 vf->lan_vsi_num = ICE_NO_VSI;
192 }
193
194 /**
195 * ice_vf_vsi_release - invalidate the VF's VSI after freeing it
196 * @vf: invalidate this VF's VSI after freeing it
197 */
ice_vf_vsi_release(struct ice_vf * vf)198 static void ice_vf_vsi_release(struct ice_vf *vf)
199 {
200 ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]);
201 ice_vf_invalidate_vsi(vf);
202 }
203
204 /**
205 * ice_free_vf_res - Free a VF's resources
206 * @vf: pointer to the VF info
207 */
ice_free_vf_res(struct ice_vf * vf)208 static void ice_free_vf_res(struct ice_vf *vf)
209 {
210 struct ice_pf *pf = vf->pf;
211 int i, last_vector_idx;
212
213 /* First, disable VF's configuration API to prevent OS from
214 * accessing the VF's VSI after it's freed or invalidated.
215 */
216 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
217
218 /* free VSI and disconnect it from the parent uplink */
219 if (vf->lan_vsi_idx != ICE_NO_VSI) {
220 ice_vf_vsi_release(vf);
221 vf->num_mac = 0;
222 }
223
224 last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1;
225
226 /* clear VF MDD event information */
227 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
228 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
229
230 /* Disable interrupts so that VF starts in a known state */
231 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
232 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
233 ice_flush(&pf->hw);
234 }
235 /* reset some of the state variables keeping track of the resources */
236 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
237 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
238 }
239
240 /**
241 * ice_dis_vf_mappings
242 * @vf: pointer to the VF structure
243 */
ice_dis_vf_mappings(struct ice_vf * vf)244 static void ice_dis_vf_mappings(struct ice_vf *vf)
245 {
246 struct ice_pf *pf = vf->pf;
247 struct ice_vsi *vsi;
248 struct device *dev;
249 int first, last, v;
250 struct ice_hw *hw;
251
252 hw = &pf->hw;
253 vsi = pf->vsi[vf->lan_vsi_idx];
254
255 dev = ice_pf_to_dev(pf);
256 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
257 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
258
259 first = vf->first_vector_idx;
260 last = first + pf->num_msix_per_vf - 1;
261 for (v = first; v <= last; v++) {
262 u32 reg;
263
264 reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
265 GLINT_VECT2FUNC_IS_PF_M) |
266 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
267 GLINT_VECT2FUNC_PF_NUM_M));
268 wr32(hw, GLINT_VECT2FUNC(v), reg);
269 }
270
271 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
272 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
273 else
274 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
275
276 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
277 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
278 else
279 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
280 }
281
282 /**
283 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
284 * @pf: pointer to the PF structure
285 *
286 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
287 * the pf->sriov_base_vector.
288 *
289 * Returns 0 on success, and -EINVAL on error.
290 */
ice_sriov_free_msix_res(struct ice_pf * pf)291 static int ice_sriov_free_msix_res(struct ice_pf *pf)
292 {
293 struct ice_res_tracker *res;
294
295 if (!pf)
296 return -EINVAL;
297
298 res = pf->irq_tracker;
299 if (!res)
300 return -EINVAL;
301
302 /* give back irq_tracker resources used */
303 WARN_ON(pf->sriov_base_vector < res->num_entries);
304
305 pf->sriov_base_vector = 0;
306
307 return 0;
308 }
309
310 /**
311 * ice_set_vf_state_qs_dis - Set VF queues state to disabled
312 * @vf: pointer to the VF structure
313 */
ice_set_vf_state_qs_dis(struct ice_vf * vf)314 void ice_set_vf_state_qs_dis(struct ice_vf *vf)
315 {
316 /* Clear Rx/Tx enabled queues flag */
317 bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
318 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
319 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
320 }
321
322 /**
323 * ice_dis_vf_qs - Disable the VF queues
324 * @vf: pointer to the VF structure
325 */
ice_dis_vf_qs(struct ice_vf * vf)326 static void ice_dis_vf_qs(struct ice_vf *vf)
327 {
328 struct ice_pf *pf = vf->pf;
329 struct ice_vsi *vsi;
330
331 vsi = pf->vsi[vf->lan_vsi_idx];
332
333 ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
334 ice_vsi_stop_all_rx_rings(vsi);
335 ice_set_vf_state_qs_dis(vf);
336 }
337
338 /**
339 * ice_free_vfs - Free all VFs
340 * @pf: pointer to the PF structure
341 */
ice_free_vfs(struct ice_pf * pf)342 void ice_free_vfs(struct ice_pf *pf)
343 {
344 struct device *dev = ice_pf_to_dev(pf);
345 struct ice_hw *hw = &pf->hw;
346 unsigned int tmp, i;
347
348 if (!pf->vf)
349 return;
350
351 while (test_and_set_bit(__ICE_VF_DIS, pf->state))
352 usleep_range(1000, 2000);
353
354 /* Disable IOV before freeing resources. This lets any VF drivers
355 * running in the host get themselves cleaned up before we yank
356 * the carpet out from underneath their feet.
357 */
358 if (!pci_vfs_assigned(pf->pdev))
359 pci_disable_sriov(pf->pdev);
360 else
361 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
362
363 /* Avoid wait time by stopping all VFs at the same time */
364 ice_for_each_vf(pf, i)
365 ice_dis_vf_qs(&pf->vf[i]);
366
367 tmp = pf->num_alloc_vfs;
368 pf->num_qps_per_vf = 0;
369 pf->num_alloc_vfs = 0;
370 for (i = 0; i < tmp; i++) {
371 if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) {
372 /* disable VF qp mappings and set VF disable state */
373 ice_dis_vf_mappings(&pf->vf[i]);
374 set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states);
375 ice_free_vf_res(&pf->vf[i]);
376 }
377 }
378
379 if (ice_sriov_free_msix_res(pf))
380 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
381
382 devm_kfree(dev, pf->vf);
383 pf->vf = NULL;
384
385 /* This check is for when the driver is unloaded while VFs are
386 * assigned. Setting the number of VFs to 0 through sysfs is caught
387 * before this function ever gets called.
388 */
389 if (!pci_vfs_assigned(pf->pdev)) {
390 unsigned int vf_id;
391
392 /* Acknowledge VFLR for all VFs. Without this, VFs will fail to
393 * work correctly when SR-IOV gets re-enabled.
394 */
395 for (vf_id = 0; vf_id < tmp; vf_id++) {
396 u32 reg_idx, bit_idx;
397
398 reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
399 bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
400 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
401 }
402 }
403 clear_bit(__ICE_VF_DIS, pf->state);
404 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
405 }
406
407 /**
408 * ice_trigger_vf_reset - Reset a VF on HW
409 * @vf: pointer to the VF structure
410 * @is_vflr: true if VFLR was issued, false if not
411 * @is_pfr: true if the reset was triggered due to a previous PFR
412 *
413 * Trigger hardware to start a reset for a particular VF. Expects the caller
414 * to wait the proper amount of time to allow hardware to reset the VF before
415 * it cleans up and restores VF functionality.
416 */
ice_trigger_vf_reset(struct ice_vf * vf,bool is_vflr,bool is_pfr)417 static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
418 {
419 struct ice_pf *pf = vf->pf;
420 u32 reg, reg_idx, bit_idx;
421 unsigned int vf_abs_id, i;
422 struct device *dev;
423 struct ice_hw *hw;
424
425 dev = ice_pf_to_dev(pf);
426 hw = &pf->hw;
427 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
428
429 /* Inform VF that it is no longer active, as a warning */
430 clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
431
432 /* Disable VF's configuration API during reset. The flag is re-enabled
433 * when it's safe again to access VF's VSI.
434 */
435 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
436
437 /* VF_MBX_ARQLEN and VF_MBX_ATQLEN are cleared by PFR, so the driver
438 * needs to clear them in the case of VFR/VFLR. If this is done for
439 * PFR, it can mess up VF resets because the VF driver may already
440 * have started cleanup by the time we get here.
441 */
442 if (!is_pfr) {
443 wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
444 wr32(hw, VF_MBX_ATQLEN(vf->vf_id), 0);
445 }
446
447 /* In the case of a VFLR, the HW has already reset the VF and we
448 * just need to clean up, so don't hit the VFRTRIG register.
449 */
450 if (!is_vflr) {
451 /* reset VF using VPGEN_VFRTRIG reg */
452 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
453 reg |= VPGEN_VFRTRIG_VFSWR_M;
454 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
455 }
456 /* clear the VFLR bit in GLGEN_VFLRSTAT */
457 reg_idx = (vf_abs_id) / 32;
458 bit_idx = (vf_abs_id) % 32;
459 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
460 ice_flush(hw);
461
462 wr32(hw, PF_PCI_CIAA,
463 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
464 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
465 reg = rd32(hw, PF_PCI_CIAD);
466 /* no transactions pending so stop polling */
467 if ((reg & VF_TRANS_PENDING_M) == 0)
468 break;
469
470 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
471 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
472 }
473 }
474
475 /**
476 * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
477 * @vsi: the VSI to update
478 * @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
479 * @enable: true for enable PVID false for disable
480 */
ice_vsi_manage_pvid(struct ice_vsi * vsi,u16 pvid_info,bool enable)481 static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
482 {
483 struct ice_hw *hw = &vsi->back->hw;
484 struct ice_aqc_vsi_props *info;
485 struct ice_vsi_ctx *ctxt;
486 enum ice_status status;
487 int ret = 0;
488
489 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
490 if (!ctxt)
491 return -ENOMEM;
492
493 ctxt->info = vsi->info;
494 info = &ctxt->info;
495 if (enable) {
496 info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
497 ICE_AQ_VSI_PVLAN_INSERT_PVID |
498 ICE_AQ_VSI_VLAN_EMOD_STR;
499 info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
500 } else {
501 info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
502 ICE_AQ_VSI_VLAN_MODE_ALL;
503 info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
504 }
505
506 info->pvid = cpu_to_le16(pvid_info);
507 info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
508 ICE_AQ_VSI_PROP_SW_VALID);
509
510 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
511 if (status) {
512 dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n",
513 ice_stat_str(status),
514 ice_aq_str(hw->adminq.sq_last_status));
515 ret = -EIO;
516 goto out;
517 }
518
519 vsi->info.vlan_flags = info->vlan_flags;
520 vsi->info.sw_flags2 = info->sw_flags2;
521 vsi->info.pvid = info->pvid;
522 out:
523 kfree(ctxt);
524 return ret;
525 }
526
527 /**
528 * ice_vf_get_port_info - Get the VF's port info structure
529 * @vf: VF used to get the port info structure for
530 */
ice_vf_get_port_info(struct ice_vf * vf)531 static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
532 {
533 return vf->pf->hw.port_info;
534 }
535
536 /**
537 * ice_vf_vsi_setup - Set up a VF VSI
538 * @vf: VF to setup VSI for
539 *
540 * Returns pointer to the successfully allocated VSI struct on success,
541 * otherwise returns NULL on failure.
542 */
ice_vf_vsi_setup(struct ice_vf * vf)543 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
544 {
545 struct ice_port_info *pi = ice_vf_get_port_info(vf);
546 struct ice_pf *pf = vf->pf;
547 struct ice_vsi *vsi;
548
549 vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
550
551 if (!vsi) {
552 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
553 ice_vf_invalidate_vsi(vf);
554 return NULL;
555 }
556
557 vf->lan_vsi_idx = vsi->idx;
558 vf->lan_vsi_num = vsi->vsi_num;
559
560 return vsi;
561 }
562
563 /**
564 * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
565 * @pf: pointer to PF structure
566 * @vf: pointer to VF that the first MSIX vector index is being calculated for
567 *
568 * This returns the first MSIX vector index in PF space that is used by this VF.
569 * This index is used when accessing PF relative registers such as
570 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
571 * This will always be the OICR index in the AVF driver so any functionality
572 * using vf->first_vector_idx for queue configuration will have to increment by
573 * 1 to avoid meddling with the OICR index.
574 */
ice_calc_vf_first_vector_idx(struct ice_pf * pf,struct ice_vf * vf)575 static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
576 {
577 return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf;
578 }
579
580 /**
581 * ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
582 * @vf: VF to add MAC filters for
583 *
584 * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
585 * always re-adds either a VLAN 0 or port VLAN based filter after reset.
586 */
ice_vf_rebuild_host_vlan_cfg(struct ice_vf * vf)587 static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
588 {
589 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
590 struct device *dev = ice_pf_to_dev(vf->pf);
591 u16 vlan_id = 0;
592 int err;
593
594 if (vf->port_vlan_info) {
595 err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
596 if (err) {
597 dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
598 vf->vf_id, err);
599 return err;
600 }
601
602 vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
603 }
604
605 /* vlan_id will either be 0 or the port VLAN number */
606 err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
607 if (err) {
608 dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
609 vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
610 err);
611 return err;
612 }
613
614 return 0;
615 }
616
617 /**
618 * ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
619 * @vf: VF to add MAC filters for
620 *
621 * Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
622 * always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
623 */
ice_vf_rebuild_host_mac_cfg(struct ice_vf * vf)624 static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
625 {
626 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
627 struct device *dev = ice_pf_to_dev(vf->pf);
628 enum ice_status status;
629 u8 broadcast[ETH_ALEN];
630
631 eth_broadcast_addr(broadcast);
632 status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
633 if (status) {
634 dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
635 vf->vf_id, ice_stat_str(status));
636 return ice_status_to_errno(status);
637 }
638
639 vf->num_mac++;
640
641 if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
642 status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
643 ICE_FWD_TO_VSI);
644 if (status) {
645 dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
646 &vf->dflt_lan_addr.addr[0], vf->vf_id,
647 ice_stat_str(status));
648 return ice_status_to_errno(status);
649 }
650 vf->num_mac++;
651 }
652
653 return 0;
654 }
655
656 /**
657 * ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
658 * @vf: VF to configure trust setting for
659 */
ice_vf_set_host_trust_cfg(struct ice_vf * vf)660 static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
661 {
662 if (vf->trusted)
663 set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
664 else
665 clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
666 }
667
668 /**
669 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
670 * @vf: VF to enable MSIX mappings for
671 *
672 * Some of the registers need to be indexed/configured using hardware global
673 * device values and other registers need 0-based values, which represent PF
674 * based values.
675 */
ice_ena_vf_msix_mappings(struct ice_vf * vf)676 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
677 {
678 int device_based_first_msix, device_based_last_msix;
679 int pf_based_first_msix, pf_based_last_msix, v;
680 struct ice_pf *pf = vf->pf;
681 int device_based_vf_id;
682 struct ice_hw *hw;
683 u32 reg;
684
685 hw = &pf->hw;
686 pf_based_first_msix = vf->first_vector_idx;
687 pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
688
689 device_based_first_msix = pf_based_first_msix +
690 pf->hw.func_caps.common_cap.msix_vector_first_id;
691 device_based_last_msix =
692 (device_based_first_msix + pf->num_msix_per_vf) - 1;
693 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
694
695 reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
696 VPINT_ALLOC_FIRST_M) |
697 ((device_based_last_msix << VPINT_ALLOC_LAST_S) &
698 VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
699 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
700
701 reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
702 & VPINT_ALLOC_PCI_FIRST_M) |
703 ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
704 VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
705 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
706
707 /* map the interrupts to its functions */
708 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
709 reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
710 GLINT_VECT2FUNC_VF_NUM_M) |
711 ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
712 GLINT_VECT2FUNC_PF_NUM_M));
713 wr32(hw, GLINT_VECT2FUNC(v), reg);
714 }
715
716 /* Map mailbox interrupt to VF MSI-X vector 0 */
717 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
718 }
719
720 /**
721 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
722 * @vf: VF to enable the mappings for
723 * @max_txq: max Tx queues allowed on the VF's VSI
724 * @max_rxq: max Rx queues allowed on the VF's VSI
725 */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)726 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
727 {
728 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
729 struct device *dev = ice_pf_to_dev(vf->pf);
730 struct ice_hw *hw = &vf->pf->hw;
731 u32 reg;
732
733 /* set regardless of mapping mode */
734 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
735
736 /* VF Tx queues allocation */
737 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
738 /* set the VF PF Tx queue range
739 * VFNUMQ value should be set to (number of queues - 1). A value
740 * of 0 means 1 queue and a value of 255 means 256 queues
741 */
742 reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
743 VPLAN_TX_QBASE_VFFIRSTQ_M) |
744 (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
745 VPLAN_TX_QBASE_VFNUMQ_M));
746 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
747 } else {
748 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
749 }
750
751 /* set regardless of mapping mode */
752 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
753
754 /* VF Rx queues allocation */
755 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
756 /* set the VF PF Rx queue range
757 * VFNUMQ value should be set to (number of queues - 1). A value
758 * of 0 means 1 queue and a value of 255 means 256 queues
759 */
760 reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
761 VPLAN_RX_QBASE_VFFIRSTQ_M) |
762 (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
763 VPLAN_RX_QBASE_VFNUMQ_M));
764 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
765 } else {
766 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
767 }
768 }
769
770 /**
771 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
772 * @vf: pointer to the VF structure
773 */
ice_ena_vf_mappings(struct ice_vf * vf)774 static void ice_ena_vf_mappings(struct ice_vf *vf)
775 {
776 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
777
778 ice_ena_vf_msix_mappings(vf);
779 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
780 }
781
782 /**
783 * ice_determine_res
784 * @pf: pointer to the PF structure
785 * @avail_res: available resources in the PF structure
786 * @max_res: maximum resources that can be given per VF
787 * @min_res: minimum resources that can be given per VF
788 *
789 * Returns non-zero value if resources (queues/vectors) are available or
790 * returns zero if PF cannot accommodate for all num_alloc_vfs.
791 */
792 static int
ice_determine_res(struct ice_pf * pf,u16 avail_res,u16 max_res,u16 min_res)793 ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
794 {
795 bool checked_min_res = false;
796 int res;
797
798 /* start by checking if PF can assign max number of resources for
799 * all num_alloc_vfs.
800 * if yes, return number per VF
801 * If no, divide by 2 and roundup, check again
802 * repeat the loop till we reach a point where even minimum resources
803 * are not available, in that case return 0
804 */
805 res = max_res;
806 while ((res >= min_res) && !checked_min_res) {
807 int num_all_res;
808
809 num_all_res = pf->num_alloc_vfs * res;
810 if (num_all_res <= avail_res)
811 return res;
812
813 if (res == min_res)
814 checked_min_res = true;
815
816 res = DIV_ROUND_UP(res, 2);
817 }
818 return 0;
819 }
820
821 /**
822 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
823 * @vf: VF to calculate the register index for
824 * @q_vector: a q_vector associated to the VF
825 */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)826 int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
827 {
828 struct ice_pf *pf;
829
830 if (!vf || !q_vector)
831 return -EINVAL;
832
833 pf = vf->pf;
834
835 /* always add one to account for the OICR being the first MSIX */
836 return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id +
837 q_vector->v_idx + 1;
838 }
839
840 /**
841 * ice_get_max_valid_res_idx - Get the max valid resource index
842 * @res: pointer to the resource to find the max valid index for
843 *
844 * Start from the end of the ice_res_tracker and return right when we find the
845 * first res->list entry with the ICE_RES_VALID_BIT set. This function is only
846 * valid for SR-IOV because it is the only consumer that manipulates the
847 * res->end and this is always called when res->end is set to res->num_entries.
848 */
ice_get_max_valid_res_idx(struct ice_res_tracker * res)849 static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
850 {
851 int i;
852
853 if (!res)
854 return -EINVAL;
855
856 for (i = res->num_entries - 1; i >= 0; i--)
857 if (res->list[i] & ICE_RES_VALID_BIT)
858 return i;
859
860 return 0;
861 }
862
863 /**
864 * ice_sriov_set_msix_res - Set any used MSIX resources
865 * @pf: pointer to PF structure
866 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
867 *
868 * This function allows SR-IOV resources to be taken from the end of the PF's
869 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
870 * just set the pf->sriov_base_vector and return success.
871 *
872 * If there are not enough resources available, return an error. This should
873 * always be caught by ice_set_per_vf_res().
874 *
875 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
876 * in the PF's space available for SR-IOV.
877 */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)878 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
879 {
880 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
881 int vectors_used = pf->irq_tracker->num_entries;
882 int sriov_base_vector;
883
884 sriov_base_vector = total_vectors - num_msix_needed;
885
886 /* make sure we only grab irq_tracker entries from the list end and
887 * that we have enough available MSIX vectors
888 */
889 if (sriov_base_vector < vectors_used)
890 return -EINVAL;
891
892 pf->sriov_base_vector = sriov_base_vector;
893
894 return 0;
895 }
896
897 /**
898 * ice_set_per_vf_res - check if vectors and queues are available
899 * @pf: pointer to the PF structure
900 *
901 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
902 * get more vectors and can enable more queues per VF. Note that this does not
903 * grab any vectors from the SW pool already allocated. Also note, that all
904 * vector counts include one for each VF's miscellaneous interrupt vector
905 * (i.e. OICR).
906 *
907 * Minimum VFs - 2 vectors, 1 queue pair
908 * Small VFs - 5 vectors, 4 queue pairs
909 * Medium VFs - 17 vectors, 16 queue pairs
910 *
911 * Second, determine number of queue pairs per VF by starting with a pre-defined
912 * maximum each VF supports. If this is not possible, then we adjust based on
913 * queue pairs available on the device.
914 *
915 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
916 * by each VF during VF initialization and reset.
917 */
ice_set_per_vf_res(struct ice_pf * pf)918 static int ice_set_per_vf_res(struct ice_pf *pf)
919 {
920 int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
921 int msix_avail_per_vf, msix_avail_for_sriov;
922 struct device *dev = ice_pf_to_dev(pf);
923 u16 num_msix_per_vf, num_txq, num_rxq;
924
925 if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
926 return -EINVAL;
927
928 /* determine MSI-X resources per VF */
929 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
930 pf->irq_tracker->num_entries;
931 msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs;
932 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
933 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
934 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
935 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
936 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
937 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
938 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
939 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
940 } else {
941 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
942 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
943 pf->num_alloc_vfs);
944 return -EIO;
945 }
946
947 /* determine queue resources per VF */
948 num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
949 min_t(u16,
950 num_msix_per_vf - ICE_NONQ_VECS_VF,
951 ICE_MAX_RSS_QS_PER_VF),
952 ICE_MIN_QS_PER_VF);
953
954 num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
955 min_t(u16,
956 num_msix_per_vf - ICE_NONQ_VECS_VF,
957 ICE_MAX_RSS_QS_PER_VF),
958 ICE_MIN_QS_PER_VF);
959
960 if (!num_txq || !num_rxq) {
961 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
962 ICE_MIN_QS_PER_VF, pf->num_alloc_vfs);
963 return -EIO;
964 }
965
966 if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) {
967 dev_err(dev, "Unable to set MSI-X resources for %d VFs\n",
968 pf->num_alloc_vfs);
969 return -EINVAL;
970 }
971
972 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
973 pf->num_qps_per_vf = min_t(int, num_txq, num_rxq);
974 pf->num_msix_per_vf = num_msix_per_vf;
975 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
976 pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf);
977
978 return 0;
979 }
980
981 /**
982 * ice_clear_vf_reset_trigger - enable VF to access hardware
983 * @vf: VF to enabled hardware access for
984 */
ice_clear_vf_reset_trigger(struct ice_vf * vf)985 static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
986 {
987 struct ice_hw *hw = &vf->pf->hw;
988 u32 reg;
989
990 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
991 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
992 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
993 ice_flush(hw);
994 }
995
996 /**
997 * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
998 * @vf: pointer to the VF info
999 * @vsi: the VSI being configured
1000 * @promisc_m: mask of promiscuous config bits
1001 * @rm_promisc: promisc flag request from the VF to remove or add filter
1002 *
1003 * This function configures VF VSI promiscuous mode, based on the VF requests,
1004 * for Unicast, Multicast and VLAN
1005 */
1006 static enum ice_status
ice_vf_set_vsi_promisc(struct ice_vf * vf,struct ice_vsi * vsi,u8 promisc_m,bool rm_promisc)1007 ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
1008 bool rm_promisc)
1009 {
1010 struct ice_pf *pf = vf->pf;
1011 enum ice_status status = 0;
1012 struct ice_hw *hw;
1013
1014 hw = &pf->hw;
1015 if (vsi->num_vlan) {
1016 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
1017 rm_promisc);
1018 } else if (vf->port_vlan_info) {
1019 if (rm_promisc)
1020 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1021 vf->port_vlan_info);
1022 else
1023 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1024 vf->port_vlan_info);
1025 } else {
1026 if (rm_promisc)
1027 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
1028 0);
1029 else
1030 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
1031 0);
1032 }
1033
1034 return status;
1035 }
1036
ice_vf_clear_counters(struct ice_vf * vf)1037 static void ice_vf_clear_counters(struct ice_vf *vf)
1038 {
1039 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
1040
1041 vf->num_mac = 0;
1042 vsi->num_vlan = 0;
1043 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
1044 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
1045 }
1046
1047 /**
1048 * ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
1049 * @vf: VF to perform pre VSI rebuild tasks
1050 *
1051 * These tasks are items that don't need to be amortized since they are most
1052 * likely called in a for loop with all VF(s) in the reset_all_vfs() case.
1053 */
ice_vf_pre_vsi_rebuild(struct ice_vf * vf)1054 static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
1055 {
1056 ice_vf_clear_counters(vf);
1057 ice_clear_vf_reset_trigger(vf);
1058 }
1059
1060 /**
1061 * ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
1062 * @vf: VF to rebuild host configuration on
1063 */
ice_vf_rebuild_host_cfg(struct ice_vf * vf)1064 static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
1065 {
1066 struct device *dev = ice_pf_to_dev(vf->pf);
1067
1068 ice_vf_set_host_trust_cfg(vf);
1069
1070 if (ice_vf_rebuild_host_mac_cfg(vf))
1071 dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
1072 vf->vf_id);
1073
1074 if (ice_vf_rebuild_host_vlan_cfg(vf))
1075 dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
1076 vf->vf_id);
1077 }
1078
1079 /**
1080 * ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
1081 * @vf: VF to release and setup the VSI for
1082 *
1083 * This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
1084 * configuration change, etc.).
1085 */
ice_vf_rebuild_vsi_with_release(struct ice_vf * vf)1086 static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
1087 {
1088 ice_vf_vsi_release(vf);
1089 if (!ice_vf_vsi_setup(vf))
1090 return -ENOMEM;
1091
1092 return 0;
1093 }
1094
1095 /**
1096 * ice_vf_rebuild_vsi - rebuild the VF's VSI
1097 * @vf: VF to rebuild the VSI for
1098 *
1099 * This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
1100 * host, PFR, CORER, etc.).
1101 */
ice_vf_rebuild_vsi(struct ice_vf * vf)1102 static int ice_vf_rebuild_vsi(struct ice_vf *vf)
1103 {
1104 struct ice_pf *pf = vf->pf;
1105 struct ice_vsi *vsi;
1106
1107 vsi = pf->vsi[vf->lan_vsi_idx];
1108
1109 if (ice_vsi_rebuild(vsi, true)) {
1110 dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
1111 vf->vf_id);
1112 return -EIO;
1113 }
1114 /* vsi->idx will remain the same in this case so don't update
1115 * vf->lan_vsi_idx
1116 */
1117 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
1118 vf->lan_vsi_num = vsi->vsi_num;
1119
1120 return 0;
1121 }
1122
1123 /**
1124 * ice_vf_set_initialized - VF is ready for VIRTCHNL communication
1125 * @vf: VF to set in initialized state
1126 *
1127 * After this function the VF will be ready to receive/handle the
1128 * VIRTCHNL_OP_GET_VF_RESOURCES message
1129 */
ice_vf_set_initialized(struct ice_vf * vf)1130 static void ice_vf_set_initialized(struct ice_vf *vf)
1131 {
1132 ice_set_vf_state_qs_dis(vf);
1133 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
1134 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
1135 clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
1136 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1137 }
1138
1139 /**
1140 * ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
1141 * @vf: VF to perform tasks on
1142 */
ice_vf_post_vsi_rebuild(struct ice_vf * vf)1143 static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
1144 {
1145 struct ice_pf *pf = vf->pf;
1146 struct ice_hw *hw;
1147
1148 hw = &pf->hw;
1149
1150 ice_vf_rebuild_host_cfg(vf);
1151
1152 ice_vf_set_initialized(vf);
1153 ice_ena_vf_mappings(vf);
1154 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1155 }
1156
1157 /**
1158 * ice_reset_all_vfs - reset all allocated VFs in one go
1159 * @pf: pointer to the PF structure
1160 * @is_vflr: true if VFLR was issued, false if not
1161 *
1162 * First, tell the hardware to reset each VF, then do all the waiting in one
1163 * chunk, and finally finish restoring each VF after the wait. This is useful
1164 * during PF routines which need to reset all VFs, as otherwise it must perform
1165 * these resets in a serialized fashion.
1166 *
1167 * Returns true if any VFs were reset, and false otherwise.
1168 */
ice_reset_all_vfs(struct ice_pf * pf,bool is_vflr)1169 bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
1170 {
1171 struct device *dev = ice_pf_to_dev(pf);
1172 struct ice_hw *hw = &pf->hw;
1173 struct ice_vf *vf;
1174 int v, i;
1175
1176 /* If we don't have any VFs, then there is nothing to reset */
1177 if (!pf->num_alloc_vfs)
1178 return false;
1179
1180 /* If VFs have been disabled, there is no need to reset */
1181 if (test_and_set_bit(__ICE_VF_DIS, pf->state))
1182 return false;
1183
1184 /* Begin reset on all VFs at once */
1185 ice_for_each_vf(pf, v)
1186 ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
1187
1188 /* HW requires some time to make sure it can flush the FIFO for a VF
1189 * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
1190 * sequence to make sure that it has completed. We'll keep track of
1191 * the VFs using a simple iterator that increments once that VF has
1192 * finished resetting.
1193 */
1194 for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
1195 /* Check each VF in sequence */
1196 while (v < pf->num_alloc_vfs) {
1197 u32 reg;
1198
1199 vf = &pf->vf[v];
1200 reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1201 if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
1202 /* only delay if the check failed */
1203 usleep_range(10, 20);
1204 break;
1205 }
1206
1207 /* If the current VF has finished resetting, move on
1208 * to the next VF in sequence.
1209 */
1210 v++;
1211 }
1212 }
1213
1214 /* Display a warning if at least one VF didn't manage to reset in
1215 * time, but continue on with the operation.
1216 */
1217 if (v < pf->num_alloc_vfs)
1218 dev_warn(dev, "VF reset check timeout\n");
1219
1220 /* free VF resources to begin resetting the VSI state */
1221 ice_for_each_vf(pf, v) {
1222 vf = &pf->vf[v];
1223
1224 ice_vf_pre_vsi_rebuild(vf);
1225 ice_vf_rebuild_vsi(vf);
1226 ice_vf_post_vsi_rebuild(vf);
1227 }
1228
1229 ice_flush(hw);
1230 clear_bit(__ICE_VF_DIS, pf->state);
1231
1232 return true;
1233 }
1234
1235 /**
1236 * ice_is_vf_disabled
1237 * @vf: pointer to the VF info
1238 *
1239 * Returns true if the PF or VF is disabled, false otherwise.
1240 */
ice_is_vf_disabled(struct ice_vf * vf)1241 static bool ice_is_vf_disabled(struct ice_vf *vf)
1242 {
1243 struct ice_pf *pf = vf->pf;
1244
1245 /* If the PF has been disabled, there is no need resetting VF until
1246 * PF is active again. Similarly, if the VF has been disabled, this
1247 * means something else is resetting the VF, so we shouldn't continue.
1248 * Otherwise, set disable VF state bit for actual reset, and continue.
1249 */
1250 return (test_bit(__ICE_VF_DIS, pf->state) ||
1251 test_bit(ICE_VF_STATE_DIS, vf->vf_states));
1252 }
1253
1254 /**
1255 * ice_reset_vf - Reset a particular VF
1256 * @vf: pointer to the VF structure
1257 * @is_vflr: true if VFLR was issued, false if not
1258 *
1259 * Returns true if the VF is currently in reset, resets successfully, or resets
1260 * are disabled and false otherwise.
1261 */
ice_reset_vf(struct ice_vf * vf,bool is_vflr)1262 bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
1263 {
1264 struct ice_pf *pf = vf->pf;
1265 struct ice_vsi *vsi;
1266 struct device *dev;
1267 struct ice_hw *hw;
1268 bool rsd = false;
1269 u8 promisc_m;
1270 u32 reg;
1271 int i;
1272
1273 dev = ice_pf_to_dev(pf);
1274
1275 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
1276 dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
1277 vf->vf_id);
1278 return true;
1279 }
1280
1281 if (ice_is_vf_disabled(vf)) {
1282 dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
1283 vf->vf_id);
1284 return true;
1285 }
1286
1287 /* Set VF disable bit state here, before triggering reset */
1288 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
1289 ice_trigger_vf_reset(vf, is_vflr, false);
1290
1291 vsi = pf->vsi[vf->lan_vsi_idx];
1292
1293 ice_dis_vf_qs(vf);
1294
1295 /* Call Disable LAN Tx queue AQ whether or not queues are
1296 * enabled. This is needed for successful completion of VFR.
1297 */
1298 ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
1299 NULL, ICE_VF_RESET, vf->vf_id, NULL);
1300
1301 hw = &pf->hw;
1302 /* poll VPGEN_VFRSTAT reg to make sure
1303 * that reset is complete
1304 */
1305 for (i = 0; i < 10; i++) {
1306 /* VF reset requires driver to first reset the VF and then
1307 * poll the status register to make sure that the reset
1308 * completed successfully.
1309 */
1310 reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
1311 if (reg & VPGEN_VFRSTAT_VFRD_M) {
1312 rsd = true;
1313 break;
1314 }
1315
1316 /* only sleep if the reset is not done */
1317 usleep_range(10, 20);
1318 }
1319
1320 /* Display a warning if VF didn't manage to reset in time, but need to
1321 * continue on with the operation.
1322 */
1323 if (!rsd)
1324 dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
1325
1326 /* disable promiscuous modes in case they were enabled
1327 * ignore any error if disabling process failed
1328 */
1329 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
1330 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
1331 if (vf->port_vlan_info || vsi->num_vlan)
1332 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
1333 else
1334 promisc_m = ICE_UCAST_PROMISC_BITS;
1335
1336 vsi = pf->vsi[vf->lan_vsi_idx];
1337 if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
1338 dev_err(dev, "disabling promiscuous mode failed\n");
1339 }
1340
1341 ice_vf_pre_vsi_rebuild(vf);
1342
1343 if (ice_vf_rebuild_vsi_with_release(vf)) {
1344 dev_err(dev, "Failed to release and setup the VF%u's VSI\n", vf->vf_id);
1345 return false;
1346 }
1347
1348 ice_vf_post_vsi_rebuild(vf);
1349
1350 return true;
1351 }
1352
1353 /**
1354 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
1355 * @pf: pointer to the PF structure
1356 */
ice_vc_notify_link_state(struct ice_pf * pf)1357 void ice_vc_notify_link_state(struct ice_pf *pf)
1358 {
1359 int i;
1360
1361 ice_for_each_vf(pf, i)
1362 ice_vc_notify_vf_link_state(&pf->vf[i]);
1363 }
1364
1365 /**
1366 * ice_vc_notify_reset - Send pending reset message to all VFs
1367 * @pf: pointer to the PF structure
1368 *
1369 * indicate a pending reset to all VFs on a given PF
1370 */
ice_vc_notify_reset(struct ice_pf * pf)1371 void ice_vc_notify_reset(struct ice_pf *pf)
1372 {
1373 struct virtchnl_pf_event pfe;
1374
1375 if (!pf->num_alloc_vfs)
1376 return;
1377
1378 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1379 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1380 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
1381 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
1382 }
1383
1384 /**
1385 * ice_vc_notify_vf_reset - Notify VF of a reset event
1386 * @vf: pointer to the VF structure
1387 */
ice_vc_notify_vf_reset(struct ice_vf * vf)1388 static void ice_vc_notify_vf_reset(struct ice_vf *vf)
1389 {
1390 struct virtchnl_pf_event pfe;
1391 struct ice_pf *pf;
1392
1393 if (!vf)
1394 return;
1395
1396 pf = vf->pf;
1397 if (ice_validate_vf_id(pf, vf->vf_id))
1398 return;
1399
1400 /* Bail out if VF is in disabled state, neither initialized, nor active
1401 * state - otherwise proceed with notifications
1402 */
1403 if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
1404 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
1405 test_bit(ICE_VF_STATE_DIS, vf->vf_states))
1406 return;
1407
1408 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
1409 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
1410 ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
1411 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
1412 NULL);
1413 }
1414
1415 /**
1416 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
1417 * @vf: VF to initialize/setup the VSI for
1418 *
1419 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
1420 * VF VSI's broadcast filter and is only used during initial VF creation.
1421 */
ice_init_vf_vsi_res(struct ice_vf * vf)1422 static int ice_init_vf_vsi_res(struct ice_vf *vf)
1423 {
1424 struct ice_pf *pf = vf->pf;
1425 u8 broadcast[ETH_ALEN];
1426 enum ice_status status;
1427 struct ice_vsi *vsi;
1428 struct device *dev;
1429 int err;
1430
1431 vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
1432
1433 dev = ice_pf_to_dev(pf);
1434 vsi = ice_vf_vsi_setup(vf);
1435 if (!vsi)
1436 return -ENOMEM;
1437
1438 err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
1439 if (err) {
1440 dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
1441 vf->vf_id);
1442 goto release_vsi;
1443 }
1444
1445 eth_broadcast_addr(broadcast);
1446 status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
1447 if (status) {
1448 dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
1449 vf->vf_id, ice_stat_str(status));
1450 err = ice_status_to_errno(status);
1451 goto release_vsi;
1452 }
1453
1454 vf->num_mac = 1;
1455
1456 return 0;
1457
1458 release_vsi:
1459 ice_vf_vsi_release(vf);
1460 return err;
1461 }
1462
1463 /**
1464 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
1465 * @pf: PF the VFs are associated with
1466 */
ice_start_vfs(struct ice_pf * pf)1467 static int ice_start_vfs(struct ice_pf *pf)
1468 {
1469 struct ice_hw *hw = &pf->hw;
1470 int retval, i;
1471
1472 ice_for_each_vf(pf, i) {
1473 struct ice_vf *vf = &pf->vf[i];
1474
1475 ice_clear_vf_reset_trigger(vf);
1476
1477 retval = ice_init_vf_vsi_res(vf);
1478 if (retval) {
1479 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
1480 vf->vf_id, retval);
1481 goto teardown;
1482 }
1483
1484 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
1485 ice_ena_vf_mappings(vf);
1486 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
1487 }
1488
1489 ice_flush(hw);
1490 return 0;
1491
1492 teardown:
1493 for (i = i - 1; i >= 0; i--) {
1494 struct ice_vf *vf = &pf->vf[i];
1495
1496 ice_dis_vf_mappings(vf);
1497 ice_vf_vsi_release(vf);
1498 }
1499
1500 return retval;
1501 }
1502
1503 /**
1504 * ice_set_dflt_settings - set VF defaults during initialization/creation
1505 * @pf: PF holding reference to all VFs for default configuration
1506 */
ice_set_dflt_settings_vfs(struct ice_pf * pf)1507 static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
1508 {
1509 int i;
1510
1511 ice_for_each_vf(pf, i) {
1512 struct ice_vf *vf = &pf->vf[i];
1513
1514 vf->pf = pf;
1515 vf->vf_id = i;
1516 vf->vf_sw_id = pf->first_sw;
1517 /* assign default capabilities */
1518 set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
1519 vf->spoofchk = true;
1520 vf->num_vf_qs = pf->num_qps_per_vf;
1521 }
1522 }
1523
1524 /**
1525 * ice_alloc_vfs - allocate num_vfs in the PF structure
1526 * @pf: PF to store the allocated VFs in
1527 * @num_vfs: number of VFs to allocate
1528 */
ice_alloc_vfs(struct ice_pf * pf,int num_vfs)1529 static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
1530 {
1531 struct ice_vf *vfs;
1532
1533 vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
1534 GFP_KERNEL);
1535 if (!vfs)
1536 return -ENOMEM;
1537
1538 pf->vf = vfs;
1539 pf->num_alloc_vfs = num_vfs;
1540
1541 return 0;
1542 }
1543
1544 /**
1545 * ice_ena_vfs - enable VFs so they are ready to be used
1546 * @pf: pointer to the PF structure
1547 * @num_vfs: number of VFs to enable
1548 */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)1549 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
1550 {
1551 struct device *dev = ice_pf_to_dev(pf);
1552 struct ice_hw *hw = &pf->hw;
1553 int ret;
1554
1555 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
1556 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1557 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
1558 set_bit(__ICE_OICR_INTR_DIS, pf->state);
1559 ice_flush(hw);
1560
1561 ret = pci_enable_sriov(pf->pdev, num_vfs);
1562 if (ret) {
1563 pf->num_alloc_vfs = 0;
1564 goto err_unroll_intr;
1565 }
1566
1567 ret = ice_alloc_vfs(pf, num_vfs);
1568 if (ret)
1569 goto err_pci_disable_sriov;
1570
1571 if (ice_set_per_vf_res(pf)) {
1572 dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
1573 num_vfs);
1574 ret = -ENOSPC;
1575 goto err_unroll_sriov;
1576 }
1577
1578 ice_set_dflt_settings_vfs(pf);
1579
1580 if (ice_start_vfs(pf)) {
1581 dev_err(dev, "Failed to start VF(s)\n");
1582 ret = -EAGAIN;
1583 goto err_unroll_sriov;
1584 }
1585
1586 clear_bit(__ICE_VF_DIS, pf->state);
1587 return 0;
1588
1589 err_unroll_sriov:
1590 devm_kfree(dev, pf->vf);
1591 pf->vf = NULL;
1592 pf->num_alloc_vfs = 0;
1593 err_pci_disable_sriov:
1594 pci_disable_sriov(pf->pdev);
1595 err_unroll_intr:
1596 /* rearm interrupts here */
1597 ice_irq_dynamic_ena(hw, NULL, NULL);
1598 clear_bit(__ICE_OICR_INTR_DIS, pf->state);
1599 return ret;
1600 }
1601
1602 /**
1603 * ice_pci_sriov_ena - Enable or change number of VFs
1604 * @pf: pointer to the PF structure
1605 * @num_vfs: number of VFs to allocate
1606 *
1607 * Returns 0 on success and negative on failure
1608 */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)1609 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
1610 {
1611 int pre_existing_vfs = pci_num_vf(pf->pdev);
1612 struct device *dev = ice_pf_to_dev(pf);
1613 int err;
1614
1615 if (pre_existing_vfs && pre_existing_vfs != num_vfs)
1616 ice_free_vfs(pf);
1617 else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
1618 return 0;
1619
1620 if (num_vfs > pf->num_vfs_supported) {
1621 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
1622 num_vfs, pf->num_vfs_supported);
1623 return -EOPNOTSUPP;
1624 }
1625
1626 dev_info(dev, "Enabling %d VFs\n", num_vfs);
1627 err = ice_ena_vfs(pf, num_vfs);
1628 if (err) {
1629 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
1630 return err;
1631 }
1632
1633 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
1634 return 0;
1635 }
1636
1637 /**
1638 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
1639 * @pf: PF to enabled SR-IOV on
1640 */
ice_check_sriov_allowed(struct ice_pf * pf)1641 static int ice_check_sriov_allowed(struct ice_pf *pf)
1642 {
1643 struct device *dev = ice_pf_to_dev(pf);
1644
1645 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
1646 dev_err(dev, "This device is not capable of SR-IOV\n");
1647 return -EOPNOTSUPP;
1648 }
1649
1650 if (ice_is_safe_mode(pf)) {
1651 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
1652 return -EOPNOTSUPP;
1653 }
1654
1655 if (!ice_pf_state_is_nominal(pf)) {
1656 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
1657 return -EBUSY;
1658 }
1659
1660 return 0;
1661 }
1662
1663 /**
1664 * ice_sriov_configure - Enable or change number of VFs via sysfs
1665 * @pdev: pointer to a pci_dev structure
1666 * @num_vfs: number of VFs to allocate or 0 to free VFs
1667 *
1668 * This function is called when the user updates the number of VFs in sysfs. On
1669 * success return whatever num_vfs was set to by the caller. Return negative on
1670 * failure.
1671 */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)1672 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1673 {
1674 struct ice_pf *pf = pci_get_drvdata(pdev);
1675 struct device *dev = ice_pf_to_dev(pf);
1676 int err;
1677
1678 err = ice_check_sriov_allowed(pf);
1679 if (err)
1680 return err;
1681
1682 if (!num_vfs) {
1683 if (!pci_vfs_assigned(pdev)) {
1684 ice_free_vfs(pf);
1685 return 0;
1686 }
1687
1688 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1689 return -EBUSY;
1690 }
1691
1692 err = ice_pci_sriov_ena(pf, num_vfs);
1693 if (err)
1694 return err;
1695
1696 return num_vfs;
1697 }
1698
1699 /**
1700 * ice_process_vflr_event - Free VF resources via IRQ calls
1701 * @pf: pointer to the PF structure
1702 *
1703 * called from the VFLR IRQ handler to
1704 * free up VF resources and state variables
1705 */
ice_process_vflr_event(struct ice_pf * pf)1706 void ice_process_vflr_event(struct ice_pf *pf)
1707 {
1708 struct ice_hw *hw = &pf->hw;
1709 unsigned int vf_id;
1710 u32 reg;
1711
1712 if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1713 !pf->num_alloc_vfs)
1714 return;
1715
1716 ice_for_each_vf(pf, vf_id) {
1717 struct ice_vf *vf = &pf->vf[vf_id];
1718 u32 reg_idx, bit_idx;
1719
1720 reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
1721 bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
1722 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1723 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1724 if (reg & BIT(bit_idx))
1725 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1726 ice_reset_vf(vf, true);
1727 }
1728 }
1729
1730 /**
1731 * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
1732 * @vf: pointer to the VF info
1733 */
ice_vc_reset_vf(struct ice_vf * vf)1734 static void ice_vc_reset_vf(struct ice_vf *vf)
1735 {
1736 ice_vc_notify_vf_reset(vf);
1737 ice_reset_vf(vf, false);
1738 }
1739
1740 /**
1741 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1742 * @pf: PF used to index all VFs
1743 * @pfq: queue index relative to the PF's function space
1744 *
1745 * If no VF is found who owns the pfq then return NULL, otherwise return a
1746 * pointer to the VF who owns the pfq
1747 */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1748 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1749 {
1750 unsigned int vf_id;
1751
1752 ice_for_each_vf(pf, vf_id) {
1753 struct ice_vf *vf = &pf->vf[vf_id];
1754 struct ice_vsi *vsi;
1755 u16 rxq_idx;
1756
1757 vsi = pf->vsi[vf->lan_vsi_idx];
1758
1759 ice_for_each_rxq(vsi, rxq_idx)
1760 if (vsi->rxq_map[rxq_idx] == pfq)
1761 return vf;
1762 }
1763
1764 return NULL;
1765 }
1766
1767 /**
1768 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1769 * @pf: PF used for conversion
1770 * @globalq: global queue index used to convert to PF space queue index
1771 */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1772 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1773 {
1774 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1775 }
1776
1777 /**
1778 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1779 * @pf: PF that the LAN overflow event happened on
1780 * @event: structure holding the event information for the LAN overflow event
1781 *
1782 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1783 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1784 * reset on the offending VF.
1785 */
1786 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1787 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1788 {
1789 u32 gldcb_rtctq, queue;
1790 struct ice_vf *vf;
1791
1792 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1793 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1794
1795 /* event returns device global Rx queue number */
1796 queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
1797 GLDCB_RTCTQ_RXQNUM_S;
1798
1799 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1800 if (!vf)
1801 return;
1802
1803 ice_vc_reset_vf(vf);
1804 }
1805
1806 /**
1807 * ice_vc_send_msg_to_vf - Send message to VF
1808 * @vf: pointer to the VF info
1809 * @v_opcode: virtual channel opcode
1810 * @v_retval: virtual channel return value
1811 * @msg: pointer to the msg buffer
1812 * @msglen: msg length
1813 *
1814 * send msg to VF
1815 */
1816 static int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)1817 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
1818 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
1819 {
1820 enum ice_status aq_ret;
1821 struct device *dev;
1822 struct ice_pf *pf;
1823
1824 if (!vf)
1825 return -EINVAL;
1826
1827 pf = vf->pf;
1828 if (ice_validate_vf_id(pf, vf->vf_id))
1829 return -EINVAL;
1830
1831 dev = ice_pf_to_dev(pf);
1832
1833 /* single place to detect unsuccessful return values */
1834 if (v_retval) {
1835 vf->num_inval_msgs++;
1836 dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id,
1837 v_opcode, v_retval);
1838 if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) {
1839 dev_err(dev, "Number of invalid messages exceeded for VF %d\n",
1840 vf->vf_id);
1841 dev_err(dev, "Use PF Control I/F to enable the VF\n");
1842 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
1843 return -EIO;
1844 }
1845 } else {
1846 vf->num_valid_msgs++;
1847 /* reset the invalid counter, if a valid message is received. */
1848 vf->num_inval_msgs = 0;
1849 }
1850
1851 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
1852 msg, msglen, NULL);
1853 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
1854 dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n",
1855 vf->vf_id, ice_stat_str(aq_ret),
1856 ice_aq_str(pf->hw.mailboxq.sq_last_status));
1857 return -EIO;
1858 }
1859
1860 return 0;
1861 }
1862
1863 /**
1864 * ice_vc_get_ver_msg
1865 * @vf: pointer to the VF info
1866 * @msg: pointer to the msg buffer
1867 *
1868 * called from the VF to request the API version used by the PF
1869 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)1870 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
1871 {
1872 struct virtchnl_version_info info = {
1873 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
1874 };
1875
1876 vf->vf_ver = *(struct virtchnl_version_info *)msg;
1877 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
1878 if (VF_IS_V10(&vf->vf_ver))
1879 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
1880
1881 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
1882 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
1883 sizeof(struct virtchnl_version_info));
1884 }
1885
1886 /**
1887 * ice_vc_get_max_frame_size - get max frame size allowed for VF
1888 * @vf: VF used to determine max frame size
1889 *
1890 * Max frame size is determined based on the current port's max frame size and
1891 * whether a port VLAN is configured on this VF. The VF is not aware whether
1892 * it's in a port VLAN so the PF needs to account for this in max frame size
1893 * checks and sending the max frame size to the VF.
1894 */
ice_vc_get_max_frame_size(struct ice_vf * vf)1895 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
1896 {
1897 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
1898 struct ice_port_info *pi = vsi->port_info;
1899 u16 max_frame_size;
1900
1901 max_frame_size = pi->phy.link_info.max_frame_size;
1902
1903 if (vf->port_vlan_info)
1904 max_frame_size -= VLAN_HLEN;
1905
1906 return max_frame_size;
1907 }
1908
1909 /**
1910 * ice_vc_get_vf_res_msg
1911 * @vf: pointer to the VF info
1912 * @msg: pointer to the msg buffer
1913 *
1914 * called from the VF to request its resources
1915 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)1916 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
1917 {
1918 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1919 struct virtchnl_vf_resource *vfres = NULL;
1920 struct ice_pf *pf = vf->pf;
1921 struct ice_vsi *vsi;
1922 int len = 0;
1923 int ret;
1924
1925 if (ice_check_vf_init(pf, vf)) {
1926 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1927 goto err;
1928 }
1929
1930 len = sizeof(struct virtchnl_vf_resource);
1931
1932 vfres = kzalloc(len, GFP_KERNEL);
1933 if (!vfres) {
1934 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
1935 len = 0;
1936 goto err;
1937 }
1938 if (VF_IS_V11(&vf->vf_ver))
1939 vf->driver_caps = *(u32 *)msg;
1940 else
1941 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
1942 VIRTCHNL_VF_OFFLOAD_RSS_REG |
1943 VIRTCHNL_VF_OFFLOAD_VLAN;
1944
1945 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
1946 vsi = pf->vsi[vf->lan_vsi_idx];
1947 if (!vsi) {
1948 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1949 goto err;
1950 }
1951
1952 if (!vsi->info.pvid)
1953 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
1954
1955 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1956 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
1957 } else {
1958 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
1959 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
1960 else
1961 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
1962 }
1963
1964 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1965 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
1966
1967 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
1968 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
1969
1970 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
1971 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
1972
1973 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
1974 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
1975
1976 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1977 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
1978
1979 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
1980 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
1981
1982 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
1983 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
1984
1985 vfres->num_vsis = 1;
1986 /* Tx and Rx queue are equal for VF */
1987 vfres->num_queue_pairs = vsi->num_txq;
1988 vfres->max_vectors = pf->num_msix_per_vf;
1989 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
1990 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
1991 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
1992
1993 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
1994 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
1995 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
1996 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
1997 vf->dflt_lan_addr.addr);
1998
1999 /* match guest capabilities */
2000 vf->driver_caps = vfres->vf_cap_flags;
2001
2002 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
2003
2004 err:
2005 /* send the response back to the VF */
2006 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
2007 (u8 *)vfres, len);
2008
2009 kfree(vfres);
2010 return ret;
2011 }
2012
2013 /**
2014 * ice_vc_reset_vf_msg
2015 * @vf: pointer to the VF info
2016 *
2017 * called from the VF to reset itself,
2018 * unlike other virtchnl messages, PF driver
2019 * doesn't send the response back to the VF
2020 */
ice_vc_reset_vf_msg(struct ice_vf * vf)2021 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
2022 {
2023 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
2024 ice_reset_vf(vf, false);
2025 }
2026
2027 /**
2028 * ice_find_vsi_from_id
2029 * @pf: the PF structure to search for the VSI
2030 * @id: ID of the VSI it is searching for
2031 *
2032 * searches for the VSI with the given ID
2033 */
ice_find_vsi_from_id(struct ice_pf * pf,u16 id)2034 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
2035 {
2036 int i;
2037
2038 ice_for_each_vsi(pf, i)
2039 if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
2040 return pf->vsi[i];
2041
2042 return NULL;
2043 }
2044
2045 /**
2046 * ice_vc_isvalid_vsi_id
2047 * @vf: pointer to the VF info
2048 * @vsi_id: VF relative VSI ID
2049 *
2050 * check for the valid VSI ID
2051 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)2052 static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
2053 {
2054 struct ice_pf *pf = vf->pf;
2055 struct ice_vsi *vsi;
2056
2057 vsi = ice_find_vsi_from_id(pf, vsi_id);
2058
2059 return (vsi && (vsi->vf_id == vf->vf_id));
2060 }
2061
2062 /**
2063 * ice_vc_isvalid_q_id
2064 * @vf: pointer to the VF info
2065 * @vsi_id: VSI ID
2066 * @qid: VSI relative queue ID
2067 *
2068 * check for the valid queue ID
2069 */
ice_vc_isvalid_q_id(struct ice_vf * vf,u16 vsi_id,u8 qid)2070 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
2071 {
2072 struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
2073 /* allocated Tx and Rx queues should be always equal for VF VSI */
2074 return (vsi && (qid < vsi->alloc_txq));
2075 }
2076
2077 /**
2078 * ice_vc_isvalid_ring_len
2079 * @ring_len: length of ring
2080 *
2081 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
2082 * or zero
2083 */
ice_vc_isvalid_ring_len(u16 ring_len)2084 static bool ice_vc_isvalid_ring_len(u16 ring_len)
2085 {
2086 return ring_len == 0 ||
2087 (ring_len >= ICE_MIN_NUM_DESC &&
2088 ring_len <= ICE_MAX_NUM_DESC &&
2089 !(ring_len % ICE_REQ_DESC_MULTIPLE));
2090 }
2091
2092 /**
2093 * ice_vc_config_rss_key
2094 * @vf: pointer to the VF info
2095 * @msg: pointer to the msg buffer
2096 *
2097 * Configure the VF's RSS key
2098 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)2099 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
2100 {
2101 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2102 struct virtchnl_rss_key *vrk =
2103 (struct virtchnl_rss_key *)msg;
2104 struct ice_pf *pf = vf->pf;
2105 struct ice_vsi *vsi;
2106
2107 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2108 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2109 goto error_param;
2110 }
2111
2112 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
2113 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2114 goto error_param;
2115 }
2116
2117 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
2118 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2119 goto error_param;
2120 }
2121
2122 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2123 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2124 goto error_param;
2125 }
2126
2127 vsi = pf->vsi[vf->lan_vsi_idx];
2128 if (!vsi) {
2129 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2130 goto error_param;
2131 }
2132
2133 if (ice_set_rss(vsi, vrk->key, NULL, 0))
2134 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2135 error_param:
2136 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
2137 NULL, 0);
2138 }
2139
2140 /**
2141 * ice_vc_config_rss_lut
2142 * @vf: pointer to the VF info
2143 * @msg: pointer to the msg buffer
2144 *
2145 * Configure the VF's RSS LUT
2146 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)2147 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
2148 {
2149 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
2150 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2151 struct ice_pf *pf = vf->pf;
2152 struct ice_vsi *vsi;
2153
2154 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2155 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2156 goto error_param;
2157 }
2158
2159 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
2160 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2161 goto error_param;
2162 }
2163
2164 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
2165 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2166 goto error_param;
2167 }
2168
2169 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2170 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2171 goto error_param;
2172 }
2173
2174 vsi = pf->vsi[vf->lan_vsi_idx];
2175 if (!vsi) {
2176 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2177 goto error_param;
2178 }
2179
2180 if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
2181 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2182 error_param:
2183 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
2184 NULL, 0);
2185 }
2186
2187 /**
2188 * ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
2189 * @vf: The VF being resseting
2190 *
2191 * The max poll time is about ~800ms, which is about the maximum time it takes
2192 * for a VF to be reset and/or a VF driver to be removed.
2193 */
ice_wait_on_vf_reset(struct ice_vf * vf)2194 static void ice_wait_on_vf_reset(struct ice_vf *vf)
2195 {
2196 int i;
2197
2198 for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
2199 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
2200 break;
2201 msleep(ICE_MAX_VF_RESET_SLEEP_MS);
2202 }
2203 }
2204
2205 /**
2206 * ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
2207 * @vf: VF to check if it's ready to be configured/queried
2208 *
2209 * The purpose of this function is to make sure the VF is not in reset, not
2210 * disabled, and initialized so it can be configured and/or queried by a host
2211 * administrator.
2212 */
ice_check_vf_ready_for_cfg(struct ice_vf * vf)2213 static int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
2214 {
2215 struct ice_pf *pf;
2216
2217 ice_wait_on_vf_reset(vf);
2218
2219 if (ice_is_vf_disabled(vf))
2220 return -EINVAL;
2221
2222 pf = vf->pf;
2223 if (ice_check_vf_init(pf, vf))
2224 return -EBUSY;
2225
2226 return 0;
2227 }
2228
2229 /**
2230 * ice_set_vf_spoofchk
2231 * @netdev: network interface device structure
2232 * @vf_id: VF identifier
2233 * @ena: flag to enable or disable feature
2234 *
2235 * Enable or disable VF spoof checking
2236 */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)2237 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
2238 {
2239 struct ice_netdev_priv *np = netdev_priv(netdev);
2240 struct ice_pf *pf = np->vsi->back;
2241 struct ice_vsi_ctx *ctx;
2242 struct ice_vsi *vf_vsi;
2243 enum ice_status status;
2244 struct device *dev;
2245 struct ice_vf *vf;
2246 int ret;
2247
2248 dev = ice_pf_to_dev(pf);
2249 if (ice_validate_vf_id(pf, vf_id))
2250 return -EINVAL;
2251
2252 vf = &pf->vf[vf_id];
2253 ret = ice_check_vf_ready_for_cfg(vf);
2254 if (ret)
2255 return ret;
2256
2257 vf_vsi = pf->vsi[vf->lan_vsi_idx];
2258 if (!vf_vsi) {
2259 netdev_err(netdev, "VSI %d for VF %d is null\n",
2260 vf->lan_vsi_idx, vf->vf_id);
2261 return -EINVAL;
2262 }
2263
2264 if (vf_vsi->type != ICE_VSI_VF) {
2265 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
2266 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
2267 return -ENODEV;
2268 }
2269
2270 if (ena == vf->spoofchk) {
2271 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
2272 return 0;
2273 }
2274
2275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2276 if (!ctx)
2277 return -ENOMEM;
2278
2279 ctx->info.sec_flags = vf_vsi->info.sec_flags;
2280 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
2281 if (ena) {
2282 ctx->info.sec_flags |=
2283 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2284 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2285 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2286 } else {
2287 ctx->info.sec_flags &=
2288 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
2289 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2290 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
2291 }
2292
2293 status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
2294 if (status) {
2295 dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n",
2296 ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num,
2297 ice_stat_str(status));
2298 ret = -EIO;
2299 goto out;
2300 }
2301
2302 /* only update spoofchk state and VSI context on success */
2303 vf_vsi->info.sec_flags = ctx->info.sec_flags;
2304 vf->spoofchk = ena;
2305
2306 out:
2307 kfree(ctx);
2308 return ret;
2309 }
2310
2311 /**
2312 * ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
2313 * @pf: PF structure for accessing VF(s)
2314 *
2315 * Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
2316 * else return true
2317 */
ice_is_any_vf_in_promisc(struct ice_pf * pf)2318 bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
2319 {
2320 int vf_idx;
2321
2322 ice_for_each_vf(pf, vf_idx) {
2323 struct ice_vf *vf = &pf->vf[vf_idx];
2324
2325 /* found a VF that has promiscuous mode configured */
2326 if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2327 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
2328 return true;
2329 }
2330
2331 return false;
2332 }
2333
2334 /**
2335 * ice_vc_cfg_promiscuous_mode_msg
2336 * @vf: pointer to the VF info
2337 * @msg: pointer to the msg buffer
2338 *
2339 * called from the VF to configure VF VSIs promiscuous mode
2340 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)2341 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
2342 {
2343 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2344 struct virtchnl_promisc_info *info =
2345 (struct virtchnl_promisc_info *)msg;
2346 struct ice_pf *pf = vf->pf;
2347 struct ice_vsi *vsi;
2348 struct device *dev;
2349 bool rm_promisc;
2350 int ret = 0;
2351
2352 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2353 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2354 goto error_param;
2355 }
2356
2357 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
2358 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2359 goto error_param;
2360 }
2361
2362 vsi = pf->vsi[vf->lan_vsi_idx];
2363 if (!vsi) {
2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365 goto error_param;
2366 }
2367
2368 dev = ice_pf_to_dev(pf);
2369 if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) {
2370 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
2371 vf->vf_id);
2372 /* Leave v_ret alone, lie to the VF on purpose. */
2373 goto error_param;
2374 }
2375
2376 rm_promisc = !(info->flags & FLAG_VF_UNICAST_PROMISC) &&
2377 !(info->flags & FLAG_VF_MULTICAST_PROMISC);
2378
2379 if (vsi->num_vlan || vf->port_vlan_info) {
2380 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
2381 struct net_device *pf_netdev;
2382
2383 if (!pf_vsi) {
2384 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2385 goto error_param;
2386 }
2387
2388 pf_netdev = pf_vsi->netdev;
2389
2390 ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc);
2391 if (ret) {
2392 dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n",
2393 rm_promisc ? "ON" : "OFF", vf->vf_id,
2394 vsi->vsi_num);
2395 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2396 }
2397
2398 ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc);
2399 if (ret) {
2400 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
2401 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2402 goto error_param;
2403 }
2404 }
2405
2406 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
2407 bool set_dflt_vsi = !!(info->flags & FLAG_VF_UNICAST_PROMISC);
2408
2409 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
2410 /* only attempt to set the default forwarding VSI if
2411 * it's not currently set
2412 */
2413 ret = ice_set_dflt_vsi(pf->first_sw, vsi);
2414 else if (!set_dflt_vsi &&
2415 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
2416 /* only attempt to free the default forwarding VSI if we
2417 * are the owner
2418 */
2419 ret = ice_clear_dflt_vsi(pf->first_sw);
2420
2421 if (ret) {
2422 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
2423 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
2424 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2425 goto error_param;
2426 }
2427 } else {
2428 enum ice_status status;
2429 u8 promisc_m;
2430
2431 if (info->flags & FLAG_VF_UNICAST_PROMISC) {
2432 if (vf->port_vlan_info || vsi->num_vlan)
2433 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
2434 else
2435 promisc_m = ICE_UCAST_PROMISC_BITS;
2436 } else if (info->flags & FLAG_VF_MULTICAST_PROMISC) {
2437 if (vf->port_vlan_info || vsi->num_vlan)
2438 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
2439 else
2440 promisc_m = ICE_MCAST_PROMISC_BITS;
2441 } else {
2442 if (vf->port_vlan_info || vsi->num_vlan)
2443 promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
2444 else
2445 promisc_m = ICE_UCAST_PROMISC_BITS;
2446 }
2447
2448 /* Configure multicast/unicast with or without VLAN promiscuous
2449 * mode
2450 */
2451 status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc);
2452 if (status) {
2453 dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n",
2454 rm_promisc ? "dis" : "en", vf->vf_id,
2455 ice_stat_str(status));
2456 v_ret = ice_err_to_virt_err(status);
2457 goto error_param;
2458 } else {
2459 dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n",
2460 rm_promisc ? "dis" : "en", vf->vf_id);
2461 }
2462 }
2463
2464 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
2465 set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
2466 else
2467 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
2468
2469 if (info->flags & FLAG_VF_UNICAST_PROMISC)
2470 set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
2471 else
2472 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
2473
2474 error_param:
2475 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
2476 v_ret, NULL, 0);
2477 }
2478
2479 /**
2480 * ice_vc_get_stats_msg
2481 * @vf: pointer to the VF info
2482 * @msg: pointer to the msg buffer
2483 *
2484 * called from the VF to get VSI stats
2485 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)2486 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
2487 {
2488 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2489 struct virtchnl_queue_select *vqs =
2490 (struct virtchnl_queue_select *)msg;
2491 struct ice_eth_stats stats = { 0 };
2492 struct ice_pf *pf = vf->pf;
2493 struct ice_vsi *vsi;
2494
2495 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2496 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2497 goto error_param;
2498 }
2499
2500 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2501 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2502 goto error_param;
2503 }
2504
2505 vsi = pf->vsi[vf->lan_vsi_idx];
2506 if (!vsi) {
2507 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2508 goto error_param;
2509 }
2510
2511 ice_update_eth_stats(vsi);
2512
2513 stats = vsi->eth_stats;
2514
2515 error_param:
2516 /* send the response to the VF */
2517 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
2518 (u8 *)&stats, sizeof(stats));
2519 }
2520
2521 /**
2522 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
2523 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
2524 *
2525 * Return true on successful validation, else false
2526 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)2527 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
2528 {
2529 if ((!vqs->rx_queues && !vqs->tx_queues) ||
2530 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
2531 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
2532 return false;
2533
2534 return true;
2535 }
2536
2537 /**
2538 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
2539 * @vsi: VSI of the VF to configure
2540 * @q_idx: VF queue index used to determine the queue in the PF's space
2541 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)2542 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
2543 {
2544 struct ice_hw *hw = &vsi->back->hw;
2545 u32 pfq = vsi->txq_map[q_idx];
2546 u32 reg;
2547
2548 reg = rd32(hw, QINT_TQCTL(pfq));
2549
2550 /* MSI-X index 0 in the VF's space is always for the OICR, which means
2551 * this is most likely a poll mode VF driver, so don't enable an
2552 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
2553 */
2554 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
2555 return;
2556
2557 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
2558 }
2559
2560 /**
2561 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
2562 * @vsi: VSI of the VF to configure
2563 * @q_idx: VF queue index used to determine the queue in the PF's space
2564 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)2565 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
2566 {
2567 struct ice_hw *hw = &vsi->back->hw;
2568 u32 pfq = vsi->rxq_map[q_idx];
2569 u32 reg;
2570
2571 reg = rd32(hw, QINT_RQCTL(pfq));
2572
2573 /* MSI-X index 0 in the VF's space is always for the OICR, which means
2574 * this is most likely a poll mode VF driver, so don't enable an
2575 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
2576 */
2577 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
2578 return;
2579
2580 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
2581 }
2582
2583 /**
2584 * ice_vc_ena_qs_msg
2585 * @vf: pointer to the VF info
2586 * @msg: pointer to the msg buffer
2587 *
2588 * called from the VF to enable all or specific queue(s)
2589 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)2590 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
2591 {
2592 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2593 struct virtchnl_queue_select *vqs =
2594 (struct virtchnl_queue_select *)msg;
2595 struct ice_pf *pf = vf->pf;
2596 struct ice_vsi *vsi;
2597 unsigned long q_map;
2598 u16 vf_q_id;
2599
2600 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2601 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2602 goto error_param;
2603 }
2604
2605 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2606 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2607 goto error_param;
2608 }
2609
2610 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
2611 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2612 goto error_param;
2613 }
2614
2615 vsi = pf->vsi[vf->lan_vsi_idx];
2616 if (!vsi) {
2617 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2618 goto error_param;
2619 }
2620
2621 /* Enable only Rx rings, Tx rings were enabled by the FW when the
2622 * Tx queue group list was configured and the context bits were
2623 * programmed using ice_vsi_cfg_txqs
2624 */
2625 q_map = vqs->rx_queues;
2626 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2627 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2628 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2629 goto error_param;
2630 }
2631
2632 /* Skip queue if enabled */
2633 if (test_bit(vf_q_id, vf->rxq_ena))
2634 continue;
2635
2636 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
2637 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
2638 vf_q_id, vsi->vsi_num);
2639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2640 goto error_param;
2641 }
2642
2643 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
2644 set_bit(vf_q_id, vf->rxq_ena);
2645 }
2646
2647 vsi = pf->vsi[vf->lan_vsi_idx];
2648 q_map = vqs->tx_queues;
2649 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2650 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2651 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2652 goto error_param;
2653 }
2654
2655 /* Skip queue if enabled */
2656 if (test_bit(vf_q_id, vf->txq_ena))
2657 continue;
2658
2659 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
2660 set_bit(vf_q_id, vf->txq_ena);
2661 }
2662
2663 /* Set flag to indicate that queues are enabled */
2664 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
2665 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2666
2667 error_param:
2668 /* send the response to the VF */
2669 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
2670 NULL, 0);
2671 }
2672
2673 /**
2674 * ice_vc_dis_qs_msg
2675 * @vf: pointer to the VF info
2676 * @msg: pointer to the msg buffer
2677 *
2678 * called from the VF to disable all or specific
2679 * queue(s)
2680 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)2681 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
2682 {
2683 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2684 struct virtchnl_queue_select *vqs =
2685 (struct virtchnl_queue_select *)msg;
2686 struct ice_pf *pf = vf->pf;
2687 struct ice_vsi *vsi;
2688 unsigned long q_map;
2689 u16 vf_q_id;
2690
2691 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
2692 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
2693 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2694 goto error_param;
2695 }
2696
2697 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
2698 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2699 goto error_param;
2700 }
2701
2702 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
2703 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2704 goto error_param;
2705 }
2706
2707 vsi = pf->vsi[vf->lan_vsi_idx];
2708 if (!vsi) {
2709 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2710 goto error_param;
2711 }
2712
2713 if (vqs->tx_queues) {
2714 q_map = vqs->tx_queues;
2715
2716 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2717 struct ice_ring *ring = vsi->tx_rings[vf_q_id];
2718 struct ice_txq_meta txq_meta = { 0 };
2719
2720 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2721 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2722 goto error_param;
2723 }
2724
2725 /* Skip queue if not enabled */
2726 if (!test_bit(vf_q_id, vf->txq_ena))
2727 continue;
2728
2729 ice_fill_txq_meta(vsi, ring, &txq_meta);
2730
2731 if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
2732 ring, &txq_meta)) {
2733 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
2734 vf_q_id, vsi->vsi_num);
2735 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2736 goto error_param;
2737 }
2738
2739 /* Clear enabled queues flag */
2740 clear_bit(vf_q_id, vf->txq_ena);
2741 }
2742 }
2743
2744 q_map = vqs->rx_queues;
2745 /* speed up Rx queue disable by batching them if possible */
2746 if (q_map &&
2747 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
2748 if (ice_vsi_stop_all_rx_rings(vsi)) {
2749 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
2750 vsi->vsi_num);
2751 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2752 goto error_param;
2753 }
2754
2755 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
2756 } else if (q_map) {
2757 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
2758 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
2759 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2760 goto error_param;
2761 }
2762
2763 /* Skip queue if not enabled */
2764 if (!test_bit(vf_q_id, vf->rxq_ena))
2765 continue;
2766
2767 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
2768 true)) {
2769 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
2770 vf_q_id, vsi->vsi_num);
2771 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2772 goto error_param;
2773 }
2774
2775 /* Clear enabled queues flag */
2776 clear_bit(vf_q_id, vf->rxq_ena);
2777 }
2778 }
2779
2780 /* Clear enabled queues flag */
2781 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
2782 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
2783
2784 error_param:
2785 /* send the response to the VF */
2786 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
2787 NULL, 0);
2788 }
2789
2790 /**
2791 * ice_cfg_interrupt
2792 * @vf: pointer to the VF info
2793 * @vsi: the VSI being configured
2794 * @vector_id: vector ID
2795 * @map: vector map for mapping vectors to queues
2796 * @q_vector: structure for interrupt vector
2797 * configure the IRQ to queue map
2798 */
2799 static int
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,u16 vector_id,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)2800 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
2801 struct virtchnl_vector_map *map,
2802 struct ice_q_vector *q_vector)
2803 {
2804 u16 vsi_q_id, vsi_q_id_idx;
2805 unsigned long qmap;
2806
2807 q_vector->num_ring_rx = 0;
2808 q_vector->num_ring_tx = 0;
2809
2810 qmap = map->rxq_map;
2811 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
2812 vsi_q_id = vsi_q_id_idx;
2813
2814 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
2815 return VIRTCHNL_STATUS_ERR_PARAM;
2816
2817 q_vector->num_ring_rx++;
2818 q_vector->rx.itr_idx = map->rxitr_idx;
2819 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
2820 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
2821 q_vector->rx.itr_idx);
2822 }
2823
2824 qmap = map->txq_map;
2825 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
2826 vsi_q_id = vsi_q_id_idx;
2827
2828 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
2829 return VIRTCHNL_STATUS_ERR_PARAM;
2830
2831 q_vector->num_ring_tx++;
2832 q_vector->tx.itr_idx = map->txitr_idx;
2833 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
2834 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
2835 q_vector->tx.itr_idx);
2836 }
2837
2838 return VIRTCHNL_STATUS_SUCCESS;
2839 }
2840
2841 /**
2842 * ice_vc_cfg_irq_map_msg
2843 * @vf: pointer to the VF info
2844 * @msg: pointer to the msg buffer
2845 *
2846 * called from the VF to configure the IRQ to queue map
2847 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)2848 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
2849 {
2850 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2851 u16 num_q_vectors_mapped, vsi_id, vector_id;
2852 struct virtchnl_irq_map_info *irqmap_info;
2853 struct virtchnl_vector_map *map;
2854 struct ice_pf *pf = vf->pf;
2855 struct ice_vsi *vsi;
2856 int i;
2857
2858 irqmap_info = (struct virtchnl_irq_map_info *)msg;
2859 num_q_vectors_mapped = irqmap_info->num_vectors;
2860
2861 /* Check to make sure number of VF vectors mapped is not greater than
2862 * number of VF vectors originally allocated, and check that
2863 * there is actually at least a single VF queue vector mapped
2864 */
2865 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2866 pf->num_msix_per_vf < num_q_vectors_mapped ||
2867 !num_q_vectors_mapped) {
2868 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2869 goto error_param;
2870 }
2871
2872 vsi = pf->vsi[vf->lan_vsi_idx];
2873 if (!vsi) {
2874 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2875 goto error_param;
2876 }
2877
2878 for (i = 0; i < num_q_vectors_mapped; i++) {
2879 struct ice_q_vector *q_vector;
2880
2881 map = &irqmap_info->vecmap[i];
2882
2883 vector_id = map->vector_id;
2884 vsi_id = map->vsi_id;
2885 /* vector_id is always 0-based for each VF, and can never be
2886 * larger than or equal to the max allowed interrupts per VF
2887 */
2888 if (!(vector_id < pf->num_msix_per_vf) ||
2889 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
2890 (!vector_id && (map->rxq_map || map->txq_map))) {
2891 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2892 goto error_param;
2893 }
2894
2895 /* No need to map VF miscellaneous or rogue vector */
2896 if (!vector_id)
2897 continue;
2898
2899 /* Subtract non queue vector from vector_id passed by VF
2900 * to get actual number of VSI queue vector array index
2901 */
2902 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
2903 if (!q_vector) {
2904 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2905 goto error_param;
2906 }
2907
2908 /* lookout for the invalid queue index */
2909 v_ret = (enum virtchnl_status_code)
2910 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
2911 if (v_ret)
2912 goto error_param;
2913 }
2914
2915 error_param:
2916 /* send the response to the VF */
2917 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
2918 NULL, 0);
2919 }
2920
2921 /**
2922 * ice_vc_cfg_qs_msg
2923 * @vf: pointer to the VF info
2924 * @msg: pointer to the msg buffer
2925 *
2926 * called from the VF to configure the Rx/Tx queues
2927 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)2928 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
2929 {
2930 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2931 struct virtchnl_vsi_queue_config_info *qci =
2932 (struct virtchnl_vsi_queue_config_info *)msg;
2933 struct virtchnl_queue_pair_info *qpi;
2934 u16 num_rxq = 0, num_txq = 0;
2935 struct ice_pf *pf = vf->pf;
2936 struct ice_vsi *vsi;
2937 int i;
2938
2939 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2940 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2941 goto error_param;
2942 }
2943
2944 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
2945 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2946 goto error_param;
2947 }
2948
2949 vsi = pf->vsi[vf->lan_vsi_idx];
2950 if (!vsi) {
2951 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2952 goto error_param;
2953 }
2954
2955 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
2956 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
2957 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
2958 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
2959 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2960 goto error_param;
2961 }
2962
2963 for (i = 0; i < qci->num_queue_pairs; i++) {
2964 qpi = &qci->qpair[i];
2965 if (qpi->txq.vsi_id != qci->vsi_id ||
2966 qpi->rxq.vsi_id != qci->vsi_id ||
2967 qpi->rxq.queue_id != qpi->txq.queue_id ||
2968 qpi->txq.headwb_enabled ||
2969 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
2970 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
2971 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
2972 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973 goto error_param;
2974 }
2975 /* copy Tx queue info from VF into VSI */
2976 if (qpi->txq.ring_len > 0) {
2977 num_txq++;
2978 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
2979 vsi->tx_rings[i]->count = qpi->txq.ring_len;
2980 }
2981
2982 /* copy Rx queue info from VF into VSI */
2983 if (qpi->rxq.ring_len > 0) {
2984 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
2985
2986 num_rxq++;
2987 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
2988 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
2989
2990 if (qpi->rxq.databuffer_size != 0 &&
2991 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
2992 qpi->rxq.databuffer_size < 1024)) {
2993 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2994 goto error_param;
2995 }
2996 vsi->rx_buf_len = qpi->rxq.databuffer_size;
2997 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
2998 if (qpi->rxq.max_pkt_size > max_frame_size ||
2999 qpi->rxq.max_pkt_size < 64) {
3000 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3001 goto error_param;
3002 }
3003 }
3004
3005 vsi->max_frame = qpi->rxq.max_pkt_size;
3006 /* add space for the port VLAN since the VF driver is not
3007 * expected to account for it in the MTU calculation
3008 */
3009 if (vf->port_vlan_info)
3010 vsi->max_frame += VLAN_HLEN;
3011 }
3012
3013 /* VF can request to configure less than allocated queues or default
3014 * allocated queues. So update the VSI with new number
3015 */
3016 vsi->num_txq = num_txq;
3017 vsi->num_rxq = num_rxq;
3018 /* All queues of VF VSI are in TC 0 */
3019 vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
3020 vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
3021
3022 if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
3023 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3024
3025 error_param:
3026 /* send the response to the VF */
3027 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
3028 NULL, 0);
3029 }
3030
3031 /**
3032 * ice_is_vf_trusted
3033 * @vf: pointer to the VF info
3034 */
ice_is_vf_trusted(struct ice_vf * vf)3035 static bool ice_is_vf_trusted(struct ice_vf *vf)
3036 {
3037 return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
3038 }
3039
3040 /**
3041 * ice_can_vf_change_mac
3042 * @vf: pointer to the VF info
3043 *
3044 * Return true if the VF is allowed to change its MAC filters, false otherwise
3045 */
ice_can_vf_change_mac(struct ice_vf * vf)3046 static bool ice_can_vf_change_mac(struct ice_vf *vf)
3047 {
3048 /* If the VF MAC address has been set administratively (via the
3049 * ndo_set_vf_mac command), then deny permission to the VF to
3050 * add/delete unicast MAC addresses, unless the VF is trusted
3051 */
3052 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
3053 return false;
3054
3055 return true;
3056 }
3057
3058 /**
3059 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
3060 * @vf: pointer to the VF info
3061 * @vsi: pointer to the VF's VSI
3062 * @mac_addr: MAC address to add
3063 */
3064 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,u8 * mac_addr)3065 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3066 {
3067 struct device *dev = ice_pf_to_dev(vf->pf);
3068 enum ice_status status;
3069 int ret = 0;
3070
3071 /* default unicast MAC already added */
3072 if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3073 return 0;
3074
3075 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
3076 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
3077 return -EPERM;
3078 }
3079
3080 status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3081 if (status == ICE_ERR_ALREADY_EXISTS) {
3082 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
3083 vf->vf_id);
3084 /* don't return since we might need to update
3085 * the primary MAC in ice_vfhw_mac_add() below
3086 */
3087 ret = -EEXIST;
3088 } else if (status) {
3089 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n",
3090 mac_addr, vf->vf_id, ice_stat_str(status));
3091 return -EIO;
3092 } else {
3093 vf->num_mac++;
3094 }
3095
3096 /* Set the default LAN address to the latest unicast MAC address added
3097 * by the VF. The default LAN address is reported by the PF via
3098 * ndo_get_vf_config.
3099 */
3100 if (is_unicast_ether_addr(mac_addr))
3101 ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
3102
3103 return ret;
3104 }
3105
3106 /**
3107 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
3108 * @vf: pointer to the VF info
3109 * @vsi: pointer to the VF's VSI
3110 * @mac_addr: MAC address to delete
3111 */
3112 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,u8 * mac_addr)3113 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
3114 {
3115 struct device *dev = ice_pf_to_dev(vf->pf);
3116 enum ice_status status;
3117
3118 if (!ice_can_vf_change_mac(vf) &&
3119 ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3120 return 0;
3121
3122 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
3123 if (status == ICE_ERR_DOES_NOT_EXIST) {
3124 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
3125 vf->vf_id);
3126 return -ENOENT;
3127 } else if (status) {
3128 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n",
3129 mac_addr, vf->vf_id, ice_stat_str(status));
3130 return -EIO;
3131 }
3132
3133 if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
3134 eth_zero_addr(vf->dflt_lan_addr.addr);
3135
3136 vf->num_mac--;
3137
3138 return 0;
3139 }
3140
3141 /**
3142 * ice_vc_handle_mac_addr_msg
3143 * @vf: pointer to the VF info
3144 * @msg: pointer to the msg buffer
3145 * @set: true if MAC filters are being set, false otherwise
3146 *
3147 * add guest MAC address filter
3148 */
3149 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)3150 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
3151 {
3152 int (*ice_vc_cfg_mac)
3153 (struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
3154 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3155 struct virtchnl_ether_addr_list *al =
3156 (struct virtchnl_ether_addr_list *)msg;
3157 struct ice_pf *pf = vf->pf;
3158 enum virtchnl_ops vc_op;
3159 struct ice_vsi *vsi;
3160 int i;
3161
3162 if (set) {
3163 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
3164 ice_vc_cfg_mac = ice_vc_add_mac_addr;
3165 } else {
3166 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
3167 ice_vc_cfg_mac = ice_vc_del_mac_addr;
3168 }
3169
3170 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3171 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3172 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3173 goto handle_mac_exit;
3174 }
3175
3176 /* If this VF is not privileged, then we can't add more than a
3177 * limited number of addresses. Check to make sure that the
3178 * additions do not push us over the limit.
3179 */
3180 if (set && !ice_is_vf_trusted(vf) &&
3181 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
3182 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
3183 vf->vf_id);
3184 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3185 goto handle_mac_exit;
3186 }
3187
3188 vsi = pf->vsi[vf->lan_vsi_idx];
3189 if (!vsi) {
3190 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3191 goto handle_mac_exit;
3192 }
3193
3194 for (i = 0; i < al->num_elements; i++) {
3195 u8 *mac_addr = al->list[i].addr;
3196 int result;
3197
3198 if (is_broadcast_ether_addr(mac_addr) ||
3199 is_zero_ether_addr(mac_addr))
3200 continue;
3201
3202 result = ice_vc_cfg_mac(vf, vsi, mac_addr);
3203 if (result == -EEXIST || result == -ENOENT) {
3204 continue;
3205 } else if (result) {
3206 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
3207 goto handle_mac_exit;
3208 }
3209 }
3210
3211 handle_mac_exit:
3212 /* send the response to the VF */
3213 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
3214 }
3215
3216 /**
3217 * ice_vc_add_mac_addr_msg
3218 * @vf: pointer to the VF info
3219 * @msg: pointer to the msg buffer
3220 *
3221 * add guest MAC address filter
3222 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)3223 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3224 {
3225 return ice_vc_handle_mac_addr_msg(vf, msg, true);
3226 }
3227
3228 /**
3229 * ice_vc_del_mac_addr_msg
3230 * @vf: pointer to the VF info
3231 * @msg: pointer to the msg buffer
3232 *
3233 * remove guest MAC address filter
3234 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)3235 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
3236 {
3237 return ice_vc_handle_mac_addr_msg(vf, msg, false);
3238 }
3239
3240 /**
3241 * ice_vc_request_qs_msg
3242 * @vf: pointer to the VF info
3243 * @msg: pointer to the msg buffer
3244 *
3245 * VFs get a default number of queues but can use this message to request a
3246 * different number. If the request is successful, PF will reset the VF and
3247 * return 0. If unsuccessful, PF will send message informing VF of number of
3248 * available queue pairs via virtchnl message response to VF.
3249 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)3250 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
3251 {
3252 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3253 struct virtchnl_vf_res_request *vfres =
3254 (struct virtchnl_vf_res_request *)msg;
3255 u16 req_queues = vfres->num_queue_pairs;
3256 struct ice_pf *pf = vf->pf;
3257 u16 max_allowed_vf_queues;
3258 u16 tx_rx_queue_left;
3259 struct device *dev;
3260 u16 cur_queues;
3261
3262 dev = ice_pf_to_dev(pf);
3263 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3264 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3265 goto error_param;
3266 }
3267
3268 cur_queues = vf->num_vf_qs;
3269 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
3270 ice_get_avail_rxq_count(pf));
3271 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
3272 if (!req_queues) {
3273 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
3274 vf->vf_id);
3275 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
3276 dev_err(dev, "VF %d tried to request more than %d queues.\n",
3277 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
3278 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
3279 } else if (req_queues > cur_queues &&
3280 req_queues - cur_queues > tx_rx_queue_left) {
3281 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
3282 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
3283 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
3284 ICE_MAX_RSS_QS_PER_VF);
3285 } else {
3286 /* request is successful, then reset VF */
3287 vf->num_req_qs = req_queues;
3288 ice_vc_reset_vf(vf);
3289 dev_info(dev, "VF %d granted request of %u queues.\n",
3290 vf->vf_id, req_queues);
3291 return 0;
3292 }
3293
3294 error_param:
3295 /* send the response to the VF */
3296 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
3297 v_ret, (u8 *)vfres, sizeof(*vfres));
3298 }
3299
3300 /**
3301 * ice_set_vf_port_vlan
3302 * @netdev: network interface device structure
3303 * @vf_id: VF identifier
3304 * @vlan_id: VLAN ID being set
3305 * @qos: priority setting
3306 * @vlan_proto: VLAN protocol
3307 *
3308 * program VF Port VLAN ID and/or QoS
3309 */
3310 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)3311 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
3312 __be16 vlan_proto)
3313 {
3314 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3315 struct device *dev;
3316 struct ice_vf *vf;
3317 u16 vlanprio;
3318 int ret;
3319
3320 dev = ice_pf_to_dev(pf);
3321 if (ice_validate_vf_id(pf, vf_id))
3322 return -EINVAL;
3323
3324 if (vlan_id >= VLAN_N_VID || qos > 7) {
3325 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
3326 vf_id, vlan_id, qos);
3327 return -EINVAL;
3328 }
3329
3330 if (vlan_proto != htons(ETH_P_8021Q)) {
3331 dev_err(dev, "VF VLAN protocol is not supported\n");
3332 return -EPROTONOSUPPORT;
3333 }
3334
3335 vf = &pf->vf[vf_id];
3336 ret = ice_check_vf_ready_for_cfg(vf);
3337 if (ret)
3338 return ret;
3339
3340 vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT);
3341
3342 if (vf->port_vlan_info == vlanprio) {
3343 /* duplicate request, so just return success */
3344 dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
3345 return 0;
3346 }
3347
3348 vf->port_vlan_info = vlanprio;
3349
3350 if (vf->port_vlan_info)
3351 dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
3352 vlan_id, qos, vf_id);
3353 else
3354 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
3355
3356 ice_vc_reset_vf(vf);
3357
3358 return 0;
3359 }
3360
3361 /**
3362 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
3363 * @caps: VF driver negotiated capabilities
3364 *
3365 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
3366 */
ice_vf_vlan_offload_ena(u32 caps)3367 static bool ice_vf_vlan_offload_ena(u32 caps)
3368 {
3369 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
3370 }
3371
3372 /**
3373 * ice_vc_process_vlan_msg
3374 * @vf: pointer to the VF info
3375 * @msg: pointer to the msg buffer
3376 * @add_v: Add VLAN if true, otherwise delete VLAN
3377 *
3378 * Process virtchnl op to add or remove programmed guest VLAN ID
3379 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)3380 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
3381 {
3382 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3383 struct virtchnl_vlan_filter_list *vfl =
3384 (struct virtchnl_vlan_filter_list *)msg;
3385 struct ice_pf *pf = vf->pf;
3386 bool vlan_promisc = false;
3387 struct ice_vsi *vsi;
3388 struct device *dev;
3389 struct ice_hw *hw;
3390 int status = 0;
3391 u8 promisc_m;
3392 int i;
3393
3394 dev = ice_pf_to_dev(pf);
3395 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3396 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3397 goto error_param;
3398 }
3399
3400 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3401 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3402 goto error_param;
3403 }
3404
3405 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
3406 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3407 goto error_param;
3408 }
3409
3410 for (i = 0; i < vfl->num_elements; i++) {
3411 if (vfl->vlan_id[i] >= VLAN_N_VID) {
3412 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3413 dev_err(dev, "invalid VF VLAN id %d\n",
3414 vfl->vlan_id[i]);
3415 goto error_param;
3416 }
3417 }
3418
3419 hw = &pf->hw;
3420 vsi = pf->vsi[vf->lan_vsi_idx];
3421 if (!vsi) {
3422 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3423 goto error_param;
3424 }
3425
3426 if (add_v && !ice_is_vf_trusted(vf) &&
3427 vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
3428 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
3429 vf->vf_id);
3430 /* There is no need to let VF know about being not trusted,
3431 * so we can just return success message here
3432 */
3433 goto error_param;
3434 }
3435
3436 if (vsi->info.pvid) {
3437 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3438 goto error_param;
3439 }
3440
3441 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
3442 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
3443 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags))
3444 vlan_promisc = true;
3445
3446 if (add_v) {
3447 for (i = 0; i < vfl->num_elements; i++) {
3448 u16 vid = vfl->vlan_id[i];
3449
3450 if (!ice_is_vf_trusted(vf) &&
3451 vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
3452 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
3453 vf->vf_id);
3454 /* There is no need to let VF know about being
3455 * not trusted, so we can just return success
3456 * message here as well.
3457 */
3458 goto error_param;
3459 }
3460
3461 /* we add VLAN 0 by default for each VF so we can enable
3462 * Tx VLAN anti-spoof without triggering MDD events so
3463 * we don't need to add it again here
3464 */
3465 if (!vid)
3466 continue;
3467
3468 status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3469 if (status) {
3470 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3471 goto error_param;
3472 }
3473
3474 /* Enable VLAN pruning when non-zero VLAN is added */
3475 if (!vlan_promisc && vid &&
3476 !ice_vsi_is_vlan_pruning_ena(vsi)) {
3477 status = ice_cfg_vlan_pruning(vsi, true, false);
3478 if (status) {
3479 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3480 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
3481 vid, status);
3482 goto error_param;
3483 }
3484 } else if (vlan_promisc) {
3485 /* Enable Ucast/Mcast VLAN promiscuous mode */
3486 promisc_m = ICE_PROMISC_VLAN_TX |
3487 ICE_PROMISC_VLAN_RX;
3488
3489 status = ice_set_vsi_promisc(hw, vsi->idx,
3490 promisc_m, vid);
3491 if (status) {
3492 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3493 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
3494 vid, status);
3495 }
3496 }
3497 }
3498 } else {
3499 /* In case of non_trusted VF, number of VLAN elements passed
3500 * to PF for removal might be greater than number of VLANs
3501 * filter programmed for that VF - So, use actual number of
3502 * VLANS added earlier with add VLAN opcode. In order to avoid
3503 * removing VLAN that doesn't exist, which result to sending
3504 * erroneous failed message back to the VF
3505 */
3506 int num_vf_vlan;
3507
3508 num_vf_vlan = vsi->num_vlan;
3509 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
3510 u16 vid = vfl->vlan_id[i];
3511
3512 /* we add VLAN 0 by default for each VF so we can enable
3513 * Tx VLAN anti-spoof without triggering MDD events so
3514 * we don't want a VIRTCHNL request to remove it
3515 */
3516 if (!vid)
3517 continue;
3518
3519 /* Make sure ice_vsi_kill_vlan is successful before
3520 * updating VLAN information
3521 */
3522 status = ice_vsi_kill_vlan(vsi, vid);
3523 if (status) {
3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3525 goto error_param;
3526 }
3527
3528 /* Disable VLAN pruning when only VLAN 0 is left */
3529 if (vsi->num_vlan == 1 &&
3530 ice_vsi_is_vlan_pruning_ena(vsi))
3531 ice_cfg_vlan_pruning(vsi, false, false);
3532
3533 /* Disable Unicast/Multicast VLAN promiscuous mode */
3534 if (vlan_promisc) {
3535 promisc_m = ICE_PROMISC_VLAN_TX |
3536 ICE_PROMISC_VLAN_RX;
3537
3538 ice_clear_vsi_promisc(hw, vsi->idx,
3539 promisc_m, vid);
3540 }
3541 }
3542 }
3543
3544 error_param:
3545 /* send the response to the VF */
3546 if (add_v)
3547 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
3548 NULL, 0);
3549 else
3550 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
3551 NULL, 0);
3552 }
3553
3554 /**
3555 * ice_vc_add_vlan_msg
3556 * @vf: pointer to the VF info
3557 * @msg: pointer to the msg buffer
3558 *
3559 * Add and program guest VLAN ID
3560 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)3561 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
3562 {
3563 return ice_vc_process_vlan_msg(vf, msg, true);
3564 }
3565
3566 /**
3567 * ice_vc_remove_vlan_msg
3568 * @vf: pointer to the VF info
3569 * @msg: pointer to the msg buffer
3570 *
3571 * remove programmed guest VLAN ID
3572 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)3573 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
3574 {
3575 return ice_vc_process_vlan_msg(vf, msg, false);
3576 }
3577
3578 /**
3579 * ice_vc_ena_vlan_stripping
3580 * @vf: pointer to the VF info
3581 *
3582 * Enable VLAN header stripping for a given VF
3583 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)3584 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
3585 {
3586 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3587 struct ice_pf *pf = vf->pf;
3588 struct ice_vsi *vsi;
3589
3590 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3591 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3592 goto error_param;
3593 }
3594
3595 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3596 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3597 goto error_param;
3598 }
3599
3600 vsi = pf->vsi[vf->lan_vsi_idx];
3601 if (ice_vsi_manage_vlan_stripping(vsi, true))
3602 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3603
3604 error_param:
3605 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3606 v_ret, NULL, 0);
3607 }
3608
3609 /**
3610 * ice_vc_dis_vlan_stripping
3611 * @vf: pointer to the VF info
3612 *
3613 * Disable VLAN header stripping for a given VF
3614 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)3615 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
3616 {
3617 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3618 struct ice_pf *pf = vf->pf;
3619 struct ice_vsi *vsi;
3620
3621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3622 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623 goto error_param;
3624 }
3625
3626 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
3627 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3628 goto error_param;
3629 }
3630
3631 vsi = pf->vsi[vf->lan_vsi_idx];
3632 if (!vsi) {
3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3634 goto error_param;
3635 }
3636
3637 if (ice_vsi_manage_vlan_stripping(vsi, false))
3638 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3639
3640 error_param:
3641 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3642 v_ret, NULL, 0);
3643 }
3644
3645 /**
3646 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
3647 * @vf: VF to enable/disable VLAN stripping for on initialization
3648 *
3649 * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
3650 * the flag is cleared then we want to disable stripping. For example, the flag
3651 * will be cleared when port VLANs are configured by the administrator before
3652 * passing the VF to the guest or if the AVF driver doesn't support VLAN
3653 * offloads.
3654 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)3655 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
3656 {
3657 struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
3658
3659 if (!vsi)
3660 return -EINVAL;
3661
3662 /* don't modify stripping if port VLAN is configured */
3663 if (vsi->info.pvid)
3664 return 0;
3665
3666 if (ice_vf_vlan_offload_ena(vf->driver_caps))
3667 return ice_vsi_manage_vlan_stripping(vsi, true);
3668 else
3669 return ice_vsi_manage_vlan_stripping(vsi, false);
3670 }
3671
3672 /**
3673 * ice_vc_process_vf_msg - Process request from VF
3674 * @pf: pointer to the PF structure
3675 * @event: pointer to the AQ event
3676 *
3677 * called from the common asq/arq handler to
3678 * process request from VF
3679 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event)3680 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3681 {
3682 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3683 s16 vf_id = le16_to_cpu(event->desc.retval);
3684 u16 msglen = event->msg_len;
3685 u8 *msg = event->msg_buf;
3686 struct ice_vf *vf = NULL;
3687 struct device *dev;
3688 int err = 0;
3689
3690 dev = ice_pf_to_dev(pf);
3691 if (ice_validate_vf_id(pf, vf_id)) {
3692 err = -EINVAL;
3693 goto error_handler;
3694 }
3695
3696 vf = &pf->vf[vf_id];
3697
3698 /* Check if VF is disabled. */
3699 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3700 err = -EPERM;
3701 goto error_handler;
3702 }
3703
3704 /* Perform basic checks on the msg */
3705 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3706 if (err) {
3707 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3708 err = -EPERM;
3709 else
3710 err = -EINVAL;
3711 }
3712
3713 error_handler:
3714 if (err) {
3715 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3716 NULL, 0);
3717 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3718 vf_id, v_opcode, msglen, err);
3719 return;
3720 }
3721
3722 switch (v_opcode) {
3723 case VIRTCHNL_OP_VERSION:
3724 err = ice_vc_get_ver_msg(vf, msg);
3725 break;
3726 case VIRTCHNL_OP_GET_VF_RESOURCES:
3727 err = ice_vc_get_vf_res_msg(vf, msg);
3728 if (ice_vf_init_vlan_stripping(vf))
3729 dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
3730 vf->vf_id);
3731 ice_vc_notify_vf_link_state(vf);
3732 break;
3733 case VIRTCHNL_OP_RESET_VF:
3734 ice_vc_reset_vf_msg(vf);
3735 break;
3736 case VIRTCHNL_OP_ADD_ETH_ADDR:
3737 err = ice_vc_add_mac_addr_msg(vf, msg);
3738 break;
3739 case VIRTCHNL_OP_DEL_ETH_ADDR:
3740 err = ice_vc_del_mac_addr_msg(vf, msg);
3741 break;
3742 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3743 err = ice_vc_cfg_qs_msg(vf, msg);
3744 break;
3745 case VIRTCHNL_OP_ENABLE_QUEUES:
3746 err = ice_vc_ena_qs_msg(vf, msg);
3747 ice_vc_notify_vf_link_state(vf);
3748 break;
3749 case VIRTCHNL_OP_DISABLE_QUEUES:
3750 err = ice_vc_dis_qs_msg(vf, msg);
3751 break;
3752 case VIRTCHNL_OP_REQUEST_QUEUES:
3753 err = ice_vc_request_qs_msg(vf, msg);
3754 break;
3755 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3756 err = ice_vc_cfg_irq_map_msg(vf, msg);
3757 break;
3758 case VIRTCHNL_OP_CONFIG_RSS_KEY:
3759 err = ice_vc_config_rss_key(vf, msg);
3760 break;
3761 case VIRTCHNL_OP_CONFIG_RSS_LUT:
3762 err = ice_vc_config_rss_lut(vf, msg);
3763 break;
3764 case VIRTCHNL_OP_GET_STATS:
3765 err = ice_vc_get_stats_msg(vf, msg);
3766 break;
3767 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3768 err = ice_vc_cfg_promiscuous_mode_msg(vf, msg);
3769 break;
3770 case VIRTCHNL_OP_ADD_VLAN:
3771 err = ice_vc_add_vlan_msg(vf, msg);
3772 break;
3773 case VIRTCHNL_OP_DEL_VLAN:
3774 err = ice_vc_remove_vlan_msg(vf, msg);
3775 break;
3776 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3777 err = ice_vc_ena_vlan_stripping(vf);
3778 break;
3779 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3780 err = ice_vc_dis_vlan_stripping(vf);
3781 break;
3782 case VIRTCHNL_OP_UNKNOWN:
3783 default:
3784 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3785 vf_id);
3786 err = ice_vc_send_msg_to_vf(vf, v_opcode,
3787 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3788 NULL, 0);
3789 break;
3790 }
3791 if (err) {
3792 /* Helper function cares less about error return values here
3793 * as it is busy with pending work.
3794 */
3795 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3796 vf_id, v_opcode, err);
3797 }
3798 }
3799
3800 /**
3801 * ice_get_vf_cfg
3802 * @netdev: network interface device structure
3803 * @vf_id: VF identifier
3804 * @ivi: VF configuration structure
3805 *
3806 * return VF configuration
3807 */
3808 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)3809 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
3810 {
3811 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3812 struct ice_vf *vf;
3813
3814 if (ice_validate_vf_id(pf, vf_id))
3815 return -EINVAL;
3816
3817 vf = &pf->vf[vf_id];
3818
3819 if (ice_check_vf_init(pf, vf))
3820 return -EBUSY;
3821
3822 ivi->vf = vf_id;
3823 ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
3824
3825 /* VF configuration for VLAN and applicable QoS */
3826 ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK;
3827 ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3828
3829 ivi->trusted = vf->trusted;
3830 ivi->spoofchk = vf->spoofchk;
3831 if (!vf->link_forced)
3832 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
3833 else if (vf->link_up)
3834 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
3835 else
3836 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
3837 ivi->max_tx_rate = vf->tx_rate;
3838 ivi->min_tx_rate = 0;
3839 return 0;
3840 }
3841
3842 /**
3843 * ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
3844 * @pf: PF used to reference the switch's rules
3845 * @umac: unicast MAC to compare against existing switch rules
3846 *
3847 * Return true on the first/any match, else return false
3848 */
ice_unicast_mac_exists(struct ice_pf * pf,u8 * umac)3849 static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
3850 {
3851 struct ice_sw_recipe *mac_recipe_list =
3852 &pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
3853 struct ice_fltr_mgmt_list_entry *list_itr;
3854 struct list_head *rule_head;
3855 struct mutex *rule_lock; /* protect MAC filter list access */
3856
3857 rule_head = &mac_recipe_list->filt_rules;
3858 rule_lock = &mac_recipe_list->filt_rule_lock;
3859
3860 mutex_lock(rule_lock);
3861 list_for_each_entry(list_itr, rule_head, list_entry) {
3862 u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
3863
3864 if (ether_addr_equal(existing_mac, umac)) {
3865 mutex_unlock(rule_lock);
3866 return true;
3867 }
3868 }
3869
3870 mutex_unlock(rule_lock);
3871
3872 return false;
3873 }
3874
3875 /**
3876 * ice_set_vf_mac
3877 * @netdev: network interface device structure
3878 * @vf_id: VF identifier
3879 * @mac: MAC address
3880 *
3881 * program VF MAC address
3882 */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)3883 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
3884 {
3885 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3886 struct ice_vf *vf;
3887 int ret;
3888
3889 if (ice_validate_vf_id(pf, vf_id))
3890 return -EINVAL;
3891
3892 if (is_multicast_ether_addr(mac)) {
3893 netdev_err(netdev, "%pM not a valid unicast address\n", mac);
3894 return -EINVAL;
3895 }
3896
3897 vf = &pf->vf[vf_id];
3898 /* nothing left to do, unicast MAC already set */
3899 if (ether_addr_equal(vf->dflt_lan_addr.addr, mac))
3900 return 0;
3901
3902 ret = ice_check_vf_ready_for_cfg(vf);
3903 if (ret)
3904 return ret;
3905
3906 if (ice_unicast_mac_exists(pf, mac)) {
3907 netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
3908 mac, vf_id, mac);
3909 return -EINVAL;
3910 }
3911
3912 /* VF is notified of its new MAC via the PF's response to the
3913 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
3914 */
3915 ether_addr_copy(vf->dflt_lan_addr.addr, mac);
3916 if (is_zero_ether_addr(mac)) {
3917 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
3918 vf->pf_set_mac = false;
3919 netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
3920 vf->vf_id);
3921 } else {
3922 /* PF will add MAC rule for the VF */
3923 vf->pf_set_mac = true;
3924 netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
3925 mac, vf_id);
3926 }
3927
3928 ice_vc_reset_vf(vf);
3929 return 0;
3930 }
3931
3932 /**
3933 * ice_set_vf_trust
3934 * @netdev: network interface device structure
3935 * @vf_id: VF identifier
3936 * @trusted: Boolean value to enable/disable trusted VF
3937 *
3938 * Enable or disable a given VF as trusted
3939 */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)3940 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
3941 {
3942 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3943 struct ice_vf *vf;
3944 int ret;
3945
3946 if (ice_validate_vf_id(pf, vf_id))
3947 return -EINVAL;
3948
3949 vf = &pf->vf[vf_id];
3950 ret = ice_check_vf_ready_for_cfg(vf);
3951 if (ret)
3952 return ret;
3953
3954 /* Check if already trusted */
3955 if (trusted == vf->trusted)
3956 return 0;
3957
3958 vf->trusted = trusted;
3959 ice_vc_reset_vf(vf);
3960 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
3961 vf_id, trusted ? "" : "un");
3962
3963 return 0;
3964 }
3965
3966 /**
3967 * ice_set_vf_link_state
3968 * @netdev: network interface device structure
3969 * @vf_id: VF identifier
3970 * @link_state: required link state
3971 *
3972 * Set VF's link state, irrespective of physical link state status
3973 */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)3974 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
3975 {
3976 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3977 struct ice_vf *vf;
3978 int ret;
3979
3980 if (ice_validate_vf_id(pf, vf_id))
3981 return -EINVAL;
3982
3983 vf = &pf->vf[vf_id];
3984 ret = ice_check_vf_ready_for_cfg(vf);
3985 if (ret)
3986 return ret;
3987
3988 switch (link_state) {
3989 case IFLA_VF_LINK_STATE_AUTO:
3990 vf->link_forced = false;
3991 break;
3992 case IFLA_VF_LINK_STATE_ENABLE:
3993 vf->link_forced = true;
3994 vf->link_up = true;
3995 break;
3996 case IFLA_VF_LINK_STATE_DISABLE:
3997 vf->link_forced = true;
3998 vf->link_up = false;
3999 break;
4000 default:
4001 return -EINVAL;
4002 }
4003
4004 ice_vc_notify_vf_link_state(vf);
4005
4006 return 0;
4007 }
4008
4009 /**
4010 * ice_get_vf_stats - populate some stats for the VF
4011 * @netdev: the netdev of the PF
4012 * @vf_id: the host OS identifier (0-255)
4013 * @vf_stats: pointer to the OS memory to be initialized
4014 */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)4015 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
4016 struct ifla_vf_stats *vf_stats)
4017 {
4018 struct ice_pf *pf = ice_netdev_to_pf(netdev);
4019 struct ice_eth_stats *stats;
4020 struct ice_vsi *vsi;
4021 struct ice_vf *vf;
4022 int ret;
4023
4024 if (ice_validate_vf_id(pf, vf_id))
4025 return -EINVAL;
4026
4027 vf = &pf->vf[vf_id];
4028 ret = ice_check_vf_ready_for_cfg(vf);
4029 if (ret)
4030 return ret;
4031
4032 vsi = pf->vsi[vf->lan_vsi_idx];
4033 if (!vsi)
4034 return -EINVAL;
4035
4036 ice_update_eth_stats(vsi);
4037 stats = &vsi->eth_stats;
4038
4039 memset(vf_stats, 0, sizeof(*vf_stats));
4040
4041 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
4042 stats->rx_multicast;
4043 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
4044 stats->tx_multicast;
4045 vf_stats->rx_bytes = stats->rx_bytes;
4046 vf_stats->tx_bytes = stats->tx_bytes;
4047 vf_stats->broadcast = stats->rx_broadcast;
4048 vf_stats->multicast = stats->rx_multicast;
4049 vf_stats->rx_dropped = stats->rx_discards;
4050 vf_stats->tx_dropped = stats->tx_discards;
4051
4052 return 0;
4053 }
4054
4055 /**
4056 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
4057 * @vf: pointer to the VF structure
4058 */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)4059 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
4060 {
4061 struct ice_pf *pf = vf->pf;
4062 struct device *dev;
4063
4064 dev = ice_pf_to_dev(pf);
4065
4066 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
4067 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
4068 vf->dflt_lan_addr.addr,
4069 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
4070 ? "on" : "off");
4071 }
4072
4073 /**
4074 * ice_print_vfs_mdd_event - print VFs malicious driver detect event
4075 * @pf: pointer to the PF structure
4076 *
4077 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
4078 */
ice_print_vfs_mdd_events(struct ice_pf * pf)4079 void ice_print_vfs_mdd_events(struct ice_pf *pf)
4080 {
4081 struct device *dev = ice_pf_to_dev(pf);
4082 struct ice_hw *hw = &pf->hw;
4083 int i;
4084
4085 /* check that there are pending MDD events to print */
4086 if (!test_and_clear_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state))
4087 return;
4088
4089 /* VF MDD event logs are rate limited to one second intervals */
4090 if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1))
4091 return;
4092
4093 pf->last_printed_mdd_jiffies = jiffies;
4094
4095 ice_for_each_vf(pf, i) {
4096 struct ice_vf *vf = &pf->vf[i];
4097
4098 /* only print Rx MDD event message if there are new events */
4099 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
4100 vf->mdd_rx_events.last_printed =
4101 vf->mdd_rx_events.count;
4102 ice_print_vf_rx_mdd_event(vf);
4103 }
4104
4105 /* only print Tx MDD event message if there are new events */
4106 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
4107 vf->mdd_tx_events.last_printed =
4108 vf->mdd_tx_events.count;
4109
4110 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
4111 vf->mdd_tx_events.count, hw->pf_id, i,
4112 vf->dflt_lan_addr.addr);
4113 }
4114 }
4115 }
4116
4117 /**
4118 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
4119 * @pdev: pointer to a pci_dev structure
4120 *
4121 * Called when recovering from a PF FLR to restore interrupt capability to
4122 * the VFs.
4123 */
ice_restore_all_vfs_msi_state(struct pci_dev * pdev)4124 void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
4125 {
4126 struct pci_dev *vfdev;
4127 u16 vf_id;
4128 int pos;
4129
4130 if (!pci_num_vf(pdev))
4131 return;
4132
4133 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4134 if (pos) {
4135 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
4136 &vf_id);
4137 vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
4138 while (vfdev) {
4139 if (vfdev->is_virtfn && vfdev->physfn == pdev)
4140 pci_restore_msi_state(vfdev);
4141 vfdev = pci_get_device(pdev->vendor, vf_id,
4142 vfdev);
4143 }
4144 }
4145 }
4146