1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
15 /**
16 * ice_qp_reset_stats - Resets all stats for rings of given index
17 * @vsi: VSI that contains rings of interest
18 * @q_idx: ring index in array
19 */
ice_qp_reset_stats(struct ice_vsi * vsi,u16 q_idx)20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21 {
22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 memset(&vsi->tx_rings[q_idx]->stats, 0,
25 sizeof(vsi->tx_rings[q_idx]->stats));
26 if (ice_is_xdp_ena_vsi(vsi))
27 memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 sizeof(vsi->xdp_rings[q_idx]->stats));
29 }
30
31 /**
32 * ice_qp_clean_rings - Cleans all the rings of a given index
33 * @vsi: VSI that contains rings of interest
34 * @q_idx: ring index in array
35 */
ice_qp_clean_rings(struct ice_vsi * vsi,u16 q_idx)36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37 {
38 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 if (ice_is_xdp_ena_vsi(vsi))
40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42 }
43
44 /**
45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46 * @vsi: VSI that has netdev
47 * @q_vector: q_vector that has NAPI context
48 * @enable: true for enable, false for disable
49 */
50 static void
ice_qvec_toggle_napi(struct ice_vsi * vsi,struct ice_q_vector * q_vector,bool enable)51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 bool enable)
53 {
54 if (!vsi->netdev || !q_vector)
55 return;
56
57 if (enable)
58 napi_enable(&q_vector->napi);
59 else
60 napi_disable(&q_vector->napi);
61 }
62
63 /**
64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65 * @vsi: the VSI that contains queue vector being un-configured
66 * @rx_ring: Rx ring that will have its IRQ disabled
67 * @q_vector: queue vector
68 */
69 static void
ice_qvec_dis_irq(struct ice_vsi * vsi,struct ice_ring * rx_ring,struct ice_q_vector * q_vector)70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 struct ice_q_vector *q_vector)
72 {
73 struct ice_pf *pf = vsi->back;
74 struct ice_hw *hw = &pf->hw;
75 int base = vsi->base_vector;
76 u16 reg;
77 u32 val;
78
79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 * here only QINT_RQCTL
81 */
82 reg = rx_ring->reg_idx;
83 val = rd32(hw, QINT_RQCTL(reg));
84 val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 wr32(hw, QINT_RQCTL(reg), val);
86
87 if (q_vector) {
88 u16 v_idx = q_vector->v_idx;
89
90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 ice_flush(hw);
92 synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 }
94 }
95
96 /**
97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98 * @vsi: the VSI that contains queue vector
99 * @q_vector: queue vector
100 */
101 static void
ice_qvec_cfg_msix(struct ice_vsi * vsi,struct ice_q_vector * q_vector)102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103 {
104 u16 reg_idx = q_vector->reg_idx;
105 struct ice_pf *pf = vsi->back;
106 struct ice_hw *hw = &pf->hw;
107 struct ice_ring *ring;
108
109 ice_cfg_itr(hw, q_vector);
110
111 wr32(hw, GLINT_RATE(reg_idx),
112 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113
114 ice_for_each_ring(ring, q_vector->tx)
115 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116 q_vector->tx.itr_idx);
117
118 ice_for_each_ring(ring, q_vector->rx)
119 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120 q_vector->rx.itr_idx);
121
122 ice_flush(hw);
123 }
124
125 /**
126 * ice_qvec_ena_irq - Enable IRQ for given queue vector
127 * @vsi: the VSI that contains queue vector
128 * @q_vector: queue vector
129 */
ice_qvec_ena_irq(struct ice_vsi * vsi,struct ice_q_vector * q_vector)130 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131 {
132 struct ice_pf *pf = vsi->back;
133 struct ice_hw *hw = &pf->hw;
134
135 ice_irq_dynamic_ena(hw, vsi, q_vector);
136
137 ice_flush(hw);
138 }
139
140 /**
141 * ice_qp_dis - Disables a queue pair
142 * @vsi: VSI of interest
143 * @q_idx: ring index in array
144 *
145 * Returns 0 on success, negative on failure.
146 */
ice_qp_dis(struct ice_vsi * vsi,u16 q_idx)147 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148 {
149 struct ice_txq_meta txq_meta = { };
150 struct ice_ring *tx_ring, *rx_ring;
151 struct ice_q_vector *q_vector;
152 int timeout = 50;
153 int err;
154
155 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156 return -EINVAL;
157
158 tx_ring = vsi->tx_rings[q_idx];
159 rx_ring = vsi->rx_rings[q_idx];
160 q_vector = rx_ring->q_vector;
161
162 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163 timeout--;
164 if (!timeout)
165 return -EBUSY;
166 usleep_range(1000, 2000);
167 }
168 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169
170 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171
172 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174 if (err)
175 return err;
176 if (ice_is_xdp_ena_vsi(vsi)) {
177 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178
179 memset(&txq_meta, 0, sizeof(txq_meta));
180 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182 &txq_meta);
183 if (err)
184 return err;
185 }
186 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
187 if (err)
188 return err;
189
190 ice_qvec_toggle_napi(vsi, q_vector, false);
191 ice_qp_clean_rings(vsi, q_idx);
192 ice_qp_reset_stats(vsi, q_idx);
193
194 return 0;
195 }
196
197 /**
198 * ice_qp_ena - Enables a queue pair
199 * @vsi: VSI of interest
200 * @q_idx: ring index in array
201 *
202 * Returns 0 on success, negative on failure.
203 */
ice_qp_ena(struct ice_vsi * vsi,u16 q_idx)204 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205 {
206 struct ice_aqc_add_tx_qgrp *qg_buf;
207 struct ice_ring *tx_ring, *rx_ring;
208 struct ice_q_vector *q_vector;
209 u16 size;
210 int err;
211
212 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
213 return -EINVAL;
214
215 size = struct_size(qg_buf, txqs, 1);
216 qg_buf = kzalloc(size, GFP_KERNEL);
217 if (!qg_buf)
218 return -ENOMEM;
219
220 qg_buf->num_txqs = 1;
221
222 tx_ring = vsi->tx_rings[q_idx];
223 rx_ring = vsi->rx_rings[q_idx];
224 q_vector = rx_ring->q_vector;
225
226 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
227 if (err)
228 goto free_buf;
229
230 if (ice_is_xdp_ena_vsi(vsi)) {
231 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
232
233 memset(qg_buf, 0, size);
234 qg_buf->num_txqs = 1;
235 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
236 if (err)
237 goto free_buf;
238 ice_set_ring_xdp(xdp_ring);
239 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
240 }
241
242 err = ice_setup_rx_ctx(rx_ring);
243 if (err)
244 goto free_buf;
245
246 ice_qvec_cfg_msix(vsi, q_vector);
247
248 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
249 if (err)
250 goto free_buf;
251
252 clear_bit(__ICE_CFG_BUSY, vsi->state);
253 ice_qvec_toggle_napi(vsi, q_vector, true);
254 ice_qvec_ena_irq(vsi, q_vector);
255
256 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
257 free_buf:
258 kfree(qg_buf);
259 return err;
260 }
261
262 /**
263 * ice_xsk_alloc_pools - allocate a buffer pool for an XDP socket
264 * @vsi: VSI to allocate the buffer pool on
265 *
266 * Returns 0 on success, negative on error
267 */
ice_xsk_alloc_pools(struct ice_vsi * vsi)268 static int ice_xsk_alloc_pools(struct ice_vsi *vsi)
269 {
270 if (vsi->xsk_pools)
271 return 0;
272
273 vsi->xsk_pools = kcalloc(vsi->num_xsk_pools, sizeof(*vsi->xsk_pools),
274 GFP_KERNEL);
275
276 if (!vsi->xsk_pools) {
277 vsi->num_xsk_pools = 0;
278 return -ENOMEM;
279 }
280
281 return 0;
282 }
283
284 /**
285 * ice_xsk_remove_pool - Remove an buffer pool for a certain ring/qid
286 * @vsi: VSI from which the VSI will be removed
287 * @qid: Ring/qid associated with the buffer pool
288 */
ice_xsk_remove_pool(struct ice_vsi * vsi,u16 qid)289 static void ice_xsk_remove_pool(struct ice_vsi *vsi, u16 qid)
290 {
291 vsi->xsk_pools[qid] = NULL;
292 vsi->num_xsk_pools_used--;
293
294 if (vsi->num_xsk_pools_used == 0) {
295 kfree(vsi->xsk_pools);
296 vsi->xsk_pools = NULL;
297 vsi->num_xsk_pools = 0;
298 }
299 }
300
301 /**
302 * ice_xsk_pool_disable - disable a buffer pool region
303 * @vsi: Current VSI
304 * @qid: queue ID
305 *
306 * Returns 0 on success, negative on failure
307 */
ice_xsk_pool_disable(struct ice_vsi * vsi,u16 qid)308 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
309 {
310 if (!vsi->xsk_pools || qid >= vsi->num_xsk_pools ||
311 !vsi->xsk_pools[qid])
312 return -EINVAL;
313
314 xsk_pool_dma_unmap(vsi->xsk_pools[qid], ICE_RX_DMA_ATTR);
315 ice_xsk_remove_pool(vsi, qid);
316
317 return 0;
318 }
319
320 /**
321 * ice_xsk_pool_enable - enable a buffer pool region
322 * @vsi: Current VSI
323 * @pool: pointer to a requested buffer pool region
324 * @qid: queue ID
325 *
326 * Returns 0 on success, negative on failure
327 */
328 static int
ice_xsk_pool_enable(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)329 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
330 {
331 int err;
332
333 if (vsi->type != ICE_VSI_PF)
334 return -EINVAL;
335
336 if (!vsi->num_xsk_pools)
337 vsi->num_xsk_pools = min_t(u16, vsi->num_rxq, vsi->num_txq);
338 if (qid >= vsi->num_xsk_pools)
339 return -EINVAL;
340
341 err = ice_xsk_alloc_pools(vsi);
342 if (err)
343 return err;
344
345 if (vsi->xsk_pools && vsi->xsk_pools[qid])
346 return -EBUSY;
347
348 vsi->xsk_pools[qid] = pool;
349 vsi->num_xsk_pools_used++;
350
351 err = xsk_pool_dma_map(vsi->xsk_pools[qid], ice_pf_to_dev(vsi->back),
352 ICE_RX_DMA_ATTR);
353 if (err)
354 return err;
355
356 return 0;
357 }
358
359 /**
360 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
361 * @vsi: Current VSI
362 * @pool: buffer pool to enable/associate to a ring, NULL to disable
363 * @qid: queue ID
364 *
365 * Returns 0 on success, negative on failure
366 */
ice_xsk_pool_setup(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)367 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
368 {
369 bool if_running, pool_present = !!pool;
370 int ret = 0, pool_failure = 0;
371
372 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
373
374 if (if_running) {
375 ret = ice_qp_dis(vsi, qid);
376 if (ret) {
377 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
378 goto xsk_pool_if_up;
379 }
380 }
381
382 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
383 ice_xsk_pool_disable(vsi, qid);
384
385 xsk_pool_if_up:
386 if (if_running) {
387 ret = ice_qp_ena(vsi, qid);
388 if (!ret && pool_present)
389 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
390 else if (ret)
391 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
392 }
393
394 if (pool_failure) {
395 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
396 pool_present ? "en" : "dis", pool_failure);
397 return pool_failure;
398 }
399
400 return ret;
401 }
402
403 /**
404 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
405 * @rx_ring: Rx ring
406 * @count: The number of buffers to allocate
407 *
408 * This function allocates a number of Rx buffers from the fill ring
409 * or the internal recycle mechanism and places them on the Rx ring.
410 *
411 * Returns false if all allocations were successful, true if any fail.
412 */
ice_alloc_rx_bufs_zc(struct ice_ring * rx_ring,u16 count)413 bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
414 {
415 union ice_32b_rx_flex_desc *rx_desc;
416 u16 ntu = rx_ring->next_to_use;
417 struct ice_rx_buf *rx_buf;
418 bool ret = false;
419 dma_addr_t dma;
420
421 if (!count)
422 return false;
423
424 rx_desc = ICE_RX_DESC(rx_ring, ntu);
425 rx_buf = &rx_ring->rx_buf[ntu];
426
427 do {
428 rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_pool);
429 if (!rx_buf->xdp) {
430 ret = true;
431 break;
432 }
433
434 dma = xsk_buff_xdp_get_dma(rx_buf->xdp);
435 rx_desc->read.pkt_addr = cpu_to_le64(dma);
436 rx_desc->wb.status_error0 = 0;
437
438 rx_desc++;
439 rx_buf++;
440 ntu++;
441
442 if (unlikely(ntu == rx_ring->count)) {
443 rx_desc = ICE_RX_DESC(rx_ring, 0);
444 rx_buf = rx_ring->rx_buf;
445 ntu = 0;
446 }
447 } while (--count);
448
449 if (rx_ring->next_to_use != ntu) {
450 /* clear the status bits for the next_to_use descriptor */
451 rx_desc->wb.status_error0 = 0;
452 ice_release_rx_desc(rx_ring, ntu);
453 }
454
455 return ret;
456 }
457
458 /**
459 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
460 * @rx_ring: Rx ring
461 */
ice_bump_ntc(struct ice_ring * rx_ring)462 static void ice_bump_ntc(struct ice_ring *rx_ring)
463 {
464 int ntc = rx_ring->next_to_clean + 1;
465
466 ntc = (ntc < rx_ring->count) ? ntc : 0;
467 rx_ring->next_to_clean = ntc;
468 prefetch(ICE_RX_DESC(rx_ring, ntc));
469 }
470
471 /**
472 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
473 * @rx_ring: Rx ring
474 * @rx_buf: zero-copy Rx buffer
475 *
476 * This function allocates a new skb from a zero-copy Rx buffer.
477 *
478 * Returns the skb on success, NULL on failure.
479 */
480 static struct sk_buff *
ice_construct_skb_zc(struct ice_ring * rx_ring,struct ice_rx_buf * rx_buf)481 ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
482 {
483 unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta;
484 unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data;
485 unsigned int datasize_hard = rx_buf->xdp->data_end -
486 rx_buf->xdp->data_hard_start;
487 struct sk_buff *skb;
488
489 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
490 GFP_ATOMIC | __GFP_NOWARN);
491 if (unlikely(!skb))
492 return NULL;
493
494 skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start);
495 memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize);
496 if (metasize)
497 skb_metadata_set(skb, metasize);
498
499 xsk_buff_free(rx_buf->xdp);
500 rx_buf->xdp = NULL;
501 return skb;
502 }
503
504 /**
505 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
506 * @rx_ring: Rx ring
507 * @xdp: xdp_buff used as input to the XDP program
508 *
509 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
510 */
511 static int
ice_run_xdp_zc(struct ice_ring * rx_ring,struct xdp_buff * xdp)512 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
513 {
514 int err, result = ICE_XDP_PASS;
515 struct bpf_prog *xdp_prog;
516 struct ice_ring *xdp_ring;
517 u32 act;
518
519 rcu_read_lock();
520 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
521 if (!xdp_prog) {
522 rcu_read_unlock();
523 return ICE_XDP_PASS;
524 }
525
526 act = bpf_prog_run_xdp(xdp_prog, xdp);
527
528 if (likely(act == XDP_REDIRECT)) {
529 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
530 if (err)
531 goto out_failure;
532 rcu_read_unlock();
533 return ICE_XDP_REDIR;
534 }
535
536 switch (act) {
537 case XDP_PASS:
538 break;
539 case XDP_TX:
540 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
541 result = ice_xmit_xdp_buff(xdp, xdp_ring);
542 if (result == ICE_XDP_CONSUMED)
543 goto out_failure;
544 break;
545 default:
546 bpf_warn_invalid_xdp_action(act);
547 fallthrough;
548 case XDP_ABORTED:
549 out_failure:
550 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
551 fallthrough;
552 case XDP_DROP:
553 result = ICE_XDP_CONSUMED;
554 break;
555 }
556
557 rcu_read_unlock();
558 return result;
559 }
560
561 /**
562 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
563 * @rx_ring: AF_XDP Rx ring
564 * @budget: NAPI budget
565 *
566 * Returns number of processed packets on success, remaining budget on failure.
567 */
ice_clean_rx_irq_zc(struct ice_ring * rx_ring,int budget)568 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
569 {
570 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
571 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
572 unsigned int xdp_xmit = 0;
573 bool failure = false;
574
575 while (likely(total_rx_packets < (unsigned int)budget)) {
576 union ice_32b_rx_flex_desc *rx_desc;
577 unsigned int size, xdp_res = 0;
578 struct ice_rx_buf *rx_buf;
579 struct sk_buff *skb;
580 u16 stat_err_bits;
581 u16 vlan_tag = 0;
582 u8 rx_ptype;
583
584 if (cleaned_count >= ICE_RX_BUF_WRITE) {
585 failure |= ice_alloc_rx_bufs_zc(rx_ring,
586 cleaned_count);
587 cleaned_count = 0;
588 }
589
590 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
591
592 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
593 if (!ice_test_staterr(rx_desc, stat_err_bits))
594 break;
595
596 /* This memory barrier is needed to keep us from reading
597 * any other fields out of the rx_desc until we have
598 * verified the descriptor has been written back.
599 */
600 dma_rmb();
601
602 size = le16_to_cpu(rx_desc->wb.pkt_len) &
603 ICE_RX_FLX_DESC_PKT_LEN_M;
604 if (!size)
605 break;
606
607 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
608 rx_buf->xdp->data_end = rx_buf->xdp->data + size;
609 xsk_buff_dma_sync_for_cpu(rx_buf->xdp, rx_ring->xsk_pool);
610
611 xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp);
612 if (xdp_res) {
613 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
614 xdp_xmit |= xdp_res;
615 else
616 xsk_buff_free(rx_buf->xdp);
617
618 rx_buf->xdp = NULL;
619 total_rx_bytes += size;
620 total_rx_packets++;
621 cleaned_count++;
622
623 ice_bump_ntc(rx_ring);
624 continue;
625 }
626
627 /* XDP_PASS path */
628 skb = ice_construct_skb_zc(rx_ring, rx_buf);
629 if (!skb) {
630 rx_ring->rx_stats.alloc_buf_failed++;
631 break;
632 }
633
634 cleaned_count++;
635 ice_bump_ntc(rx_ring);
636
637 if (eth_skb_pad(skb)) {
638 skb = NULL;
639 continue;
640 }
641
642 total_rx_bytes += skb->len;
643 total_rx_packets++;
644
645 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
646 if (ice_test_staterr(rx_desc, stat_err_bits))
647 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
648
649 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
650 ICE_RX_FLEX_DESC_PTYPE_M;
651
652 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
653 ice_receive_skb(rx_ring, skb, vlan_tag);
654 }
655
656 ice_finalize_xdp_rx(rx_ring, xdp_xmit);
657 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
658
659 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
660 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
661 xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
662 else
663 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
664
665 return (int)total_rx_packets;
666 }
667
668 return failure ? budget : (int)total_rx_packets;
669 }
670
671 /**
672 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
673 * @xdp_ring: XDP Tx ring
674 * @budget: max number of frames to xmit
675 *
676 * Returns true if cleanup/transmission is done.
677 */
ice_xmit_zc(struct ice_ring * xdp_ring,int budget)678 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
679 {
680 struct ice_tx_desc *tx_desc = NULL;
681 bool work_done = true;
682 struct xdp_desc desc;
683 dma_addr_t dma;
684
685 while (likely(budget-- > 0)) {
686 struct ice_tx_buf *tx_buf;
687
688 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
689 xdp_ring->tx_stats.tx_busy++;
690 work_done = false;
691 break;
692 }
693
694 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
695
696 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc))
697 break;
698
699 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr);
700 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma,
701 desc.len);
702
703 tx_buf->bytecount = desc.len;
704
705 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
706 tx_desc->buf_addr = cpu_to_le64(dma);
707 tx_desc->cmd_type_offset_bsz =
708 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
709
710 xdp_ring->next_to_use++;
711 if (xdp_ring->next_to_use == xdp_ring->count)
712 xdp_ring->next_to_use = 0;
713 }
714
715 if (tx_desc) {
716 ice_xdp_ring_update_tail(xdp_ring);
717 xsk_tx_release(xdp_ring->xsk_pool);
718 }
719
720 return budget > 0 && work_done;
721 }
722
723 /**
724 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
725 * @xdp_ring: XDP Tx ring
726 * @tx_buf: Tx buffer to clean
727 */
728 static void
ice_clean_xdp_tx_buf(struct ice_ring * xdp_ring,struct ice_tx_buf * tx_buf)729 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
730 {
731 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
732 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
733 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
734 dma_unmap_len_set(tx_buf, len, 0);
735 }
736
737 /**
738 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
739 * @xdp_ring: XDP Tx ring
740 * @budget: NAPI budget
741 *
742 * Returns true if cleanup/tranmission is done.
743 */
ice_clean_tx_irq_zc(struct ice_ring * xdp_ring,int budget)744 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
745 {
746 int total_packets = 0, total_bytes = 0;
747 s16 ntc = xdp_ring->next_to_clean;
748 struct ice_tx_desc *tx_desc;
749 struct ice_tx_buf *tx_buf;
750 u32 xsk_frames = 0;
751 bool xmit_done;
752
753 tx_desc = ICE_TX_DESC(xdp_ring, ntc);
754 tx_buf = &xdp_ring->tx_buf[ntc];
755 ntc -= xdp_ring->count;
756
757 do {
758 if (!(tx_desc->cmd_type_offset_bsz &
759 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
760 break;
761
762 total_bytes += tx_buf->bytecount;
763 total_packets++;
764
765 if (tx_buf->raw_buf) {
766 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
767 tx_buf->raw_buf = NULL;
768 } else {
769 xsk_frames++;
770 }
771
772 tx_desc->cmd_type_offset_bsz = 0;
773 tx_buf++;
774 tx_desc++;
775 ntc++;
776
777 if (unlikely(!ntc)) {
778 ntc -= xdp_ring->count;
779 tx_buf = xdp_ring->tx_buf;
780 tx_desc = ICE_TX_DESC(xdp_ring, 0);
781 }
782
783 prefetch(tx_desc);
784
785 } while (likely(--budget));
786
787 ntc += xdp_ring->count;
788 xdp_ring->next_to_clean = ntc;
789
790 if (xsk_frames)
791 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
792
793 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
794 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
795
796 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
797 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
798
799 return budget > 0 && xmit_done;
800 }
801
802 /**
803 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
804 * @netdev: net_device
805 * @queue_id: queue to wake up
806 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
807 *
808 * Returns negative on error, zero otherwise.
809 */
810 int
ice_xsk_wakeup(struct net_device * netdev,u32 queue_id,u32 __always_unused flags)811 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
812 u32 __always_unused flags)
813 {
814 struct ice_netdev_priv *np = netdev_priv(netdev);
815 struct ice_q_vector *q_vector;
816 struct ice_vsi *vsi = np->vsi;
817 struct ice_ring *ring;
818
819 if (test_bit(__ICE_DOWN, vsi->state))
820 return -ENETDOWN;
821
822 if (!ice_is_xdp_ena_vsi(vsi))
823 return -ENXIO;
824
825 if (queue_id >= vsi->num_txq)
826 return -ENXIO;
827
828 if (!vsi->xdp_rings[queue_id]->xsk_pool)
829 return -ENXIO;
830
831 ring = vsi->xdp_rings[queue_id];
832
833 /* The idea here is that if NAPI is running, mark a miss, so
834 * it will run again. If not, trigger an interrupt and
835 * schedule the NAPI from interrupt context. If NAPI would be
836 * scheduled here, the interrupt affinity would not be
837 * honored.
838 */
839 q_vector = ring->q_vector;
840 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
841 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
842
843 return 0;
844 }
845
846 /**
847 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
848 * @vsi: VSI to be checked
849 *
850 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
851 */
ice_xsk_any_rx_ring_ena(struct ice_vsi * vsi)852 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
853 {
854 int i;
855
856 if (!vsi->xsk_pools)
857 return false;
858
859 for (i = 0; i < vsi->num_xsk_pools; i++) {
860 if (vsi->xsk_pools[i])
861 return true;
862 }
863
864 return false;
865 }
866
867 /**
868 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
869 * @rx_ring: ring to be cleaned
870 */
ice_xsk_clean_rx_ring(struct ice_ring * rx_ring)871 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
872 {
873 u16 i;
874
875 for (i = 0; i < rx_ring->count; i++) {
876 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
877
878 if (!rx_buf->xdp)
879 continue;
880
881 rx_buf->xdp = NULL;
882 }
883 }
884
885 /**
886 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
887 * @xdp_ring: XDP_Tx ring
888 */
ice_xsk_clean_xdp_ring(struct ice_ring * xdp_ring)889 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
890 {
891 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
892 u32 xsk_frames = 0;
893
894 while (ntc != ntu) {
895 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
896
897 if (tx_buf->raw_buf)
898 ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
899 else
900 xsk_frames++;
901
902 tx_buf->raw_buf = NULL;
903
904 ntc++;
905 if (ntc >= xdp_ring->count)
906 ntc = 0;
907 }
908
909 if (xsk_frames)
910 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
911 }
912