1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/bpf.h>
34 #include <linux/bpf_trace.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/etherdevice.h>
37 #ifdef CONFIG_IGB_DCA
38 #include <linux/dca.h>
39 #endif
40 #include <linux/i2c.h>
41 #include "igb.h"
42
43 enum queue_mode {
44 QUEUE_MODE_STRICT_PRIORITY,
45 QUEUE_MODE_STREAM_RESERVATION,
46 };
47
48 enum tx_queue_prio {
49 TX_QUEUE_PRIO_HIGH,
50 TX_QUEUE_PRIO_LOW,
51 };
52
53 char igb_driver_name[] = "igb";
54 static const char igb_driver_string[] =
55 "Intel(R) Gigabit Ethernet Network Driver";
56 static const char igb_copyright[] =
57 "Copyright (c) 2007-2014 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
61 };
62
63 static const struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
99 /* required last entry */
100 {0, }
101 };
102
103 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
104
105 static int igb_setup_all_tx_resources(struct igb_adapter *);
106 static int igb_setup_all_rx_resources(struct igb_adapter *);
107 static void igb_free_all_tx_resources(struct igb_adapter *);
108 static void igb_free_all_rx_resources(struct igb_adapter *);
109 static void igb_setup_mrqc(struct igb_adapter *);
110 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
111 static void igb_remove(struct pci_dev *pdev);
112 static int igb_sw_init(struct igb_adapter *);
113 int igb_open(struct net_device *);
114 int igb_close(struct net_device *);
115 static void igb_configure(struct igb_adapter *);
116 static void igb_configure_tx(struct igb_adapter *);
117 static void igb_configure_rx(struct igb_adapter *);
118 static void igb_clean_all_tx_rings(struct igb_adapter *);
119 static void igb_clean_all_rx_rings(struct igb_adapter *);
120 static void igb_clean_tx_ring(struct igb_ring *);
121 static void igb_clean_rx_ring(struct igb_ring *);
122 static void igb_set_rx_mode(struct net_device *);
123 static void igb_update_phy_info(struct timer_list *);
124 static void igb_watchdog(struct timer_list *);
125 static void igb_watchdog_task(struct work_struct *);
126 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127 static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129 static int igb_change_mtu(struct net_device *, int);
130 static int igb_set_mac(struct net_device *, void *);
131 static void igb_set_uta(struct igb_adapter *adapter, bool set);
132 static irqreturn_t igb_intr(int irq, void *);
133 static irqreturn_t igb_intr_msi(int irq, void *);
134 static irqreturn_t igb_msix_other(int irq, void *);
135 static irqreturn_t igb_msix_ring(int irq, void *);
136 #ifdef CONFIG_IGB_DCA
137 static void igb_update_dca(struct igb_q_vector *);
138 static void igb_setup_dca(struct igb_adapter *);
139 #endif /* CONFIG_IGB_DCA */
140 static int igb_poll(struct napi_struct *, int);
141 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142 static int igb_clean_rx_irq(struct igb_q_vector *, int);
143 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144 static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145 static void igb_reset_task(struct work_struct *);
146 static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150 static void igb_restore_vlan(struct igb_adapter *);
151 static void igb_rar_set_index(struct igb_adapter *, u32);
152 static void igb_ping_all_vfs(struct igb_adapter *);
153 static void igb_msg_task(struct igb_adapter *);
154 static void igb_vmm_control(struct igb_adapter *);
155 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156 static void igb_flush_mac_table(struct igb_adapter *);
157 static int igb_available_rars(struct igb_adapter *, u8);
158 static void igb_set_default_mac_filter(struct igb_adapter *);
159 static int igb_uc_sync(struct net_device *, const unsigned char *);
160 static int igb_uc_unsync(struct net_device *, const unsigned char *);
161 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172 static void igb_check_vf_rate_limit(struct igb_adapter *);
173 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176 #ifdef CONFIG_PCI_IOV
177 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
179 static int igb_disable_sriov(struct pci_dev *dev);
180 static int igb_pci_disable_sriov(struct pci_dev *dev);
181 #endif
182
183 static int igb_suspend(struct device *);
184 static int igb_resume(struct device *);
185 static int igb_runtime_suspend(struct device *dev);
186 static int igb_runtime_resume(struct device *dev);
187 static int igb_runtime_idle(struct device *dev);
188 static const struct dev_pm_ops igb_pm_ops = {
189 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191 igb_runtime_idle)
192 };
193 static void igb_shutdown(struct pci_dev *);
194 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_PCI_IOV
204 static unsigned int max_vfs;
205 module_param(max_vfs, uint, 0);
206 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207 #endif /* CONFIG_PCI_IOV */
208
209 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212 static void igb_io_resume(struct pci_dev *);
213
214 static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218 };
219
220 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222 static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227 #ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229 #endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233 };
234
235 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237 MODULE_LICENSE("GPL v2");
238
239 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240 static int debug = -1;
241 module_param(debug, int, 0);
242 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244 struct igb_reg_info {
245 u32 ofs;
246 char *name;
247 };
248
249 static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283 };
284
285 /* igb_regdump - register printout routine */
igb_regdump(struct e1000_hw * hw,struct igb_reg_info * reginfo)286 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287 {
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349 }
350
351 /* igb_dump - Print registers, Tx-rings and Rx-rings */
igb_dump(struct igb_adapter * adapter)352 static void igb_dump(struct igb_adapter *adapter)
353 {
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { u64 a; u64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, "",
453 DUMP_PREFIX_ADDRESS,
454 16, 1, buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461 rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, "",
538 DUMP_PREFIX_ADDRESS,
539 16, 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 igb_rx_bufsz(rx_ring), true);
543 }
544 }
545 }
546 }
547
548 exit:
549 return;
550 }
551
552 /**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
igb_get_i2c_data(void * data)558 static int igb_get_i2c_data(void *data)
559 {
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565 }
566
567 /**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
igb_set_i2c_data(void * data,int state)574 static void igb_set_i2c_data(void *data, int state)
575 {
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state)
581 i2cctl |= E1000_I2C_DATA_OUT;
582 else
583 i2cctl &= ~E1000_I2C_DATA_OUT;
584
585 i2cctl &= ~E1000_I2C_DATA_OE_N;
586 i2cctl |= E1000_I2C_CLK_OE_N;
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589
590 }
591
592 /**
593 * igb_set_i2c_clk - Sets the I2C SCL clock
594 * @data: pointer to hardware structure
595 * @state: state to set clock
596 *
597 * Sets the I2C clock line to state
598 **/
igb_set_i2c_clk(void * data,int state)599 static void igb_set_i2c_clk(void *data, int state)
600 {
601 struct igb_adapter *adapter = (struct igb_adapter *)data;
602 struct e1000_hw *hw = &adapter->hw;
603 s32 i2cctl = rd32(E1000_I2CPARAMS);
604
605 if (state) {
606 i2cctl |= E1000_I2C_CLK_OUT;
607 i2cctl &= ~E1000_I2C_CLK_OE_N;
608 } else {
609 i2cctl &= ~E1000_I2C_CLK_OUT;
610 i2cctl &= ~E1000_I2C_CLK_OE_N;
611 }
612 wr32(E1000_I2CPARAMS, i2cctl);
613 wrfl();
614 }
615
616 /**
617 * igb_get_i2c_clk - Gets the I2C SCL clock state
618 * @data: pointer to hardware structure
619 *
620 * Gets the I2C clock state
621 **/
igb_get_i2c_clk(void * data)622 static int igb_get_i2c_clk(void *data)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 return !!(i2cctl & E1000_I2C_CLK_IN);
629 }
630
631 static const struct i2c_algo_bit_data igb_i2c_algo = {
632 .setsda = igb_set_i2c_data,
633 .setscl = igb_set_i2c_clk,
634 .getsda = igb_get_i2c_data,
635 .getscl = igb_get_i2c_clk,
636 .udelay = 5,
637 .timeout = 20,
638 };
639
640 /**
641 * igb_get_hw_dev - return device
642 * @hw: pointer to hardware structure
643 *
644 * used by hardware layer to print debugging information
645 **/
igb_get_hw_dev(struct e1000_hw * hw)646 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
647 {
648 struct igb_adapter *adapter = hw->back;
649 return adapter->netdev;
650 }
651
652 /**
653 * igb_init_module - Driver Registration Routine
654 *
655 * igb_init_module is the first routine called when the driver is
656 * loaded. All it does is register with the PCI subsystem.
657 **/
igb_init_module(void)658 static int __init igb_init_module(void)
659 {
660 int ret;
661
662 pr_info("%s\n", igb_driver_string);
663 pr_info("%s\n", igb_copyright);
664
665 #ifdef CONFIG_IGB_DCA
666 dca_register_notify(&dca_notifier);
667 #endif
668 ret = pci_register_driver(&igb_driver);
669 return ret;
670 }
671
672 module_init(igb_init_module);
673
674 /**
675 * igb_exit_module - Driver Exit Cleanup Routine
676 *
677 * igb_exit_module is called just before the driver is removed
678 * from memory.
679 **/
igb_exit_module(void)680 static void __exit igb_exit_module(void)
681 {
682 #ifdef CONFIG_IGB_DCA
683 dca_unregister_notify(&dca_notifier);
684 #endif
685 pci_unregister_driver(&igb_driver);
686 }
687
688 module_exit(igb_exit_module);
689
690 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
691 /**
692 * igb_cache_ring_register - Descriptor ring to register mapping
693 * @adapter: board private structure to initialize
694 *
695 * Once we know the feature-set enabled for the device, we'll cache
696 * the register offset the descriptor ring is assigned to.
697 **/
igb_cache_ring_register(struct igb_adapter * adapter)698 static void igb_cache_ring_register(struct igb_adapter *adapter)
699 {
700 int i = 0, j = 0;
701 u32 rbase_offset = adapter->vfs_allocated_count;
702
703 switch (adapter->hw.mac.type) {
704 case e1000_82576:
705 /* The queues are allocated for virtualization such that VF 0
706 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
707 * In order to avoid collision we start at the first free queue
708 * and continue consuming queues in the same sequence
709 */
710 if (adapter->vfs_allocated_count) {
711 for (; i < adapter->rss_queues; i++)
712 adapter->rx_ring[i]->reg_idx = rbase_offset +
713 Q_IDX_82576(i);
714 }
715 fallthrough;
716 case e1000_82575:
717 case e1000_82580:
718 case e1000_i350:
719 case e1000_i354:
720 case e1000_i210:
721 case e1000_i211:
722 default:
723 for (; i < adapter->num_rx_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
725 for (; j < adapter->num_tx_queues; j++)
726 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
727 break;
728 }
729 }
730
igb_rd32(struct e1000_hw * hw,u32 reg)731 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
732 {
733 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
734 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
735 u32 value = 0;
736
737 if (E1000_REMOVED(hw_addr))
738 return ~value;
739
740 value = readl(&hw_addr[reg]);
741
742 /* reads should not return all F's */
743 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
744 struct net_device *netdev = igb->netdev;
745 hw->hw_addr = NULL;
746 netdev_err(netdev, "PCIe link lost\n");
747 WARN(pci_device_is_present(igb->pdev),
748 "igb: Failed to read reg 0x%x!\n", reg);
749 }
750
751 return value;
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
igb_write_ivar(struct e1000_hw * hw,int msix_vector,int index,int offset)766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
igb_assign_vector(struct igb_q_vector * q_vector,int msix_vector)781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = BIT(msix_vector);
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = BIT(msix_vector);
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
igb_configure_msix(struct igb_adapter * adapter)866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = BIT(vector);
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
igb_request_msix(struct igb_adapter * adapter)932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 unsigned int num_q_vectors = adapter->num_q_vectors;
935 struct net_device *netdev = adapter->netdev;
936 int i, err = 0, vector = 0, free_vector = 0;
937
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_other, 0, netdev->name, adapter);
940 if (err)
941 goto err_out;
942
943 if (num_q_vectors > MAX_Q_VECTORS) {
944 num_q_vectors = MAX_Q_VECTORS;
945 dev_warn(&adapter->pdev->dev,
946 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
947 adapter->num_q_vectors, MAX_Q_VECTORS);
948 }
949 for (i = 0; i < num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
igb_free_q_vector(struct igb_adapter * adapter,int v_idx)998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
igb_reset_q_vector(struct igb_adapter * adapter,int v_idx)1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
igb_reset_interrupt_capability(struct igb_adapter * adapter)1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
igb_free_q_vectors(struct igb_adapter * adapter)1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
igb_clear_interrupt_scheme(struct igb_adapter * adapter)1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
igb_set_interrupt_capability(struct igb_adapter * adapter,bool msix)1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
igb_add_ring(struct igb_ring * ring,struct igb_ring_container * head)1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
igb_alloc_q_vector(struct igb_adapter * adapter,int v_count,int v_idx,int txr_count,int txr_idx,int rxr_count,int rxr_idx)1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count;
1193 size_t size;
1194
1195 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1196 if (txr_count > 1 || rxr_count > 1)
1197 return -ENOMEM;
1198
1199 ring_count = txr_count + rxr_count;
1200 size = struct_size(q_vector, ring, ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else {
1210 memset(q_vector, 0, size);
1211 }
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1266 ring->hicredit = 0;
1267 ring->locredit = 0;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
igb_alloc_q_vectors(struct igb_adapter * adapter)1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
igb_init_interrupt_scheme(struct igb_adapter * adapter,bool msix)1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
igb_request_irq(struct igb_adapter * adapter)1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
igb_free_irq(struct igb_adapter * adapter)1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
igb_irq_disable(struct igb_adapter * adapter)1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
igb_irq_enable(struct igb_adapter * adapter)1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
igb_update_mng_vlan(struct igb_adapter * adapter)1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
igb_release_hw_control(struct igb_adapter * adapter)1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
igb_get_hw_control(struct igb_adapter * adapter)1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
enable_fqtss(struct igb_adapter * adapter,bool enable)1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 WARN_ON(hw->mac.type != e1000_i210);
1602
1603 if (enable)
1604 adapter->flags |= IGB_FLAG_FQTSS;
1605 else
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1610 }
1611
is_fqtss_enabled(struct igb_adapter * adapter)1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
set_tx_desc_fetch_prio(struct e1000_hw * hw,int queue,enum tx_queue_prio prio)1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1619 {
1620 u32 val;
1621
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1624
1625 val = rd32(E1000_I210_TXDCTL(queue));
1626
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1629 else
1630 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632 wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
set_queue_mode(struct e1000_hw * hw,int queue,enum queue_mode mode)1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 u32 val;
1638
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1641
1642 val = rd32(E1000_I210_TQAVCC(queue));
1643
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1646 else
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649 wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
is_any_cbs_enabled(struct igb_adapter * adapter)1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 int i;
1655
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
is_any_txtime_enabled(struct igb_adapter * adapter)1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 int i;
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1670 return true;
1671 }
1672
1673 return false;
1674 }
1675
1676 /**
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1680 *
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1685 **/
igb_config_tx_modes(struct igb_adapter * adapter,int queue)1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 struct net_device *netdev = adapter->netdev;
1689 struct e1000_hw *hw = &adapter->hw;
1690 struct igb_ring *ring;
1691 u32 tqavcc, tqavctrl;
1692 u16 value;
1693
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1696 ring = adapter->tx_ring[queue];
1697
1698 /* If any of the Qav features is enabled, configure queues as SR and
1699 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700 * as SP.
1701 */
1702 if (ring->cbs_enable || ring->launchtime_enable) {
1703 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705 } else {
1706 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708 }
1709
1710 /* If CBS is enabled, set DataTranARB and config its parameters. */
1711 if (ring->cbs_enable || queue == 0) {
1712 /* i210 does not allow the queue 0 to be in the Strict
1713 * Priority mode while the Qav mode is enabled, so,
1714 * instead of disabling strict priority mode, we give
1715 * queue 0 the maximum of credits possible.
1716 *
1717 * See section 8.12.19 of the i210 datasheet, "Note:
1718 * Queue0 QueueMode must be set to 1b when
1719 * TransmitMode is set to Qav."
1720 */
1721 if (queue == 0 && !ring->cbs_enable) {
1722 /* max "linkspeed" idleslope in kbps */
1723 ring->idleslope = 1000000;
1724 ring->hicredit = ETH_FRAME_LEN;
1725 }
1726
1727 /* Always set data transfer arbitration to credit-based
1728 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729 * the queues.
1730 */
1731 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734
1735 /* According to i210 datasheet section 7.2.7.7, we should set
1736 * the 'idleSlope' field from TQAVCC register following the
1737 * equation:
1738 *
1739 * For 100 Mbps link speed:
1740 *
1741 * value = BW * 0x7735 * 0.2 (E1)
1742 *
1743 * For 1000Mbps link speed:
1744 *
1745 * value = BW * 0x7735 * 2 (E2)
1746 *
1747 * E1 and E2 can be merged into one equation as shown below.
1748 * Note that 'link-speed' is in Mbps.
1749 *
1750 * value = BW * 0x7735 * 2 * link-speed
1751 * -------------- (E3)
1752 * 1000
1753 *
1754 * 'BW' is the percentage bandwidth out of full link speed
1755 * which can be found with the following equation. Note that
1756 * idleSlope here is the parameter from this function which
1757 * is in kbps.
1758 *
1759 * BW = idleSlope
1760 * ----------------- (E4)
1761 * link-speed * 1000
1762 *
1763 * That said, we can come up with a generic equation to
1764 * calculate the value we should set it TQAVCC register by
1765 * replacing 'BW' in E3 by E4. The resulting equation is:
1766 *
1767 * value = idleSlope * 0x7735 * 2 * link-speed
1768 * ----------------- -------------- (E5)
1769 * link-speed * 1000 1000
1770 *
1771 * 'link-speed' is present in both sides of the fraction so
1772 * it is canceled out. The final equation is the following:
1773 *
1774 * value = idleSlope * 61034
1775 * ----------------- (E6)
1776 * 1000000
1777 *
1778 * NOTE: For i210, given the above, we can see that idleslope
1779 * is represented in 16.38431 kbps units by the value at
1780 * the TQAVCC register (1Gbps / 61034), which reduces
1781 * the granularity for idleslope increments.
1782 * For instance, if you want to configure a 2576kbps
1783 * idleslope, the value to be written on the register
1784 * would have to be 157.23. If rounded down, you end
1785 * up with less bandwidth available than originally
1786 * required (~2572 kbps). If rounded up, you end up
1787 * with a higher bandwidth (~2589 kbps). Below the
1788 * approach we take is to always round up the
1789 * calculated value, so the resulting bandwidth might
1790 * be slightly higher for some configurations.
1791 */
1792 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793
1794 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796 tqavcc |= value;
1797 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799 wr32(E1000_I210_TQAVHC(queue),
1800 0x80000000 + ring->hicredit * 0x7735);
1801 } else {
1802
1803 /* Set idleSlope to zero. */
1804 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807
1808 /* Set hiCredit to zero. */
1809 wr32(E1000_I210_TQAVHC(queue), 0);
1810
1811 /* If CBS is not enabled for any queues anymore, then return to
1812 * the default state of Data Transmission Arbitration on
1813 * TQAVCTRL.
1814 */
1815 if (!is_any_cbs_enabled(adapter)) {
1816 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819 }
1820 }
1821
1822 /* If LaunchTime is enabled, set DataTranTIM. */
1823 if (ring->launchtime_enable) {
1824 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825 * for any of the SR queues, and configure fetchtime delta.
1826 * XXX NOTE:
1827 * - LaunchTime will be enabled for all SR queues.
1828 * - A fixed offset can be added relative to the launch
1829 * time of all packets if configured at reg LAUNCH_OS0.
1830 * We are keeping it as 0 for now (default value).
1831 */
1832 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834 E1000_TQAVCTRL_FETCHTIME_DELTA;
1835 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836 } else {
1837 /* If Launchtime is not enabled for any SR queues anymore,
1838 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839 * effectively disabling Launchtime.
1840 */
1841 if (!is_any_txtime_enabled(adapter)) {
1842 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846 }
1847 }
1848
1849 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1850 * CBS are not configurable by software so we don't do any 'controller
1851 * configuration' in respect to these parameters.
1852 */
1853
1854 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855 ring->cbs_enable ? "enabled" : "disabled",
1856 ring->launchtime_enable ? "enabled" : "disabled",
1857 queue,
1858 ring->idleslope, ring->sendslope,
1859 ring->hicredit, ring->locredit);
1860 }
1861
igb_save_txtime_params(struct igb_adapter * adapter,int queue,bool enable)1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863 bool enable)
1864 {
1865 struct igb_ring *ring;
1866
1867 if (queue < 0 || queue > adapter->num_tx_queues)
1868 return -EINVAL;
1869
1870 ring = adapter->tx_ring[queue];
1871 ring->launchtime_enable = enable;
1872
1873 return 0;
1874 }
1875
igb_save_cbs_params(struct igb_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877 bool enable, int idleslope, int sendslope,
1878 int hicredit, int locredit)
1879 {
1880 struct igb_ring *ring;
1881
1882 if (queue < 0 || queue > adapter->num_tx_queues)
1883 return -EINVAL;
1884
1885 ring = adapter->tx_ring[queue];
1886
1887 ring->cbs_enable = enable;
1888 ring->idleslope = idleslope;
1889 ring->sendslope = sendslope;
1890 ring->hicredit = hicredit;
1891 ring->locredit = locredit;
1892
1893 return 0;
1894 }
1895
1896 /**
1897 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898 * @adapter: pointer to adapter struct
1899 *
1900 * Configure TQAVCTRL register switching the controller's Tx mode
1901 * if FQTSS mode is enabled or disabled. Additionally, will issue
1902 * a call to igb_config_tx_modes() per queue so any previously saved
1903 * Tx parameters are applied.
1904 **/
igb_setup_tx_mode(struct igb_adapter * adapter)1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907 struct net_device *netdev = adapter->netdev;
1908 struct e1000_hw *hw = &adapter->hw;
1909 u32 val;
1910
1911 /* Only i210 controller supports changing the transmission mode. */
1912 if (hw->mac.type != e1000_i210)
1913 return;
1914
1915 if (is_fqtss_enabled(adapter)) {
1916 int i, max_queue;
1917
1918 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920 * so SP queues wait for SR ones.
1921 */
1922 val = rd32(E1000_I210_TQAVCTRL);
1923 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925 wr32(E1000_I210_TQAVCTRL, val);
1926
1927 /* Configure Tx and Rx packet buffers sizes as described in
1928 * i210 datasheet section 7.2.7.7.
1929 */
1930 val = rd32(E1000_TXPBS);
1931 val &= ~I210_TXPBSIZE_MASK;
1932 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934 wr32(E1000_TXPBS, val);
1935
1936 val = rd32(E1000_RXPBS);
1937 val &= ~I210_RXPBSIZE_MASK;
1938 val |= I210_RXPBSIZE_PB_30KB;
1939 wr32(E1000_RXPBS, val);
1940
1941 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942 * register should not exceed the buffer size programmed in
1943 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944 * so according to the datasheet we should set MAX_TPKT_SIZE to
1945 * 4kB / 64.
1946 *
1947 * However, when we do so, no frame from queue 2 and 3 are
1948 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1949 * or _equal_ to the buffer size programmed in TXPBS. For this
1950 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951 */
1952 val = (4096 - 1) / 64;
1953 wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955 /* Since FQTSS mode is enabled, apply any CBS configuration
1956 * previously set. If no previous CBS configuration has been
1957 * done, then the initial configuration is applied, which means
1958 * CBS is disabled.
1959 */
1960 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963 for (i = 0; i < max_queue; i++) {
1964 igb_config_tx_modes(adapter, i);
1965 }
1966 } else {
1967 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971 val = rd32(E1000_I210_TQAVCTRL);
1972 /* According to Section 8.12.21, the other flags we've set when
1973 * enabling FQTSS are not relevant when disabling FQTSS so we
1974 * don't set they here.
1975 */
1976 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977 wr32(E1000_I210_TQAVCTRL, val);
1978 }
1979
1980 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981 "enabled" : "disabled");
1982 }
1983
1984 /**
1985 * igb_configure - configure the hardware for RX and TX
1986 * @adapter: private board structure
1987 **/
igb_configure(struct igb_adapter * adapter)1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990 struct net_device *netdev = adapter->netdev;
1991 int i;
1992
1993 igb_get_hw_control(adapter);
1994 igb_set_rx_mode(netdev);
1995 igb_setup_tx_mode(adapter);
1996
1997 igb_restore_vlan(adapter);
1998
1999 igb_setup_tctl(adapter);
2000 igb_setup_mrqc(adapter);
2001 igb_setup_rctl(adapter);
2002
2003 igb_nfc_filter_restore(adapter);
2004 igb_configure_tx(adapter);
2005 igb_configure_rx(adapter);
2006
2007 igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009 /* call igb_desc_unused which always leaves
2010 * at least 1 descriptor unused to make sure
2011 * next_to_use != next_to_clean
2012 */
2013 for (i = 0; i < adapter->num_rx_queues; i++) {
2014 struct igb_ring *ring = adapter->rx_ring[i];
2015 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016 }
2017 }
2018
2019 /**
2020 * igb_power_up_link - Power up the phy/serdes link
2021 * @adapter: address of board private structure
2022 **/
igb_power_up_link(struct igb_adapter * adapter)2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025 igb_reset_phy(&adapter->hw);
2026
2027 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028 igb_power_up_phy_copper(&adapter->hw);
2029 else
2030 igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032 igb_setup_link(&adapter->hw);
2033 }
2034
2035 /**
2036 * igb_power_down_link - Power down the phy/serdes link
2037 * @adapter: address of board private structure
2038 */
igb_power_down_link(struct igb_adapter * adapter)2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042 igb_power_down_phy_copper_82575(&adapter->hw);
2043 else
2044 igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046
2047 /**
2048 * Detect and switch function for Media Auto Sense
2049 * @adapter: address of the board private structure
2050 **/
igb_check_swap_media(struct igb_adapter * adapter)2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053 struct e1000_hw *hw = &adapter->hw;
2054 u32 ctrl_ext, connsw;
2055 bool swap_now = false;
2056
2057 ctrl_ext = rd32(E1000_CTRL_EXT);
2058 connsw = rd32(E1000_CONNSW);
2059
2060 /* need to live swap if current media is copper and we have fiber/serdes
2061 * to go to.
2062 */
2063
2064 if ((hw->phy.media_type == e1000_media_type_copper) &&
2065 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066 swap_now = true;
2067 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2068 !(connsw & E1000_CONNSW_SERDESD)) {
2069 /* copper signal takes time to appear */
2070 if (adapter->copper_tries < 4) {
2071 adapter->copper_tries++;
2072 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073 wr32(E1000_CONNSW, connsw);
2074 return;
2075 } else {
2076 adapter->copper_tries = 0;
2077 if ((connsw & E1000_CONNSW_PHYSD) &&
2078 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079 swap_now = true;
2080 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081 wr32(E1000_CONNSW, connsw);
2082 }
2083 }
2084 }
2085
2086 if (!swap_now)
2087 return;
2088
2089 switch (hw->phy.media_type) {
2090 case e1000_media_type_copper:
2091 netdev_info(adapter->netdev,
2092 "MAS: changing media to fiber/serdes\n");
2093 ctrl_ext |=
2094 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096 adapter->copper_tries = 0;
2097 break;
2098 case e1000_media_type_internal_serdes:
2099 case e1000_media_type_fiber:
2100 netdev_info(adapter->netdev,
2101 "MAS: changing media to copper\n");
2102 ctrl_ext &=
2103 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105 break;
2106 default:
2107 /* shouldn't get here during regular operation */
2108 netdev_err(adapter->netdev,
2109 "AMS: Invalid media type found, returning\n");
2110 break;
2111 }
2112 wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114
2115 /**
2116 * igb_up - Open the interface and prepare it to handle traffic
2117 * @adapter: board private structure
2118 **/
igb_up(struct igb_adapter * adapter)2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121 struct e1000_hw *hw = &adapter->hw;
2122 int i;
2123
2124 /* hardware has been reset, we need to reload some things */
2125 igb_configure(adapter);
2126
2127 clear_bit(__IGB_DOWN, &adapter->state);
2128
2129 for (i = 0; i < adapter->num_q_vectors; i++)
2130 napi_enable(&(adapter->q_vector[i]->napi));
2131
2132 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133 igb_configure_msix(adapter);
2134 else
2135 igb_assign_vector(adapter->q_vector[0], 0);
2136
2137 /* Clear any pending interrupts. */
2138 rd32(E1000_TSICR);
2139 rd32(E1000_ICR);
2140 igb_irq_enable(adapter);
2141
2142 /* notify VFs that reset has been completed */
2143 if (adapter->vfs_allocated_count) {
2144 u32 reg_data = rd32(E1000_CTRL_EXT);
2145
2146 reg_data |= E1000_CTRL_EXT_PFRSTD;
2147 wr32(E1000_CTRL_EXT, reg_data);
2148 }
2149
2150 netif_tx_start_all_queues(adapter->netdev);
2151
2152 /* start the watchdog. */
2153 hw->mac.get_link_status = 1;
2154 schedule_work(&adapter->watchdog_task);
2155
2156 if ((adapter->flags & IGB_FLAG_EEE) &&
2157 (!hw->dev_spec._82575.eee_disable))
2158 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159
2160 return 0;
2161 }
2162
igb_down(struct igb_adapter * adapter)2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165 struct net_device *netdev = adapter->netdev;
2166 struct e1000_hw *hw = &adapter->hw;
2167 u32 tctl, rctl;
2168 int i;
2169
2170 /* signal that we're down so the interrupt handler does not
2171 * reschedule our watchdog timer
2172 */
2173 set_bit(__IGB_DOWN, &adapter->state);
2174
2175 /* disable receives in the hardware */
2176 rctl = rd32(E1000_RCTL);
2177 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178 /* flush and sleep below */
2179
2180 igb_nfc_filter_exit(adapter);
2181
2182 netif_carrier_off(netdev);
2183 netif_tx_stop_all_queues(netdev);
2184
2185 /* disable transmits in the hardware */
2186 tctl = rd32(E1000_TCTL);
2187 tctl &= ~E1000_TCTL_EN;
2188 wr32(E1000_TCTL, tctl);
2189 /* flush both disables and wait for them to finish */
2190 wrfl();
2191 usleep_range(10000, 11000);
2192
2193 igb_irq_disable(adapter);
2194
2195 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196
2197 for (i = 0; i < adapter->num_q_vectors; i++) {
2198 if (adapter->q_vector[i]) {
2199 napi_synchronize(&adapter->q_vector[i]->napi);
2200 napi_disable(&adapter->q_vector[i]->napi);
2201 }
2202 }
2203
2204 del_timer_sync(&adapter->watchdog_timer);
2205 del_timer_sync(&adapter->phy_info_timer);
2206
2207 /* record the stats before reset*/
2208 spin_lock(&adapter->stats64_lock);
2209 igb_update_stats(adapter);
2210 spin_unlock(&adapter->stats64_lock);
2211
2212 adapter->link_speed = 0;
2213 adapter->link_duplex = 0;
2214
2215 if (!pci_channel_offline(adapter->pdev))
2216 igb_reset(adapter);
2217
2218 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2219 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220
2221 igb_clean_all_tx_rings(adapter);
2222 igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224
2225 /* since we reset the hardware DCA settings were cleared */
2226 igb_setup_dca(adapter);
2227 #endif
2228 }
2229
igb_reinit_locked(struct igb_adapter * adapter)2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233 usleep_range(1000, 2000);
2234 igb_down(adapter);
2235 igb_up(adapter);
2236 clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240 *
2241 * @adapter: adapter struct
2242 **/
igb_enable_mas(struct igb_adapter * adapter)2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245 struct e1000_hw *hw = &adapter->hw;
2246 u32 connsw = rd32(E1000_CONNSW);
2247
2248 /* configure for SerDes media detect */
2249 if ((hw->phy.media_type == e1000_media_type_copper) &&
2250 (!(connsw & E1000_CONNSW_SERDESD))) {
2251 connsw |= E1000_CONNSW_ENRGSRC;
2252 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253 wr32(E1000_CONNSW, connsw);
2254 wrfl();
2255 }
2256 }
2257
igb_reset(struct igb_adapter * adapter)2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260 struct pci_dev *pdev = adapter->pdev;
2261 struct e1000_hw *hw = &adapter->hw;
2262 struct e1000_mac_info *mac = &hw->mac;
2263 struct e1000_fc_info *fc = &hw->fc;
2264 u32 pba, hwm;
2265
2266 /* Repartition Pba for greater than 9k mtu
2267 * To take effect CTRL.RST is required.
2268 */
2269 switch (mac->type) {
2270 case e1000_i350:
2271 case e1000_i354:
2272 case e1000_82580:
2273 pba = rd32(E1000_RXPBS);
2274 pba = igb_rxpbs_adjust_82580(pba);
2275 break;
2276 case e1000_82576:
2277 pba = rd32(E1000_RXPBS);
2278 pba &= E1000_RXPBS_SIZE_MASK_82576;
2279 break;
2280 case e1000_82575:
2281 case e1000_i210:
2282 case e1000_i211:
2283 default:
2284 pba = E1000_PBA_34K;
2285 break;
2286 }
2287
2288 if (mac->type == e1000_82575) {
2289 u32 min_rx_space, min_tx_space, needed_tx_space;
2290
2291 /* write Rx PBA so that hardware can report correct Tx PBA */
2292 wr32(E1000_PBA, pba);
2293
2294 /* To maintain wire speed transmits, the Tx FIFO should be
2295 * large enough to accommodate two full transmit packets,
2296 * rounded up to the next 1KB and expressed in KB. Likewise,
2297 * the Rx FIFO should be large enough to accommodate at least
2298 * one full receive packet and is similarly rounded up and
2299 * expressed in KB.
2300 */
2301 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302
2303 /* The Tx FIFO also stores 16 bytes of information about the Tx
2304 * but don't include Ethernet FCS because hardware appends it.
2305 * We only need to round down to the nearest 512 byte block
2306 * count since the value we care about is 2 frames, not 1.
2307 */
2308 min_tx_space = adapter->max_frame_size;
2309 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311
2312 /* upper 16 bits has Tx packet buffer allocation size in KB */
2313 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314
2315 /* If current Tx allocation is less than the min Tx FIFO size,
2316 * and the min Tx FIFO size is less than the current Rx FIFO
2317 * allocation, take space away from current Rx allocation.
2318 */
2319 if (needed_tx_space < pba) {
2320 pba -= needed_tx_space;
2321
2322 /* if short on Rx space, Rx wins and must trump Tx
2323 * adjustment
2324 */
2325 if (pba < min_rx_space)
2326 pba = min_rx_space;
2327 }
2328
2329 /* adjust PBA for jumbo frames */
2330 wr32(E1000_PBA, pba);
2331 }
2332
2333 /* flow control settings
2334 * The high water mark must be low enough to fit one full frame
2335 * after transmitting the pause frame. As such we must have enough
2336 * space to allow for us to complete our current transmit and then
2337 * receive the frame that is in progress from the link partner.
2338 * Set it to:
2339 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340 */
2341 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342
2343 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2344 fc->low_water = fc->high_water - 16;
2345 fc->pause_time = 0xFFFF;
2346 fc->send_xon = 1;
2347 fc->current_mode = fc->requested_mode;
2348
2349 /* disable receive for all VFs and wait one second */
2350 if (adapter->vfs_allocated_count) {
2351 int i;
2352
2353 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355
2356 /* ping all the active vfs to let them know we are going down */
2357 igb_ping_all_vfs(adapter);
2358
2359 /* disable transmits and receives */
2360 wr32(E1000_VFRE, 0);
2361 wr32(E1000_VFTE, 0);
2362 }
2363
2364 /* Allow time for pending master requests to run */
2365 hw->mac.ops.reset_hw(hw);
2366 wr32(E1000_WUC, 0);
2367
2368 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369 /* need to resetup here after media swap */
2370 adapter->ei.get_invariants(hw);
2371 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372 }
2373 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2374 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375 igb_enable_mas(adapter);
2376 }
2377 if (hw->mac.ops.init_hw(hw))
2378 dev_err(&pdev->dev, "Hardware Error\n");
2379
2380 /* RAR registers were cleared during init_hw, clear mac table */
2381 igb_flush_mac_table(adapter);
2382 __dev_uc_unsync(adapter->netdev, NULL);
2383
2384 /* Recover default RAR entry */
2385 igb_set_default_mac_filter(adapter);
2386
2387 /* Flow control settings reset on hardware reset, so guarantee flow
2388 * control is off when forcing speed.
2389 */
2390 if (!hw->mac.autoneg)
2391 igb_force_mac_fc(hw);
2392
2393 igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395 /* Re-initialize the thermal sensor on i350 devices. */
2396 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398 /* If present, re-initialize the external thermal sensor
2399 * interface.
2400 */
2401 if (adapter->ets)
2402 mac->ops.init_thermal_sensor_thresh(hw);
2403 }
2404 }
2405 #endif
2406 /* Re-establish EEE setting */
2407 if (hw->phy.media_type == e1000_media_type_copper) {
2408 switch (mac->type) {
2409 case e1000_i350:
2410 case e1000_i210:
2411 case e1000_i211:
2412 igb_set_eee_i350(hw, true, true);
2413 break;
2414 case e1000_i354:
2415 igb_set_eee_i354(hw, true, true);
2416 break;
2417 default:
2418 break;
2419 }
2420 }
2421 if (!netif_running(adapter->netdev))
2422 igb_power_down_link(adapter);
2423
2424 igb_update_mng_vlan(adapter);
2425
2426 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428
2429 /* Re-enable PTP, where applicable. */
2430 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431 igb_ptp_reset(adapter);
2432
2433 igb_get_phy_info(hw);
2434 }
2435
igb_fix_features(struct net_device * netdev,netdev_features_t features)2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437 netdev_features_t features)
2438 {
2439 /* Since there is no support for separate Rx/Tx vlan accel
2440 * enable/disable make sure Tx flag is always in same state as Rx.
2441 */
2442 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443 features |= NETIF_F_HW_VLAN_CTAG_TX;
2444 else
2445 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446
2447 return features;
2448 }
2449
igb_set_features(struct net_device * netdev,netdev_features_t features)2450 static int igb_set_features(struct net_device *netdev,
2451 netdev_features_t features)
2452 {
2453 netdev_features_t changed = netdev->features ^ features;
2454 struct igb_adapter *adapter = netdev_priv(netdev);
2455
2456 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457 igb_vlan_mode(netdev, features);
2458
2459 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460 return 0;
2461
2462 if (!(features & NETIF_F_NTUPLE)) {
2463 struct hlist_node *node2;
2464 struct igb_nfc_filter *rule;
2465
2466 spin_lock(&adapter->nfc_lock);
2467 hlist_for_each_entry_safe(rule, node2,
2468 &adapter->nfc_filter_list, nfc_node) {
2469 igb_erase_filter(adapter, rule);
2470 hlist_del(&rule->nfc_node);
2471 kfree(rule);
2472 }
2473 spin_unlock(&adapter->nfc_lock);
2474 adapter->nfc_filter_count = 0;
2475 }
2476
2477 netdev->features = features;
2478
2479 if (netif_running(netdev))
2480 igb_reinit_locked(adapter);
2481 else
2482 igb_reset(adapter);
2483
2484 return 1;
2485 }
2486
igb_ndo_fdb_add(struct ndmsg * ndm,struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack * extack)2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488 struct net_device *dev,
2489 const unsigned char *addr, u16 vid,
2490 u16 flags,
2491 struct netlink_ext_ack *extack)
2492 {
2493 /* guarantee we can provide a unique filter for the unicast address */
2494 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495 struct igb_adapter *adapter = netdev_priv(dev);
2496 int vfn = adapter->vfs_allocated_count;
2497
2498 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499 return -ENOMEM;
2500 }
2501
2502 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504
2505 #define IGB_MAX_MAC_HDR_LEN 127
2506 #define IGB_MAX_NETWORK_HDR_LEN 511
2507
2508 static netdev_features_t
igb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510 netdev_features_t features)
2511 {
2512 unsigned int network_hdr_len, mac_hdr_len;
2513
2514 /* Make certain the headers can be described by a context descriptor */
2515 mac_hdr_len = skb_network_header(skb) - skb->data;
2516 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517 return features & ~(NETIF_F_HW_CSUM |
2518 NETIF_F_SCTP_CRC |
2519 NETIF_F_GSO_UDP_L4 |
2520 NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_TSO |
2522 NETIF_F_TSO6);
2523
2524 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2525 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2526 return features & ~(NETIF_F_HW_CSUM |
2527 NETIF_F_SCTP_CRC |
2528 NETIF_F_GSO_UDP_L4 |
2529 NETIF_F_TSO |
2530 NETIF_F_TSO6);
2531
2532 /* We can only support IPV4 TSO in tunnels if we can mangle the
2533 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534 */
2535 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536 features &= ~NETIF_F_TSO;
2537
2538 return features;
2539 }
2540
igb_offload_apply(struct igb_adapter * adapter,s32 queue)2541 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542 {
2543 if (!is_fqtss_enabled(adapter)) {
2544 enable_fqtss(adapter, true);
2545 return;
2546 }
2547
2548 igb_config_tx_modes(adapter, queue);
2549
2550 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551 enable_fqtss(adapter, false);
2552 }
2553
igb_offload_cbs(struct igb_adapter * adapter,struct tc_cbs_qopt_offload * qopt)2554 static int igb_offload_cbs(struct igb_adapter *adapter,
2555 struct tc_cbs_qopt_offload *qopt)
2556 {
2557 struct e1000_hw *hw = &adapter->hw;
2558 int err;
2559
2560 /* CBS offloading is only supported by i210 controller. */
2561 if (hw->mac.type != e1000_i210)
2562 return -EOPNOTSUPP;
2563
2564 /* CBS offloading is only supported by queue 0 and queue 1. */
2565 if (qopt->queue < 0 || qopt->queue > 1)
2566 return -EINVAL;
2567
2568 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569 qopt->idleslope, qopt->sendslope,
2570 qopt->hicredit, qopt->locredit);
2571 if (err)
2572 return err;
2573
2574 igb_offload_apply(adapter, qopt->queue);
2575
2576 return 0;
2577 }
2578
2579 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580 #define VLAN_PRIO_FULL_MASK (0x07)
2581
igb_parse_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * f,int traffic_class,struct igb_nfc_filter * input)2582 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583 struct flow_cls_offload *f,
2584 int traffic_class,
2585 struct igb_nfc_filter *input)
2586 {
2587 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588 struct flow_dissector *dissector = rule->match.dissector;
2589 struct netlink_ext_ack *extack = f->common.extack;
2590
2591 if (dissector->used_keys &
2592 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596 NL_SET_ERR_MSG_MOD(extack,
2597 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598 return -EOPNOTSUPP;
2599 }
2600
2601 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602 struct flow_match_eth_addrs match;
2603
2604 flow_rule_match_eth_addrs(rule, &match);
2605 if (!is_zero_ether_addr(match.mask->dst)) {
2606 if (!is_broadcast_ether_addr(match.mask->dst)) {
2607 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 return -EINVAL;
2609 }
2610
2611 input->filter.match_flags |=
2612 IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614 }
2615
2616 if (!is_zero_ether_addr(match.mask->src)) {
2617 if (!is_broadcast_ether_addr(match.mask->src)) {
2618 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 return -EINVAL;
2620 }
2621
2622 input->filter.match_flags |=
2623 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 ether_addr_copy(input->filter.src_addr, match.key->src);
2625 }
2626 }
2627
2628 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629 struct flow_match_basic match;
2630
2631 flow_rule_match_basic(rule, &match);
2632 if (match.mask->n_proto) {
2633 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635 return -EINVAL;
2636 }
2637
2638 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639 input->filter.etype = match.key->n_proto;
2640 }
2641 }
2642
2643 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644 struct flow_match_vlan match;
2645
2646 flow_rule_match_vlan(rule, &match);
2647 if (match.mask->vlan_priority) {
2648 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650 return -EINVAL;
2651 }
2652
2653 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654 input->filter.vlan_tci =
2655 (__force __be16)match.key->vlan_priority;
2656 }
2657 }
2658
2659 input->action = traffic_class;
2660 input->cookie = f->cookie;
2661
2662 return 0;
2663 }
2664
igb_configure_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2665 static int igb_configure_clsflower(struct igb_adapter *adapter,
2666 struct flow_cls_offload *cls_flower)
2667 {
2668 struct netlink_ext_ack *extack = cls_flower->common.extack;
2669 struct igb_nfc_filter *filter, *f;
2670 int err, tc;
2671
2672 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2673 if (tc < 0) {
2674 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2675 return -EINVAL;
2676 }
2677
2678 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2679 if (!filter)
2680 return -ENOMEM;
2681
2682 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2683 if (err < 0)
2684 goto err_parse;
2685
2686 spin_lock(&adapter->nfc_lock);
2687
2688 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2689 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690 err = -EEXIST;
2691 NL_SET_ERR_MSG_MOD(extack,
2692 "This filter is already set in ethtool");
2693 goto err_locked;
2694 }
2695 }
2696
2697 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2698 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2699 err = -EEXIST;
2700 NL_SET_ERR_MSG_MOD(extack,
2701 "This filter is already set in cls_flower");
2702 goto err_locked;
2703 }
2704 }
2705
2706 err = igb_add_filter(adapter, filter);
2707 if (err < 0) {
2708 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2709 goto err_locked;
2710 }
2711
2712 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2713
2714 spin_unlock(&adapter->nfc_lock);
2715
2716 return 0;
2717
2718 err_locked:
2719 spin_unlock(&adapter->nfc_lock);
2720
2721 err_parse:
2722 kfree(filter);
2723
2724 return err;
2725 }
2726
igb_delete_clsflower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2727 static int igb_delete_clsflower(struct igb_adapter *adapter,
2728 struct flow_cls_offload *cls_flower)
2729 {
2730 struct igb_nfc_filter *filter;
2731 int err;
2732
2733 spin_lock(&adapter->nfc_lock);
2734
2735 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2736 if (filter->cookie == cls_flower->cookie)
2737 break;
2738
2739 if (!filter) {
2740 err = -ENOENT;
2741 goto out;
2742 }
2743
2744 err = igb_erase_filter(adapter, filter);
2745 if (err < 0)
2746 goto out;
2747
2748 hlist_del(&filter->nfc_node);
2749 kfree(filter);
2750
2751 out:
2752 spin_unlock(&adapter->nfc_lock);
2753
2754 return err;
2755 }
2756
igb_setup_tc_cls_flower(struct igb_adapter * adapter,struct flow_cls_offload * cls_flower)2757 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2758 struct flow_cls_offload *cls_flower)
2759 {
2760 switch (cls_flower->command) {
2761 case FLOW_CLS_REPLACE:
2762 return igb_configure_clsflower(adapter, cls_flower);
2763 case FLOW_CLS_DESTROY:
2764 return igb_delete_clsflower(adapter, cls_flower);
2765 case FLOW_CLS_STATS:
2766 return -EOPNOTSUPP;
2767 default:
2768 return -EOPNOTSUPP;
2769 }
2770 }
2771
igb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2772 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2773 void *cb_priv)
2774 {
2775 struct igb_adapter *adapter = cb_priv;
2776
2777 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2778 return -EOPNOTSUPP;
2779
2780 switch (type) {
2781 case TC_SETUP_CLSFLOWER:
2782 return igb_setup_tc_cls_flower(adapter, type_data);
2783
2784 default:
2785 return -EOPNOTSUPP;
2786 }
2787 }
2788
igb_offload_txtime(struct igb_adapter * adapter,struct tc_etf_qopt_offload * qopt)2789 static int igb_offload_txtime(struct igb_adapter *adapter,
2790 struct tc_etf_qopt_offload *qopt)
2791 {
2792 struct e1000_hw *hw = &adapter->hw;
2793 int err;
2794
2795 /* Launchtime offloading is only supported by i210 controller. */
2796 if (hw->mac.type != e1000_i210)
2797 return -EOPNOTSUPP;
2798
2799 /* Launchtime offloading is only supported by queues 0 and 1. */
2800 if (qopt->queue < 0 || qopt->queue > 1)
2801 return -EINVAL;
2802
2803 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2804 if (err)
2805 return err;
2806
2807 igb_offload_apply(adapter, qopt->queue);
2808
2809 return 0;
2810 }
2811
2812 static LIST_HEAD(igb_block_cb_list);
2813
igb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)2814 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2815 void *type_data)
2816 {
2817 struct igb_adapter *adapter = netdev_priv(dev);
2818
2819 switch (type) {
2820 case TC_SETUP_QDISC_CBS:
2821 return igb_offload_cbs(adapter, type_data);
2822 case TC_SETUP_BLOCK:
2823 return flow_block_cb_setup_simple(type_data,
2824 &igb_block_cb_list,
2825 igb_setup_tc_block_cb,
2826 adapter, adapter, true);
2827
2828 case TC_SETUP_QDISC_ETF:
2829 return igb_offload_txtime(adapter, type_data);
2830
2831 default:
2832 return -EOPNOTSUPP;
2833 }
2834 }
2835
igb_xdp_setup(struct net_device * dev,struct netdev_bpf * bpf)2836 static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2837 {
2838 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2839 struct igb_adapter *adapter = netdev_priv(dev);
2840 struct bpf_prog *prog = bpf->prog, *old_prog;
2841 bool running = netif_running(dev);
2842 bool need_reset;
2843
2844 /* verify igb ring attributes are sufficient for XDP */
2845 for (i = 0; i < adapter->num_rx_queues; i++) {
2846 struct igb_ring *ring = adapter->rx_ring[i];
2847
2848 if (frame_size > igb_rx_bufsz(ring)) {
2849 NL_SET_ERR_MSG_MOD(bpf->extack,
2850 "The RX buffer size is too small for the frame size");
2851 netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2852 igb_rx_bufsz(ring), frame_size);
2853 return -EINVAL;
2854 }
2855 }
2856
2857 old_prog = xchg(&adapter->xdp_prog, prog);
2858 need_reset = (!!prog != !!old_prog);
2859
2860 /* device is up and bpf is added/removed, must setup the RX queues */
2861 if (need_reset && running) {
2862 igb_close(dev);
2863 } else {
2864 for (i = 0; i < adapter->num_rx_queues; i++)
2865 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2866 adapter->xdp_prog);
2867 }
2868
2869 if (old_prog)
2870 bpf_prog_put(old_prog);
2871
2872 /* bpf is just replaced, RXQ and MTU are already setup */
2873 if (!need_reset)
2874 return 0;
2875
2876 if (running)
2877 igb_open(dev);
2878
2879 return 0;
2880 }
2881
igb_xdp(struct net_device * dev,struct netdev_bpf * xdp)2882 static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2883 {
2884 switch (xdp->command) {
2885 case XDP_SETUP_PROG:
2886 return igb_xdp_setup(dev, xdp);
2887 default:
2888 return -EINVAL;
2889 }
2890 }
2891
igb_xdp_ring_update_tail(struct igb_ring * ring)2892 static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2893 {
2894 /* Force memory writes to complete before letting h/w know there
2895 * are new descriptors to fetch.
2896 */
2897 wmb();
2898 writel(ring->next_to_use, ring->tail);
2899 }
2900
igb_xdp_tx_queue_mapping(struct igb_adapter * adapter)2901 static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2902 {
2903 unsigned int r_idx = smp_processor_id();
2904
2905 if (r_idx >= adapter->num_tx_queues)
2906 r_idx = r_idx % adapter->num_tx_queues;
2907
2908 return adapter->tx_ring[r_idx];
2909 }
2910
igb_xdp_xmit_back(struct igb_adapter * adapter,struct xdp_buff * xdp)2911 static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2912 {
2913 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2914 int cpu = smp_processor_id();
2915 struct igb_ring *tx_ring;
2916 struct netdev_queue *nq;
2917 u32 ret;
2918
2919 if (unlikely(!xdpf))
2920 return IGB_XDP_CONSUMED;
2921
2922 /* During program transitions its possible adapter->xdp_prog is assigned
2923 * but ring has not been configured yet. In this case simply abort xmit.
2924 */
2925 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2926 if (unlikely(!tx_ring))
2927 return IGB_XDP_CONSUMED;
2928
2929 nq = txring_txq(tx_ring);
2930 __netif_tx_lock(nq, cpu);
2931 /* Avoid transmit queue timeout since we share it with the slow path */
2932 nq->trans_start = jiffies;
2933 ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2934 __netif_tx_unlock(nq);
2935
2936 return ret;
2937 }
2938
igb_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)2939 static int igb_xdp_xmit(struct net_device *dev, int n,
2940 struct xdp_frame **frames, u32 flags)
2941 {
2942 struct igb_adapter *adapter = netdev_priv(dev);
2943 int cpu = smp_processor_id();
2944 struct igb_ring *tx_ring;
2945 struct netdev_queue *nq;
2946 int drops = 0;
2947 int i;
2948
2949 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2950 return -ENETDOWN;
2951
2952 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2953 return -EINVAL;
2954
2955 /* During program transitions its possible adapter->xdp_prog is assigned
2956 * but ring has not been configured yet. In this case simply abort xmit.
2957 */
2958 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2959 if (unlikely(!tx_ring))
2960 return -ENXIO;
2961
2962 nq = txring_txq(tx_ring);
2963 __netif_tx_lock(nq, cpu);
2964
2965 /* Avoid transmit queue timeout since we share it with the slow path */
2966 nq->trans_start = jiffies;
2967
2968 for (i = 0; i < n; i++) {
2969 struct xdp_frame *xdpf = frames[i];
2970 int err;
2971
2972 err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2973 if (err != IGB_XDP_TX) {
2974 xdp_return_frame_rx_napi(xdpf);
2975 drops++;
2976 }
2977 }
2978
2979 __netif_tx_unlock(nq);
2980
2981 if (unlikely(flags & XDP_XMIT_FLUSH))
2982 igb_xdp_ring_update_tail(tx_ring);
2983
2984 return n - drops;
2985 }
2986
2987 static const struct net_device_ops igb_netdev_ops = {
2988 .ndo_open = igb_open,
2989 .ndo_stop = igb_close,
2990 .ndo_start_xmit = igb_xmit_frame,
2991 .ndo_get_stats64 = igb_get_stats64,
2992 .ndo_set_rx_mode = igb_set_rx_mode,
2993 .ndo_set_mac_address = igb_set_mac,
2994 .ndo_change_mtu = igb_change_mtu,
2995 .ndo_do_ioctl = igb_ioctl,
2996 .ndo_tx_timeout = igb_tx_timeout,
2997 .ndo_validate_addr = eth_validate_addr,
2998 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2999 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3000 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3001 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3002 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3003 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3004 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3005 .ndo_get_vf_config = igb_ndo_get_vf_config,
3006 .ndo_fix_features = igb_fix_features,
3007 .ndo_set_features = igb_set_features,
3008 .ndo_fdb_add = igb_ndo_fdb_add,
3009 .ndo_features_check = igb_features_check,
3010 .ndo_setup_tc = igb_setup_tc,
3011 .ndo_bpf = igb_xdp,
3012 .ndo_xdp_xmit = igb_xdp_xmit,
3013 };
3014
3015 /**
3016 * igb_set_fw_version - Configure version string for ethtool
3017 * @adapter: adapter struct
3018 **/
igb_set_fw_version(struct igb_adapter * adapter)3019 void igb_set_fw_version(struct igb_adapter *adapter)
3020 {
3021 struct e1000_hw *hw = &adapter->hw;
3022 struct e1000_fw_version fw;
3023
3024 igb_get_fw_version(hw, &fw);
3025
3026 switch (hw->mac.type) {
3027 case e1000_i210:
3028 case e1000_i211:
3029 if (!(igb_get_flash_presence_i210(hw))) {
3030 snprintf(adapter->fw_version,
3031 sizeof(adapter->fw_version),
3032 "%2d.%2d-%d",
3033 fw.invm_major, fw.invm_minor,
3034 fw.invm_img_type);
3035 break;
3036 }
3037 fallthrough;
3038 default:
3039 /* if option is rom valid, display its version too */
3040 if (fw.or_valid) {
3041 snprintf(adapter->fw_version,
3042 sizeof(adapter->fw_version),
3043 "%d.%d, 0x%08x, %d.%d.%d",
3044 fw.eep_major, fw.eep_minor, fw.etrack_id,
3045 fw.or_major, fw.or_build, fw.or_patch);
3046 /* no option rom */
3047 } else if (fw.etrack_id != 0X0000) {
3048 snprintf(adapter->fw_version,
3049 sizeof(adapter->fw_version),
3050 "%d.%d, 0x%08x",
3051 fw.eep_major, fw.eep_minor, fw.etrack_id);
3052 } else {
3053 snprintf(adapter->fw_version,
3054 sizeof(adapter->fw_version),
3055 "%d.%d.%d",
3056 fw.eep_major, fw.eep_minor, fw.eep_build);
3057 }
3058 break;
3059 }
3060 }
3061
3062 /**
3063 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3064 *
3065 * @adapter: adapter struct
3066 **/
igb_init_mas(struct igb_adapter * adapter)3067 static void igb_init_mas(struct igb_adapter *adapter)
3068 {
3069 struct e1000_hw *hw = &adapter->hw;
3070 u16 eeprom_data;
3071
3072 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3073 switch (hw->bus.func) {
3074 case E1000_FUNC_0:
3075 if (eeprom_data & IGB_MAS_ENABLE_0) {
3076 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3077 netdev_info(adapter->netdev,
3078 "MAS: Enabling Media Autosense for port %d\n",
3079 hw->bus.func);
3080 }
3081 break;
3082 case E1000_FUNC_1:
3083 if (eeprom_data & IGB_MAS_ENABLE_1) {
3084 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3085 netdev_info(adapter->netdev,
3086 "MAS: Enabling Media Autosense for port %d\n",
3087 hw->bus.func);
3088 }
3089 break;
3090 case E1000_FUNC_2:
3091 if (eeprom_data & IGB_MAS_ENABLE_2) {
3092 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3093 netdev_info(adapter->netdev,
3094 "MAS: Enabling Media Autosense for port %d\n",
3095 hw->bus.func);
3096 }
3097 break;
3098 case E1000_FUNC_3:
3099 if (eeprom_data & IGB_MAS_ENABLE_3) {
3100 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3101 netdev_info(adapter->netdev,
3102 "MAS: Enabling Media Autosense for port %d\n",
3103 hw->bus.func);
3104 }
3105 break;
3106 default:
3107 /* Shouldn't get here */
3108 netdev_err(adapter->netdev,
3109 "MAS: Invalid port configuration, returning\n");
3110 break;
3111 }
3112 }
3113
3114 /**
3115 * igb_init_i2c - Init I2C interface
3116 * @adapter: pointer to adapter structure
3117 **/
igb_init_i2c(struct igb_adapter * adapter)3118 static s32 igb_init_i2c(struct igb_adapter *adapter)
3119 {
3120 s32 status = 0;
3121
3122 /* I2C interface supported on i350 devices */
3123 if (adapter->hw.mac.type != e1000_i350)
3124 return 0;
3125
3126 /* Initialize the i2c bus which is controlled by the registers.
3127 * This bus will use the i2c_algo_bit structue that implements
3128 * the protocol through toggling of the 4 bits in the register.
3129 */
3130 adapter->i2c_adap.owner = THIS_MODULE;
3131 adapter->i2c_algo = igb_i2c_algo;
3132 adapter->i2c_algo.data = adapter;
3133 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3134 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3135 strlcpy(adapter->i2c_adap.name, "igb BB",
3136 sizeof(adapter->i2c_adap.name));
3137 status = i2c_bit_add_bus(&adapter->i2c_adap);
3138 return status;
3139 }
3140
3141 /**
3142 * igb_probe - Device Initialization Routine
3143 * @pdev: PCI device information struct
3144 * @ent: entry in igb_pci_tbl
3145 *
3146 * Returns 0 on success, negative on failure
3147 *
3148 * igb_probe initializes an adapter identified by a pci_dev structure.
3149 * The OS initialization, configuring of the adapter private structure,
3150 * and a hardware reset occur.
3151 **/
igb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3152 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3153 {
3154 struct net_device *netdev;
3155 struct igb_adapter *adapter;
3156 struct e1000_hw *hw;
3157 u16 eeprom_data = 0;
3158 s32 ret_val;
3159 static int global_quad_port_a; /* global quad port a indication */
3160 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3161 int err, pci_using_dac;
3162 u8 part_str[E1000_PBANUM_LENGTH];
3163
3164 /* Catch broken hardware that put the wrong VF device ID in
3165 * the PCIe SR-IOV capability.
3166 */
3167 if (pdev->is_virtfn) {
3168 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3169 pci_name(pdev), pdev->vendor, pdev->device);
3170 return -EINVAL;
3171 }
3172
3173 err = pci_enable_device_mem(pdev);
3174 if (err)
3175 return err;
3176
3177 pci_using_dac = 0;
3178 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3179 if (!err) {
3180 pci_using_dac = 1;
3181 } else {
3182 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3183 if (err) {
3184 dev_err(&pdev->dev,
3185 "No usable DMA configuration, aborting\n");
3186 goto err_dma;
3187 }
3188 }
3189
3190 err = pci_request_mem_regions(pdev, igb_driver_name);
3191 if (err)
3192 goto err_pci_reg;
3193
3194 pci_enable_pcie_error_reporting(pdev);
3195
3196 pci_set_master(pdev);
3197 pci_save_state(pdev);
3198
3199 err = -ENOMEM;
3200 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3201 IGB_MAX_TX_QUEUES);
3202 if (!netdev)
3203 goto err_alloc_etherdev;
3204
3205 SET_NETDEV_DEV(netdev, &pdev->dev);
3206
3207 pci_set_drvdata(pdev, netdev);
3208 adapter = netdev_priv(netdev);
3209 adapter->netdev = netdev;
3210 adapter->pdev = pdev;
3211 hw = &adapter->hw;
3212 hw->back = adapter;
3213 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3214
3215 err = -EIO;
3216 adapter->io_addr = pci_iomap(pdev, 0, 0);
3217 if (!adapter->io_addr)
3218 goto err_ioremap;
3219 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3220 hw->hw_addr = adapter->io_addr;
3221
3222 netdev->netdev_ops = &igb_netdev_ops;
3223 igb_set_ethtool_ops(netdev);
3224 netdev->watchdog_timeo = 5 * HZ;
3225
3226 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3227
3228 netdev->mem_start = pci_resource_start(pdev, 0);
3229 netdev->mem_end = pci_resource_end(pdev, 0);
3230
3231 /* PCI config space info */
3232 hw->vendor_id = pdev->vendor;
3233 hw->device_id = pdev->device;
3234 hw->revision_id = pdev->revision;
3235 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3236 hw->subsystem_device_id = pdev->subsystem_device;
3237
3238 /* Copy the default MAC, PHY and NVM function pointers */
3239 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3240 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3241 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3242 /* Initialize skew-specific constants */
3243 err = ei->get_invariants(hw);
3244 if (err)
3245 goto err_sw_init;
3246
3247 /* setup the private structure */
3248 err = igb_sw_init(adapter);
3249 if (err)
3250 goto err_sw_init;
3251
3252 igb_get_bus_info_pcie(hw);
3253
3254 hw->phy.autoneg_wait_to_complete = false;
3255
3256 /* Copper options */
3257 if (hw->phy.media_type == e1000_media_type_copper) {
3258 hw->phy.mdix = AUTO_ALL_MODES;
3259 hw->phy.disable_polarity_correction = false;
3260 hw->phy.ms_type = e1000_ms_hw_default;
3261 }
3262
3263 if (igb_check_reset_block(hw))
3264 dev_info(&pdev->dev,
3265 "PHY reset is blocked due to SOL/IDER session.\n");
3266
3267 /* features is initialized to 0 in allocation, it might have bits
3268 * set by igb_sw_init so we should use an or instead of an
3269 * assignment.
3270 */
3271 netdev->features |= NETIF_F_SG |
3272 NETIF_F_TSO |
3273 NETIF_F_TSO6 |
3274 NETIF_F_RXHASH |
3275 NETIF_F_RXCSUM |
3276 NETIF_F_HW_CSUM;
3277
3278 if (hw->mac.type >= e1000_82576)
3279 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3280
3281 if (hw->mac.type >= e1000_i350)
3282 netdev->features |= NETIF_F_HW_TC;
3283
3284 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3285 NETIF_F_GSO_GRE_CSUM | \
3286 NETIF_F_GSO_IPXIP4 | \
3287 NETIF_F_GSO_IPXIP6 | \
3288 NETIF_F_GSO_UDP_TUNNEL | \
3289 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3290
3291 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3292 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3293
3294 /* copy netdev features into list of user selectable features */
3295 netdev->hw_features |= netdev->features |
3296 NETIF_F_HW_VLAN_CTAG_RX |
3297 NETIF_F_HW_VLAN_CTAG_TX |
3298 NETIF_F_RXALL;
3299
3300 if (hw->mac.type >= e1000_i350)
3301 netdev->hw_features |= NETIF_F_NTUPLE;
3302
3303 if (pci_using_dac)
3304 netdev->features |= NETIF_F_HIGHDMA;
3305
3306 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3307 netdev->mpls_features |= NETIF_F_HW_CSUM;
3308 netdev->hw_enc_features |= netdev->vlan_features;
3309
3310 /* set this bit last since it cannot be part of vlan_features */
3311 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3312 NETIF_F_HW_VLAN_CTAG_RX |
3313 NETIF_F_HW_VLAN_CTAG_TX;
3314
3315 netdev->priv_flags |= IFF_SUPP_NOFCS;
3316
3317 netdev->priv_flags |= IFF_UNICAST_FLT;
3318
3319 /* MTU range: 68 - 9216 */
3320 netdev->min_mtu = ETH_MIN_MTU;
3321 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3322
3323 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3324
3325 /* before reading the NVM, reset the controller to put the device in a
3326 * known good starting state
3327 */
3328 hw->mac.ops.reset_hw(hw);
3329
3330 /* make sure the NVM is good , i211/i210 parts can have special NVM
3331 * that doesn't contain a checksum
3332 */
3333 switch (hw->mac.type) {
3334 case e1000_i210:
3335 case e1000_i211:
3336 if (igb_get_flash_presence_i210(hw)) {
3337 if (hw->nvm.ops.validate(hw) < 0) {
3338 dev_err(&pdev->dev,
3339 "The NVM Checksum Is Not Valid\n");
3340 err = -EIO;
3341 goto err_eeprom;
3342 }
3343 }
3344 break;
3345 default:
3346 if (hw->nvm.ops.validate(hw) < 0) {
3347 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3348 err = -EIO;
3349 goto err_eeprom;
3350 }
3351 break;
3352 }
3353
3354 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3355 /* copy the MAC address out of the NVM */
3356 if (hw->mac.ops.read_mac_addr(hw))
3357 dev_err(&pdev->dev, "NVM Read Error\n");
3358 }
3359
3360 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3361
3362 if (!is_valid_ether_addr(netdev->dev_addr)) {
3363 dev_err(&pdev->dev, "Invalid MAC Address\n");
3364 err = -EIO;
3365 goto err_eeprom;
3366 }
3367
3368 igb_set_default_mac_filter(adapter);
3369
3370 /* get firmware version for ethtool -i */
3371 igb_set_fw_version(adapter);
3372
3373 /* configure RXPBSIZE and TXPBSIZE */
3374 if (hw->mac.type == e1000_i210) {
3375 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3376 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3377 }
3378
3379 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3380 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3381
3382 INIT_WORK(&adapter->reset_task, igb_reset_task);
3383 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3384
3385 /* Initialize link properties that are user-changeable */
3386 adapter->fc_autoneg = true;
3387 hw->mac.autoneg = true;
3388 hw->phy.autoneg_advertised = 0x2f;
3389
3390 hw->fc.requested_mode = e1000_fc_default;
3391 hw->fc.current_mode = e1000_fc_default;
3392
3393 igb_validate_mdi_setting(hw);
3394
3395 /* By default, support wake on port A */
3396 if (hw->bus.func == 0)
3397 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3398
3399 /* Check the NVM for wake support on non-port A ports */
3400 if (hw->mac.type >= e1000_82580)
3401 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3402 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3403 &eeprom_data);
3404 else if (hw->bus.func == 1)
3405 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3406
3407 if (eeprom_data & IGB_EEPROM_APME)
3408 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3409
3410 /* now that we have the eeprom settings, apply the special cases where
3411 * the eeprom may be wrong or the board simply won't support wake on
3412 * lan on a particular port
3413 */
3414 switch (pdev->device) {
3415 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3416 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3417 break;
3418 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3419 case E1000_DEV_ID_82576_FIBER:
3420 case E1000_DEV_ID_82576_SERDES:
3421 /* Wake events only supported on port A for dual fiber
3422 * regardless of eeprom setting
3423 */
3424 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3425 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3426 break;
3427 case E1000_DEV_ID_82576_QUAD_COPPER:
3428 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3429 /* if quad port adapter, disable WoL on all but port A */
3430 if (global_quad_port_a != 0)
3431 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3432 else
3433 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3434 /* Reset for multiple quad port adapters */
3435 if (++global_quad_port_a == 4)
3436 global_quad_port_a = 0;
3437 break;
3438 default:
3439 /* If the device can't wake, don't set software support */
3440 if (!device_can_wakeup(&adapter->pdev->dev))
3441 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3442 }
3443
3444 /* initialize the wol settings based on the eeprom settings */
3445 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3446 adapter->wol |= E1000_WUFC_MAG;
3447
3448 /* Some vendors want WoL disabled by default, but still supported */
3449 if ((hw->mac.type == e1000_i350) &&
3450 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3451 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3452 adapter->wol = 0;
3453 }
3454
3455 /* Some vendors want the ability to Use the EEPROM setting as
3456 * enable/disable only, and not for capability
3457 */
3458 if (((hw->mac.type == e1000_i350) ||
3459 (hw->mac.type == e1000_i354)) &&
3460 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3461 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3462 adapter->wol = 0;
3463 }
3464 if (hw->mac.type == e1000_i350) {
3465 if (((pdev->subsystem_device == 0x5001) ||
3466 (pdev->subsystem_device == 0x5002)) &&
3467 (hw->bus.func == 0)) {
3468 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3469 adapter->wol = 0;
3470 }
3471 if (pdev->subsystem_device == 0x1F52)
3472 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3473 }
3474
3475 device_set_wakeup_enable(&adapter->pdev->dev,
3476 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3477
3478 /* reset the hardware with the new settings */
3479 igb_reset(adapter);
3480
3481 /* Init the I2C interface */
3482 err = igb_init_i2c(adapter);
3483 if (err) {
3484 dev_err(&pdev->dev, "failed to init i2c interface\n");
3485 goto err_eeprom;
3486 }
3487
3488 /* let the f/w know that the h/w is now under the control of the
3489 * driver.
3490 */
3491 igb_get_hw_control(adapter);
3492
3493 strcpy(netdev->name, "eth%d");
3494 err = register_netdev(netdev);
3495 if (err)
3496 goto err_register;
3497
3498 /* carrier off reporting is important to ethtool even BEFORE open */
3499 netif_carrier_off(netdev);
3500
3501 #ifdef CONFIG_IGB_DCA
3502 if (dca_add_requester(&pdev->dev) == 0) {
3503 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3504 dev_info(&pdev->dev, "DCA enabled\n");
3505 igb_setup_dca(adapter);
3506 }
3507
3508 #endif
3509 #ifdef CONFIG_IGB_HWMON
3510 /* Initialize the thermal sensor on i350 devices. */
3511 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3512 u16 ets_word;
3513
3514 /* Read the NVM to determine if this i350 device supports an
3515 * external thermal sensor.
3516 */
3517 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3518 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3519 adapter->ets = true;
3520 else
3521 adapter->ets = false;
3522 if (igb_sysfs_init(adapter))
3523 dev_err(&pdev->dev,
3524 "failed to allocate sysfs resources\n");
3525 } else {
3526 adapter->ets = false;
3527 }
3528 #endif
3529 /* Check if Media Autosense is enabled */
3530 adapter->ei = *ei;
3531 if (hw->dev_spec._82575.mas_capable)
3532 igb_init_mas(adapter);
3533
3534 /* do hw tstamp init after resetting */
3535 igb_ptp_init(adapter);
3536
3537 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3538 /* print bus type/speed/width info, not applicable to i354 */
3539 if (hw->mac.type != e1000_i354) {
3540 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3541 netdev->name,
3542 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3543 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3544 "unknown"),
3545 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3546 "Width x4" :
3547 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3548 "Width x2" :
3549 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3550 "Width x1" : "unknown"), netdev->dev_addr);
3551 }
3552
3553 if ((hw->mac.type == e1000_82576 &&
3554 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3555 (hw->mac.type >= e1000_i210 ||
3556 igb_get_flash_presence_i210(hw))) {
3557 ret_val = igb_read_part_string(hw, part_str,
3558 E1000_PBANUM_LENGTH);
3559 } else {
3560 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3561 }
3562
3563 if (ret_val)
3564 strcpy(part_str, "Unknown");
3565 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3566 dev_info(&pdev->dev,
3567 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3568 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3569 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3570 adapter->num_rx_queues, adapter->num_tx_queues);
3571 if (hw->phy.media_type == e1000_media_type_copper) {
3572 switch (hw->mac.type) {
3573 case e1000_i350:
3574 case e1000_i210:
3575 case e1000_i211:
3576 /* Enable EEE for internal copper PHY devices */
3577 err = igb_set_eee_i350(hw, true, true);
3578 if ((!err) &&
3579 (!hw->dev_spec._82575.eee_disable)) {
3580 adapter->eee_advert =
3581 MDIO_EEE_100TX | MDIO_EEE_1000T;
3582 adapter->flags |= IGB_FLAG_EEE;
3583 }
3584 break;
3585 case e1000_i354:
3586 if ((rd32(E1000_CTRL_EXT) &
3587 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3588 err = igb_set_eee_i354(hw, true, true);
3589 if ((!err) &&
3590 (!hw->dev_spec._82575.eee_disable)) {
3591 adapter->eee_advert =
3592 MDIO_EEE_100TX | MDIO_EEE_1000T;
3593 adapter->flags |= IGB_FLAG_EEE;
3594 }
3595 }
3596 break;
3597 default:
3598 break;
3599 }
3600 }
3601
3602 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3603
3604 pm_runtime_put_noidle(&pdev->dev);
3605 return 0;
3606
3607 err_register:
3608 igb_release_hw_control(adapter);
3609 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3610 err_eeprom:
3611 if (!igb_check_reset_block(hw))
3612 igb_reset_phy(hw);
3613
3614 if (hw->flash_address)
3615 iounmap(hw->flash_address);
3616 err_sw_init:
3617 kfree(adapter->mac_table);
3618 kfree(adapter->shadow_vfta);
3619 igb_clear_interrupt_scheme(adapter);
3620 #ifdef CONFIG_PCI_IOV
3621 igb_disable_sriov(pdev);
3622 #endif
3623 pci_iounmap(pdev, adapter->io_addr);
3624 err_ioremap:
3625 free_netdev(netdev);
3626 err_alloc_etherdev:
3627 pci_disable_pcie_error_reporting(pdev);
3628 pci_release_mem_regions(pdev);
3629 err_pci_reg:
3630 err_dma:
3631 pci_disable_device(pdev);
3632 return err;
3633 }
3634
3635 #ifdef CONFIG_PCI_IOV
igb_disable_sriov(struct pci_dev * pdev)3636 static int igb_disable_sriov(struct pci_dev *pdev)
3637 {
3638 struct net_device *netdev = pci_get_drvdata(pdev);
3639 struct igb_adapter *adapter = netdev_priv(netdev);
3640 struct e1000_hw *hw = &adapter->hw;
3641
3642 /* reclaim resources allocated to VFs */
3643 if (adapter->vf_data) {
3644 /* disable iov and allow time for transactions to clear */
3645 if (pci_vfs_assigned(pdev)) {
3646 dev_warn(&pdev->dev,
3647 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3648 return -EPERM;
3649 } else {
3650 pci_disable_sriov(pdev);
3651 msleep(500);
3652 }
3653
3654 kfree(adapter->vf_mac_list);
3655 adapter->vf_mac_list = NULL;
3656 kfree(adapter->vf_data);
3657 adapter->vf_data = NULL;
3658 adapter->vfs_allocated_count = 0;
3659 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3660 wrfl();
3661 msleep(100);
3662 dev_info(&pdev->dev, "IOV Disabled\n");
3663
3664 /* Re-enable DMA Coalescing flag since IOV is turned off */
3665 adapter->flags |= IGB_FLAG_DMAC;
3666 }
3667
3668 return 0;
3669 }
3670
igb_enable_sriov(struct pci_dev * pdev,int num_vfs)3671 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3672 {
3673 struct net_device *netdev = pci_get_drvdata(pdev);
3674 struct igb_adapter *adapter = netdev_priv(netdev);
3675 int old_vfs = pci_num_vf(pdev);
3676 struct vf_mac_filter *mac_list;
3677 int err = 0;
3678 int num_vf_mac_filters, i;
3679
3680 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3681 err = -EPERM;
3682 goto out;
3683 }
3684 if (!num_vfs)
3685 goto out;
3686
3687 if (old_vfs) {
3688 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3689 old_vfs, max_vfs);
3690 adapter->vfs_allocated_count = old_vfs;
3691 } else
3692 adapter->vfs_allocated_count = num_vfs;
3693
3694 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3695 sizeof(struct vf_data_storage), GFP_KERNEL);
3696
3697 /* if allocation failed then we do not support SR-IOV */
3698 if (!adapter->vf_data) {
3699 adapter->vfs_allocated_count = 0;
3700 err = -ENOMEM;
3701 goto out;
3702 }
3703
3704 /* Due to the limited number of RAR entries calculate potential
3705 * number of MAC filters available for the VFs. Reserve entries
3706 * for PF default MAC, PF MAC filters and at least one RAR entry
3707 * for each VF for VF MAC.
3708 */
3709 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3710 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3711 adapter->vfs_allocated_count);
3712
3713 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3714 sizeof(struct vf_mac_filter),
3715 GFP_KERNEL);
3716
3717 mac_list = adapter->vf_mac_list;
3718 INIT_LIST_HEAD(&adapter->vf_macs.l);
3719
3720 if (adapter->vf_mac_list) {
3721 /* Initialize list of VF MAC filters */
3722 for (i = 0; i < num_vf_mac_filters; i++) {
3723 mac_list->vf = -1;
3724 mac_list->free = true;
3725 list_add(&mac_list->l, &adapter->vf_macs.l);
3726 mac_list++;
3727 }
3728 } else {
3729 /* If we could not allocate memory for the VF MAC filters
3730 * we can continue without this feature but warn user.
3731 */
3732 dev_err(&pdev->dev,
3733 "Unable to allocate memory for VF MAC filter list\n");
3734 }
3735
3736 /* only call pci_enable_sriov() if no VFs are allocated already */
3737 if (!old_vfs) {
3738 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3739 if (err)
3740 goto err_out;
3741 }
3742 dev_info(&pdev->dev, "%d VFs allocated\n",
3743 adapter->vfs_allocated_count);
3744 for (i = 0; i < adapter->vfs_allocated_count; i++)
3745 igb_vf_configure(adapter, i);
3746
3747 /* DMA Coalescing is not supported in IOV mode. */
3748 adapter->flags &= ~IGB_FLAG_DMAC;
3749 goto out;
3750
3751 err_out:
3752 kfree(adapter->vf_mac_list);
3753 adapter->vf_mac_list = NULL;
3754 kfree(adapter->vf_data);
3755 adapter->vf_data = NULL;
3756 adapter->vfs_allocated_count = 0;
3757 out:
3758 return err;
3759 }
3760
3761 #endif
3762 /**
3763 * igb_remove_i2c - Cleanup I2C interface
3764 * @adapter: pointer to adapter structure
3765 **/
igb_remove_i2c(struct igb_adapter * adapter)3766 static void igb_remove_i2c(struct igb_adapter *adapter)
3767 {
3768 /* free the adapter bus structure */
3769 i2c_del_adapter(&adapter->i2c_adap);
3770 }
3771
3772 /**
3773 * igb_remove - Device Removal Routine
3774 * @pdev: PCI device information struct
3775 *
3776 * igb_remove is called by the PCI subsystem to alert the driver
3777 * that it should release a PCI device. The could be caused by a
3778 * Hot-Plug event, or because the driver is going to be removed from
3779 * memory.
3780 **/
igb_remove(struct pci_dev * pdev)3781 static void igb_remove(struct pci_dev *pdev)
3782 {
3783 struct net_device *netdev = pci_get_drvdata(pdev);
3784 struct igb_adapter *adapter = netdev_priv(netdev);
3785 struct e1000_hw *hw = &adapter->hw;
3786
3787 pm_runtime_get_noresume(&pdev->dev);
3788 #ifdef CONFIG_IGB_HWMON
3789 igb_sysfs_exit(adapter);
3790 #endif
3791 igb_remove_i2c(adapter);
3792 igb_ptp_stop(adapter);
3793 /* The watchdog timer may be rescheduled, so explicitly
3794 * disable watchdog from being rescheduled.
3795 */
3796 set_bit(__IGB_DOWN, &adapter->state);
3797 del_timer_sync(&adapter->watchdog_timer);
3798 del_timer_sync(&adapter->phy_info_timer);
3799
3800 cancel_work_sync(&adapter->reset_task);
3801 cancel_work_sync(&adapter->watchdog_task);
3802
3803 #ifdef CONFIG_IGB_DCA
3804 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3805 dev_info(&pdev->dev, "DCA disabled\n");
3806 dca_remove_requester(&pdev->dev);
3807 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3808 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3809 }
3810 #endif
3811
3812 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3813 * would have already happened in close and is redundant.
3814 */
3815 igb_release_hw_control(adapter);
3816
3817 #ifdef CONFIG_PCI_IOV
3818 igb_disable_sriov(pdev);
3819 #endif
3820
3821 unregister_netdev(netdev);
3822
3823 igb_clear_interrupt_scheme(adapter);
3824
3825 pci_iounmap(pdev, adapter->io_addr);
3826 if (hw->flash_address)
3827 iounmap(hw->flash_address);
3828 pci_release_mem_regions(pdev);
3829
3830 kfree(adapter->mac_table);
3831 kfree(adapter->shadow_vfta);
3832 free_netdev(netdev);
3833
3834 pci_disable_pcie_error_reporting(pdev);
3835
3836 pci_disable_device(pdev);
3837 }
3838
3839 /**
3840 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3841 * @adapter: board private structure to initialize
3842 *
3843 * This function initializes the vf specific data storage and then attempts to
3844 * allocate the VFs. The reason for ordering it this way is because it is much
3845 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3846 * the memory for the VFs.
3847 **/
igb_probe_vfs(struct igb_adapter * adapter)3848 static void igb_probe_vfs(struct igb_adapter *adapter)
3849 {
3850 #ifdef CONFIG_PCI_IOV
3851 struct pci_dev *pdev = adapter->pdev;
3852 struct e1000_hw *hw = &adapter->hw;
3853
3854 /* Virtualization features not supported on i210 family. */
3855 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3856 return;
3857
3858 /* Of the below we really only want the effect of getting
3859 * IGB_FLAG_HAS_MSIX set (if available), without which
3860 * igb_enable_sriov() has no effect.
3861 */
3862 igb_set_interrupt_capability(adapter, true);
3863 igb_reset_interrupt_capability(adapter);
3864
3865 pci_sriov_set_totalvfs(pdev, 7);
3866 igb_enable_sriov(pdev, max_vfs);
3867
3868 #endif /* CONFIG_PCI_IOV */
3869 }
3870
igb_get_max_rss_queues(struct igb_adapter * adapter)3871 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3872 {
3873 struct e1000_hw *hw = &adapter->hw;
3874 unsigned int max_rss_queues;
3875
3876 /* Determine the maximum number of RSS queues supported. */
3877 switch (hw->mac.type) {
3878 case e1000_i211:
3879 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3880 break;
3881 case e1000_82575:
3882 case e1000_i210:
3883 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3884 break;
3885 case e1000_i350:
3886 /* I350 cannot do RSS and SR-IOV at the same time */
3887 if (!!adapter->vfs_allocated_count) {
3888 max_rss_queues = 1;
3889 break;
3890 }
3891 fallthrough;
3892 case e1000_82576:
3893 if (!!adapter->vfs_allocated_count) {
3894 max_rss_queues = 2;
3895 break;
3896 }
3897 fallthrough;
3898 case e1000_82580:
3899 case e1000_i354:
3900 default:
3901 max_rss_queues = IGB_MAX_RX_QUEUES;
3902 break;
3903 }
3904
3905 return max_rss_queues;
3906 }
3907
igb_init_queue_configuration(struct igb_adapter * adapter)3908 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3909 {
3910 u32 max_rss_queues;
3911
3912 max_rss_queues = igb_get_max_rss_queues(adapter);
3913 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3914
3915 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3916 }
3917
igb_set_flag_queue_pairs(struct igb_adapter * adapter,const u32 max_rss_queues)3918 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3919 const u32 max_rss_queues)
3920 {
3921 struct e1000_hw *hw = &adapter->hw;
3922
3923 /* Determine if we need to pair queues. */
3924 switch (hw->mac.type) {
3925 case e1000_82575:
3926 case e1000_i211:
3927 /* Device supports enough interrupts without queue pairing. */
3928 break;
3929 case e1000_82576:
3930 case e1000_82580:
3931 case e1000_i350:
3932 case e1000_i354:
3933 case e1000_i210:
3934 default:
3935 /* If rss_queues > half of max_rss_queues, pair the queues in
3936 * order to conserve interrupts due to limited supply.
3937 */
3938 if (adapter->rss_queues > (max_rss_queues / 2))
3939 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3940 else
3941 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3942 break;
3943 }
3944 }
3945
3946 /**
3947 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3948 * @adapter: board private structure to initialize
3949 *
3950 * igb_sw_init initializes the Adapter private data structure.
3951 * Fields are initialized based on PCI device information and
3952 * OS network device settings (MTU size).
3953 **/
igb_sw_init(struct igb_adapter * adapter)3954 static int igb_sw_init(struct igb_adapter *adapter)
3955 {
3956 struct e1000_hw *hw = &adapter->hw;
3957 struct net_device *netdev = adapter->netdev;
3958 struct pci_dev *pdev = adapter->pdev;
3959
3960 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3961
3962 /* set default ring sizes */
3963 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3964 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3965
3966 /* set default ITR values */
3967 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3968 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3969
3970 /* set default work limits */
3971 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3972
3973 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3974 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3975
3976 spin_lock_init(&adapter->nfc_lock);
3977 spin_lock_init(&adapter->stats64_lock);
3978 #ifdef CONFIG_PCI_IOV
3979 switch (hw->mac.type) {
3980 case e1000_82576:
3981 case e1000_i350:
3982 if (max_vfs > 7) {
3983 dev_warn(&pdev->dev,
3984 "Maximum of 7 VFs per PF, using max\n");
3985 max_vfs = adapter->vfs_allocated_count = 7;
3986 } else
3987 adapter->vfs_allocated_count = max_vfs;
3988 if (adapter->vfs_allocated_count)
3989 dev_warn(&pdev->dev,
3990 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3991 break;
3992 default:
3993 break;
3994 }
3995 #endif /* CONFIG_PCI_IOV */
3996
3997 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3998 adapter->flags |= IGB_FLAG_HAS_MSIX;
3999
4000 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
4001 sizeof(struct igb_mac_addr),
4002 GFP_KERNEL);
4003 if (!adapter->mac_table)
4004 return -ENOMEM;
4005
4006 igb_probe_vfs(adapter);
4007
4008 igb_init_queue_configuration(adapter);
4009
4010 /* Setup and initialize a copy of the hw vlan table array */
4011 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4012 GFP_KERNEL);
4013 if (!adapter->shadow_vfta)
4014 return -ENOMEM;
4015
4016 /* This call may decrease the number of queues */
4017 if (igb_init_interrupt_scheme(adapter, true)) {
4018 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4019 return -ENOMEM;
4020 }
4021
4022 /* Explicitly disable IRQ since the NIC can be in any state. */
4023 igb_irq_disable(adapter);
4024
4025 if (hw->mac.type >= e1000_i350)
4026 adapter->flags &= ~IGB_FLAG_DMAC;
4027
4028 set_bit(__IGB_DOWN, &adapter->state);
4029 return 0;
4030 }
4031
4032 /**
4033 * igb_open - Called when a network interface is made active
4034 * @netdev: network interface device structure
4035 * @resuming: indicates whether we are in a resume call
4036 *
4037 * Returns 0 on success, negative value on failure
4038 *
4039 * The open entry point is called when a network interface is made
4040 * active by the system (IFF_UP). At this point all resources needed
4041 * for transmit and receive operations are allocated, the interrupt
4042 * handler is registered with the OS, the watchdog timer is started,
4043 * and the stack is notified that the interface is ready.
4044 **/
__igb_open(struct net_device * netdev,bool resuming)4045 static int __igb_open(struct net_device *netdev, bool resuming)
4046 {
4047 struct igb_adapter *adapter = netdev_priv(netdev);
4048 struct e1000_hw *hw = &adapter->hw;
4049 struct pci_dev *pdev = adapter->pdev;
4050 int err;
4051 int i;
4052
4053 /* disallow open during test */
4054 if (test_bit(__IGB_TESTING, &adapter->state)) {
4055 WARN_ON(resuming);
4056 return -EBUSY;
4057 }
4058
4059 if (!resuming)
4060 pm_runtime_get_sync(&pdev->dev);
4061
4062 netif_carrier_off(netdev);
4063
4064 /* allocate transmit descriptors */
4065 err = igb_setup_all_tx_resources(adapter);
4066 if (err)
4067 goto err_setup_tx;
4068
4069 /* allocate receive descriptors */
4070 err = igb_setup_all_rx_resources(adapter);
4071 if (err)
4072 goto err_setup_rx;
4073
4074 igb_power_up_link(adapter);
4075
4076 /* before we allocate an interrupt, we must be ready to handle it.
4077 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4078 * as soon as we call pci_request_irq, so we have to setup our
4079 * clean_rx handler before we do so.
4080 */
4081 igb_configure(adapter);
4082
4083 err = igb_request_irq(adapter);
4084 if (err)
4085 goto err_req_irq;
4086
4087 /* Notify the stack of the actual queue counts. */
4088 err = netif_set_real_num_tx_queues(adapter->netdev,
4089 adapter->num_tx_queues);
4090 if (err)
4091 goto err_set_queues;
4092
4093 err = netif_set_real_num_rx_queues(adapter->netdev,
4094 adapter->num_rx_queues);
4095 if (err)
4096 goto err_set_queues;
4097
4098 /* From here on the code is the same as igb_up() */
4099 clear_bit(__IGB_DOWN, &adapter->state);
4100
4101 for (i = 0; i < adapter->num_q_vectors; i++)
4102 napi_enable(&(adapter->q_vector[i]->napi));
4103
4104 /* Clear any pending interrupts. */
4105 rd32(E1000_TSICR);
4106 rd32(E1000_ICR);
4107
4108 igb_irq_enable(adapter);
4109
4110 /* notify VFs that reset has been completed */
4111 if (adapter->vfs_allocated_count) {
4112 u32 reg_data = rd32(E1000_CTRL_EXT);
4113
4114 reg_data |= E1000_CTRL_EXT_PFRSTD;
4115 wr32(E1000_CTRL_EXT, reg_data);
4116 }
4117
4118 netif_tx_start_all_queues(netdev);
4119
4120 if (!resuming)
4121 pm_runtime_put(&pdev->dev);
4122
4123 /* start the watchdog. */
4124 hw->mac.get_link_status = 1;
4125 schedule_work(&adapter->watchdog_task);
4126
4127 return 0;
4128
4129 err_set_queues:
4130 igb_free_irq(adapter);
4131 err_req_irq:
4132 igb_release_hw_control(adapter);
4133 igb_power_down_link(adapter);
4134 igb_free_all_rx_resources(adapter);
4135 err_setup_rx:
4136 igb_free_all_tx_resources(adapter);
4137 err_setup_tx:
4138 igb_reset(adapter);
4139 if (!resuming)
4140 pm_runtime_put(&pdev->dev);
4141
4142 return err;
4143 }
4144
igb_open(struct net_device * netdev)4145 int igb_open(struct net_device *netdev)
4146 {
4147 return __igb_open(netdev, false);
4148 }
4149
4150 /**
4151 * igb_close - Disables a network interface
4152 * @netdev: network interface device structure
4153 * @suspending: indicates we are in a suspend call
4154 *
4155 * Returns 0, this is not allowed to fail
4156 *
4157 * The close entry point is called when an interface is de-activated
4158 * by the OS. The hardware is still under the driver's control, but
4159 * needs to be disabled. A global MAC reset is issued to stop the
4160 * hardware, and all transmit and receive resources are freed.
4161 **/
__igb_close(struct net_device * netdev,bool suspending)4162 static int __igb_close(struct net_device *netdev, bool suspending)
4163 {
4164 struct igb_adapter *adapter = netdev_priv(netdev);
4165 struct pci_dev *pdev = adapter->pdev;
4166
4167 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4168
4169 if (!suspending)
4170 pm_runtime_get_sync(&pdev->dev);
4171
4172 igb_down(adapter);
4173 igb_free_irq(adapter);
4174
4175 igb_free_all_tx_resources(adapter);
4176 igb_free_all_rx_resources(adapter);
4177
4178 if (!suspending)
4179 pm_runtime_put_sync(&pdev->dev);
4180 return 0;
4181 }
4182
igb_close(struct net_device * netdev)4183 int igb_close(struct net_device *netdev)
4184 {
4185 if (netif_device_present(netdev) || netdev->dismantle)
4186 return __igb_close(netdev, false);
4187 return 0;
4188 }
4189
4190 /**
4191 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4192 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4193 *
4194 * Return 0 on success, negative on failure
4195 **/
igb_setup_tx_resources(struct igb_ring * tx_ring)4196 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4197 {
4198 struct device *dev = tx_ring->dev;
4199 int size;
4200
4201 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4202
4203 tx_ring->tx_buffer_info = vmalloc(size);
4204 if (!tx_ring->tx_buffer_info)
4205 goto err;
4206
4207 /* round up to nearest 4K */
4208 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4209 tx_ring->size = ALIGN(tx_ring->size, 4096);
4210
4211 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4212 &tx_ring->dma, GFP_KERNEL);
4213 if (!tx_ring->desc)
4214 goto err;
4215
4216 tx_ring->next_to_use = 0;
4217 tx_ring->next_to_clean = 0;
4218
4219 return 0;
4220
4221 err:
4222 vfree(tx_ring->tx_buffer_info);
4223 tx_ring->tx_buffer_info = NULL;
4224 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4225 return -ENOMEM;
4226 }
4227
4228 /**
4229 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4230 * (Descriptors) for all queues
4231 * @adapter: board private structure
4232 *
4233 * Return 0 on success, negative on failure
4234 **/
igb_setup_all_tx_resources(struct igb_adapter * adapter)4235 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4236 {
4237 struct pci_dev *pdev = adapter->pdev;
4238 int i, err = 0;
4239
4240 for (i = 0; i < adapter->num_tx_queues; i++) {
4241 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4242 if (err) {
4243 dev_err(&pdev->dev,
4244 "Allocation for Tx Queue %u failed\n", i);
4245 for (i--; i >= 0; i--)
4246 igb_free_tx_resources(adapter->tx_ring[i]);
4247 break;
4248 }
4249 }
4250
4251 return err;
4252 }
4253
4254 /**
4255 * igb_setup_tctl - configure the transmit control registers
4256 * @adapter: Board private structure
4257 **/
igb_setup_tctl(struct igb_adapter * adapter)4258 void igb_setup_tctl(struct igb_adapter *adapter)
4259 {
4260 struct e1000_hw *hw = &adapter->hw;
4261 u32 tctl;
4262
4263 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4264 wr32(E1000_TXDCTL(0), 0);
4265
4266 /* Program the Transmit Control Register */
4267 tctl = rd32(E1000_TCTL);
4268 tctl &= ~E1000_TCTL_CT;
4269 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4270 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4271
4272 igb_config_collision_dist(hw);
4273
4274 /* Enable transmits */
4275 tctl |= E1000_TCTL_EN;
4276
4277 wr32(E1000_TCTL, tctl);
4278 }
4279
4280 /**
4281 * igb_configure_tx_ring - Configure transmit ring after Reset
4282 * @adapter: board private structure
4283 * @ring: tx ring to configure
4284 *
4285 * Configure a transmit ring after a reset.
4286 **/
igb_configure_tx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4287 void igb_configure_tx_ring(struct igb_adapter *adapter,
4288 struct igb_ring *ring)
4289 {
4290 struct e1000_hw *hw = &adapter->hw;
4291 u32 txdctl = 0;
4292 u64 tdba = ring->dma;
4293 int reg_idx = ring->reg_idx;
4294
4295 wr32(E1000_TDLEN(reg_idx),
4296 ring->count * sizeof(union e1000_adv_tx_desc));
4297 wr32(E1000_TDBAL(reg_idx),
4298 tdba & 0x00000000ffffffffULL);
4299 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4300
4301 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4302 wr32(E1000_TDH(reg_idx), 0);
4303 writel(0, ring->tail);
4304
4305 txdctl |= IGB_TX_PTHRESH;
4306 txdctl |= IGB_TX_HTHRESH << 8;
4307 txdctl |= IGB_TX_WTHRESH << 16;
4308
4309 /* reinitialize tx_buffer_info */
4310 memset(ring->tx_buffer_info, 0,
4311 sizeof(struct igb_tx_buffer) * ring->count);
4312
4313 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4314 wr32(E1000_TXDCTL(reg_idx), txdctl);
4315 }
4316
4317 /**
4318 * igb_configure_tx - Configure transmit Unit after Reset
4319 * @adapter: board private structure
4320 *
4321 * Configure the Tx unit of the MAC after a reset.
4322 **/
igb_configure_tx(struct igb_adapter * adapter)4323 static void igb_configure_tx(struct igb_adapter *adapter)
4324 {
4325 struct e1000_hw *hw = &adapter->hw;
4326 int i;
4327
4328 /* disable the queues */
4329 for (i = 0; i < adapter->num_tx_queues; i++)
4330 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4331
4332 wrfl();
4333 usleep_range(10000, 20000);
4334
4335 for (i = 0; i < adapter->num_tx_queues; i++)
4336 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4337 }
4338
4339 /**
4340 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4341 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4342 *
4343 * Returns 0 on success, negative on failure
4344 **/
igb_setup_rx_resources(struct igb_ring * rx_ring)4345 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4346 {
4347 struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4348 struct device *dev = rx_ring->dev;
4349 int size;
4350
4351 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4352
4353 rx_ring->rx_buffer_info = vmalloc(size);
4354 if (!rx_ring->rx_buffer_info)
4355 goto err;
4356
4357 /* Round up to nearest 4K */
4358 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4359 rx_ring->size = ALIGN(rx_ring->size, 4096);
4360
4361 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4362 &rx_ring->dma, GFP_KERNEL);
4363 if (!rx_ring->desc)
4364 goto err;
4365
4366 rx_ring->next_to_alloc = 0;
4367 rx_ring->next_to_clean = 0;
4368 rx_ring->next_to_use = 0;
4369
4370 rx_ring->xdp_prog = adapter->xdp_prog;
4371
4372 /* XDP RX-queue info */
4373 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4374 rx_ring->queue_index) < 0)
4375 goto err;
4376
4377 return 0;
4378
4379 err:
4380 vfree(rx_ring->rx_buffer_info);
4381 rx_ring->rx_buffer_info = NULL;
4382 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4383 return -ENOMEM;
4384 }
4385
4386 /**
4387 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4388 * (Descriptors) for all queues
4389 * @adapter: board private structure
4390 *
4391 * Return 0 on success, negative on failure
4392 **/
igb_setup_all_rx_resources(struct igb_adapter * adapter)4393 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4394 {
4395 struct pci_dev *pdev = adapter->pdev;
4396 int i, err = 0;
4397
4398 for (i = 0; i < adapter->num_rx_queues; i++) {
4399 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4400 if (err) {
4401 dev_err(&pdev->dev,
4402 "Allocation for Rx Queue %u failed\n", i);
4403 for (i--; i >= 0; i--)
4404 igb_free_rx_resources(adapter->rx_ring[i]);
4405 break;
4406 }
4407 }
4408
4409 return err;
4410 }
4411
4412 /**
4413 * igb_setup_mrqc - configure the multiple receive queue control registers
4414 * @adapter: Board private structure
4415 **/
igb_setup_mrqc(struct igb_adapter * adapter)4416 static void igb_setup_mrqc(struct igb_adapter *adapter)
4417 {
4418 struct e1000_hw *hw = &adapter->hw;
4419 u32 mrqc, rxcsum;
4420 u32 j, num_rx_queues;
4421 u32 rss_key[10];
4422
4423 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4424 for (j = 0; j < 10; j++)
4425 wr32(E1000_RSSRK(j), rss_key[j]);
4426
4427 num_rx_queues = adapter->rss_queues;
4428
4429 switch (hw->mac.type) {
4430 case e1000_82576:
4431 /* 82576 supports 2 RSS queues for SR-IOV */
4432 if (adapter->vfs_allocated_count)
4433 num_rx_queues = 2;
4434 break;
4435 default:
4436 break;
4437 }
4438
4439 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4440 for (j = 0; j < IGB_RETA_SIZE; j++)
4441 adapter->rss_indir_tbl[j] =
4442 (j * num_rx_queues) / IGB_RETA_SIZE;
4443 adapter->rss_indir_tbl_init = num_rx_queues;
4444 }
4445 igb_write_rss_indir_tbl(adapter);
4446
4447 /* Disable raw packet checksumming so that RSS hash is placed in
4448 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4449 * offloads as they are enabled by default
4450 */
4451 rxcsum = rd32(E1000_RXCSUM);
4452 rxcsum |= E1000_RXCSUM_PCSD;
4453
4454 if (adapter->hw.mac.type >= e1000_82576)
4455 /* Enable Receive Checksum Offload for SCTP */
4456 rxcsum |= E1000_RXCSUM_CRCOFL;
4457
4458 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4459 wr32(E1000_RXCSUM, rxcsum);
4460
4461 /* Generate RSS hash based on packet types, TCP/UDP
4462 * port numbers and/or IPv4/v6 src and dst addresses
4463 */
4464 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4465 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4466 E1000_MRQC_RSS_FIELD_IPV6 |
4467 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4468 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4469
4470 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4471 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4472 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4473 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4474
4475 /* If VMDq is enabled then we set the appropriate mode for that, else
4476 * we default to RSS so that an RSS hash is calculated per packet even
4477 * if we are only using one queue
4478 */
4479 if (adapter->vfs_allocated_count) {
4480 if (hw->mac.type > e1000_82575) {
4481 /* Set the default pool for the PF's first queue */
4482 u32 vtctl = rd32(E1000_VT_CTL);
4483
4484 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4485 E1000_VT_CTL_DISABLE_DEF_POOL);
4486 vtctl |= adapter->vfs_allocated_count <<
4487 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4488 wr32(E1000_VT_CTL, vtctl);
4489 }
4490 if (adapter->rss_queues > 1)
4491 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4492 else
4493 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4494 } else {
4495 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4496 }
4497 igb_vmm_control(adapter);
4498
4499 wr32(E1000_MRQC, mrqc);
4500 }
4501
4502 /**
4503 * igb_setup_rctl - configure the receive control registers
4504 * @adapter: Board private structure
4505 **/
igb_setup_rctl(struct igb_adapter * adapter)4506 void igb_setup_rctl(struct igb_adapter *adapter)
4507 {
4508 struct e1000_hw *hw = &adapter->hw;
4509 u32 rctl;
4510
4511 rctl = rd32(E1000_RCTL);
4512
4513 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4514 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4515
4516 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4517 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4518
4519 /* enable stripping of CRC. It's unlikely this will break BMC
4520 * redirection as it did with e1000. Newer features require
4521 * that the HW strips the CRC.
4522 */
4523 rctl |= E1000_RCTL_SECRC;
4524
4525 /* disable store bad packets and clear size bits. */
4526 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4527
4528 /* enable LPE to allow for reception of jumbo frames */
4529 rctl |= E1000_RCTL_LPE;
4530
4531 /* disable queue 0 to prevent tail write w/o re-config */
4532 wr32(E1000_RXDCTL(0), 0);
4533
4534 /* Attention!!! For SR-IOV PF driver operations you must enable
4535 * queue drop for all VF and PF queues to prevent head of line blocking
4536 * if an un-trusted VF does not provide descriptors to hardware.
4537 */
4538 if (adapter->vfs_allocated_count) {
4539 /* set all queue drop enable bits */
4540 wr32(E1000_QDE, ALL_QUEUES);
4541 }
4542
4543 /* This is useful for sniffing bad packets. */
4544 if (adapter->netdev->features & NETIF_F_RXALL) {
4545 /* UPE and MPE will be handled by normal PROMISC logic
4546 * in e1000e_set_rx_mode
4547 */
4548 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4549 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4550 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4551
4552 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4553 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4554 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4555 * and that breaks VLANs.
4556 */
4557 }
4558
4559 wr32(E1000_RCTL, rctl);
4560 }
4561
igb_set_vf_rlpml(struct igb_adapter * adapter,int size,int vfn)4562 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4563 int vfn)
4564 {
4565 struct e1000_hw *hw = &adapter->hw;
4566 u32 vmolr;
4567
4568 if (size > MAX_JUMBO_FRAME_SIZE)
4569 size = MAX_JUMBO_FRAME_SIZE;
4570
4571 vmolr = rd32(E1000_VMOLR(vfn));
4572 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4573 vmolr |= size | E1000_VMOLR_LPE;
4574 wr32(E1000_VMOLR(vfn), vmolr);
4575
4576 return 0;
4577 }
4578
igb_set_vf_vlan_strip(struct igb_adapter * adapter,int vfn,bool enable)4579 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4580 int vfn, bool enable)
4581 {
4582 struct e1000_hw *hw = &adapter->hw;
4583 u32 val, reg;
4584
4585 if (hw->mac.type < e1000_82576)
4586 return;
4587
4588 if (hw->mac.type == e1000_i350)
4589 reg = E1000_DVMOLR(vfn);
4590 else
4591 reg = E1000_VMOLR(vfn);
4592
4593 val = rd32(reg);
4594 if (enable)
4595 val |= E1000_VMOLR_STRVLAN;
4596 else
4597 val &= ~(E1000_VMOLR_STRVLAN);
4598 wr32(reg, val);
4599 }
4600
igb_set_vmolr(struct igb_adapter * adapter,int vfn,bool aupe)4601 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4602 int vfn, bool aupe)
4603 {
4604 struct e1000_hw *hw = &adapter->hw;
4605 u32 vmolr;
4606
4607 /* This register exists only on 82576 and newer so if we are older then
4608 * we should exit and do nothing
4609 */
4610 if (hw->mac.type < e1000_82576)
4611 return;
4612
4613 vmolr = rd32(E1000_VMOLR(vfn));
4614 if (aupe)
4615 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4616 else
4617 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4618
4619 /* clear all bits that might not be set */
4620 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4621
4622 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4623 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4624 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4625 * multicast packets
4626 */
4627 if (vfn <= adapter->vfs_allocated_count)
4628 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4629
4630 wr32(E1000_VMOLR(vfn), vmolr);
4631 }
4632
4633 /**
4634 * igb_setup_srrctl - configure the split and replication receive control
4635 * registers
4636 * @adapter: Board private structure
4637 * @ring: receive ring to be configured
4638 **/
igb_setup_srrctl(struct igb_adapter * adapter,struct igb_ring * ring)4639 void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4640 {
4641 struct e1000_hw *hw = &adapter->hw;
4642 int reg_idx = ring->reg_idx;
4643 u32 srrctl = 0;
4644
4645 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4646 if (ring_uses_large_buffer(ring))
4647 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4648 else
4649 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4650 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4651 if (hw->mac.type >= e1000_82580)
4652 srrctl |= E1000_SRRCTL_TIMESTAMP;
4653 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4654 * queues and rx flow control is disabled
4655 */
4656 if (adapter->vfs_allocated_count ||
4657 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4658 adapter->num_rx_queues > 1))
4659 srrctl |= E1000_SRRCTL_DROP_EN;
4660
4661 wr32(E1000_SRRCTL(reg_idx), srrctl);
4662 }
4663
4664 /**
4665 * igb_configure_rx_ring - Configure a receive ring after Reset
4666 * @adapter: board private structure
4667 * @ring: receive ring to be configured
4668 *
4669 * Configure the Rx unit of the MAC after a reset.
4670 **/
igb_configure_rx_ring(struct igb_adapter * adapter,struct igb_ring * ring)4671 void igb_configure_rx_ring(struct igb_adapter *adapter,
4672 struct igb_ring *ring)
4673 {
4674 struct e1000_hw *hw = &adapter->hw;
4675 union e1000_adv_rx_desc *rx_desc;
4676 u64 rdba = ring->dma;
4677 int reg_idx = ring->reg_idx;
4678 u32 rxdctl = 0;
4679
4680 xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4681 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4682 MEM_TYPE_PAGE_SHARED, NULL));
4683
4684 /* disable the queue */
4685 wr32(E1000_RXDCTL(reg_idx), 0);
4686
4687 /* Set DMA base address registers */
4688 wr32(E1000_RDBAL(reg_idx),
4689 rdba & 0x00000000ffffffffULL);
4690 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4691 wr32(E1000_RDLEN(reg_idx),
4692 ring->count * sizeof(union e1000_adv_rx_desc));
4693
4694 /* initialize head and tail */
4695 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4696 wr32(E1000_RDH(reg_idx), 0);
4697 writel(0, ring->tail);
4698
4699 /* set descriptor configuration */
4700 igb_setup_srrctl(adapter, ring);
4701
4702 /* set filtering for VMDQ pools */
4703 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4704
4705 rxdctl |= IGB_RX_PTHRESH;
4706 rxdctl |= IGB_RX_HTHRESH << 8;
4707 rxdctl |= IGB_RX_WTHRESH << 16;
4708
4709 /* initialize rx_buffer_info */
4710 memset(ring->rx_buffer_info, 0,
4711 sizeof(struct igb_rx_buffer) * ring->count);
4712
4713 /* initialize Rx descriptor 0 */
4714 rx_desc = IGB_RX_DESC(ring, 0);
4715 rx_desc->wb.upper.length = 0;
4716
4717 /* enable receive descriptor fetching */
4718 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4719 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4720 }
4721
igb_set_rx_buffer_len(struct igb_adapter * adapter,struct igb_ring * rx_ring)4722 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4723 struct igb_ring *rx_ring)
4724 {
4725 /* set build_skb and buffer size flags */
4726 clear_ring_build_skb_enabled(rx_ring);
4727 clear_ring_uses_large_buffer(rx_ring);
4728
4729 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4730 return;
4731
4732 set_ring_build_skb_enabled(rx_ring);
4733
4734 #if (PAGE_SIZE < 8192)
4735 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4736 return;
4737
4738 set_ring_uses_large_buffer(rx_ring);
4739 #endif
4740 }
4741
4742 /**
4743 * igb_configure_rx - Configure receive Unit after Reset
4744 * @adapter: board private structure
4745 *
4746 * Configure the Rx unit of the MAC after a reset.
4747 **/
igb_configure_rx(struct igb_adapter * adapter)4748 static void igb_configure_rx(struct igb_adapter *adapter)
4749 {
4750 int i;
4751
4752 /* set the correct pool for the PF default MAC address in entry 0 */
4753 igb_set_default_mac_filter(adapter);
4754
4755 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4756 * the Base and Length of the Rx Descriptor Ring
4757 */
4758 for (i = 0; i < adapter->num_rx_queues; i++) {
4759 struct igb_ring *rx_ring = adapter->rx_ring[i];
4760
4761 igb_set_rx_buffer_len(adapter, rx_ring);
4762 igb_configure_rx_ring(adapter, rx_ring);
4763 }
4764 }
4765
4766 /**
4767 * igb_free_tx_resources - Free Tx Resources per Queue
4768 * @tx_ring: Tx descriptor ring for a specific queue
4769 *
4770 * Free all transmit software resources
4771 **/
igb_free_tx_resources(struct igb_ring * tx_ring)4772 void igb_free_tx_resources(struct igb_ring *tx_ring)
4773 {
4774 igb_clean_tx_ring(tx_ring);
4775
4776 vfree(tx_ring->tx_buffer_info);
4777 tx_ring->tx_buffer_info = NULL;
4778
4779 /* if not set, then don't free */
4780 if (!tx_ring->desc)
4781 return;
4782
4783 dma_free_coherent(tx_ring->dev, tx_ring->size,
4784 tx_ring->desc, tx_ring->dma);
4785
4786 tx_ring->desc = NULL;
4787 }
4788
4789 /**
4790 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4791 * @adapter: board private structure
4792 *
4793 * Free all transmit software resources
4794 **/
igb_free_all_tx_resources(struct igb_adapter * adapter)4795 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4796 {
4797 int i;
4798
4799 for (i = 0; i < adapter->num_tx_queues; i++)
4800 if (adapter->tx_ring[i])
4801 igb_free_tx_resources(adapter->tx_ring[i]);
4802 }
4803
4804 /**
4805 * igb_clean_tx_ring - Free Tx Buffers
4806 * @tx_ring: ring to be cleaned
4807 **/
igb_clean_tx_ring(struct igb_ring * tx_ring)4808 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4809 {
4810 u16 i = tx_ring->next_to_clean;
4811 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4812
4813 while (i != tx_ring->next_to_use) {
4814 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4815
4816 /* Free all the Tx ring sk_buffs */
4817 dev_kfree_skb_any(tx_buffer->skb);
4818
4819 /* unmap skb header data */
4820 dma_unmap_single(tx_ring->dev,
4821 dma_unmap_addr(tx_buffer, dma),
4822 dma_unmap_len(tx_buffer, len),
4823 DMA_TO_DEVICE);
4824
4825 /* check for eop_desc to determine the end of the packet */
4826 eop_desc = tx_buffer->next_to_watch;
4827 tx_desc = IGB_TX_DESC(tx_ring, i);
4828
4829 /* unmap remaining buffers */
4830 while (tx_desc != eop_desc) {
4831 tx_buffer++;
4832 tx_desc++;
4833 i++;
4834 if (unlikely(i == tx_ring->count)) {
4835 i = 0;
4836 tx_buffer = tx_ring->tx_buffer_info;
4837 tx_desc = IGB_TX_DESC(tx_ring, 0);
4838 }
4839
4840 /* unmap any remaining paged data */
4841 if (dma_unmap_len(tx_buffer, len))
4842 dma_unmap_page(tx_ring->dev,
4843 dma_unmap_addr(tx_buffer, dma),
4844 dma_unmap_len(tx_buffer, len),
4845 DMA_TO_DEVICE);
4846 }
4847
4848 tx_buffer->next_to_watch = NULL;
4849
4850 /* move us one more past the eop_desc for start of next pkt */
4851 tx_buffer++;
4852 i++;
4853 if (unlikely(i == tx_ring->count)) {
4854 i = 0;
4855 tx_buffer = tx_ring->tx_buffer_info;
4856 }
4857 }
4858
4859 /* reset BQL for queue */
4860 netdev_tx_reset_queue(txring_txq(tx_ring));
4861
4862 /* reset next_to_use and next_to_clean */
4863 tx_ring->next_to_use = 0;
4864 tx_ring->next_to_clean = 0;
4865 }
4866
4867 /**
4868 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4869 * @adapter: board private structure
4870 **/
igb_clean_all_tx_rings(struct igb_adapter * adapter)4871 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4872 {
4873 int i;
4874
4875 for (i = 0; i < adapter->num_tx_queues; i++)
4876 if (adapter->tx_ring[i])
4877 igb_clean_tx_ring(adapter->tx_ring[i]);
4878 }
4879
4880 /**
4881 * igb_free_rx_resources - Free Rx Resources
4882 * @rx_ring: ring to clean the resources from
4883 *
4884 * Free all receive software resources
4885 **/
igb_free_rx_resources(struct igb_ring * rx_ring)4886 void igb_free_rx_resources(struct igb_ring *rx_ring)
4887 {
4888 igb_clean_rx_ring(rx_ring);
4889
4890 rx_ring->xdp_prog = NULL;
4891 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4892 vfree(rx_ring->rx_buffer_info);
4893 rx_ring->rx_buffer_info = NULL;
4894
4895 /* if not set, then don't free */
4896 if (!rx_ring->desc)
4897 return;
4898
4899 dma_free_coherent(rx_ring->dev, rx_ring->size,
4900 rx_ring->desc, rx_ring->dma);
4901
4902 rx_ring->desc = NULL;
4903 }
4904
4905 /**
4906 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4907 * @adapter: board private structure
4908 *
4909 * Free all receive software resources
4910 **/
igb_free_all_rx_resources(struct igb_adapter * adapter)4911 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4912 {
4913 int i;
4914
4915 for (i = 0; i < adapter->num_rx_queues; i++)
4916 if (adapter->rx_ring[i])
4917 igb_free_rx_resources(adapter->rx_ring[i]);
4918 }
4919
4920 /**
4921 * igb_clean_rx_ring - Free Rx Buffers per Queue
4922 * @rx_ring: ring to free buffers from
4923 **/
igb_clean_rx_ring(struct igb_ring * rx_ring)4924 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4925 {
4926 u16 i = rx_ring->next_to_clean;
4927
4928 dev_kfree_skb(rx_ring->skb);
4929 rx_ring->skb = NULL;
4930
4931 /* Free all the Rx ring sk_buffs */
4932 while (i != rx_ring->next_to_alloc) {
4933 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4934
4935 /* Invalidate cache lines that may have been written to by
4936 * device so that we avoid corrupting memory.
4937 */
4938 dma_sync_single_range_for_cpu(rx_ring->dev,
4939 buffer_info->dma,
4940 buffer_info->page_offset,
4941 igb_rx_bufsz(rx_ring),
4942 DMA_FROM_DEVICE);
4943
4944 /* free resources associated with mapping */
4945 dma_unmap_page_attrs(rx_ring->dev,
4946 buffer_info->dma,
4947 igb_rx_pg_size(rx_ring),
4948 DMA_FROM_DEVICE,
4949 IGB_RX_DMA_ATTR);
4950 __page_frag_cache_drain(buffer_info->page,
4951 buffer_info->pagecnt_bias);
4952
4953 i++;
4954 if (i == rx_ring->count)
4955 i = 0;
4956 }
4957
4958 rx_ring->next_to_alloc = 0;
4959 rx_ring->next_to_clean = 0;
4960 rx_ring->next_to_use = 0;
4961 }
4962
4963 /**
4964 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4965 * @adapter: board private structure
4966 **/
igb_clean_all_rx_rings(struct igb_adapter * adapter)4967 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4968 {
4969 int i;
4970
4971 for (i = 0; i < adapter->num_rx_queues; i++)
4972 if (adapter->rx_ring[i])
4973 igb_clean_rx_ring(adapter->rx_ring[i]);
4974 }
4975
4976 /**
4977 * igb_set_mac - Change the Ethernet Address of the NIC
4978 * @netdev: network interface device structure
4979 * @p: pointer to an address structure
4980 *
4981 * Returns 0 on success, negative on failure
4982 **/
igb_set_mac(struct net_device * netdev,void * p)4983 static int igb_set_mac(struct net_device *netdev, void *p)
4984 {
4985 struct igb_adapter *adapter = netdev_priv(netdev);
4986 struct e1000_hw *hw = &adapter->hw;
4987 struct sockaddr *addr = p;
4988
4989 if (!is_valid_ether_addr(addr->sa_data))
4990 return -EADDRNOTAVAIL;
4991
4992 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4993 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4994
4995 /* set the correct pool for the new PF MAC address in entry 0 */
4996 igb_set_default_mac_filter(adapter);
4997
4998 return 0;
4999 }
5000
5001 /**
5002 * igb_write_mc_addr_list - write multicast addresses to MTA
5003 * @netdev: network interface device structure
5004 *
5005 * Writes multicast address list to the MTA hash table.
5006 * Returns: -ENOMEM on failure
5007 * 0 on no addresses written
5008 * X on writing X addresses to MTA
5009 **/
igb_write_mc_addr_list(struct net_device * netdev)5010 static int igb_write_mc_addr_list(struct net_device *netdev)
5011 {
5012 struct igb_adapter *adapter = netdev_priv(netdev);
5013 struct e1000_hw *hw = &adapter->hw;
5014 struct netdev_hw_addr *ha;
5015 u8 *mta_list;
5016 int i;
5017
5018 if (netdev_mc_empty(netdev)) {
5019 /* nothing to program, so clear mc list */
5020 igb_update_mc_addr_list(hw, NULL, 0);
5021 igb_restore_vf_multicasts(adapter);
5022 return 0;
5023 }
5024
5025 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5026 if (!mta_list)
5027 return -ENOMEM;
5028
5029 /* The shared function expects a packed array of only addresses. */
5030 i = 0;
5031 netdev_for_each_mc_addr(ha, netdev)
5032 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5033
5034 igb_update_mc_addr_list(hw, mta_list, i);
5035 kfree(mta_list);
5036
5037 return netdev_mc_count(netdev);
5038 }
5039
igb_vlan_promisc_enable(struct igb_adapter * adapter)5040 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5041 {
5042 struct e1000_hw *hw = &adapter->hw;
5043 u32 i, pf_id;
5044
5045 switch (hw->mac.type) {
5046 case e1000_i210:
5047 case e1000_i211:
5048 case e1000_i350:
5049 /* VLAN filtering needed for VLAN prio filter */
5050 if (adapter->netdev->features & NETIF_F_NTUPLE)
5051 break;
5052 fallthrough;
5053 case e1000_82576:
5054 case e1000_82580:
5055 case e1000_i354:
5056 /* VLAN filtering needed for pool filtering */
5057 if (adapter->vfs_allocated_count)
5058 break;
5059 fallthrough;
5060 default:
5061 return 1;
5062 }
5063
5064 /* We are already in VLAN promisc, nothing to do */
5065 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5066 return 0;
5067
5068 if (!adapter->vfs_allocated_count)
5069 goto set_vfta;
5070
5071 /* Add PF to all active pools */
5072 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5073
5074 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5075 u32 vlvf = rd32(E1000_VLVF(i));
5076
5077 vlvf |= BIT(pf_id);
5078 wr32(E1000_VLVF(i), vlvf);
5079 }
5080
5081 set_vfta:
5082 /* Set all bits in the VLAN filter table array */
5083 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5084 hw->mac.ops.write_vfta(hw, i, ~0U);
5085
5086 /* Set flag so we don't redo unnecessary work */
5087 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5088
5089 return 0;
5090 }
5091
5092 #define VFTA_BLOCK_SIZE 8
igb_scrub_vfta(struct igb_adapter * adapter,u32 vfta_offset)5093 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5094 {
5095 struct e1000_hw *hw = &adapter->hw;
5096 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5097 u32 vid_start = vfta_offset * 32;
5098 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5099 u32 i, vid, word, bits, pf_id;
5100
5101 /* guarantee that we don't scrub out management VLAN */
5102 vid = adapter->mng_vlan_id;
5103 if (vid >= vid_start && vid < vid_end)
5104 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5105
5106 if (!adapter->vfs_allocated_count)
5107 goto set_vfta;
5108
5109 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5110
5111 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5112 u32 vlvf = rd32(E1000_VLVF(i));
5113
5114 /* pull VLAN ID from VLVF */
5115 vid = vlvf & VLAN_VID_MASK;
5116
5117 /* only concern ourselves with a certain range */
5118 if (vid < vid_start || vid >= vid_end)
5119 continue;
5120
5121 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5122 /* record VLAN ID in VFTA */
5123 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5124
5125 /* if PF is part of this then continue */
5126 if (test_bit(vid, adapter->active_vlans))
5127 continue;
5128 }
5129
5130 /* remove PF from the pool */
5131 bits = ~BIT(pf_id);
5132 bits &= rd32(E1000_VLVF(i));
5133 wr32(E1000_VLVF(i), bits);
5134 }
5135
5136 set_vfta:
5137 /* extract values from active_vlans and write back to VFTA */
5138 for (i = VFTA_BLOCK_SIZE; i--;) {
5139 vid = (vfta_offset + i) * 32;
5140 word = vid / BITS_PER_LONG;
5141 bits = vid % BITS_PER_LONG;
5142
5143 vfta[i] |= adapter->active_vlans[word] >> bits;
5144
5145 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5146 }
5147 }
5148
igb_vlan_promisc_disable(struct igb_adapter * adapter)5149 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5150 {
5151 u32 i;
5152
5153 /* We are not in VLAN promisc, nothing to do */
5154 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5155 return;
5156
5157 /* Set flag so we don't redo unnecessary work */
5158 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5159
5160 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5161 igb_scrub_vfta(adapter, i);
5162 }
5163
5164 /**
5165 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5166 * @netdev: network interface device structure
5167 *
5168 * The set_rx_mode entry point is called whenever the unicast or multicast
5169 * address lists or the network interface flags are updated. This routine is
5170 * responsible for configuring the hardware for proper unicast, multicast,
5171 * promiscuous mode, and all-multi behavior.
5172 **/
igb_set_rx_mode(struct net_device * netdev)5173 static void igb_set_rx_mode(struct net_device *netdev)
5174 {
5175 struct igb_adapter *adapter = netdev_priv(netdev);
5176 struct e1000_hw *hw = &adapter->hw;
5177 unsigned int vfn = adapter->vfs_allocated_count;
5178 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5179 int count;
5180
5181 /* Check for Promiscuous and All Multicast modes */
5182 if (netdev->flags & IFF_PROMISC) {
5183 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5184 vmolr |= E1000_VMOLR_MPME;
5185
5186 /* enable use of UTA filter to force packets to default pool */
5187 if (hw->mac.type == e1000_82576)
5188 vmolr |= E1000_VMOLR_ROPE;
5189 } else {
5190 if (netdev->flags & IFF_ALLMULTI) {
5191 rctl |= E1000_RCTL_MPE;
5192 vmolr |= E1000_VMOLR_MPME;
5193 } else {
5194 /* Write addresses to the MTA, if the attempt fails
5195 * then we should just turn on promiscuous mode so
5196 * that we can at least receive multicast traffic
5197 */
5198 count = igb_write_mc_addr_list(netdev);
5199 if (count < 0) {
5200 rctl |= E1000_RCTL_MPE;
5201 vmolr |= E1000_VMOLR_MPME;
5202 } else if (count) {
5203 vmolr |= E1000_VMOLR_ROMPE;
5204 }
5205 }
5206 }
5207
5208 /* Write addresses to available RAR registers, if there is not
5209 * sufficient space to store all the addresses then enable
5210 * unicast promiscuous mode
5211 */
5212 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5213 rctl |= E1000_RCTL_UPE;
5214 vmolr |= E1000_VMOLR_ROPE;
5215 }
5216
5217 /* enable VLAN filtering by default */
5218 rctl |= E1000_RCTL_VFE;
5219
5220 /* disable VLAN filtering for modes that require it */
5221 if ((netdev->flags & IFF_PROMISC) ||
5222 (netdev->features & NETIF_F_RXALL)) {
5223 /* if we fail to set all rules then just clear VFE */
5224 if (igb_vlan_promisc_enable(adapter))
5225 rctl &= ~E1000_RCTL_VFE;
5226 } else {
5227 igb_vlan_promisc_disable(adapter);
5228 }
5229
5230 /* update state of unicast, multicast, and VLAN filtering modes */
5231 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5232 E1000_RCTL_VFE);
5233 wr32(E1000_RCTL, rctl);
5234
5235 #if (PAGE_SIZE < 8192)
5236 if (!adapter->vfs_allocated_count) {
5237 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5238 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5239 }
5240 #endif
5241 wr32(E1000_RLPML, rlpml);
5242
5243 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5244 * the VMOLR to enable the appropriate modes. Without this workaround
5245 * we will have issues with VLAN tag stripping not being done for frames
5246 * that are only arriving because we are the default pool
5247 */
5248 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5249 return;
5250
5251 /* set UTA to appropriate mode */
5252 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5253
5254 vmolr |= rd32(E1000_VMOLR(vfn)) &
5255 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5256
5257 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5258 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5259 #if (PAGE_SIZE < 8192)
5260 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5261 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5262 else
5263 #endif
5264 vmolr |= MAX_JUMBO_FRAME_SIZE;
5265 vmolr |= E1000_VMOLR_LPE;
5266
5267 wr32(E1000_VMOLR(vfn), vmolr);
5268
5269 igb_restore_vf_multicasts(adapter);
5270 }
5271
igb_check_wvbr(struct igb_adapter * adapter)5272 static void igb_check_wvbr(struct igb_adapter *adapter)
5273 {
5274 struct e1000_hw *hw = &adapter->hw;
5275 u32 wvbr = 0;
5276
5277 switch (hw->mac.type) {
5278 case e1000_82576:
5279 case e1000_i350:
5280 wvbr = rd32(E1000_WVBR);
5281 if (!wvbr)
5282 return;
5283 break;
5284 default:
5285 break;
5286 }
5287
5288 adapter->wvbr |= wvbr;
5289 }
5290
5291 #define IGB_STAGGERED_QUEUE_OFFSET 8
5292
igb_spoof_check(struct igb_adapter * adapter)5293 static void igb_spoof_check(struct igb_adapter *adapter)
5294 {
5295 int j;
5296
5297 if (!adapter->wvbr)
5298 return;
5299
5300 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5301 if (adapter->wvbr & BIT(j) ||
5302 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5303 dev_warn(&adapter->pdev->dev,
5304 "Spoof event(s) detected on VF %d\n", j);
5305 adapter->wvbr &=
5306 ~(BIT(j) |
5307 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5308 }
5309 }
5310 }
5311
5312 /* Need to wait a few seconds after link up to get diagnostic information from
5313 * the phy
5314 */
igb_update_phy_info(struct timer_list * t)5315 static void igb_update_phy_info(struct timer_list *t)
5316 {
5317 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5318 igb_get_phy_info(&adapter->hw);
5319 }
5320
5321 /**
5322 * igb_has_link - check shared code for link and determine up/down
5323 * @adapter: pointer to driver private info
5324 **/
igb_has_link(struct igb_adapter * adapter)5325 bool igb_has_link(struct igb_adapter *adapter)
5326 {
5327 struct e1000_hw *hw = &adapter->hw;
5328 bool link_active = false;
5329
5330 /* get_link_status is set on LSC (link status) interrupt or
5331 * rx sequence error interrupt. get_link_status will stay
5332 * false until the e1000_check_for_link establishes link
5333 * for copper adapters ONLY
5334 */
5335 switch (hw->phy.media_type) {
5336 case e1000_media_type_copper:
5337 if (!hw->mac.get_link_status)
5338 return true;
5339 fallthrough;
5340 case e1000_media_type_internal_serdes:
5341 hw->mac.ops.check_for_link(hw);
5342 link_active = !hw->mac.get_link_status;
5343 break;
5344 default:
5345 case e1000_media_type_unknown:
5346 break;
5347 }
5348
5349 if (((hw->mac.type == e1000_i210) ||
5350 (hw->mac.type == e1000_i211)) &&
5351 (hw->phy.id == I210_I_PHY_ID)) {
5352 if (!netif_carrier_ok(adapter->netdev)) {
5353 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5354 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5355 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5356 adapter->link_check_timeout = jiffies;
5357 }
5358 }
5359
5360 return link_active;
5361 }
5362
igb_thermal_sensor_event(struct e1000_hw * hw,u32 event)5363 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5364 {
5365 bool ret = false;
5366 u32 ctrl_ext, thstat;
5367
5368 /* check for thermal sensor event on i350 copper only */
5369 if (hw->mac.type == e1000_i350) {
5370 thstat = rd32(E1000_THSTAT);
5371 ctrl_ext = rd32(E1000_CTRL_EXT);
5372
5373 if ((hw->phy.media_type == e1000_media_type_copper) &&
5374 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5375 ret = !!(thstat & event);
5376 }
5377
5378 return ret;
5379 }
5380
5381 /**
5382 * igb_check_lvmmc - check for malformed packets received
5383 * and indicated in LVMMC register
5384 * @adapter: pointer to adapter
5385 **/
igb_check_lvmmc(struct igb_adapter * adapter)5386 static void igb_check_lvmmc(struct igb_adapter *adapter)
5387 {
5388 struct e1000_hw *hw = &adapter->hw;
5389 u32 lvmmc;
5390
5391 lvmmc = rd32(E1000_LVMMC);
5392 if (lvmmc) {
5393 if (unlikely(net_ratelimit())) {
5394 netdev_warn(adapter->netdev,
5395 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5396 lvmmc);
5397 }
5398 }
5399 }
5400
5401 /**
5402 * igb_watchdog - Timer Call-back
5403 * @t: pointer to timer_list containing our private info pointer
5404 **/
igb_watchdog(struct timer_list * t)5405 static void igb_watchdog(struct timer_list *t)
5406 {
5407 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5408 /* Do the rest outside of interrupt context */
5409 schedule_work(&adapter->watchdog_task);
5410 }
5411
igb_watchdog_task(struct work_struct * work)5412 static void igb_watchdog_task(struct work_struct *work)
5413 {
5414 struct igb_adapter *adapter = container_of(work,
5415 struct igb_adapter,
5416 watchdog_task);
5417 struct e1000_hw *hw = &adapter->hw;
5418 struct e1000_phy_info *phy = &hw->phy;
5419 struct net_device *netdev = adapter->netdev;
5420 u32 link;
5421 int i;
5422 u32 connsw;
5423 u16 phy_data, retry_count = 20;
5424
5425 link = igb_has_link(adapter);
5426
5427 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5428 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5429 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5430 else
5431 link = false;
5432 }
5433
5434 /* Force link down if we have fiber to swap to */
5435 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5436 if (hw->phy.media_type == e1000_media_type_copper) {
5437 connsw = rd32(E1000_CONNSW);
5438 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5439 link = 0;
5440 }
5441 }
5442 if (link) {
5443 /* Perform a reset if the media type changed. */
5444 if (hw->dev_spec._82575.media_changed) {
5445 hw->dev_spec._82575.media_changed = false;
5446 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5447 igb_reset(adapter);
5448 }
5449 /* Cancel scheduled suspend requests. */
5450 pm_runtime_resume(netdev->dev.parent);
5451
5452 if (!netif_carrier_ok(netdev)) {
5453 u32 ctrl;
5454
5455 hw->mac.ops.get_speed_and_duplex(hw,
5456 &adapter->link_speed,
5457 &adapter->link_duplex);
5458
5459 ctrl = rd32(E1000_CTRL);
5460 /* Links status message must follow this format */
5461 netdev_info(netdev,
5462 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5463 netdev->name,
5464 adapter->link_speed,
5465 adapter->link_duplex == FULL_DUPLEX ?
5466 "Full" : "Half",
5467 (ctrl & E1000_CTRL_TFCE) &&
5468 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5469 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5470 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5471
5472 /* disable EEE if enabled */
5473 if ((adapter->flags & IGB_FLAG_EEE) &&
5474 (adapter->link_duplex == HALF_DUPLEX)) {
5475 dev_info(&adapter->pdev->dev,
5476 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5477 adapter->hw.dev_spec._82575.eee_disable = true;
5478 adapter->flags &= ~IGB_FLAG_EEE;
5479 }
5480
5481 /* check if SmartSpeed worked */
5482 igb_check_downshift(hw);
5483 if (phy->speed_downgraded)
5484 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5485
5486 /* check for thermal sensor event */
5487 if (igb_thermal_sensor_event(hw,
5488 E1000_THSTAT_LINK_THROTTLE))
5489 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5490
5491 /* adjust timeout factor according to speed/duplex */
5492 adapter->tx_timeout_factor = 1;
5493 switch (adapter->link_speed) {
5494 case SPEED_10:
5495 adapter->tx_timeout_factor = 14;
5496 break;
5497 case SPEED_100:
5498 /* maybe add some timeout factor ? */
5499 break;
5500 }
5501
5502 if (adapter->link_speed != SPEED_1000)
5503 goto no_wait;
5504
5505 /* wait for Remote receiver status OK */
5506 retry_read_status:
5507 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5508 &phy_data)) {
5509 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5510 retry_count) {
5511 msleep(100);
5512 retry_count--;
5513 goto retry_read_status;
5514 } else if (!retry_count) {
5515 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5516 }
5517 } else {
5518 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5519 }
5520 no_wait:
5521 netif_carrier_on(netdev);
5522
5523 igb_ping_all_vfs(adapter);
5524 igb_check_vf_rate_limit(adapter);
5525
5526 /* link state has changed, schedule phy info update */
5527 if (!test_bit(__IGB_DOWN, &adapter->state))
5528 mod_timer(&adapter->phy_info_timer,
5529 round_jiffies(jiffies + 2 * HZ));
5530 }
5531 } else {
5532 if (netif_carrier_ok(netdev)) {
5533 adapter->link_speed = 0;
5534 adapter->link_duplex = 0;
5535
5536 /* check for thermal sensor event */
5537 if (igb_thermal_sensor_event(hw,
5538 E1000_THSTAT_PWR_DOWN)) {
5539 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5540 }
5541
5542 /* Links status message must follow this format */
5543 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5544 netdev->name);
5545 netif_carrier_off(netdev);
5546
5547 igb_ping_all_vfs(adapter);
5548
5549 /* link state has changed, schedule phy info update */
5550 if (!test_bit(__IGB_DOWN, &adapter->state))
5551 mod_timer(&adapter->phy_info_timer,
5552 round_jiffies(jiffies + 2 * HZ));
5553
5554 /* link is down, time to check for alternate media */
5555 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5556 igb_check_swap_media(adapter);
5557 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5558 schedule_work(&adapter->reset_task);
5559 /* return immediately */
5560 return;
5561 }
5562 }
5563 pm_schedule_suspend(netdev->dev.parent,
5564 MSEC_PER_SEC * 5);
5565
5566 /* also check for alternate media here */
5567 } else if (!netif_carrier_ok(netdev) &&
5568 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5569 igb_check_swap_media(adapter);
5570 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5571 schedule_work(&adapter->reset_task);
5572 /* return immediately */
5573 return;
5574 }
5575 }
5576 }
5577
5578 spin_lock(&adapter->stats64_lock);
5579 igb_update_stats(adapter);
5580 spin_unlock(&adapter->stats64_lock);
5581
5582 for (i = 0; i < adapter->num_tx_queues; i++) {
5583 struct igb_ring *tx_ring = adapter->tx_ring[i];
5584 if (!netif_carrier_ok(netdev)) {
5585 /* We've lost link, so the controller stops DMA,
5586 * but we've got queued Tx work that's never going
5587 * to get done, so reset controller to flush Tx.
5588 * (Do the reset outside of interrupt context).
5589 */
5590 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5591 adapter->tx_timeout_count++;
5592 schedule_work(&adapter->reset_task);
5593 /* return immediately since reset is imminent */
5594 return;
5595 }
5596 }
5597
5598 /* Force detection of hung controller every watchdog period */
5599 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5600 }
5601
5602 /* Cause software interrupt to ensure Rx ring is cleaned */
5603 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5604 u32 eics = 0;
5605
5606 for (i = 0; i < adapter->num_q_vectors; i++)
5607 eics |= adapter->q_vector[i]->eims_value;
5608 wr32(E1000_EICS, eics);
5609 } else {
5610 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5611 }
5612
5613 igb_spoof_check(adapter);
5614 igb_ptp_rx_hang(adapter);
5615 igb_ptp_tx_hang(adapter);
5616
5617 /* Check LVMMC register on i350/i354 only */
5618 if ((adapter->hw.mac.type == e1000_i350) ||
5619 (adapter->hw.mac.type == e1000_i354))
5620 igb_check_lvmmc(adapter);
5621
5622 /* Reset the timer */
5623 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5624 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5625 mod_timer(&adapter->watchdog_timer,
5626 round_jiffies(jiffies + HZ));
5627 else
5628 mod_timer(&adapter->watchdog_timer,
5629 round_jiffies(jiffies + 2 * HZ));
5630 }
5631 }
5632
5633 enum latency_range {
5634 lowest_latency = 0,
5635 low_latency = 1,
5636 bulk_latency = 2,
5637 latency_invalid = 255
5638 };
5639
5640 /**
5641 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5642 * @q_vector: pointer to q_vector
5643 *
5644 * Stores a new ITR value based on strictly on packet size. This
5645 * algorithm is less sophisticated than that used in igb_update_itr,
5646 * due to the difficulty of synchronizing statistics across multiple
5647 * receive rings. The divisors and thresholds used by this function
5648 * were determined based on theoretical maximum wire speed and testing
5649 * data, in order to minimize response time while increasing bulk
5650 * throughput.
5651 * This functionality is controlled by ethtool's coalescing settings.
5652 * NOTE: This function is called only when operating in a multiqueue
5653 * receive environment.
5654 **/
igb_update_ring_itr(struct igb_q_vector * q_vector)5655 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5656 {
5657 int new_val = q_vector->itr_val;
5658 int avg_wire_size = 0;
5659 struct igb_adapter *adapter = q_vector->adapter;
5660 unsigned int packets;
5661
5662 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5663 * ints/sec - ITR timer value of 120 ticks.
5664 */
5665 if (adapter->link_speed != SPEED_1000) {
5666 new_val = IGB_4K_ITR;
5667 goto set_itr_val;
5668 }
5669
5670 packets = q_vector->rx.total_packets;
5671 if (packets)
5672 avg_wire_size = q_vector->rx.total_bytes / packets;
5673
5674 packets = q_vector->tx.total_packets;
5675 if (packets)
5676 avg_wire_size = max_t(u32, avg_wire_size,
5677 q_vector->tx.total_bytes / packets);
5678
5679 /* if avg_wire_size isn't set no work was done */
5680 if (!avg_wire_size)
5681 goto clear_counts;
5682
5683 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5684 avg_wire_size += 24;
5685
5686 /* Don't starve jumbo frames */
5687 avg_wire_size = min(avg_wire_size, 3000);
5688
5689 /* Give a little boost to mid-size frames */
5690 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5691 new_val = avg_wire_size / 3;
5692 else
5693 new_val = avg_wire_size / 2;
5694
5695 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5696 if (new_val < IGB_20K_ITR &&
5697 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5698 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5699 new_val = IGB_20K_ITR;
5700
5701 set_itr_val:
5702 if (new_val != q_vector->itr_val) {
5703 q_vector->itr_val = new_val;
5704 q_vector->set_itr = 1;
5705 }
5706 clear_counts:
5707 q_vector->rx.total_bytes = 0;
5708 q_vector->rx.total_packets = 0;
5709 q_vector->tx.total_bytes = 0;
5710 q_vector->tx.total_packets = 0;
5711 }
5712
5713 /**
5714 * igb_update_itr - update the dynamic ITR value based on statistics
5715 * @q_vector: pointer to q_vector
5716 * @ring_container: ring info to update the itr for
5717 *
5718 * Stores a new ITR value based on packets and byte
5719 * counts during the last interrupt. The advantage of per interrupt
5720 * computation is faster updates and more accurate ITR for the current
5721 * traffic pattern. Constants in this function were computed
5722 * based on theoretical maximum wire speed and thresholds were set based
5723 * on testing data as well as attempting to minimize response time
5724 * while increasing bulk throughput.
5725 * This functionality is controlled by ethtool's coalescing settings.
5726 * NOTE: These calculations are only valid when operating in a single-
5727 * queue environment.
5728 **/
igb_update_itr(struct igb_q_vector * q_vector,struct igb_ring_container * ring_container)5729 static void igb_update_itr(struct igb_q_vector *q_vector,
5730 struct igb_ring_container *ring_container)
5731 {
5732 unsigned int packets = ring_container->total_packets;
5733 unsigned int bytes = ring_container->total_bytes;
5734 u8 itrval = ring_container->itr;
5735
5736 /* no packets, exit with status unchanged */
5737 if (packets == 0)
5738 return;
5739
5740 switch (itrval) {
5741 case lowest_latency:
5742 /* handle TSO and jumbo frames */
5743 if (bytes/packets > 8000)
5744 itrval = bulk_latency;
5745 else if ((packets < 5) && (bytes > 512))
5746 itrval = low_latency;
5747 break;
5748 case low_latency: /* 50 usec aka 20000 ints/s */
5749 if (bytes > 10000) {
5750 /* this if handles the TSO accounting */
5751 if (bytes/packets > 8000)
5752 itrval = bulk_latency;
5753 else if ((packets < 10) || ((bytes/packets) > 1200))
5754 itrval = bulk_latency;
5755 else if ((packets > 35))
5756 itrval = lowest_latency;
5757 } else if (bytes/packets > 2000) {
5758 itrval = bulk_latency;
5759 } else if (packets <= 2 && bytes < 512) {
5760 itrval = lowest_latency;
5761 }
5762 break;
5763 case bulk_latency: /* 250 usec aka 4000 ints/s */
5764 if (bytes > 25000) {
5765 if (packets > 35)
5766 itrval = low_latency;
5767 } else if (bytes < 1500) {
5768 itrval = low_latency;
5769 }
5770 break;
5771 }
5772
5773 /* clear work counters since we have the values we need */
5774 ring_container->total_bytes = 0;
5775 ring_container->total_packets = 0;
5776
5777 /* write updated itr to ring container */
5778 ring_container->itr = itrval;
5779 }
5780
igb_set_itr(struct igb_q_vector * q_vector)5781 static void igb_set_itr(struct igb_q_vector *q_vector)
5782 {
5783 struct igb_adapter *adapter = q_vector->adapter;
5784 u32 new_itr = q_vector->itr_val;
5785 u8 current_itr = 0;
5786
5787 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5788 if (adapter->link_speed != SPEED_1000) {
5789 current_itr = 0;
5790 new_itr = IGB_4K_ITR;
5791 goto set_itr_now;
5792 }
5793
5794 igb_update_itr(q_vector, &q_vector->tx);
5795 igb_update_itr(q_vector, &q_vector->rx);
5796
5797 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5798
5799 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5800 if (current_itr == lowest_latency &&
5801 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5802 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5803 current_itr = low_latency;
5804
5805 switch (current_itr) {
5806 /* counts and packets in update_itr are dependent on these numbers */
5807 case lowest_latency:
5808 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5809 break;
5810 case low_latency:
5811 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5812 break;
5813 case bulk_latency:
5814 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5815 break;
5816 default:
5817 break;
5818 }
5819
5820 set_itr_now:
5821 if (new_itr != q_vector->itr_val) {
5822 /* this attempts to bias the interrupt rate towards Bulk
5823 * by adding intermediate steps when interrupt rate is
5824 * increasing
5825 */
5826 new_itr = new_itr > q_vector->itr_val ?
5827 max((new_itr * q_vector->itr_val) /
5828 (new_itr + (q_vector->itr_val >> 2)),
5829 new_itr) : new_itr;
5830 /* Don't write the value here; it resets the adapter's
5831 * internal timer, and causes us to delay far longer than
5832 * we should between interrupts. Instead, we write the ITR
5833 * value at the beginning of the next interrupt so the timing
5834 * ends up being correct.
5835 */
5836 q_vector->itr_val = new_itr;
5837 q_vector->set_itr = 1;
5838 }
5839 }
5840
igb_tx_ctxtdesc(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)5841 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5842 struct igb_tx_buffer *first,
5843 u32 vlan_macip_lens, u32 type_tucmd,
5844 u32 mss_l4len_idx)
5845 {
5846 struct e1000_adv_tx_context_desc *context_desc;
5847 u16 i = tx_ring->next_to_use;
5848 struct timespec64 ts;
5849
5850 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5851
5852 i++;
5853 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5854
5855 /* set bits to identify this as an advanced context descriptor */
5856 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5857
5858 /* For 82575, context index must be unique per ring. */
5859 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5860 mss_l4len_idx |= tx_ring->reg_idx << 4;
5861
5862 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5863 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5864 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5865
5866 /* We assume there is always a valid tx time available. Invalid times
5867 * should have been handled by the upper layers.
5868 */
5869 if (tx_ring->launchtime_enable) {
5870 ts = ktime_to_timespec64(first->skb->tstamp);
5871 first->skb->tstamp = ktime_set(0, 0);
5872 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5873 } else {
5874 context_desc->seqnum_seed = 0;
5875 }
5876 }
5877
igb_tso(struct igb_ring * tx_ring,struct igb_tx_buffer * first,u8 * hdr_len)5878 static int igb_tso(struct igb_ring *tx_ring,
5879 struct igb_tx_buffer *first,
5880 u8 *hdr_len)
5881 {
5882 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5883 struct sk_buff *skb = first->skb;
5884 union {
5885 struct iphdr *v4;
5886 struct ipv6hdr *v6;
5887 unsigned char *hdr;
5888 } ip;
5889 union {
5890 struct tcphdr *tcp;
5891 struct udphdr *udp;
5892 unsigned char *hdr;
5893 } l4;
5894 u32 paylen, l4_offset;
5895 int err;
5896
5897 if (skb->ip_summed != CHECKSUM_PARTIAL)
5898 return 0;
5899
5900 if (!skb_is_gso(skb))
5901 return 0;
5902
5903 err = skb_cow_head(skb, 0);
5904 if (err < 0)
5905 return err;
5906
5907 ip.hdr = skb_network_header(skb);
5908 l4.hdr = skb_checksum_start(skb);
5909
5910 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5911 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5912 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5913
5914 /* initialize outer IP header fields */
5915 if (ip.v4->version == 4) {
5916 unsigned char *csum_start = skb_checksum_start(skb);
5917 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5918
5919 /* IP header will have to cancel out any data that
5920 * is not a part of the outer IP header
5921 */
5922 ip.v4->check = csum_fold(csum_partial(trans_start,
5923 csum_start - trans_start,
5924 0));
5925 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5926
5927 ip.v4->tot_len = 0;
5928 first->tx_flags |= IGB_TX_FLAGS_TSO |
5929 IGB_TX_FLAGS_CSUM |
5930 IGB_TX_FLAGS_IPV4;
5931 } else {
5932 ip.v6->payload_len = 0;
5933 first->tx_flags |= IGB_TX_FLAGS_TSO |
5934 IGB_TX_FLAGS_CSUM;
5935 }
5936
5937 /* determine offset of inner transport header */
5938 l4_offset = l4.hdr - skb->data;
5939
5940 /* remove payload length from inner checksum */
5941 paylen = skb->len - l4_offset;
5942 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5943 /* compute length of segmentation header */
5944 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5945 csum_replace_by_diff(&l4.tcp->check,
5946 (__force __wsum)htonl(paylen));
5947 } else {
5948 /* compute length of segmentation header */
5949 *hdr_len = sizeof(*l4.udp) + l4_offset;
5950 csum_replace_by_diff(&l4.udp->check,
5951 (__force __wsum)htonl(paylen));
5952 }
5953
5954 /* update gso size and bytecount with header size */
5955 first->gso_segs = skb_shinfo(skb)->gso_segs;
5956 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5957
5958 /* MSS L4LEN IDX */
5959 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5960 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5961
5962 /* VLAN MACLEN IPLEN */
5963 vlan_macip_lens = l4.hdr - ip.hdr;
5964 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5965 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5966
5967 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5968 type_tucmd, mss_l4len_idx);
5969
5970 return 1;
5971 }
5972
igb_ipv6_csum_is_sctp(struct sk_buff * skb)5973 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5974 {
5975 unsigned int offset = 0;
5976
5977 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5978
5979 return offset == skb_checksum_start_offset(skb);
5980 }
5981
igb_tx_csum(struct igb_ring * tx_ring,struct igb_tx_buffer * first)5982 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5983 {
5984 struct sk_buff *skb = first->skb;
5985 u32 vlan_macip_lens = 0;
5986 u32 type_tucmd = 0;
5987
5988 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5989 csum_failed:
5990 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5991 !tx_ring->launchtime_enable)
5992 return;
5993 goto no_csum;
5994 }
5995
5996 switch (skb->csum_offset) {
5997 case offsetof(struct tcphdr, check):
5998 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5999 fallthrough;
6000 case offsetof(struct udphdr, check):
6001 break;
6002 case offsetof(struct sctphdr, checksum):
6003 /* validate that this is actually an SCTP request */
6004 if (((first->protocol == htons(ETH_P_IP)) &&
6005 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
6006 ((first->protocol == htons(ETH_P_IPV6)) &&
6007 igb_ipv6_csum_is_sctp(skb))) {
6008 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6009 break;
6010 }
6011 fallthrough;
6012 default:
6013 skb_checksum_help(skb);
6014 goto csum_failed;
6015 }
6016
6017 /* update TX checksum flag */
6018 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6019 vlan_macip_lens = skb_checksum_start_offset(skb) -
6020 skb_network_offset(skb);
6021 no_csum:
6022 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6023 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6024
6025 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6026 }
6027
6028 #define IGB_SET_FLAG(_input, _flag, _result) \
6029 ((_flag <= _result) ? \
6030 ((u32)(_input & _flag) * (_result / _flag)) : \
6031 ((u32)(_input & _flag) / (_flag / _result)))
6032
igb_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)6033 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6034 {
6035 /* set type for advanced descriptor with frame checksum insertion */
6036 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6037 E1000_ADVTXD_DCMD_DEXT |
6038 E1000_ADVTXD_DCMD_IFCS;
6039
6040 /* set HW vlan bit if vlan is present */
6041 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6042 (E1000_ADVTXD_DCMD_VLE));
6043
6044 /* set segmentation bits for TSO */
6045 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6046 (E1000_ADVTXD_DCMD_TSE));
6047
6048 /* set timestamp bit if present */
6049 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6050 (E1000_ADVTXD_MAC_TSTAMP));
6051
6052 /* insert frame checksum */
6053 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6054
6055 return cmd_type;
6056 }
6057
igb_tx_olinfo_status(struct igb_ring * tx_ring,union e1000_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)6058 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6059 union e1000_adv_tx_desc *tx_desc,
6060 u32 tx_flags, unsigned int paylen)
6061 {
6062 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6063
6064 /* 82575 requires a unique index per ring */
6065 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6066 olinfo_status |= tx_ring->reg_idx << 4;
6067
6068 /* insert L4 checksum */
6069 olinfo_status |= IGB_SET_FLAG(tx_flags,
6070 IGB_TX_FLAGS_CSUM,
6071 (E1000_TXD_POPTS_TXSM << 8));
6072
6073 /* insert IPv4 checksum */
6074 olinfo_status |= IGB_SET_FLAG(tx_flags,
6075 IGB_TX_FLAGS_IPV4,
6076 (E1000_TXD_POPTS_IXSM << 8));
6077
6078 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6079 }
6080
__igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6081 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6082 {
6083 struct net_device *netdev = tx_ring->netdev;
6084
6085 netif_stop_subqueue(netdev, tx_ring->queue_index);
6086
6087 /* Herbert's original patch had:
6088 * smp_mb__after_netif_stop_queue();
6089 * but since that doesn't exist yet, just open code it.
6090 */
6091 smp_mb();
6092
6093 /* We need to check again in a case another CPU has just
6094 * made room available.
6095 */
6096 if (igb_desc_unused(tx_ring) < size)
6097 return -EBUSY;
6098
6099 /* A reprieve! */
6100 netif_wake_subqueue(netdev, tx_ring->queue_index);
6101
6102 u64_stats_update_begin(&tx_ring->tx_syncp2);
6103 tx_ring->tx_stats.restart_queue2++;
6104 u64_stats_update_end(&tx_ring->tx_syncp2);
6105
6106 return 0;
6107 }
6108
igb_maybe_stop_tx(struct igb_ring * tx_ring,const u16 size)6109 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6110 {
6111 if (igb_desc_unused(tx_ring) >= size)
6112 return 0;
6113 return __igb_maybe_stop_tx(tx_ring, size);
6114 }
6115
igb_tx_map(struct igb_ring * tx_ring,struct igb_tx_buffer * first,const u8 hdr_len)6116 static int igb_tx_map(struct igb_ring *tx_ring,
6117 struct igb_tx_buffer *first,
6118 const u8 hdr_len)
6119 {
6120 struct sk_buff *skb = first->skb;
6121 struct igb_tx_buffer *tx_buffer;
6122 union e1000_adv_tx_desc *tx_desc;
6123 skb_frag_t *frag;
6124 dma_addr_t dma;
6125 unsigned int data_len, size;
6126 u32 tx_flags = first->tx_flags;
6127 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6128 u16 i = tx_ring->next_to_use;
6129
6130 tx_desc = IGB_TX_DESC(tx_ring, i);
6131
6132 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6133
6134 size = skb_headlen(skb);
6135 data_len = skb->data_len;
6136
6137 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6138
6139 tx_buffer = first;
6140
6141 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6142 if (dma_mapping_error(tx_ring->dev, dma))
6143 goto dma_error;
6144
6145 /* record length, and DMA address */
6146 dma_unmap_len_set(tx_buffer, len, size);
6147 dma_unmap_addr_set(tx_buffer, dma, dma);
6148
6149 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6150
6151 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6152 tx_desc->read.cmd_type_len =
6153 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6154
6155 i++;
6156 tx_desc++;
6157 if (i == tx_ring->count) {
6158 tx_desc = IGB_TX_DESC(tx_ring, 0);
6159 i = 0;
6160 }
6161 tx_desc->read.olinfo_status = 0;
6162
6163 dma += IGB_MAX_DATA_PER_TXD;
6164 size -= IGB_MAX_DATA_PER_TXD;
6165
6166 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6167 }
6168
6169 if (likely(!data_len))
6170 break;
6171
6172 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6173
6174 i++;
6175 tx_desc++;
6176 if (i == tx_ring->count) {
6177 tx_desc = IGB_TX_DESC(tx_ring, 0);
6178 i = 0;
6179 }
6180 tx_desc->read.olinfo_status = 0;
6181
6182 size = skb_frag_size(frag);
6183 data_len -= size;
6184
6185 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6186 size, DMA_TO_DEVICE);
6187
6188 tx_buffer = &tx_ring->tx_buffer_info[i];
6189 }
6190
6191 /* write last descriptor with RS and EOP bits */
6192 cmd_type |= size | IGB_TXD_DCMD;
6193 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6194
6195 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6196
6197 /* set the timestamp */
6198 first->time_stamp = jiffies;
6199
6200 skb_tx_timestamp(skb);
6201
6202 /* Force memory writes to complete before letting h/w know there
6203 * are new descriptors to fetch. (Only applicable for weak-ordered
6204 * memory model archs, such as IA-64).
6205 *
6206 * We also need this memory barrier to make certain all of the
6207 * status bits have been updated before next_to_watch is written.
6208 */
6209 dma_wmb();
6210
6211 /* set next_to_watch value indicating a packet is present */
6212 first->next_to_watch = tx_desc;
6213
6214 i++;
6215 if (i == tx_ring->count)
6216 i = 0;
6217
6218 tx_ring->next_to_use = i;
6219
6220 /* Make sure there is space in the ring for the next send. */
6221 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6222
6223 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6224 writel(i, tx_ring->tail);
6225 }
6226 return 0;
6227
6228 dma_error:
6229 dev_err(tx_ring->dev, "TX DMA map failed\n");
6230 tx_buffer = &tx_ring->tx_buffer_info[i];
6231
6232 /* clear dma mappings for failed tx_buffer_info map */
6233 while (tx_buffer != first) {
6234 if (dma_unmap_len(tx_buffer, len))
6235 dma_unmap_page(tx_ring->dev,
6236 dma_unmap_addr(tx_buffer, dma),
6237 dma_unmap_len(tx_buffer, len),
6238 DMA_TO_DEVICE);
6239 dma_unmap_len_set(tx_buffer, len, 0);
6240
6241 if (i-- == 0)
6242 i += tx_ring->count;
6243 tx_buffer = &tx_ring->tx_buffer_info[i];
6244 }
6245
6246 if (dma_unmap_len(tx_buffer, len))
6247 dma_unmap_single(tx_ring->dev,
6248 dma_unmap_addr(tx_buffer, dma),
6249 dma_unmap_len(tx_buffer, len),
6250 DMA_TO_DEVICE);
6251 dma_unmap_len_set(tx_buffer, len, 0);
6252
6253 dev_kfree_skb_any(tx_buffer->skb);
6254 tx_buffer->skb = NULL;
6255
6256 tx_ring->next_to_use = i;
6257
6258 return -1;
6259 }
6260
igb_xmit_xdp_ring(struct igb_adapter * adapter,struct igb_ring * tx_ring,struct xdp_frame * xdpf)6261 int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6262 struct igb_ring *tx_ring,
6263 struct xdp_frame *xdpf)
6264 {
6265 union e1000_adv_tx_desc *tx_desc;
6266 u32 len, cmd_type, olinfo_status;
6267 struct igb_tx_buffer *tx_buffer;
6268 dma_addr_t dma;
6269 u16 i;
6270
6271 len = xdpf->len;
6272
6273 if (unlikely(!igb_desc_unused(tx_ring)))
6274 return IGB_XDP_CONSUMED;
6275
6276 dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6277 if (dma_mapping_error(tx_ring->dev, dma))
6278 return IGB_XDP_CONSUMED;
6279
6280 /* record the location of the first descriptor for this packet */
6281 tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6282 tx_buffer->bytecount = len;
6283 tx_buffer->gso_segs = 1;
6284 tx_buffer->protocol = 0;
6285
6286 i = tx_ring->next_to_use;
6287 tx_desc = IGB_TX_DESC(tx_ring, i);
6288
6289 dma_unmap_len_set(tx_buffer, len, len);
6290 dma_unmap_addr_set(tx_buffer, dma, dma);
6291 tx_buffer->type = IGB_TYPE_XDP;
6292 tx_buffer->xdpf = xdpf;
6293
6294 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6295
6296 /* put descriptor type bits */
6297 cmd_type = E1000_ADVTXD_DTYP_DATA |
6298 E1000_ADVTXD_DCMD_DEXT |
6299 E1000_ADVTXD_DCMD_IFCS;
6300 cmd_type |= len | IGB_TXD_DCMD;
6301 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6302
6303 olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
6304 /* 82575 requires a unique index per ring */
6305 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6306 olinfo_status |= tx_ring->reg_idx << 4;
6307
6308 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6309
6310 netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6311
6312 /* set the timestamp */
6313 tx_buffer->time_stamp = jiffies;
6314
6315 /* Avoid any potential race with xdp_xmit and cleanup */
6316 smp_wmb();
6317
6318 /* set next_to_watch value indicating a packet is present */
6319 i++;
6320 if (i == tx_ring->count)
6321 i = 0;
6322
6323 tx_buffer->next_to_watch = tx_desc;
6324 tx_ring->next_to_use = i;
6325
6326 /* Make sure there is space in the ring for the next send. */
6327 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6328
6329 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6330 writel(i, tx_ring->tail);
6331
6332 return IGB_XDP_TX;
6333 }
6334
igb_xmit_frame_ring(struct sk_buff * skb,struct igb_ring * tx_ring)6335 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6336 struct igb_ring *tx_ring)
6337 {
6338 struct igb_tx_buffer *first;
6339 int tso;
6340 u32 tx_flags = 0;
6341 unsigned short f;
6342 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6343 __be16 protocol = vlan_get_protocol(skb);
6344 u8 hdr_len = 0;
6345
6346 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6347 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6348 * + 2 desc gap to keep tail from touching head,
6349 * + 1 desc for context descriptor,
6350 * otherwise try next time
6351 */
6352 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6353 count += TXD_USE_COUNT(skb_frag_size(
6354 &skb_shinfo(skb)->frags[f]));
6355
6356 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6357 /* this is a hard error */
6358 return NETDEV_TX_BUSY;
6359 }
6360
6361 /* record the location of the first descriptor for this packet */
6362 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6363 first->type = IGB_TYPE_SKB;
6364 first->skb = skb;
6365 first->bytecount = skb->len;
6366 first->gso_segs = 1;
6367
6368 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6369 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6370
6371 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6372 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6373 &adapter->state)) {
6374 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6375 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6376
6377 adapter->ptp_tx_skb = skb_get(skb);
6378 adapter->ptp_tx_start = jiffies;
6379 if (adapter->hw.mac.type == e1000_82576)
6380 schedule_work(&adapter->ptp_tx_work);
6381 } else {
6382 adapter->tx_hwtstamp_skipped++;
6383 }
6384 }
6385
6386 if (skb_vlan_tag_present(skb)) {
6387 tx_flags |= IGB_TX_FLAGS_VLAN;
6388 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6389 }
6390
6391 /* record initial flags and protocol */
6392 first->tx_flags = tx_flags;
6393 first->protocol = protocol;
6394
6395 tso = igb_tso(tx_ring, first, &hdr_len);
6396 if (tso < 0)
6397 goto out_drop;
6398 else if (!tso)
6399 igb_tx_csum(tx_ring, first);
6400
6401 if (igb_tx_map(tx_ring, first, hdr_len))
6402 goto cleanup_tx_tstamp;
6403
6404 return NETDEV_TX_OK;
6405
6406 out_drop:
6407 dev_kfree_skb_any(first->skb);
6408 first->skb = NULL;
6409 cleanup_tx_tstamp:
6410 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6411 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6412
6413 dev_kfree_skb_any(adapter->ptp_tx_skb);
6414 adapter->ptp_tx_skb = NULL;
6415 if (adapter->hw.mac.type == e1000_82576)
6416 cancel_work_sync(&adapter->ptp_tx_work);
6417 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6418 }
6419
6420 return NETDEV_TX_OK;
6421 }
6422
igb_tx_queue_mapping(struct igb_adapter * adapter,struct sk_buff * skb)6423 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6424 struct sk_buff *skb)
6425 {
6426 unsigned int r_idx = skb->queue_mapping;
6427
6428 if (r_idx >= adapter->num_tx_queues)
6429 r_idx = r_idx % adapter->num_tx_queues;
6430
6431 return adapter->tx_ring[r_idx];
6432 }
6433
igb_xmit_frame(struct sk_buff * skb,struct net_device * netdev)6434 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6435 struct net_device *netdev)
6436 {
6437 struct igb_adapter *adapter = netdev_priv(netdev);
6438
6439 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6440 * in order to meet this minimum size requirement.
6441 */
6442 if (skb_put_padto(skb, 17))
6443 return NETDEV_TX_OK;
6444
6445 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6446 }
6447
6448 /**
6449 * igb_tx_timeout - Respond to a Tx Hang
6450 * @netdev: network interface device structure
6451 * @txqueue: number of the Tx queue that hung (unused)
6452 **/
igb_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)6453 static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6454 {
6455 struct igb_adapter *adapter = netdev_priv(netdev);
6456 struct e1000_hw *hw = &adapter->hw;
6457
6458 /* Do the reset outside of interrupt context */
6459 adapter->tx_timeout_count++;
6460
6461 if (hw->mac.type >= e1000_82580)
6462 hw->dev_spec._82575.global_device_reset = true;
6463
6464 schedule_work(&adapter->reset_task);
6465 wr32(E1000_EICS,
6466 (adapter->eims_enable_mask & ~adapter->eims_other));
6467 }
6468
igb_reset_task(struct work_struct * work)6469 static void igb_reset_task(struct work_struct *work)
6470 {
6471 struct igb_adapter *adapter;
6472 adapter = container_of(work, struct igb_adapter, reset_task);
6473
6474 rtnl_lock();
6475 /* If we're already down or resetting, just bail */
6476 if (test_bit(__IGB_DOWN, &adapter->state) ||
6477 test_bit(__IGB_RESETTING, &adapter->state)) {
6478 rtnl_unlock();
6479 return;
6480 }
6481
6482 igb_dump(adapter);
6483 netdev_err(adapter->netdev, "Reset adapter\n");
6484 igb_reinit_locked(adapter);
6485 rtnl_unlock();
6486 }
6487
6488 /**
6489 * igb_get_stats64 - Get System Network Statistics
6490 * @netdev: network interface device structure
6491 * @stats: rtnl_link_stats64 pointer
6492 **/
igb_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6493 static void igb_get_stats64(struct net_device *netdev,
6494 struct rtnl_link_stats64 *stats)
6495 {
6496 struct igb_adapter *adapter = netdev_priv(netdev);
6497
6498 spin_lock(&adapter->stats64_lock);
6499 igb_update_stats(adapter);
6500 memcpy(stats, &adapter->stats64, sizeof(*stats));
6501 spin_unlock(&adapter->stats64_lock);
6502 }
6503
6504 /**
6505 * igb_change_mtu - Change the Maximum Transfer Unit
6506 * @netdev: network interface device structure
6507 * @new_mtu: new value for maximum frame size
6508 *
6509 * Returns 0 on success, negative on failure
6510 **/
igb_change_mtu(struct net_device * netdev,int new_mtu)6511 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6512 {
6513 struct igb_adapter *adapter = netdev_priv(netdev);
6514 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6515
6516 if (adapter->xdp_prog) {
6517 int i;
6518
6519 for (i = 0; i < adapter->num_rx_queues; i++) {
6520 struct igb_ring *ring = adapter->rx_ring[i];
6521
6522 if (max_frame > igb_rx_bufsz(ring)) {
6523 netdev_warn(adapter->netdev,
6524 "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6525 max_frame);
6526 return -EINVAL;
6527 }
6528 }
6529 }
6530
6531 /* adjust max frame to be at least the size of a standard frame */
6532 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6533 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6534
6535 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6536 usleep_range(1000, 2000);
6537
6538 /* igb_down has a dependency on max_frame_size */
6539 adapter->max_frame_size = max_frame;
6540
6541 if (netif_running(netdev))
6542 igb_down(adapter);
6543
6544 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6545 netdev->mtu, new_mtu);
6546 netdev->mtu = new_mtu;
6547
6548 if (netif_running(netdev))
6549 igb_up(adapter);
6550 else
6551 igb_reset(adapter);
6552
6553 clear_bit(__IGB_RESETTING, &adapter->state);
6554
6555 return 0;
6556 }
6557
6558 /**
6559 * igb_update_stats - Update the board statistics counters
6560 * @adapter: board private structure
6561 **/
igb_update_stats(struct igb_adapter * adapter)6562 void igb_update_stats(struct igb_adapter *adapter)
6563 {
6564 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6565 struct e1000_hw *hw = &adapter->hw;
6566 struct pci_dev *pdev = adapter->pdev;
6567 u32 reg, mpc;
6568 int i;
6569 u64 bytes, packets;
6570 unsigned int start;
6571 u64 _bytes, _packets;
6572
6573 /* Prevent stats update while adapter is being reset, or if the pci
6574 * connection is down.
6575 */
6576 if (adapter->link_speed == 0)
6577 return;
6578 if (pci_channel_offline(pdev))
6579 return;
6580
6581 bytes = 0;
6582 packets = 0;
6583
6584 rcu_read_lock();
6585 for (i = 0; i < adapter->num_rx_queues; i++) {
6586 struct igb_ring *ring = adapter->rx_ring[i];
6587 u32 rqdpc = rd32(E1000_RQDPC(i));
6588 if (hw->mac.type >= e1000_i210)
6589 wr32(E1000_RQDPC(i), 0);
6590
6591 if (rqdpc) {
6592 ring->rx_stats.drops += rqdpc;
6593 net_stats->rx_fifo_errors += rqdpc;
6594 }
6595
6596 do {
6597 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6598 _bytes = ring->rx_stats.bytes;
6599 _packets = ring->rx_stats.packets;
6600 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6601 bytes += _bytes;
6602 packets += _packets;
6603 }
6604
6605 net_stats->rx_bytes = bytes;
6606 net_stats->rx_packets = packets;
6607
6608 bytes = 0;
6609 packets = 0;
6610 for (i = 0; i < adapter->num_tx_queues; i++) {
6611 struct igb_ring *ring = adapter->tx_ring[i];
6612 do {
6613 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6614 _bytes = ring->tx_stats.bytes;
6615 _packets = ring->tx_stats.packets;
6616 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6617 bytes += _bytes;
6618 packets += _packets;
6619 }
6620 net_stats->tx_bytes = bytes;
6621 net_stats->tx_packets = packets;
6622 rcu_read_unlock();
6623
6624 /* read stats registers */
6625 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6626 adapter->stats.gprc += rd32(E1000_GPRC);
6627 adapter->stats.gorc += rd32(E1000_GORCL);
6628 rd32(E1000_GORCH); /* clear GORCL */
6629 adapter->stats.bprc += rd32(E1000_BPRC);
6630 adapter->stats.mprc += rd32(E1000_MPRC);
6631 adapter->stats.roc += rd32(E1000_ROC);
6632
6633 adapter->stats.prc64 += rd32(E1000_PRC64);
6634 adapter->stats.prc127 += rd32(E1000_PRC127);
6635 adapter->stats.prc255 += rd32(E1000_PRC255);
6636 adapter->stats.prc511 += rd32(E1000_PRC511);
6637 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6638 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6639 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6640 adapter->stats.sec += rd32(E1000_SEC);
6641
6642 mpc = rd32(E1000_MPC);
6643 adapter->stats.mpc += mpc;
6644 net_stats->rx_fifo_errors += mpc;
6645 adapter->stats.scc += rd32(E1000_SCC);
6646 adapter->stats.ecol += rd32(E1000_ECOL);
6647 adapter->stats.mcc += rd32(E1000_MCC);
6648 adapter->stats.latecol += rd32(E1000_LATECOL);
6649 adapter->stats.dc += rd32(E1000_DC);
6650 adapter->stats.rlec += rd32(E1000_RLEC);
6651 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6652 adapter->stats.xontxc += rd32(E1000_XONTXC);
6653 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6654 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6655 adapter->stats.fcruc += rd32(E1000_FCRUC);
6656 adapter->stats.gptc += rd32(E1000_GPTC);
6657 adapter->stats.gotc += rd32(E1000_GOTCL);
6658 rd32(E1000_GOTCH); /* clear GOTCL */
6659 adapter->stats.rnbc += rd32(E1000_RNBC);
6660 adapter->stats.ruc += rd32(E1000_RUC);
6661 adapter->stats.rfc += rd32(E1000_RFC);
6662 adapter->stats.rjc += rd32(E1000_RJC);
6663 adapter->stats.tor += rd32(E1000_TORH);
6664 adapter->stats.tot += rd32(E1000_TOTH);
6665 adapter->stats.tpr += rd32(E1000_TPR);
6666
6667 adapter->stats.ptc64 += rd32(E1000_PTC64);
6668 adapter->stats.ptc127 += rd32(E1000_PTC127);
6669 adapter->stats.ptc255 += rd32(E1000_PTC255);
6670 adapter->stats.ptc511 += rd32(E1000_PTC511);
6671 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6672 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6673
6674 adapter->stats.mptc += rd32(E1000_MPTC);
6675 adapter->stats.bptc += rd32(E1000_BPTC);
6676
6677 adapter->stats.tpt += rd32(E1000_TPT);
6678 adapter->stats.colc += rd32(E1000_COLC);
6679
6680 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6681 /* read internal phy specific stats */
6682 reg = rd32(E1000_CTRL_EXT);
6683 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6684 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6685
6686 /* this stat has invalid values on i210/i211 */
6687 if ((hw->mac.type != e1000_i210) &&
6688 (hw->mac.type != e1000_i211))
6689 adapter->stats.tncrs += rd32(E1000_TNCRS);
6690 }
6691
6692 adapter->stats.tsctc += rd32(E1000_TSCTC);
6693 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6694
6695 adapter->stats.iac += rd32(E1000_IAC);
6696 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6697 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6698 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6699 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6700 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6701 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6702 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6703 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6704
6705 /* Fill out the OS statistics structure */
6706 net_stats->multicast = adapter->stats.mprc;
6707 net_stats->collisions = adapter->stats.colc;
6708
6709 /* Rx Errors */
6710
6711 /* RLEC on some newer hardware can be incorrect so build
6712 * our own version based on RUC and ROC
6713 */
6714 net_stats->rx_errors = adapter->stats.rxerrc +
6715 adapter->stats.crcerrs + adapter->stats.algnerrc +
6716 adapter->stats.ruc + adapter->stats.roc +
6717 adapter->stats.cexterr;
6718 net_stats->rx_length_errors = adapter->stats.ruc +
6719 adapter->stats.roc;
6720 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6721 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6722 net_stats->rx_missed_errors = adapter->stats.mpc;
6723
6724 /* Tx Errors */
6725 net_stats->tx_errors = adapter->stats.ecol +
6726 adapter->stats.latecol;
6727 net_stats->tx_aborted_errors = adapter->stats.ecol;
6728 net_stats->tx_window_errors = adapter->stats.latecol;
6729 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6730
6731 /* Tx Dropped needs to be maintained elsewhere */
6732
6733 /* Management Stats */
6734 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6735 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6736 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6737
6738 /* OS2BMC Stats */
6739 reg = rd32(E1000_MANC);
6740 if (reg & E1000_MANC_EN_BMC2OS) {
6741 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6742 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6743 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6744 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6745 }
6746 }
6747
igb_tsync_interrupt(struct igb_adapter * adapter)6748 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6749 {
6750 struct e1000_hw *hw = &adapter->hw;
6751 struct ptp_clock_event event;
6752 struct timespec64 ts;
6753 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6754
6755 if (tsicr & TSINTR_SYS_WRAP) {
6756 event.type = PTP_CLOCK_PPS;
6757 if (adapter->ptp_caps.pps)
6758 ptp_clock_event(adapter->ptp_clock, &event);
6759 ack |= TSINTR_SYS_WRAP;
6760 }
6761
6762 if (tsicr & E1000_TSICR_TXTS) {
6763 /* retrieve hardware timestamp */
6764 schedule_work(&adapter->ptp_tx_work);
6765 ack |= E1000_TSICR_TXTS;
6766 }
6767
6768 if (tsicr & TSINTR_TT0) {
6769 spin_lock(&adapter->tmreg_lock);
6770 ts = timespec64_add(adapter->perout[0].start,
6771 adapter->perout[0].period);
6772 /* u32 conversion of tv_sec is safe until y2106 */
6773 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6774 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6775 tsauxc = rd32(E1000_TSAUXC);
6776 tsauxc |= TSAUXC_EN_TT0;
6777 wr32(E1000_TSAUXC, tsauxc);
6778 adapter->perout[0].start = ts;
6779 spin_unlock(&adapter->tmreg_lock);
6780 ack |= TSINTR_TT0;
6781 }
6782
6783 if (tsicr & TSINTR_TT1) {
6784 spin_lock(&adapter->tmreg_lock);
6785 ts = timespec64_add(adapter->perout[1].start,
6786 adapter->perout[1].period);
6787 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6788 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6789 tsauxc = rd32(E1000_TSAUXC);
6790 tsauxc |= TSAUXC_EN_TT1;
6791 wr32(E1000_TSAUXC, tsauxc);
6792 adapter->perout[1].start = ts;
6793 spin_unlock(&adapter->tmreg_lock);
6794 ack |= TSINTR_TT1;
6795 }
6796
6797 if (tsicr & TSINTR_AUTT0) {
6798 nsec = rd32(E1000_AUXSTMPL0);
6799 sec = rd32(E1000_AUXSTMPH0);
6800 event.type = PTP_CLOCK_EXTTS;
6801 event.index = 0;
6802 event.timestamp = sec * 1000000000ULL + nsec;
6803 ptp_clock_event(adapter->ptp_clock, &event);
6804 ack |= TSINTR_AUTT0;
6805 }
6806
6807 if (tsicr & TSINTR_AUTT1) {
6808 nsec = rd32(E1000_AUXSTMPL1);
6809 sec = rd32(E1000_AUXSTMPH1);
6810 event.type = PTP_CLOCK_EXTTS;
6811 event.index = 1;
6812 event.timestamp = sec * 1000000000ULL + nsec;
6813 ptp_clock_event(adapter->ptp_clock, &event);
6814 ack |= TSINTR_AUTT1;
6815 }
6816
6817 /* acknowledge the interrupts */
6818 wr32(E1000_TSICR, ack);
6819 }
6820
igb_msix_other(int irq,void * data)6821 static irqreturn_t igb_msix_other(int irq, void *data)
6822 {
6823 struct igb_adapter *adapter = data;
6824 struct e1000_hw *hw = &adapter->hw;
6825 u32 icr = rd32(E1000_ICR);
6826 /* reading ICR causes bit 31 of EICR to be cleared */
6827
6828 if (icr & E1000_ICR_DRSTA)
6829 schedule_work(&adapter->reset_task);
6830
6831 if (icr & E1000_ICR_DOUTSYNC) {
6832 /* HW is reporting DMA is out of sync */
6833 adapter->stats.doosync++;
6834 /* The DMA Out of Sync is also indication of a spoof event
6835 * in IOV mode. Check the Wrong VM Behavior register to
6836 * see if it is really a spoof event.
6837 */
6838 igb_check_wvbr(adapter);
6839 }
6840
6841 /* Check for a mailbox event */
6842 if (icr & E1000_ICR_VMMB)
6843 igb_msg_task(adapter);
6844
6845 if (icr & E1000_ICR_LSC) {
6846 hw->mac.get_link_status = 1;
6847 /* guard against interrupt when we're going down */
6848 if (!test_bit(__IGB_DOWN, &adapter->state))
6849 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6850 }
6851
6852 if (icr & E1000_ICR_TS)
6853 igb_tsync_interrupt(adapter);
6854
6855 wr32(E1000_EIMS, adapter->eims_other);
6856
6857 return IRQ_HANDLED;
6858 }
6859
igb_write_itr(struct igb_q_vector * q_vector)6860 static void igb_write_itr(struct igb_q_vector *q_vector)
6861 {
6862 struct igb_adapter *adapter = q_vector->adapter;
6863 u32 itr_val = q_vector->itr_val & 0x7FFC;
6864
6865 if (!q_vector->set_itr)
6866 return;
6867
6868 if (!itr_val)
6869 itr_val = 0x4;
6870
6871 if (adapter->hw.mac.type == e1000_82575)
6872 itr_val |= itr_val << 16;
6873 else
6874 itr_val |= E1000_EITR_CNT_IGNR;
6875
6876 writel(itr_val, q_vector->itr_register);
6877 q_vector->set_itr = 0;
6878 }
6879
igb_msix_ring(int irq,void * data)6880 static irqreturn_t igb_msix_ring(int irq, void *data)
6881 {
6882 struct igb_q_vector *q_vector = data;
6883
6884 /* Write the ITR value calculated from the previous interrupt. */
6885 igb_write_itr(q_vector);
6886
6887 napi_schedule(&q_vector->napi);
6888
6889 return IRQ_HANDLED;
6890 }
6891
6892 #ifdef CONFIG_IGB_DCA
igb_update_tx_dca(struct igb_adapter * adapter,struct igb_ring * tx_ring,int cpu)6893 static void igb_update_tx_dca(struct igb_adapter *adapter,
6894 struct igb_ring *tx_ring,
6895 int cpu)
6896 {
6897 struct e1000_hw *hw = &adapter->hw;
6898 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6899
6900 if (hw->mac.type != e1000_82575)
6901 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6902
6903 /* We can enable relaxed ordering for reads, but not writes when
6904 * DCA is enabled. This is due to a known issue in some chipsets
6905 * which will cause the DCA tag to be cleared.
6906 */
6907 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6908 E1000_DCA_TXCTRL_DATA_RRO_EN |
6909 E1000_DCA_TXCTRL_DESC_DCA_EN;
6910
6911 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6912 }
6913
igb_update_rx_dca(struct igb_adapter * adapter,struct igb_ring * rx_ring,int cpu)6914 static void igb_update_rx_dca(struct igb_adapter *adapter,
6915 struct igb_ring *rx_ring,
6916 int cpu)
6917 {
6918 struct e1000_hw *hw = &adapter->hw;
6919 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6920
6921 if (hw->mac.type != e1000_82575)
6922 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6923
6924 /* We can enable relaxed ordering for reads, but not writes when
6925 * DCA is enabled. This is due to a known issue in some chipsets
6926 * which will cause the DCA tag to be cleared.
6927 */
6928 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6929 E1000_DCA_RXCTRL_DESC_DCA_EN;
6930
6931 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6932 }
6933
igb_update_dca(struct igb_q_vector * q_vector)6934 static void igb_update_dca(struct igb_q_vector *q_vector)
6935 {
6936 struct igb_adapter *adapter = q_vector->adapter;
6937 int cpu = get_cpu();
6938
6939 if (q_vector->cpu == cpu)
6940 goto out_no_update;
6941
6942 if (q_vector->tx.ring)
6943 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6944
6945 if (q_vector->rx.ring)
6946 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6947
6948 q_vector->cpu = cpu;
6949 out_no_update:
6950 put_cpu();
6951 }
6952
igb_setup_dca(struct igb_adapter * adapter)6953 static void igb_setup_dca(struct igb_adapter *adapter)
6954 {
6955 struct e1000_hw *hw = &adapter->hw;
6956 int i;
6957
6958 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6959 return;
6960
6961 /* Always use CB2 mode, difference is masked in the CB driver. */
6962 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6963
6964 for (i = 0; i < adapter->num_q_vectors; i++) {
6965 adapter->q_vector[i]->cpu = -1;
6966 igb_update_dca(adapter->q_vector[i]);
6967 }
6968 }
6969
__igb_notify_dca(struct device * dev,void * data)6970 static int __igb_notify_dca(struct device *dev, void *data)
6971 {
6972 struct net_device *netdev = dev_get_drvdata(dev);
6973 struct igb_adapter *adapter = netdev_priv(netdev);
6974 struct pci_dev *pdev = adapter->pdev;
6975 struct e1000_hw *hw = &adapter->hw;
6976 unsigned long event = *(unsigned long *)data;
6977
6978 switch (event) {
6979 case DCA_PROVIDER_ADD:
6980 /* if already enabled, don't do it again */
6981 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6982 break;
6983 if (dca_add_requester(dev) == 0) {
6984 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6985 dev_info(&pdev->dev, "DCA enabled\n");
6986 igb_setup_dca(adapter);
6987 break;
6988 }
6989 fallthrough; /* since DCA is disabled. */
6990 case DCA_PROVIDER_REMOVE:
6991 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6992 /* without this a class_device is left
6993 * hanging around in the sysfs model
6994 */
6995 dca_remove_requester(dev);
6996 dev_info(&pdev->dev, "DCA disabled\n");
6997 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6998 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6999 }
7000 break;
7001 }
7002
7003 return 0;
7004 }
7005
igb_notify_dca(struct notifier_block * nb,unsigned long event,void * p)7006 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7007 void *p)
7008 {
7009 int ret_val;
7010
7011 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
7012 __igb_notify_dca);
7013
7014 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7015 }
7016 #endif /* CONFIG_IGB_DCA */
7017
7018 #ifdef CONFIG_PCI_IOV
igb_vf_configure(struct igb_adapter * adapter,int vf)7019 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7020 {
7021 unsigned char mac_addr[ETH_ALEN];
7022
7023 eth_zero_addr(mac_addr);
7024 igb_set_vf_mac(adapter, vf, mac_addr);
7025
7026 /* By default spoof check is enabled for all VFs */
7027 adapter->vf_data[vf].spoofchk_enabled = true;
7028
7029 /* By default VFs are not trusted */
7030 adapter->vf_data[vf].trusted = false;
7031
7032 return 0;
7033 }
7034
7035 #endif
igb_ping_all_vfs(struct igb_adapter * adapter)7036 static void igb_ping_all_vfs(struct igb_adapter *adapter)
7037 {
7038 struct e1000_hw *hw = &adapter->hw;
7039 u32 ping;
7040 int i;
7041
7042 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7043 ping = E1000_PF_CONTROL_MSG;
7044 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7045 ping |= E1000_VT_MSGTYPE_CTS;
7046 igb_write_mbx(hw, &ping, 1, i);
7047 }
7048 }
7049
igb_set_vf_promisc(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7050 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7051 {
7052 struct e1000_hw *hw = &adapter->hw;
7053 u32 vmolr = rd32(E1000_VMOLR(vf));
7054 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7055
7056 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7057 IGB_VF_FLAG_MULTI_PROMISC);
7058 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7059
7060 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7061 vmolr |= E1000_VMOLR_MPME;
7062 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7063 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7064 } else {
7065 /* if we have hashes and we are clearing a multicast promisc
7066 * flag we need to write the hashes to the MTA as this step
7067 * was previously skipped
7068 */
7069 if (vf_data->num_vf_mc_hashes > 30) {
7070 vmolr |= E1000_VMOLR_MPME;
7071 } else if (vf_data->num_vf_mc_hashes) {
7072 int j;
7073
7074 vmolr |= E1000_VMOLR_ROMPE;
7075 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7076 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7077 }
7078 }
7079
7080 wr32(E1000_VMOLR(vf), vmolr);
7081
7082 /* there are flags left unprocessed, likely not supported */
7083 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7084 return -EINVAL;
7085
7086 return 0;
7087 }
7088
igb_set_vf_multicasts(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7089 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7090 u32 *msgbuf, u32 vf)
7091 {
7092 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7093 u16 *hash_list = (u16 *)&msgbuf[1];
7094 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7095 int i;
7096
7097 /* salt away the number of multicast addresses assigned
7098 * to this VF for later use to restore when the PF multi cast
7099 * list changes
7100 */
7101 vf_data->num_vf_mc_hashes = n;
7102
7103 /* only up to 30 hash values supported */
7104 if (n > 30)
7105 n = 30;
7106
7107 /* store the hashes for later use */
7108 for (i = 0; i < n; i++)
7109 vf_data->vf_mc_hashes[i] = hash_list[i];
7110
7111 /* Flush and reset the mta with the new values */
7112 igb_set_rx_mode(adapter->netdev);
7113
7114 return 0;
7115 }
7116
igb_restore_vf_multicasts(struct igb_adapter * adapter)7117 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7118 {
7119 struct e1000_hw *hw = &adapter->hw;
7120 struct vf_data_storage *vf_data;
7121 int i, j;
7122
7123 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7124 u32 vmolr = rd32(E1000_VMOLR(i));
7125
7126 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7127
7128 vf_data = &adapter->vf_data[i];
7129
7130 if ((vf_data->num_vf_mc_hashes > 30) ||
7131 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7132 vmolr |= E1000_VMOLR_MPME;
7133 } else if (vf_data->num_vf_mc_hashes) {
7134 vmolr |= E1000_VMOLR_ROMPE;
7135 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7136 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7137 }
7138 wr32(E1000_VMOLR(i), vmolr);
7139 }
7140 }
7141
igb_clear_vf_vfta(struct igb_adapter * adapter,u32 vf)7142 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7143 {
7144 struct e1000_hw *hw = &adapter->hw;
7145 u32 pool_mask, vlvf_mask, i;
7146
7147 /* create mask for VF and other pools */
7148 pool_mask = E1000_VLVF_POOLSEL_MASK;
7149 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7150
7151 /* drop PF from pool bits */
7152 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7153 adapter->vfs_allocated_count);
7154
7155 /* Find the vlan filter for this id */
7156 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7157 u32 vlvf = rd32(E1000_VLVF(i));
7158 u32 vfta_mask, vid, vfta;
7159
7160 /* remove the vf from the pool */
7161 if (!(vlvf & vlvf_mask))
7162 continue;
7163
7164 /* clear out bit from VLVF */
7165 vlvf ^= vlvf_mask;
7166
7167 /* if other pools are present, just remove ourselves */
7168 if (vlvf & pool_mask)
7169 goto update_vlvfb;
7170
7171 /* if PF is present, leave VFTA */
7172 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7173 goto update_vlvf;
7174
7175 vid = vlvf & E1000_VLVF_VLANID_MASK;
7176 vfta_mask = BIT(vid % 32);
7177
7178 /* clear bit from VFTA */
7179 vfta = adapter->shadow_vfta[vid / 32];
7180 if (vfta & vfta_mask)
7181 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7182 update_vlvf:
7183 /* clear pool selection enable */
7184 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7185 vlvf &= E1000_VLVF_POOLSEL_MASK;
7186 else
7187 vlvf = 0;
7188 update_vlvfb:
7189 /* clear pool bits */
7190 wr32(E1000_VLVF(i), vlvf);
7191 }
7192 }
7193
igb_find_vlvf_entry(struct e1000_hw * hw,u32 vlan)7194 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7195 {
7196 u32 vlvf;
7197 int idx;
7198
7199 /* short cut the special case */
7200 if (vlan == 0)
7201 return 0;
7202
7203 /* Search for the VLAN id in the VLVF entries */
7204 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7205 vlvf = rd32(E1000_VLVF(idx));
7206 if ((vlvf & VLAN_VID_MASK) == vlan)
7207 break;
7208 }
7209
7210 return idx;
7211 }
7212
igb_update_pf_vlvf(struct igb_adapter * adapter,u32 vid)7213 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7214 {
7215 struct e1000_hw *hw = &adapter->hw;
7216 u32 bits, pf_id;
7217 int idx;
7218
7219 idx = igb_find_vlvf_entry(hw, vid);
7220 if (!idx)
7221 return;
7222
7223 /* See if any other pools are set for this VLAN filter
7224 * entry other than the PF.
7225 */
7226 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7227 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7228 bits &= rd32(E1000_VLVF(idx));
7229
7230 /* Disable the filter so this falls into the default pool. */
7231 if (!bits) {
7232 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7233 wr32(E1000_VLVF(idx), BIT(pf_id));
7234 else
7235 wr32(E1000_VLVF(idx), 0);
7236 }
7237 }
7238
igb_set_vf_vlan(struct igb_adapter * adapter,u32 vid,bool add,u32 vf)7239 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7240 bool add, u32 vf)
7241 {
7242 int pf_id = adapter->vfs_allocated_count;
7243 struct e1000_hw *hw = &adapter->hw;
7244 int err;
7245
7246 /* If VLAN overlaps with one the PF is currently monitoring make
7247 * sure that we are able to allocate a VLVF entry. This may be
7248 * redundant but it guarantees PF will maintain visibility to
7249 * the VLAN.
7250 */
7251 if (add && test_bit(vid, adapter->active_vlans)) {
7252 err = igb_vfta_set(hw, vid, pf_id, true, false);
7253 if (err)
7254 return err;
7255 }
7256
7257 err = igb_vfta_set(hw, vid, vf, add, false);
7258
7259 if (add && !err)
7260 return err;
7261
7262 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7263 * we may need to drop the PF pool bit in order to allow us to free
7264 * up the VLVF resources.
7265 */
7266 if (test_bit(vid, adapter->active_vlans) ||
7267 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7268 igb_update_pf_vlvf(adapter, vid);
7269
7270 return err;
7271 }
7272
igb_set_vmvir(struct igb_adapter * adapter,u32 vid,u32 vf)7273 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7274 {
7275 struct e1000_hw *hw = &adapter->hw;
7276
7277 if (vid)
7278 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7279 else
7280 wr32(E1000_VMVIR(vf), 0);
7281 }
7282
igb_enable_port_vlan(struct igb_adapter * adapter,int vf,u16 vlan,u8 qos)7283 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7284 u16 vlan, u8 qos)
7285 {
7286 int err;
7287
7288 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7289 if (err)
7290 return err;
7291
7292 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7293 igb_set_vmolr(adapter, vf, !vlan);
7294
7295 /* revoke access to previous VLAN */
7296 if (vlan != adapter->vf_data[vf].pf_vlan)
7297 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7298 false, vf);
7299
7300 adapter->vf_data[vf].pf_vlan = vlan;
7301 adapter->vf_data[vf].pf_qos = qos;
7302 igb_set_vf_vlan_strip(adapter, vf, true);
7303 dev_info(&adapter->pdev->dev,
7304 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7305 if (test_bit(__IGB_DOWN, &adapter->state)) {
7306 dev_warn(&adapter->pdev->dev,
7307 "The VF VLAN has been set, but the PF device is not up.\n");
7308 dev_warn(&adapter->pdev->dev,
7309 "Bring the PF device up before attempting to use the VF device.\n");
7310 }
7311
7312 return err;
7313 }
7314
igb_disable_port_vlan(struct igb_adapter * adapter,int vf)7315 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7316 {
7317 /* Restore tagless access via VLAN 0 */
7318 igb_set_vf_vlan(adapter, 0, true, vf);
7319
7320 igb_set_vmvir(adapter, 0, vf);
7321 igb_set_vmolr(adapter, vf, true);
7322
7323 /* Remove any PF assigned VLAN */
7324 if (adapter->vf_data[vf].pf_vlan)
7325 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7326 false, vf);
7327
7328 adapter->vf_data[vf].pf_vlan = 0;
7329 adapter->vf_data[vf].pf_qos = 0;
7330 igb_set_vf_vlan_strip(adapter, vf, false);
7331
7332 return 0;
7333 }
7334
igb_ndo_set_vf_vlan(struct net_device * netdev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)7335 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7336 u16 vlan, u8 qos, __be16 vlan_proto)
7337 {
7338 struct igb_adapter *adapter = netdev_priv(netdev);
7339
7340 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7341 return -EINVAL;
7342
7343 if (vlan_proto != htons(ETH_P_8021Q))
7344 return -EPROTONOSUPPORT;
7345
7346 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7347 igb_disable_port_vlan(adapter, vf);
7348 }
7349
igb_set_vf_vlan_msg(struct igb_adapter * adapter,u32 * msgbuf,u32 vf)7350 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7351 {
7352 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7353 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7354 int ret;
7355
7356 if (adapter->vf_data[vf].pf_vlan)
7357 return -1;
7358
7359 /* VLAN 0 is a special case, don't allow it to be removed */
7360 if (!vid && !add)
7361 return 0;
7362
7363 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7364 if (!ret)
7365 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7366 return ret;
7367 }
7368
igb_vf_reset(struct igb_adapter * adapter,u32 vf)7369 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7370 {
7371 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7372
7373 /* clear flags - except flag that indicates PF has set the MAC */
7374 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7375 vf_data->last_nack = jiffies;
7376
7377 /* reset vlans for device */
7378 igb_clear_vf_vfta(adapter, vf);
7379 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7380 igb_set_vmvir(adapter, vf_data->pf_vlan |
7381 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7382 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7383 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7384
7385 /* reset multicast table array for vf */
7386 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7387
7388 /* Flush and reset the mta with the new values */
7389 igb_set_rx_mode(adapter->netdev);
7390 }
7391
igb_vf_reset_event(struct igb_adapter * adapter,u32 vf)7392 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7393 {
7394 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7395
7396 /* clear mac address as we were hotplug removed/added */
7397 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7398 eth_zero_addr(vf_mac);
7399
7400 /* process remaining reset events */
7401 igb_vf_reset(adapter, vf);
7402 }
7403
igb_vf_reset_msg(struct igb_adapter * adapter,u32 vf)7404 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7405 {
7406 struct e1000_hw *hw = &adapter->hw;
7407 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7408 u32 reg, msgbuf[3];
7409 u8 *addr = (u8 *)(&msgbuf[1]);
7410
7411 /* process all the same items cleared in a function level reset */
7412 igb_vf_reset(adapter, vf);
7413
7414 /* set vf mac address */
7415 igb_set_vf_mac(adapter, vf, vf_mac);
7416
7417 /* enable transmit and receive for vf */
7418 reg = rd32(E1000_VFTE);
7419 wr32(E1000_VFTE, reg | BIT(vf));
7420 reg = rd32(E1000_VFRE);
7421 wr32(E1000_VFRE, reg | BIT(vf));
7422
7423 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7424
7425 /* reply to reset with ack and vf mac address */
7426 if (!is_zero_ether_addr(vf_mac)) {
7427 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7428 memcpy(addr, vf_mac, ETH_ALEN);
7429 } else {
7430 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7431 }
7432 igb_write_mbx(hw, msgbuf, 3, vf);
7433 }
7434
igb_flush_mac_table(struct igb_adapter * adapter)7435 static void igb_flush_mac_table(struct igb_adapter *adapter)
7436 {
7437 struct e1000_hw *hw = &adapter->hw;
7438 int i;
7439
7440 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7441 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7442 eth_zero_addr(adapter->mac_table[i].addr);
7443 adapter->mac_table[i].queue = 0;
7444 igb_rar_set_index(adapter, i);
7445 }
7446 }
7447
igb_available_rars(struct igb_adapter * adapter,u8 queue)7448 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7449 {
7450 struct e1000_hw *hw = &adapter->hw;
7451 /* do not count rar entries reserved for VFs MAC addresses */
7452 int rar_entries = hw->mac.rar_entry_count -
7453 adapter->vfs_allocated_count;
7454 int i, count = 0;
7455
7456 for (i = 0; i < rar_entries; i++) {
7457 /* do not count default entries */
7458 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7459 continue;
7460
7461 /* do not count "in use" entries for different queues */
7462 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7463 (adapter->mac_table[i].queue != queue))
7464 continue;
7465
7466 count++;
7467 }
7468
7469 return count;
7470 }
7471
7472 /* Set default MAC address for the PF in the first RAR entry */
igb_set_default_mac_filter(struct igb_adapter * adapter)7473 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7474 {
7475 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7476
7477 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7478 mac_table->queue = adapter->vfs_allocated_count;
7479 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7480
7481 igb_rar_set_index(adapter, 0);
7482 }
7483
7484 /* If the filter to be added and an already existing filter express
7485 * the same address and address type, it should be possible to only
7486 * override the other configurations, for example the queue to steer
7487 * traffic.
7488 */
igb_mac_entry_can_be_used(const struct igb_mac_addr * entry,const u8 * addr,const u8 flags)7489 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7490 const u8 *addr, const u8 flags)
7491 {
7492 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7493 return true;
7494
7495 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7496 (flags & IGB_MAC_STATE_SRC_ADDR))
7497 return false;
7498
7499 if (!ether_addr_equal(addr, entry->addr))
7500 return false;
7501
7502 return true;
7503 }
7504
7505 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7506 * 'flags' is used to indicate what kind of match is made, match is by
7507 * default for the destination address, if matching by source address
7508 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7509 */
igb_add_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7510 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7511 const u8 *addr, const u8 queue,
7512 const u8 flags)
7513 {
7514 struct e1000_hw *hw = &adapter->hw;
7515 int rar_entries = hw->mac.rar_entry_count -
7516 adapter->vfs_allocated_count;
7517 int i;
7518
7519 if (is_zero_ether_addr(addr))
7520 return -EINVAL;
7521
7522 /* Search for the first empty entry in the MAC table.
7523 * Do not touch entries at the end of the table reserved for the VF MAC
7524 * addresses.
7525 */
7526 for (i = 0; i < rar_entries; i++) {
7527 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7528 addr, flags))
7529 continue;
7530
7531 ether_addr_copy(adapter->mac_table[i].addr, addr);
7532 adapter->mac_table[i].queue = queue;
7533 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7534
7535 igb_rar_set_index(adapter, i);
7536 return i;
7537 }
7538
7539 return -ENOSPC;
7540 }
7541
igb_add_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7542 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7543 const u8 queue)
7544 {
7545 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7546 }
7547
7548 /* Remove a MAC filter for 'addr' directing matching traffic to
7549 * 'queue', 'flags' is used to indicate what kind of match need to be
7550 * removed, match is by default for the destination address, if
7551 * matching by source address is to be removed the flag
7552 * IGB_MAC_STATE_SRC_ADDR can be used.
7553 */
igb_del_mac_filter_flags(struct igb_adapter * adapter,const u8 * addr,const u8 queue,const u8 flags)7554 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7555 const u8 *addr, const u8 queue,
7556 const u8 flags)
7557 {
7558 struct e1000_hw *hw = &adapter->hw;
7559 int rar_entries = hw->mac.rar_entry_count -
7560 adapter->vfs_allocated_count;
7561 int i;
7562
7563 if (is_zero_ether_addr(addr))
7564 return -EINVAL;
7565
7566 /* Search for matching entry in the MAC table based on given address
7567 * and queue. Do not touch entries at the end of the table reserved
7568 * for the VF MAC addresses.
7569 */
7570 for (i = 0; i < rar_entries; i++) {
7571 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7572 continue;
7573 if ((adapter->mac_table[i].state & flags) != flags)
7574 continue;
7575 if (adapter->mac_table[i].queue != queue)
7576 continue;
7577 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7578 continue;
7579
7580 /* When a filter for the default address is "deleted",
7581 * we return it to its initial configuration
7582 */
7583 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7584 adapter->mac_table[i].state =
7585 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7586 adapter->mac_table[i].queue =
7587 adapter->vfs_allocated_count;
7588 } else {
7589 adapter->mac_table[i].state = 0;
7590 adapter->mac_table[i].queue = 0;
7591 eth_zero_addr(adapter->mac_table[i].addr);
7592 }
7593
7594 igb_rar_set_index(adapter, i);
7595 return 0;
7596 }
7597
7598 return -ENOENT;
7599 }
7600
igb_del_mac_filter(struct igb_adapter * adapter,const u8 * addr,const u8 queue)7601 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7602 const u8 queue)
7603 {
7604 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7605 }
7606
igb_add_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7607 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7608 const u8 *addr, u8 queue, u8 flags)
7609 {
7610 struct e1000_hw *hw = &adapter->hw;
7611
7612 /* In theory, this should be supported on 82575 as well, but
7613 * that part wasn't easily accessible during development.
7614 */
7615 if (hw->mac.type != e1000_i210)
7616 return -EOPNOTSUPP;
7617
7618 return igb_add_mac_filter_flags(adapter, addr, queue,
7619 IGB_MAC_STATE_QUEUE_STEERING | flags);
7620 }
7621
igb_del_mac_steering_filter(struct igb_adapter * adapter,const u8 * addr,u8 queue,u8 flags)7622 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7623 const u8 *addr, u8 queue, u8 flags)
7624 {
7625 return igb_del_mac_filter_flags(adapter, addr, queue,
7626 IGB_MAC_STATE_QUEUE_STEERING | flags);
7627 }
7628
igb_uc_sync(struct net_device * netdev,const unsigned char * addr)7629 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7630 {
7631 struct igb_adapter *adapter = netdev_priv(netdev);
7632 int ret;
7633
7634 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7635
7636 return min_t(int, ret, 0);
7637 }
7638
igb_uc_unsync(struct net_device * netdev,const unsigned char * addr)7639 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7640 {
7641 struct igb_adapter *adapter = netdev_priv(netdev);
7642
7643 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7644
7645 return 0;
7646 }
7647
igb_set_vf_mac_filter(struct igb_adapter * adapter,const int vf,const u32 info,const u8 * addr)7648 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7649 const u32 info, const u8 *addr)
7650 {
7651 struct pci_dev *pdev = adapter->pdev;
7652 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7653 struct list_head *pos;
7654 struct vf_mac_filter *entry = NULL;
7655 int ret = 0;
7656
7657 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7658 !vf_data->trusted) {
7659 dev_warn(&pdev->dev,
7660 "VF %d requested MAC filter but is administratively denied\n",
7661 vf);
7662 return -EINVAL;
7663 }
7664 if (!is_valid_ether_addr(addr)) {
7665 dev_warn(&pdev->dev,
7666 "VF %d attempted to set invalid MAC filter\n",
7667 vf);
7668 return -EINVAL;
7669 }
7670
7671 switch (info) {
7672 case E1000_VF_MAC_FILTER_CLR:
7673 /* remove all unicast MAC filters related to the current VF */
7674 list_for_each(pos, &adapter->vf_macs.l) {
7675 entry = list_entry(pos, struct vf_mac_filter, l);
7676 if (entry->vf == vf) {
7677 entry->vf = -1;
7678 entry->free = true;
7679 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7680 }
7681 }
7682 break;
7683 case E1000_VF_MAC_FILTER_ADD:
7684 /* try to find empty slot in the list */
7685 list_for_each(pos, &adapter->vf_macs.l) {
7686 entry = list_entry(pos, struct vf_mac_filter, l);
7687 if (entry->free)
7688 break;
7689 }
7690
7691 if (entry && entry->free) {
7692 entry->free = false;
7693 entry->vf = vf;
7694 ether_addr_copy(entry->vf_mac, addr);
7695
7696 ret = igb_add_mac_filter(adapter, addr, vf);
7697 ret = min_t(int, ret, 0);
7698 } else {
7699 ret = -ENOSPC;
7700 }
7701
7702 if (ret == -ENOSPC)
7703 dev_warn(&pdev->dev,
7704 "VF %d has requested MAC filter but there is no space for it\n",
7705 vf);
7706 break;
7707 default:
7708 ret = -EINVAL;
7709 break;
7710 }
7711
7712 return ret;
7713 }
7714
igb_set_vf_mac_addr(struct igb_adapter * adapter,u32 * msg,int vf)7715 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7716 {
7717 struct pci_dev *pdev = adapter->pdev;
7718 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7719 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7720
7721 /* The VF MAC Address is stored in a packed array of bytes
7722 * starting at the second 32 bit word of the msg array
7723 */
7724 unsigned char *addr = (unsigned char *)&msg[1];
7725 int ret = 0;
7726
7727 if (!info) {
7728 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7729 !vf_data->trusted) {
7730 dev_warn(&pdev->dev,
7731 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7732 vf);
7733 return -EINVAL;
7734 }
7735
7736 if (!is_valid_ether_addr(addr)) {
7737 dev_warn(&pdev->dev,
7738 "VF %d attempted to set invalid MAC\n",
7739 vf);
7740 return -EINVAL;
7741 }
7742
7743 ret = igb_set_vf_mac(adapter, vf, addr);
7744 } else {
7745 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7746 }
7747
7748 return ret;
7749 }
7750
igb_rcv_ack_from_vf(struct igb_adapter * adapter,u32 vf)7751 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7752 {
7753 struct e1000_hw *hw = &adapter->hw;
7754 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7755 u32 msg = E1000_VT_MSGTYPE_NACK;
7756
7757 /* if device isn't clear to send it shouldn't be reading either */
7758 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7759 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7760 igb_write_mbx(hw, &msg, 1, vf);
7761 vf_data->last_nack = jiffies;
7762 }
7763 }
7764
igb_rcv_msg_from_vf(struct igb_adapter * adapter,u32 vf)7765 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7766 {
7767 struct pci_dev *pdev = adapter->pdev;
7768 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7769 struct e1000_hw *hw = &adapter->hw;
7770 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7771 s32 retval;
7772
7773 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7774
7775 if (retval) {
7776 /* if receive failed revoke VF CTS stats and restart init */
7777 dev_err(&pdev->dev, "Error receiving message from VF\n");
7778 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7779 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7780 goto unlock;
7781 goto out;
7782 }
7783
7784 /* this is a message we already processed, do nothing */
7785 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7786 goto unlock;
7787
7788 /* until the vf completes a reset it should not be
7789 * allowed to start any configuration.
7790 */
7791 if (msgbuf[0] == E1000_VF_RESET) {
7792 /* unlocks mailbox */
7793 igb_vf_reset_msg(adapter, vf);
7794 return;
7795 }
7796
7797 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7798 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7799 goto unlock;
7800 retval = -1;
7801 goto out;
7802 }
7803
7804 switch ((msgbuf[0] & 0xFFFF)) {
7805 case E1000_VF_SET_MAC_ADDR:
7806 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7807 break;
7808 case E1000_VF_SET_PROMISC:
7809 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7810 break;
7811 case E1000_VF_SET_MULTICAST:
7812 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7813 break;
7814 case E1000_VF_SET_LPE:
7815 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7816 break;
7817 case E1000_VF_SET_VLAN:
7818 retval = -1;
7819 if (vf_data->pf_vlan)
7820 dev_warn(&pdev->dev,
7821 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7822 vf);
7823 else
7824 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7825 break;
7826 default:
7827 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7828 retval = -1;
7829 break;
7830 }
7831
7832 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7833 out:
7834 /* notify the VF of the results of what it sent us */
7835 if (retval)
7836 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7837 else
7838 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7839
7840 /* unlocks mailbox */
7841 igb_write_mbx(hw, msgbuf, 1, vf);
7842 return;
7843
7844 unlock:
7845 igb_unlock_mbx(hw, vf);
7846 }
7847
igb_msg_task(struct igb_adapter * adapter)7848 static void igb_msg_task(struct igb_adapter *adapter)
7849 {
7850 struct e1000_hw *hw = &adapter->hw;
7851 u32 vf;
7852
7853 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7854 /* process any reset requests */
7855 if (!igb_check_for_rst(hw, vf))
7856 igb_vf_reset_event(adapter, vf);
7857
7858 /* process any messages pending */
7859 if (!igb_check_for_msg(hw, vf))
7860 igb_rcv_msg_from_vf(adapter, vf);
7861
7862 /* process any acks */
7863 if (!igb_check_for_ack(hw, vf))
7864 igb_rcv_ack_from_vf(adapter, vf);
7865 }
7866 }
7867
7868 /**
7869 * igb_set_uta - Set unicast filter table address
7870 * @adapter: board private structure
7871 * @set: boolean indicating if we are setting or clearing bits
7872 *
7873 * The unicast table address is a register array of 32-bit registers.
7874 * The table is meant to be used in a way similar to how the MTA is used
7875 * however due to certain limitations in the hardware it is necessary to
7876 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7877 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7878 **/
igb_set_uta(struct igb_adapter * adapter,bool set)7879 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7880 {
7881 struct e1000_hw *hw = &adapter->hw;
7882 u32 uta = set ? ~0 : 0;
7883 int i;
7884
7885 /* we only need to do this if VMDq is enabled */
7886 if (!adapter->vfs_allocated_count)
7887 return;
7888
7889 for (i = hw->mac.uta_reg_count; i--;)
7890 array_wr32(E1000_UTA, i, uta);
7891 }
7892
7893 /**
7894 * igb_intr_msi - Interrupt Handler
7895 * @irq: interrupt number
7896 * @data: pointer to a network interface device structure
7897 **/
igb_intr_msi(int irq,void * data)7898 static irqreturn_t igb_intr_msi(int irq, void *data)
7899 {
7900 struct igb_adapter *adapter = data;
7901 struct igb_q_vector *q_vector = adapter->q_vector[0];
7902 struct e1000_hw *hw = &adapter->hw;
7903 /* read ICR disables interrupts using IAM */
7904 u32 icr = rd32(E1000_ICR);
7905
7906 igb_write_itr(q_vector);
7907
7908 if (icr & E1000_ICR_DRSTA)
7909 schedule_work(&adapter->reset_task);
7910
7911 if (icr & E1000_ICR_DOUTSYNC) {
7912 /* HW is reporting DMA is out of sync */
7913 adapter->stats.doosync++;
7914 }
7915
7916 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7917 hw->mac.get_link_status = 1;
7918 if (!test_bit(__IGB_DOWN, &adapter->state))
7919 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7920 }
7921
7922 if (icr & E1000_ICR_TS)
7923 igb_tsync_interrupt(adapter);
7924
7925 napi_schedule(&q_vector->napi);
7926
7927 return IRQ_HANDLED;
7928 }
7929
7930 /**
7931 * igb_intr - Legacy Interrupt Handler
7932 * @irq: interrupt number
7933 * @data: pointer to a network interface device structure
7934 **/
igb_intr(int irq,void * data)7935 static irqreturn_t igb_intr(int irq, void *data)
7936 {
7937 struct igb_adapter *adapter = data;
7938 struct igb_q_vector *q_vector = adapter->q_vector[0];
7939 struct e1000_hw *hw = &adapter->hw;
7940 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7941 * need for the IMC write
7942 */
7943 u32 icr = rd32(E1000_ICR);
7944
7945 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7946 * not set, then the adapter didn't send an interrupt
7947 */
7948 if (!(icr & E1000_ICR_INT_ASSERTED))
7949 return IRQ_NONE;
7950
7951 igb_write_itr(q_vector);
7952
7953 if (icr & E1000_ICR_DRSTA)
7954 schedule_work(&adapter->reset_task);
7955
7956 if (icr & E1000_ICR_DOUTSYNC) {
7957 /* HW is reporting DMA is out of sync */
7958 adapter->stats.doosync++;
7959 }
7960
7961 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7962 hw->mac.get_link_status = 1;
7963 /* guard against interrupt when we're going down */
7964 if (!test_bit(__IGB_DOWN, &adapter->state))
7965 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7966 }
7967
7968 if (icr & E1000_ICR_TS)
7969 igb_tsync_interrupt(adapter);
7970
7971 napi_schedule(&q_vector->napi);
7972
7973 return IRQ_HANDLED;
7974 }
7975
igb_ring_irq_enable(struct igb_q_vector * q_vector)7976 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7977 {
7978 struct igb_adapter *adapter = q_vector->adapter;
7979 struct e1000_hw *hw = &adapter->hw;
7980
7981 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7982 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7983 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7984 igb_set_itr(q_vector);
7985 else
7986 igb_update_ring_itr(q_vector);
7987 }
7988
7989 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7990 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7991 wr32(E1000_EIMS, q_vector->eims_value);
7992 else
7993 igb_irq_enable(adapter);
7994 }
7995 }
7996
7997 /**
7998 * igb_poll - NAPI Rx polling callback
7999 * @napi: napi polling structure
8000 * @budget: count of how many packets we should handle
8001 **/
igb_poll(struct napi_struct * napi,int budget)8002 static int igb_poll(struct napi_struct *napi, int budget)
8003 {
8004 struct igb_q_vector *q_vector = container_of(napi,
8005 struct igb_q_vector,
8006 napi);
8007 bool clean_complete = true;
8008 int work_done = 0;
8009
8010 #ifdef CONFIG_IGB_DCA
8011 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8012 igb_update_dca(q_vector);
8013 #endif
8014 if (q_vector->tx.ring)
8015 clean_complete = igb_clean_tx_irq(q_vector, budget);
8016
8017 if (q_vector->rx.ring) {
8018 int cleaned = igb_clean_rx_irq(q_vector, budget);
8019
8020 work_done += cleaned;
8021 if (cleaned >= budget)
8022 clean_complete = false;
8023 }
8024
8025 /* If all work not completed, return budget and keep polling */
8026 if (!clean_complete)
8027 return budget;
8028
8029 /* Exit the polling mode, but don't re-enable interrupts if stack might
8030 * poll us due to busy-polling
8031 */
8032 if (likely(napi_complete_done(napi, work_done)))
8033 igb_ring_irq_enable(q_vector);
8034
8035 return work_done;
8036 }
8037
8038 /**
8039 * igb_clean_tx_irq - Reclaim resources after transmit completes
8040 * @q_vector: pointer to q_vector containing needed info
8041 * @napi_budget: Used to determine if we are in netpoll
8042 *
8043 * returns true if ring is completely cleaned
8044 **/
igb_clean_tx_irq(struct igb_q_vector * q_vector,int napi_budget)8045 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8046 {
8047 struct igb_adapter *adapter = q_vector->adapter;
8048 struct igb_ring *tx_ring = q_vector->tx.ring;
8049 struct igb_tx_buffer *tx_buffer;
8050 union e1000_adv_tx_desc *tx_desc;
8051 unsigned int total_bytes = 0, total_packets = 0;
8052 unsigned int budget = q_vector->tx.work_limit;
8053 unsigned int i = tx_ring->next_to_clean;
8054
8055 if (test_bit(__IGB_DOWN, &adapter->state))
8056 return true;
8057
8058 tx_buffer = &tx_ring->tx_buffer_info[i];
8059 tx_desc = IGB_TX_DESC(tx_ring, i);
8060 i -= tx_ring->count;
8061
8062 do {
8063 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8064
8065 /* if next_to_watch is not set then there is no work pending */
8066 if (!eop_desc)
8067 break;
8068
8069 /* prevent any other reads prior to eop_desc */
8070 smp_rmb();
8071
8072 /* if DD is not set pending work has not been completed */
8073 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8074 break;
8075
8076 /* clear next_to_watch to prevent false hangs */
8077 tx_buffer->next_to_watch = NULL;
8078
8079 /* update the statistics for this packet */
8080 total_bytes += tx_buffer->bytecount;
8081 total_packets += tx_buffer->gso_segs;
8082
8083 /* free the skb */
8084 if (tx_buffer->type == IGB_TYPE_SKB)
8085 napi_consume_skb(tx_buffer->skb, napi_budget);
8086 else
8087 xdp_return_frame(tx_buffer->xdpf);
8088
8089 /* unmap skb header data */
8090 dma_unmap_single(tx_ring->dev,
8091 dma_unmap_addr(tx_buffer, dma),
8092 dma_unmap_len(tx_buffer, len),
8093 DMA_TO_DEVICE);
8094
8095 /* clear tx_buffer data */
8096 dma_unmap_len_set(tx_buffer, len, 0);
8097
8098 /* clear last DMA location and unmap remaining buffers */
8099 while (tx_desc != eop_desc) {
8100 tx_buffer++;
8101 tx_desc++;
8102 i++;
8103 if (unlikely(!i)) {
8104 i -= tx_ring->count;
8105 tx_buffer = tx_ring->tx_buffer_info;
8106 tx_desc = IGB_TX_DESC(tx_ring, 0);
8107 }
8108
8109 /* unmap any remaining paged data */
8110 if (dma_unmap_len(tx_buffer, len)) {
8111 dma_unmap_page(tx_ring->dev,
8112 dma_unmap_addr(tx_buffer, dma),
8113 dma_unmap_len(tx_buffer, len),
8114 DMA_TO_DEVICE);
8115 dma_unmap_len_set(tx_buffer, len, 0);
8116 }
8117 }
8118
8119 /* move us one more past the eop_desc for start of next pkt */
8120 tx_buffer++;
8121 tx_desc++;
8122 i++;
8123 if (unlikely(!i)) {
8124 i -= tx_ring->count;
8125 tx_buffer = tx_ring->tx_buffer_info;
8126 tx_desc = IGB_TX_DESC(tx_ring, 0);
8127 }
8128
8129 /* issue prefetch for next Tx descriptor */
8130 prefetch(tx_desc);
8131
8132 /* update budget accounting */
8133 budget--;
8134 } while (likely(budget));
8135
8136 netdev_tx_completed_queue(txring_txq(tx_ring),
8137 total_packets, total_bytes);
8138 i += tx_ring->count;
8139 tx_ring->next_to_clean = i;
8140 u64_stats_update_begin(&tx_ring->tx_syncp);
8141 tx_ring->tx_stats.bytes += total_bytes;
8142 tx_ring->tx_stats.packets += total_packets;
8143 u64_stats_update_end(&tx_ring->tx_syncp);
8144 q_vector->tx.total_bytes += total_bytes;
8145 q_vector->tx.total_packets += total_packets;
8146
8147 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8148 struct e1000_hw *hw = &adapter->hw;
8149
8150 /* Detect a transmit hang in hardware, this serializes the
8151 * check with the clearing of time_stamp and movement of i
8152 */
8153 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8154 if (tx_buffer->next_to_watch &&
8155 time_after(jiffies, tx_buffer->time_stamp +
8156 (adapter->tx_timeout_factor * HZ)) &&
8157 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8158
8159 /* detected Tx unit hang */
8160 dev_err(tx_ring->dev,
8161 "Detected Tx Unit Hang\n"
8162 " Tx Queue <%d>\n"
8163 " TDH <%x>\n"
8164 " TDT <%x>\n"
8165 " next_to_use <%x>\n"
8166 " next_to_clean <%x>\n"
8167 "buffer_info[next_to_clean]\n"
8168 " time_stamp <%lx>\n"
8169 " next_to_watch <%p>\n"
8170 " jiffies <%lx>\n"
8171 " desc.status <%x>\n",
8172 tx_ring->queue_index,
8173 rd32(E1000_TDH(tx_ring->reg_idx)),
8174 readl(tx_ring->tail),
8175 tx_ring->next_to_use,
8176 tx_ring->next_to_clean,
8177 tx_buffer->time_stamp,
8178 tx_buffer->next_to_watch,
8179 jiffies,
8180 tx_buffer->next_to_watch->wb.status);
8181 netif_stop_subqueue(tx_ring->netdev,
8182 tx_ring->queue_index);
8183
8184 /* we are about to reset, no point in enabling stuff */
8185 return true;
8186 }
8187 }
8188
8189 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8190 if (unlikely(total_packets &&
8191 netif_carrier_ok(tx_ring->netdev) &&
8192 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8193 /* Make sure that anybody stopping the queue after this
8194 * sees the new next_to_clean.
8195 */
8196 smp_mb();
8197 if (__netif_subqueue_stopped(tx_ring->netdev,
8198 tx_ring->queue_index) &&
8199 !(test_bit(__IGB_DOWN, &adapter->state))) {
8200 netif_wake_subqueue(tx_ring->netdev,
8201 tx_ring->queue_index);
8202
8203 u64_stats_update_begin(&tx_ring->tx_syncp);
8204 tx_ring->tx_stats.restart_queue++;
8205 u64_stats_update_end(&tx_ring->tx_syncp);
8206 }
8207 }
8208
8209 return !!budget;
8210 }
8211
8212 /**
8213 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8214 * @rx_ring: rx descriptor ring to store buffers on
8215 * @old_buff: donor buffer to have page reused
8216 *
8217 * Synchronizes page for reuse by the adapter
8218 **/
igb_reuse_rx_page(struct igb_ring * rx_ring,struct igb_rx_buffer * old_buff)8219 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8220 struct igb_rx_buffer *old_buff)
8221 {
8222 struct igb_rx_buffer *new_buff;
8223 u16 nta = rx_ring->next_to_alloc;
8224
8225 new_buff = &rx_ring->rx_buffer_info[nta];
8226
8227 /* update, and store next to alloc */
8228 nta++;
8229 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8230
8231 /* Transfer page from old buffer to new buffer.
8232 * Move each member individually to avoid possible store
8233 * forwarding stalls.
8234 */
8235 new_buff->dma = old_buff->dma;
8236 new_buff->page = old_buff->page;
8237 new_buff->page_offset = old_buff->page_offset;
8238 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8239 }
8240
igb_page_is_reserved(struct page * page)8241 static inline bool igb_page_is_reserved(struct page *page)
8242 {
8243 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
8244 }
8245
igb_can_reuse_rx_page(struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8246 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8247 int rx_buf_pgcnt)
8248 {
8249 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8250 struct page *page = rx_buffer->page;
8251
8252 /* avoid re-using remote pages */
8253 if (unlikely(igb_page_is_reserved(page)))
8254 return false;
8255
8256 #if (PAGE_SIZE < 8192)
8257 /* if we are only owner of page we can reuse it */
8258 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8259 return false;
8260 #else
8261 #define IGB_LAST_OFFSET \
8262 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8263
8264 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8265 return false;
8266 #endif
8267
8268 /* If we have drained the page fragment pool we need to update
8269 * the pagecnt_bias and page count so that we fully restock the
8270 * number of references the driver holds.
8271 */
8272 if (unlikely(pagecnt_bias == 1)) {
8273 page_ref_add(page, USHRT_MAX - 1);
8274 rx_buffer->pagecnt_bias = USHRT_MAX;
8275 }
8276
8277 return true;
8278 }
8279
8280 /**
8281 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8282 * @rx_ring: rx descriptor ring to transact packets on
8283 * @rx_buffer: buffer containing page to add
8284 * @skb: sk_buff to place the data into
8285 * @size: size of buffer to be added
8286 *
8287 * This function will add the data contained in rx_buffer->page to the skb.
8288 **/
igb_add_rx_frag(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)8289 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8290 struct igb_rx_buffer *rx_buffer,
8291 struct sk_buff *skb,
8292 unsigned int size)
8293 {
8294 #if (PAGE_SIZE < 8192)
8295 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8296 #else
8297 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8298 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8299 SKB_DATA_ALIGN(size);
8300 #endif
8301 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8302 rx_buffer->page_offset, size, truesize);
8303 #if (PAGE_SIZE < 8192)
8304 rx_buffer->page_offset ^= truesize;
8305 #else
8306 rx_buffer->page_offset += truesize;
8307 #endif
8308 }
8309
igb_construct_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8310 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8311 struct igb_rx_buffer *rx_buffer,
8312 struct xdp_buff *xdp,
8313 union e1000_adv_rx_desc *rx_desc)
8314 {
8315 #if (PAGE_SIZE < 8192)
8316 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8317 #else
8318 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8319 xdp->data_hard_start);
8320 #endif
8321 unsigned int size = xdp->data_end - xdp->data;
8322 unsigned int headlen;
8323 struct sk_buff *skb;
8324
8325 /* prefetch first cache line of first page */
8326 net_prefetch(xdp->data);
8327
8328 /* allocate a skb to store the frags */
8329 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8330 if (unlikely(!skb))
8331 return NULL;
8332
8333 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8334 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, xdp->data, skb)) {
8335 xdp->data += IGB_TS_HDR_LEN;
8336 size -= IGB_TS_HDR_LEN;
8337 }
8338 }
8339
8340 /* Determine available headroom for copy */
8341 headlen = size;
8342 if (headlen > IGB_RX_HDR_LEN)
8343 headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8344
8345 /* align pull length to size of long to optimize memcpy performance */
8346 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8347
8348 /* update all of the pointers */
8349 size -= headlen;
8350 if (size) {
8351 skb_add_rx_frag(skb, 0, rx_buffer->page,
8352 (xdp->data + headlen) - page_address(rx_buffer->page),
8353 size, truesize);
8354 #if (PAGE_SIZE < 8192)
8355 rx_buffer->page_offset ^= truesize;
8356 #else
8357 rx_buffer->page_offset += truesize;
8358 #endif
8359 } else {
8360 rx_buffer->pagecnt_bias++;
8361 }
8362
8363 return skb;
8364 }
8365
igb_build_skb(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,struct xdp_buff * xdp,union e1000_adv_rx_desc * rx_desc)8366 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8367 struct igb_rx_buffer *rx_buffer,
8368 struct xdp_buff *xdp,
8369 union e1000_adv_rx_desc *rx_desc)
8370 {
8371 #if (PAGE_SIZE < 8192)
8372 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8373 #else
8374 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8375 SKB_DATA_ALIGN(xdp->data_end -
8376 xdp->data_hard_start);
8377 #endif
8378 unsigned int metasize = xdp->data - xdp->data_meta;
8379 struct sk_buff *skb;
8380
8381 /* prefetch first cache line of first page */
8382 net_prefetch(xdp->data_meta);
8383
8384 /* build an skb around the page buffer */
8385 skb = build_skb(xdp->data_hard_start, truesize);
8386 if (unlikely(!skb))
8387 return NULL;
8388
8389 /* update pointers within the skb to store the data */
8390 skb_reserve(skb, xdp->data - xdp->data_hard_start);
8391 __skb_put(skb, xdp->data_end - xdp->data);
8392
8393 if (metasize)
8394 skb_metadata_set(skb, metasize);
8395
8396 /* pull timestamp out of packet data */
8397 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8398 if (!igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb))
8399 __skb_pull(skb, IGB_TS_HDR_LEN);
8400 }
8401
8402 /* update buffer offset */
8403 #if (PAGE_SIZE < 8192)
8404 rx_buffer->page_offset ^= truesize;
8405 #else
8406 rx_buffer->page_offset += truesize;
8407 #endif
8408
8409 return skb;
8410 }
8411
igb_run_xdp(struct igb_adapter * adapter,struct igb_ring * rx_ring,struct xdp_buff * xdp)8412 static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8413 struct igb_ring *rx_ring,
8414 struct xdp_buff *xdp)
8415 {
8416 int err, result = IGB_XDP_PASS;
8417 struct bpf_prog *xdp_prog;
8418 u32 act;
8419
8420 rcu_read_lock();
8421 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8422
8423 if (!xdp_prog)
8424 goto xdp_out;
8425
8426 prefetchw(xdp->data_hard_start); /* xdp_frame write */
8427
8428 act = bpf_prog_run_xdp(xdp_prog, xdp);
8429 switch (act) {
8430 case XDP_PASS:
8431 break;
8432 case XDP_TX:
8433 result = igb_xdp_xmit_back(adapter, xdp);
8434 if (result == IGB_XDP_CONSUMED)
8435 goto out_failure;
8436 break;
8437 case XDP_REDIRECT:
8438 err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8439 if (err)
8440 goto out_failure;
8441 result = IGB_XDP_REDIR;
8442 break;
8443 default:
8444 bpf_warn_invalid_xdp_action(act);
8445 fallthrough;
8446 case XDP_ABORTED:
8447 out_failure:
8448 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8449 fallthrough;
8450 case XDP_DROP:
8451 result = IGB_XDP_CONSUMED;
8452 break;
8453 }
8454 xdp_out:
8455 rcu_read_unlock();
8456 return ERR_PTR(-result);
8457 }
8458
igb_rx_frame_truesize(struct igb_ring * rx_ring,unsigned int size)8459 static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8460 unsigned int size)
8461 {
8462 unsigned int truesize;
8463
8464 #if (PAGE_SIZE < 8192)
8465 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8466 #else
8467 truesize = ring_uses_build_skb(rx_ring) ?
8468 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8469 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8470 SKB_DATA_ALIGN(size);
8471 #endif
8472 return truesize;
8473 }
8474
igb_rx_buffer_flip(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,unsigned int size)8475 static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8476 struct igb_rx_buffer *rx_buffer,
8477 unsigned int size)
8478 {
8479 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8480 #if (PAGE_SIZE < 8192)
8481 rx_buffer->page_offset ^= truesize;
8482 #else
8483 rx_buffer->page_offset += truesize;
8484 #endif
8485 }
8486
igb_rx_checksum(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8487 static inline void igb_rx_checksum(struct igb_ring *ring,
8488 union e1000_adv_rx_desc *rx_desc,
8489 struct sk_buff *skb)
8490 {
8491 skb_checksum_none_assert(skb);
8492
8493 /* Ignore Checksum bit is set */
8494 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8495 return;
8496
8497 /* Rx checksum disabled via ethtool */
8498 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8499 return;
8500
8501 /* TCP/UDP checksum error bit is set */
8502 if (igb_test_staterr(rx_desc,
8503 E1000_RXDEXT_STATERR_TCPE |
8504 E1000_RXDEXT_STATERR_IPE)) {
8505 /* work around errata with sctp packets where the TCPE aka
8506 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8507 * packets, (aka let the stack check the crc32c)
8508 */
8509 if (!((skb->len == 60) &&
8510 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8511 u64_stats_update_begin(&ring->rx_syncp);
8512 ring->rx_stats.csum_err++;
8513 u64_stats_update_end(&ring->rx_syncp);
8514 }
8515 /* let the stack verify checksum errors */
8516 return;
8517 }
8518 /* It must be a TCP or UDP packet with a valid checksum */
8519 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8520 E1000_RXD_STAT_UDPCS))
8521 skb->ip_summed = CHECKSUM_UNNECESSARY;
8522
8523 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8524 le32_to_cpu(rx_desc->wb.upper.status_error));
8525 }
8526
igb_rx_hash(struct igb_ring * ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8527 static inline void igb_rx_hash(struct igb_ring *ring,
8528 union e1000_adv_rx_desc *rx_desc,
8529 struct sk_buff *skb)
8530 {
8531 if (ring->netdev->features & NETIF_F_RXHASH)
8532 skb_set_hash(skb,
8533 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8534 PKT_HASH_TYPE_L3);
8535 }
8536
8537 /**
8538 * igb_is_non_eop - process handling of non-EOP buffers
8539 * @rx_ring: Rx ring being processed
8540 * @rx_desc: Rx descriptor for current buffer
8541 *
8542 * This function updates next to clean. If the buffer is an EOP buffer
8543 * this function exits returning false, otherwise it will place the
8544 * sk_buff in the next buffer to be chained and return true indicating
8545 * that this is in fact a non-EOP buffer.
8546 **/
igb_is_non_eop(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc)8547 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8548 union e1000_adv_rx_desc *rx_desc)
8549 {
8550 u32 ntc = rx_ring->next_to_clean + 1;
8551
8552 /* fetch, update, and store next to clean */
8553 ntc = (ntc < rx_ring->count) ? ntc : 0;
8554 rx_ring->next_to_clean = ntc;
8555
8556 prefetch(IGB_RX_DESC(rx_ring, ntc));
8557
8558 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8559 return false;
8560
8561 return true;
8562 }
8563
8564 /**
8565 * igb_cleanup_headers - Correct corrupted or empty headers
8566 * @rx_ring: rx descriptor ring packet is being transacted on
8567 * @rx_desc: pointer to the EOP Rx descriptor
8568 * @skb: pointer to current skb being fixed
8569 *
8570 * Address the case where we are pulling data in on pages only
8571 * and as such no data is present in the skb header.
8572 *
8573 * In addition if skb is not at least 60 bytes we need to pad it so that
8574 * it is large enough to qualify as a valid Ethernet frame.
8575 *
8576 * Returns true if an error was encountered and skb was freed.
8577 **/
igb_cleanup_headers(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8578 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8579 union e1000_adv_rx_desc *rx_desc,
8580 struct sk_buff *skb)
8581 {
8582 /* XDP packets use error pointer so abort at this point */
8583 if (IS_ERR(skb))
8584 return true;
8585
8586 if (unlikely((igb_test_staterr(rx_desc,
8587 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8588 struct net_device *netdev = rx_ring->netdev;
8589 if (!(netdev->features & NETIF_F_RXALL)) {
8590 dev_kfree_skb_any(skb);
8591 return true;
8592 }
8593 }
8594
8595 /* if eth_skb_pad returns an error the skb was freed */
8596 if (eth_skb_pad(skb))
8597 return true;
8598
8599 return false;
8600 }
8601
8602 /**
8603 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8604 * @rx_ring: rx descriptor ring packet is being transacted on
8605 * @rx_desc: pointer to the EOP Rx descriptor
8606 * @skb: pointer to current skb being populated
8607 *
8608 * This function checks the ring, descriptor, and packet information in
8609 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8610 * other fields within the skb.
8611 **/
igb_process_skb_fields(struct igb_ring * rx_ring,union e1000_adv_rx_desc * rx_desc,struct sk_buff * skb)8612 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8613 union e1000_adv_rx_desc *rx_desc,
8614 struct sk_buff *skb)
8615 {
8616 struct net_device *dev = rx_ring->netdev;
8617
8618 igb_rx_hash(rx_ring, rx_desc, skb);
8619
8620 igb_rx_checksum(rx_ring, rx_desc, skb);
8621
8622 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8623 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8624 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8625
8626 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8627 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8628 u16 vid;
8629
8630 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8631 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8632 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8633 else
8634 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8635
8636 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8637 }
8638
8639 skb_record_rx_queue(skb, rx_ring->queue_index);
8640
8641 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8642 }
8643
igb_rx_offset(struct igb_ring * rx_ring)8644 static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8645 {
8646 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8647 }
8648
igb_get_rx_buffer(struct igb_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)8649 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8650 const unsigned int size, int *rx_buf_pgcnt)
8651 {
8652 struct igb_rx_buffer *rx_buffer;
8653
8654 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8655 *rx_buf_pgcnt =
8656 #if (PAGE_SIZE < 8192)
8657 page_count(rx_buffer->page);
8658 #else
8659 0;
8660 #endif
8661 prefetchw(rx_buffer->page);
8662
8663 /* we are reusing so sync this buffer for CPU use */
8664 dma_sync_single_range_for_cpu(rx_ring->dev,
8665 rx_buffer->dma,
8666 rx_buffer->page_offset,
8667 size,
8668 DMA_FROM_DEVICE);
8669
8670 rx_buffer->pagecnt_bias--;
8671
8672 return rx_buffer;
8673 }
8674
igb_put_rx_buffer(struct igb_ring * rx_ring,struct igb_rx_buffer * rx_buffer,int rx_buf_pgcnt)8675 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8676 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8677 {
8678 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8679 /* hand second half of page back to the ring */
8680 igb_reuse_rx_page(rx_ring, rx_buffer);
8681 } else {
8682 /* We are not reusing the buffer so unmap it and free
8683 * any references we are holding to it
8684 */
8685 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8686 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8687 IGB_RX_DMA_ATTR);
8688 __page_frag_cache_drain(rx_buffer->page,
8689 rx_buffer->pagecnt_bias);
8690 }
8691
8692 /* clear contents of rx_buffer */
8693 rx_buffer->page = NULL;
8694 }
8695
igb_clean_rx_irq(struct igb_q_vector * q_vector,const int budget)8696 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8697 {
8698 struct igb_adapter *adapter = q_vector->adapter;
8699 struct igb_ring *rx_ring = q_vector->rx.ring;
8700 struct sk_buff *skb = rx_ring->skb;
8701 unsigned int total_bytes = 0, total_packets = 0;
8702 u16 cleaned_count = igb_desc_unused(rx_ring);
8703 unsigned int xdp_xmit = 0;
8704 struct xdp_buff xdp;
8705 int rx_buf_pgcnt;
8706
8707 xdp.rxq = &rx_ring->xdp_rxq;
8708
8709 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8710 #if (PAGE_SIZE < 8192)
8711 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8712 #endif
8713
8714 while (likely(total_packets < budget)) {
8715 union e1000_adv_rx_desc *rx_desc;
8716 struct igb_rx_buffer *rx_buffer;
8717 unsigned int size;
8718
8719 /* return some buffers to hardware, one at a time is too slow */
8720 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8721 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8722 cleaned_count = 0;
8723 }
8724
8725 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8726 size = le16_to_cpu(rx_desc->wb.upper.length);
8727 if (!size)
8728 break;
8729
8730 /* This memory barrier is needed to keep us from reading
8731 * any other fields out of the rx_desc until we know the
8732 * descriptor has been written back
8733 */
8734 dma_rmb();
8735
8736 rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8737
8738 /* retrieve a buffer from the ring */
8739 if (!skb) {
8740 xdp.data = page_address(rx_buffer->page) +
8741 rx_buffer->page_offset;
8742 xdp.data_meta = xdp.data;
8743 xdp.data_hard_start = xdp.data -
8744 igb_rx_offset(rx_ring);
8745 xdp.data_end = xdp.data + size;
8746 #if (PAGE_SIZE > 4096)
8747 /* At larger PAGE_SIZE, frame_sz depend on len size */
8748 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8749 #endif
8750 skb = igb_run_xdp(adapter, rx_ring, &xdp);
8751 }
8752
8753 if (IS_ERR(skb)) {
8754 unsigned int xdp_res = -PTR_ERR(skb);
8755
8756 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8757 xdp_xmit |= xdp_res;
8758 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8759 } else {
8760 rx_buffer->pagecnt_bias++;
8761 }
8762 total_packets++;
8763 total_bytes += size;
8764 } else if (skb)
8765 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8766 else if (ring_uses_build_skb(rx_ring))
8767 skb = igb_build_skb(rx_ring, rx_buffer, &xdp, rx_desc);
8768 else
8769 skb = igb_construct_skb(rx_ring, rx_buffer,
8770 &xdp, rx_desc);
8771
8772 /* exit if we failed to retrieve a buffer */
8773 if (!skb) {
8774 rx_ring->rx_stats.alloc_failed++;
8775 rx_buffer->pagecnt_bias++;
8776 break;
8777 }
8778
8779 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8780 cleaned_count++;
8781
8782 /* fetch next buffer in frame if non-eop */
8783 if (igb_is_non_eop(rx_ring, rx_desc))
8784 continue;
8785
8786 /* verify the packet layout is correct */
8787 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8788 skb = NULL;
8789 continue;
8790 }
8791
8792 /* probably a little skewed due to removing CRC */
8793 total_bytes += skb->len;
8794
8795 /* populate checksum, timestamp, VLAN, and protocol */
8796 igb_process_skb_fields(rx_ring, rx_desc, skb);
8797
8798 napi_gro_receive(&q_vector->napi, skb);
8799
8800 /* reset skb pointer */
8801 skb = NULL;
8802
8803 /* update budget accounting */
8804 total_packets++;
8805 }
8806
8807 /* place incomplete frames back on ring for completion */
8808 rx_ring->skb = skb;
8809
8810 if (xdp_xmit & IGB_XDP_REDIR)
8811 xdp_do_flush();
8812
8813 if (xdp_xmit & IGB_XDP_TX) {
8814 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8815
8816 igb_xdp_ring_update_tail(tx_ring);
8817 }
8818
8819 u64_stats_update_begin(&rx_ring->rx_syncp);
8820 rx_ring->rx_stats.packets += total_packets;
8821 rx_ring->rx_stats.bytes += total_bytes;
8822 u64_stats_update_end(&rx_ring->rx_syncp);
8823 q_vector->rx.total_packets += total_packets;
8824 q_vector->rx.total_bytes += total_bytes;
8825
8826 if (cleaned_count)
8827 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8828
8829 return total_packets;
8830 }
8831
igb_alloc_mapped_page(struct igb_ring * rx_ring,struct igb_rx_buffer * bi)8832 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8833 struct igb_rx_buffer *bi)
8834 {
8835 struct page *page = bi->page;
8836 dma_addr_t dma;
8837
8838 /* since we are recycling buffers we should seldom need to alloc */
8839 if (likely(page))
8840 return true;
8841
8842 /* alloc new page for storage */
8843 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8844 if (unlikely(!page)) {
8845 rx_ring->rx_stats.alloc_failed++;
8846 return false;
8847 }
8848
8849 /* map page for use */
8850 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8851 igb_rx_pg_size(rx_ring),
8852 DMA_FROM_DEVICE,
8853 IGB_RX_DMA_ATTR);
8854
8855 /* if mapping failed free memory back to system since
8856 * there isn't much point in holding memory we can't use
8857 */
8858 if (dma_mapping_error(rx_ring->dev, dma)) {
8859 __free_pages(page, igb_rx_pg_order(rx_ring));
8860
8861 rx_ring->rx_stats.alloc_failed++;
8862 return false;
8863 }
8864
8865 bi->dma = dma;
8866 bi->page = page;
8867 bi->page_offset = igb_rx_offset(rx_ring);
8868 page_ref_add(page, USHRT_MAX - 1);
8869 bi->pagecnt_bias = USHRT_MAX;
8870
8871 return true;
8872 }
8873
8874 /**
8875 * igb_alloc_rx_buffers - Replace used receive buffers
8876 * @rx_ring: rx descriptor ring to allocate new receive buffers
8877 * @cleaned_count: count of buffers to allocate
8878 **/
igb_alloc_rx_buffers(struct igb_ring * rx_ring,u16 cleaned_count)8879 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8880 {
8881 union e1000_adv_rx_desc *rx_desc;
8882 struct igb_rx_buffer *bi;
8883 u16 i = rx_ring->next_to_use;
8884 u16 bufsz;
8885
8886 /* nothing to do */
8887 if (!cleaned_count)
8888 return;
8889
8890 rx_desc = IGB_RX_DESC(rx_ring, i);
8891 bi = &rx_ring->rx_buffer_info[i];
8892 i -= rx_ring->count;
8893
8894 bufsz = igb_rx_bufsz(rx_ring);
8895
8896 do {
8897 if (!igb_alloc_mapped_page(rx_ring, bi))
8898 break;
8899
8900 /* sync the buffer for use by the device */
8901 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8902 bi->page_offset, bufsz,
8903 DMA_FROM_DEVICE);
8904
8905 /* Refresh the desc even if buffer_addrs didn't change
8906 * because each write-back erases this info.
8907 */
8908 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8909
8910 rx_desc++;
8911 bi++;
8912 i++;
8913 if (unlikely(!i)) {
8914 rx_desc = IGB_RX_DESC(rx_ring, 0);
8915 bi = rx_ring->rx_buffer_info;
8916 i -= rx_ring->count;
8917 }
8918
8919 /* clear the length for the next_to_use descriptor */
8920 rx_desc->wb.upper.length = 0;
8921
8922 cleaned_count--;
8923 } while (cleaned_count);
8924
8925 i += rx_ring->count;
8926
8927 if (rx_ring->next_to_use != i) {
8928 /* record the next descriptor to use */
8929 rx_ring->next_to_use = i;
8930
8931 /* update next to alloc since we have filled the ring */
8932 rx_ring->next_to_alloc = i;
8933
8934 /* Force memory writes to complete before letting h/w
8935 * know there are new descriptors to fetch. (Only
8936 * applicable for weak-ordered memory model archs,
8937 * such as IA-64).
8938 */
8939 dma_wmb();
8940 writel(i, rx_ring->tail);
8941 }
8942 }
8943
8944 /**
8945 * igb_mii_ioctl -
8946 * @netdev: pointer to netdev struct
8947 * @ifr: interface structure
8948 * @cmd: ioctl command to execute
8949 **/
igb_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8950 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8951 {
8952 struct igb_adapter *adapter = netdev_priv(netdev);
8953 struct mii_ioctl_data *data = if_mii(ifr);
8954
8955 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8956 return -EOPNOTSUPP;
8957
8958 switch (cmd) {
8959 case SIOCGMIIPHY:
8960 data->phy_id = adapter->hw.phy.addr;
8961 break;
8962 case SIOCGMIIREG:
8963 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8964 &data->val_out))
8965 return -EIO;
8966 break;
8967 case SIOCSMIIREG:
8968 default:
8969 return -EOPNOTSUPP;
8970 }
8971 return 0;
8972 }
8973
8974 /**
8975 * igb_ioctl -
8976 * @netdev: pointer to netdev struct
8977 * @ifr: interface structure
8978 * @cmd: ioctl command to execute
8979 **/
igb_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)8980 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8981 {
8982 switch (cmd) {
8983 case SIOCGMIIPHY:
8984 case SIOCGMIIREG:
8985 case SIOCSMIIREG:
8986 return igb_mii_ioctl(netdev, ifr, cmd);
8987 case SIOCGHWTSTAMP:
8988 return igb_ptp_get_ts_config(netdev, ifr);
8989 case SIOCSHWTSTAMP:
8990 return igb_ptp_set_ts_config(netdev, ifr);
8991 default:
8992 return -EOPNOTSUPP;
8993 }
8994 }
8995
igb_read_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)8996 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8997 {
8998 struct igb_adapter *adapter = hw->back;
8999
9000 pci_read_config_word(adapter->pdev, reg, value);
9001 }
9002
igb_write_pci_cfg(struct e1000_hw * hw,u32 reg,u16 * value)9003 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9004 {
9005 struct igb_adapter *adapter = hw->back;
9006
9007 pci_write_config_word(adapter->pdev, reg, *value);
9008 }
9009
igb_read_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9010 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9011 {
9012 struct igb_adapter *adapter = hw->back;
9013
9014 if (pcie_capability_read_word(adapter->pdev, reg, value))
9015 return -E1000_ERR_CONFIG;
9016
9017 return 0;
9018 }
9019
igb_write_pcie_cap_reg(struct e1000_hw * hw,u32 reg,u16 * value)9020 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9021 {
9022 struct igb_adapter *adapter = hw->back;
9023
9024 if (pcie_capability_write_word(adapter->pdev, reg, *value))
9025 return -E1000_ERR_CONFIG;
9026
9027 return 0;
9028 }
9029
igb_vlan_mode(struct net_device * netdev,netdev_features_t features)9030 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9031 {
9032 struct igb_adapter *adapter = netdev_priv(netdev);
9033 struct e1000_hw *hw = &adapter->hw;
9034 u32 ctrl, rctl;
9035 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9036
9037 if (enable) {
9038 /* enable VLAN tag insert/strip */
9039 ctrl = rd32(E1000_CTRL);
9040 ctrl |= E1000_CTRL_VME;
9041 wr32(E1000_CTRL, ctrl);
9042
9043 /* Disable CFI check */
9044 rctl = rd32(E1000_RCTL);
9045 rctl &= ~E1000_RCTL_CFIEN;
9046 wr32(E1000_RCTL, rctl);
9047 } else {
9048 /* disable VLAN tag insert/strip */
9049 ctrl = rd32(E1000_CTRL);
9050 ctrl &= ~E1000_CTRL_VME;
9051 wr32(E1000_CTRL, ctrl);
9052 }
9053
9054 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9055 }
9056
igb_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)9057 static int igb_vlan_rx_add_vid(struct net_device *netdev,
9058 __be16 proto, u16 vid)
9059 {
9060 struct igb_adapter *adapter = netdev_priv(netdev);
9061 struct e1000_hw *hw = &adapter->hw;
9062 int pf_id = adapter->vfs_allocated_count;
9063
9064 /* add the filter since PF can receive vlans w/o entry in vlvf */
9065 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9066 igb_vfta_set(hw, vid, pf_id, true, !!vid);
9067
9068 set_bit(vid, adapter->active_vlans);
9069
9070 return 0;
9071 }
9072
igb_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)9073 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9074 __be16 proto, u16 vid)
9075 {
9076 struct igb_adapter *adapter = netdev_priv(netdev);
9077 int pf_id = adapter->vfs_allocated_count;
9078 struct e1000_hw *hw = &adapter->hw;
9079
9080 /* remove VID from filter table */
9081 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9082 igb_vfta_set(hw, vid, pf_id, false, true);
9083
9084 clear_bit(vid, adapter->active_vlans);
9085
9086 return 0;
9087 }
9088
igb_restore_vlan(struct igb_adapter * adapter)9089 static void igb_restore_vlan(struct igb_adapter *adapter)
9090 {
9091 u16 vid = 1;
9092
9093 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9094 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9095
9096 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9097 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9098 }
9099
igb_set_spd_dplx(struct igb_adapter * adapter,u32 spd,u8 dplx)9100 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9101 {
9102 struct pci_dev *pdev = adapter->pdev;
9103 struct e1000_mac_info *mac = &adapter->hw.mac;
9104
9105 mac->autoneg = 0;
9106
9107 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9108 * for the switch() below to work
9109 */
9110 if ((spd & 1) || (dplx & ~1))
9111 goto err_inval;
9112
9113 /* Fiber NIC's only allow 1000 gbps Full duplex
9114 * and 100Mbps Full duplex for 100baseFx sfp
9115 */
9116 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9117 switch (spd + dplx) {
9118 case SPEED_10 + DUPLEX_HALF:
9119 case SPEED_10 + DUPLEX_FULL:
9120 case SPEED_100 + DUPLEX_HALF:
9121 goto err_inval;
9122 default:
9123 break;
9124 }
9125 }
9126
9127 switch (spd + dplx) {
9128 case SPEED_10 + DUPLEX_HALF:
9129 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9130 break;
9131 case SPEED_10 + DUPLEX_FULL:
9132 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9133 break;
9134 case SPEED_100 + DUPLEX_HALF:
9135 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9136 break;
9137 case SPEED_100 + DUPLEX_FULL:
9138 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9139 break;
9140 case SPEED_1000 + DUPLEX_FULL:
9141 mac->autoneg = 1;
9142 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9143 break;
9144 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9145 default:
9146 goto err_inval;
9147 }
9148
9149 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9150 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9151
9152 return 0;
9153
9154 err_inval:
9155 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9156 return -EINVAL;
9157 }
9158
__igb_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)9159 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9160 bool runtime)
9161 {
9162 struct net_device *netdev = pci_get_drvdata(pdev);
9163 struct igb_adapter *adapter = netdev_priv(netdev);
9164 struct e1000_hw *hw = &adapter->hw;
9165 u32 ctrl, rctl, status;
9166 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9167 bool wake;
9168
9169 rtnl_lock();
9170 netif_device_detach(netdev);
9171
9172 if (netif_running(netdev))
9173 __igb_close(netdev, true);
9174
9175 igb_ptp_suspend(adapter);
9176
9177 igb_clear_interrupt_scheme(adapter);
9178 rtnl_unlock();
9179
9180 status = rd32(E1000_STATUS);
9181 if (status & E1000_STATUS_LU)
9182 wufc &= ~E1000_WUFC_LNKC;
9183
9184 if (wufc) {
9185 igb_setup_rctl(adapter);
9186 igb_set_rx_mode(netdev);
9187
9188 /* turn on all-multi mode if wake on multicast is enabled */
9189 if (wufc & E1000_WUFC_MC) {
9190 rctl = rd32(E1000_RCTL);
9191 rctl |= E1000_RCTL_MPE;
9192 wr32(E1000_RCTL, rctl);
9193 }
9194
9195 ctrl = rd32(E1000_CTRL);
9196 ctrl |= E1000_CTRL_ADVD3WUC;
9197 wr32(E1000_CTRL, ctrl);
9198
9199 /* Allow time for pending master requests to run */
9200 igb_disable_pcie_master(hw);
9201
9202 wr32(E1000_WUC, E1000_WUC_PME_EN);
9203 wr32(E1000_WUFC, wufc);
9204 } else {
9205 wr32(E1000_WUC, 0);
9206 wr32(E1000_WUFC, 0);
9207 }
9208
9209 wake = wufc || adapter->en_mng_pt;
9210 if (!wake)
9211 igb_power_down_link(adapter);
9212 else
9213 igb_power_up_link(adapter);
9214
9215 if (enable_wake)
9216 *enable_wake = wake;
9217
9218 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9219 * would have already happened in close and is redundant.
9220 */
9221 igb_release_hw_control(adapter);
9222
9223 pci_disable_device(pdev);
9224
9225 return 0;
9226 }
9227
igb_deliver_wake_packet(struct net_device * netdev)9228 static void igb_deliver_wake_packet(struct net_device *netdev)
9229 {
9230 struct igb_adapter *adapter = netdev_priv(netdev);
9231 struct e1000_hw *hw = &adapter->hw;
9232 struct sk_buff *skb;
9233 u32 wupl;
9234
9235 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9236
9237 /* WUPM stores only the first 128 bytes of the wake packet.
9238 * Read the packet only if we have the whole thing.
9239 */
9240 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9241 return;
9242
9243 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9244 if (!skb)
9245 return;
9246
9247 skb_put(skb, wupl);
9248
9249 /* Ensure reads are 32-bit aligned */
9250 wupl = roundup(wupl, 4);
9251
9252 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9253
9254 skb->protocol = eth_type_trans(skb, netdev);
9255 netif_rx(skb);
9256 }
9257
igb_suspend(struct device * dev)9258 static int __maybe_unused igb_suspend(struct device *dev)
9259 {
9260 return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9261 }
9262
__igb_resume(struct device * dev,bool rpm)9263 static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9264 {
9265 struct pci_dev *pdev = to_pci_dev(dev);
9266 struct net_device *netdev = pci_get_drvdata(pdev);
9267 struct igb_adapter *adapter = netdev_priv(netdev);
9268 struct e1000_hw *hw = &adapter->hw;
9269 u32 err, val;
9270
9271 pci_set_power_state(pdev, PCI_D0);
9272 pci_restore_state(pdev);
9273 pci_save_state(pdev);
9274
9275 if (!pci_device_is_present(pdev))
9276 return -ENODEV;
9277 err = pci_enable_device_mem(pdev);
9278 if (err) {
9279 dev_err(&pdev->dev,
9280 "igb: Cannot enable PCI device from suspend\n");
9281 return err;
9282 }
9283 pci_set_master(pdev);
9284
9285 pci_enable_wake(pdev, PCI_D3hot, 0);
9286 pci_enable_wake(pdev, PCI_D3cold, 0);
9287
9288 if (igb_init_interrupt_scheme(adapter, true)) {
9289 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9290 return -ENOMEM;
9291 }
9292
9293 igb_reset(adapter);
9294
9295 /* let the f/w know that the h/w is now under the control of the
9296 * driver.
9297 */
9298 igb_get_hw_control(adapter);
9299
9300 val = rd32(E1000_WUS);
9301 if (val & WAKE_PKT_WUS)
9302 igb_deliver_wake_packet(netdev);
9303
9304 wr32(E1000_WUS, ~0);
9305
9306 if (!rpm)
9307 rtnl_lock();
9308 if (!err && netif_running(netdev))
9309 err = __igb_open(netdev, true);
9310
9311 if (!err)
9312 netif_device_attach(netdev);
9313 if (!rpm)
9314 rtnl_unlock();
9315
9316 return err;
9317 }
9318
igb_resume(struct device * dev)9319 static int __maybe_unused igb_resume(struct device *dev)
9320 {
9321 return __igb_resume(dev, false);
9322 }
9323
igb_runtime_idle(struct device * dev)9324 static int __maybe_unused igb_runtime_idle(struct device *dev)
9325 {
9326 struct net_device *netdev = dev_get_drvdata(dev);
9327 struct igb_adapter *adapter = netdev_priv(netdev);
9328
9329 if (!igb_has_link(adapter))
9330 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9331
9332 return -EBUSY;
9333 }
9334
igb_runtime_suspend(struct device * dev)9335 static int __maybe_unused igb_runtime_suspend(struct device *dev)
9336 {
9337 return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9338 }
9339
igb_runtime_resume(struct device * dev)9340 static int __maybe_unused igb_runtime_resume(struct device *dev)
9341 {
9342 return __igb_resume(dev, true);
9343 }
9344
igb_shutdown(struct pci_dev * pdev)9345 static void igb_shutdown(struct pci_dev *pdev)
9346 {
9347 bool wake;
9348
9349 __igb_shutdown(pdev, &wake, 0);
9350
9351 if (system_state == SYSTEM_POWER_OFF) {
9352 pci_wake_from_d3(pdev, wake);
9353 pci_set_power_state(pdev, PCI_D3hot);
9354 }
9355 }
9356
9357 #ifdef CONFIG_PCI_IOV
igb_sriov_reinit(struct pci_dev * dev)9358 static int igb_sriov_reinit(struct pci_dev *dev)
9359 {
9360 struct net_device *netdev = pci_get_drvdata(dev);
9361 struct igb_adapter *adapter = netdev_priv(netdev);
9362 struct pci_dev *pdev = adapter->pdev;
9363
9364 rtnl_lock();
9365
9366 if (netif_running(netdev))
9367 igb_close(netdev);
9368 else
9369 igb_reset(adapter);
9370
9371 igb_clear_interrupt_scheme(adapter);
9372
9373 igb_init_queue_configuration(adapter);
9374
9375 if (igb_init_interrupt_scheme(adapter, true)) {
9376 rtnl_unlock();
9377 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9378 return -ENOMEM;
9379 }
9380
9381 if (netif_running(netdev))
9382 igb_open(netdev);
9383
9384 rtnl_unlock();
9385
9386 return 0;
9387 }
9388
igb_pci_disable_sriov(struct pci_dev * dev)9389 static int igb_pci_disable_sriov(struct pci_dev *dev)
9390 {
9391 int err = igb_disable_sriov(dev);
9392
9393 if (!err)
9394 err = igb_sriov_reinit(dev);
9395
9396 return err;
9397 }
9398
igb_pci_enable_sriov(struct pci_dev * dev,int num_vfs)9399 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9400 {
9401 int err = igb_enable_sriov(dev, num_vfs);
9402
9403 if (err)
9404 goto out;
9405
9406 err = igb_sriov_reinit(dev);
9407 if (!err)
9408 return num_vfs;
9409
9410 out:
9411 return err;
9412 }
9413
9414 #endif
igb_pci_sriov_configure(struct pci_dev * dev,int num_vfs)9415 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9416 {
9417 #ifdef CONFIG_PCI_IOV
9418 if (num_vfs == 0)
9419 return igb_pci_disable_sriov(dev);
9420 else
9421 return igb_pci_enable_sriov(dev, num_vfs);
9422 #endif
9423 return 0;
9424 }
9425
9426 /**
9427 * igb_io_error_detected - called when PCI error is detected
9428 * @pdev: Pointer to PCI device
9429 * @state: The current pci connection state
9430 *
9431 * This function is called after a PCI bus error affecting
9432 * this device has been detected.
9433 **/
igb_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)9434 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9435 pci_channel_state_t state)
9436 {
9437 struct net_device *netdev = pci_get_drvdata(pdev);
9438 struct igb_adapter *adapter = netdev_priv(netdev);
9439
9440 netif_device_detach(netdev);
9441
9442 if (state == pci_channel_io_perm_failure)
9443 return PCI_ERS_RESULT_DISCONNECT;
9444
9445 if (netif_running(netdev))
9446 igb_down(adapter);
9447 pci_disable_device(pdev);
9448
9449 /* Request a slot slot reset. */
9450 return PCI_ERS_RESULT_NEED_RESET;
9451 }
9452
9453 /**
9454 * igb_io_slot_reset - called after the pci bus has been reset.
9455 * @pdev: Pointer to PCI device
9456 *
9457 * Restart the card from scratch, as if from a cold-boot. Implementation
9458 * resembles the first-half of the __igb_resume routine.
9459 **/
igb_io_slot_reset(struct pci_dev * pdev)9460 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9461 {
9462 struct net_device *netdev = pci_get_drvdata(pdev);
9463 struct igb_adapter *adapter = netdev_priv(netdev);
9464 struct e1000_hw *hw = &adapter->hw;
9465 pci_ers_result_t result;
9466
9467 if (pci_enable_device_mem(pdev)) {
9468 dev_err(&pdev->dev,
9469 "Cannot re-enable PCI device after reset.\n");
9470 result = PCI_ERS_RESULT_DISCONNECT;
9471 } else {
9472 pci_set_master(pdev);
9473 pci_restore_state(pdev);
9474 pci_save_state(pdev);
9475
9476 pci_enable_wake(pdev, PCI_D3hot, 0);
9477 pci_enable_wake(pdev, PCI_D3cold, 0);
9478
9479 /* In case of PCI error, adapter lose its HW address
9480 * so we should re-assign it here.
9481 */
9482 hw->hw_addr = adapter->io_addr;
9483
9484 igb_reset(adapter);
9485 wr32(E1000_WUS, ~0);
9486 result = PCI_ERS_RESULT_RECOVERED;
9487 }
9488
9489 return result;
9490 }
9491
9492 /**
9493 * igb_io_resume - called when traffic can start flowing again.
9494 * @pdev: Pointer to PCI device
9495 *
9496 * This callback is called when the error recovery driver tells us that
9497 * its OK to resume normal operation. Implementation resembles the
9498 * second-half of the __igb_resume routine.
9499 */
igb_io_resume(struct pci_dev * pdev)9500 static void igb_io_resume(struct pci_dev *pdev)
9501 {
9502 struct net_device *netdev = pci_get_drvdata(pdev);
9503 struct igb_adapter *adapter = netdev_priv(netdev);
9504
9505 if (netif_running(netdev)) {
9506 if (igb_up(adapter)) {
9507 dev_err(&pdev->dev, "igb_up failed after reset\n");
9508 return;
9509 }
9510 }
9511
9512 netif_device_attach(netdev);
9513
9514 /* let the f/w know that the h/w is now under the control of the
9515 * driver.
9516 */
9517 igb_get_hw_control(adapter);
9518 }
9519
9520 /**
9521 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9522 * @adapter: Pointer to adapter structure
9523 * @index: Index of the RAR entry which need to be synced with MAC table
9524 **/
igb_rar_set_index(struct igb_adapter * adapter,u32 index)9525 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9526 {
9527 struct e1000_hw *hw = &adapter->hw;
9528 u32 rar_low, rar_high;
9529 u8 *addr = adapter->mac_table[index].addr;
9530
9531 /* HW expects these to be in network order when they are plugged
9532 * into the registers which are little endian. In order to guarantee
9533 * that ordering we need to do an leXX_to_cpup here in order to be
9534 * ready for the byteswap that occurs with writel
9535 */
9536 rar_low = le32_to_cpup((__le32 *)(addr));
9537 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9538
9539 /* Indicate to hardware the Address is Valid. */
9540 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9541 if (is_valid_ether_addr(addr))
9542 rar_high |= E1000_RAH_AV;
9543
9544 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9545 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9546
9547 switch (hw->mac.type) {
9548 case e1000_82575:
9549 case e1000_i210:
9550 if (adapter->mac_table[index].state &
9551 IGB_MAC_STATE_QUEUE_STEERING)
9552 rar_high |= E1000_RAH_QSEL_ENABLE;
9553
9554 rar_high |= E1000_RAH_POOL_1 *
9555 adapter->mac_table[index].queue;
9556 break;
9557 default:
9558 rar_high |= E1000_RAH_POOL_1 <<
9559 adapter->mac_table[index].queue;
9560 break;
9561 }
9562 }
9563
9564 wr32(E1000_RAL(index), rar_low);
9565 wrfl();
9566 wr32(E1000_RAH(index), rar_high);
9567 wrfl();
9568 }
9569
igb_set_vf_mac(struct igb_adapter * adapter,int vf,unsigned char * mac_addr)9570 static int igb_set_vf_mac(struct igb_adapter *adapter,
9571 int vf, unsigned char *mac_addr)
9572 {
9573 struct e1000_hw *hw = &adapter->hw;
9574 /* VF MAC addresses start at end of receive addresses and moves
9575 * towards the first, as a result a collision should not be possible
9576 */
9577 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9578 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9579
9580 ether_addr_copy(vf_mac_addr, mac_addr);
9581 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9582 adapter->mac_table[rar_entry].queue = vf;
9583 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9584 igb_rar_set_index(adapter, rar_entry);
9585
9586 return 0;
9587 }
9588
igb_ndo_set_vf_mac(struct net_device * netdev,int vf,u8 * mac)9589 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9590 {
9591 struct igb_adapter *adapter = netdev_priv(netdev);
9592
9593 if (vf >= adapter->vfs_allocated_count)
9594 return -EINVAL;
9595
9596 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9597 * flag and allows to overwrite the MAC via VF netdev. This
9598 * is necessary to allow libvirt a way to restore the original
9599 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9600 * down a VM.
9601 */
9602 if (is_zero_ether_addr(mac)) {
9603 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9604 dev_info(&adapter->pdev->dev,
9605 "remove administratively set MAC on VF %d\n",
9606 vf);
9607 } else if (is_valid_ether_addr(mac)) {
9608 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9609 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9610 mac, vf);
9611 dev_info(&adapter->pdev->dev,
9612 "Reload the VF driver to make this change effective.");
9613 /* Generate additional warning if PF is down */
9614 if (test_bit(__IGB_DOWN, &adapter->state)) {
9615 dev_warn(&adapter->pdev->dev,
9616 "The VF MAC address has been set, but the PF device is not up.\n");
9617 dev_warn(&adapter->pdev->dev,
9618 "Bring the PF device up before attempting to use the VF device.\n");
9619 }
9620 } else {
9621 return -EINVAL;
9622 }
9623 return igb_set_vf_mac(adapter, vf, mac);
9624 }
9625
igb_link_mbps(int internal_link_speed)9626 static int igb_link_mbps(int internal_link_speed)
9627 {
9628 switch (internal_link_speed) {
9629 case SPEED_100:
9630 return 100;
9631 case SPEED_1000:
9632 return 1000;
9633 default:
9634 return 0;
9635 }
9636 }
9637
igb_set_vf_rate_limit(struct e1000_hw * hw,int vf,int tx_rate,int link_speed)9638 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9639 int link_speed)
9640 {
9641 int rf_dec, rf_int;
9642 u32 bcnrc_val;
9643
9644 if (tx_rate != 0) {
9645 /* Calculate the rate factor values to set */
9646 rf_int = link_speed / tx_rate;
9647 rf_dec = (link_speed - (rf_int * tx_rate));
9648 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9649 tx_rate;
9650
9651 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9652 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9653 E1000_RTTBCNRC_RF_INT_MASK);
9654 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9655 } else {
9656 bcnrc_val = 0;
9657 }
9658
9659 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9660 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9661 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9662 */
9663 wr32(E1000_RTTBCNRM, 0x14);
9664 wr32(E1000_RTTBCNRC, bcnrc_val);
9665 }
9666
igb_check_vf_rate_limit(struct igb_adapter * adapter)9667 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9668 {
9669 int actual_link_speed, i;
9670 bool reset_rate = false;
9671
9672 /* VF TX rate limit was not set or not supported */
9673 if ((adapter->vf_rate_link_speed == 0) ||
9674 (adapter->hw.mac.type != e1000_82576))
9675 return;
9676
9677 actual_link_speed = igb_link_mbps(adapter->link_speed);
9678 if (actual_link_speed != adapter->vf_rate_link_speed) {
9679 reset_rate = true;
9680 adapter->vf_rate_link_speed = 0;
9681 dev_info(&adapter->pdev->dev,
9682 "Link speed has been changed. VF Transmit rate is disabled\n");
9683 }
9684
9685 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9686 if (reset_rate)
9687 adapter->vf_data[i].tx_rate = 0;
9688
9689 igb_set_vf_rate_limit(&adapter->hw, i,
9690 adapter->vf_data[i].tx_rate,
9691 actual_link_speed);
9692 }
9693 }
9694
igb_ndo_set_vf_bw(struct net_device * netdev,int vf,int min_tx_rate,int max_tx_rate)9695 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9696 int min_tx_rate, int max_tx_rate)
9697 {
9698 struct igb_adapter *adapter = netdev_priv(netdev);
9699 struct e1000_hw *hw = &adapter->hw;
9700 int actual_link_speed;
9701
9702 if (hw->mac.type != e1000_82576)
9703 return -EOPNOTSUPP;
9704
9705 if (min_tx_rate)
9706 return -EINVAL;
9707
9708 actual_link_speed = igb_link_mbps(adapter->link_speed);
9709 if ((vf >= adapter->vfs_allocated_count) ||
9710 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9711 (max_tx_rate < 0) ||
9712 (max_tx_rate > actual_link_speed))
9713 return -EINVAL;
9714
9715 adapter->vf_rate_link_speed = actual_link_speed;
9716 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9717 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9718
9719 return 0;
9720 }
9721
igb_ndo_set_vf_spoofchk(struct net_device * netdev,int vf,bool setting)9722 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9723 bool setting)
9724 {
9725 struct igb_adapter *adapter = netdev_priv(netdev);
9726 struct e1000_hw *hw = &adapter->hw;
9727 u32 reg_val, reg_offset;
9728
9729 if (!adapter->vfs_allocated_count)
9730 return -EOPNOTSUPP;
9731
9732 if (vf >= adapter->vfs_allocated_count)
9733 return -EINVAL;
9734
9735 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9736 reg_val = rd32(reg_offset);
9737 if (setting)
9738 reg_val |= (BIT(vf) |
9739 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9740 else
9741 reg_val &= ~(BIT(vf) |
9742 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9743 wr32(reg_offset, reg_val);
9744
9745 adapter->vf_data[vf].spoofchk_enabled = setting;
9746 return 0;
9747 }
9748
igb_ndo_set_vf_trust(struct net_device * netdev,int vf,bool setting)9749 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9750 {
9751 struct igb_adapter *adapter = netdev_priv(netdev);
9752
9753 if (vf >= adapter->vfs_allocated_count)
9754 return -EINVAL;
9755 if (adapter->vf_data[vf].trusted == setting)
9756 return 0;
9757
9758 adapter->vf_data[vf].trusted = setting;
9759
9760 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9761 vf, setting ? "" : "not ");
9762 return 0;
9763 }
9764
igb_ndo_get_vf_config(struct net_device * netdev,int vf,struct ifla_vf_info * ivi)9765 static int igb_ndo_get_vf_config(struct net_device *netdev,
9766 int vf, struct ifla_vf_info *ivi)
9767 {
9768 struct igb_adapter *adapter = netdev_priv(netdev);
9769 if (vf >= adapter->vfs_allocated_count)
9770 return -EINVAL;
9771 ivi->vf = vf;
9772 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9773 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9774 ivi->min_tx_rate = 0;
9775 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9776 ivi->qos = adapter->vf_data[vf].pf_qos;
9777 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9778 ivi->trusted = adapter->vf_data[vf].trusted;
9779 return 0;
9780 }
9781
igb_vmm_control(struct igb_adapter * adapter)9782 static void igb_vmm_control(struct igb_adapter *adapter)
9783 {
9784 struct e1000_hw *hw = &adapter->hw;
9785 u32 reg;
9786
9787 switch (hw->mac.type) {
9788 case e1000_82575:
9789 case e1000_i210:
9790 case e1000_i211:
9791 case e1000_i354:
9792 default:
9793 /* replication is not supported for 82575 */
9794 return;
9795 case e1000_82576:
9796 /* notify HW that the MAC is adding vlan tags */
9797 reg = rd32(E1000_DTXCTL);
9798 reg |= E1000_DTXCTL_VLAN_ADDED;
9799 wr32(E1000_DTXCTL, reg);
9800 fallthrough;
9801 case e1000_82580:
9802 /* enable replication vlan tag stripping */
9803 reg = rd32(E1000_RPLOLR);
9804 reg |= E1000_RPLOLR_STRVLAN;
9805 wr32(E1000_RPLOLR, reg);
9806 fallthrough;
9807 case e1000_i350:
9808 /* none of the above registers are supported by i350 */
9809 break;
9810 }
9811
9812 if (adapter->vfs_allocated_count) {
9813 igb_vmdq_set_loopback_pf(hw, true);
9814 igb_vmdq_set_replication_pf(hw, true);
9815 igb_vmdq_set_anti_spoofing_pf(hw, true,
9816 adapter->vfs_allocated_count);
9817 } else {
9818 igb_vmdq_set_loopback_pf(hw, false);
9819 igb_vmdq_set_replication_pf(hw, false);
9820 }
9821 }
9822
igb_init_dmac(struct igb_adapter * adapter,u32 pba)9823 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9824 {
9825 struct e1000_hw *hw = &adapter->hw;
9826 u32 dmac_thr;
9827 u16 hwm;
9828
9829 if (hw->mac.type > e1000_82580) {
9830 if (adapter->flags & IGB_FLAG_DMAC) {
9831 u32 reg;
9832
9833 /* force threshold to 0. */
9834 wr32(E1000_DMCTXTH, 0);
9835
9836 /* DMA Coalescing high water mark needs to be greater
9837 * than the Rx threshold. Set hwm to PBA - max frame
9838 * size in 16B units, capping it at PBA - 6KB.
9839 */
9840 hwm = 64 * (pba - 6);
9841 reg = rd32(E1000_FCRTC);
9842 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9843 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9844 & E1000_FCRTC_RTH_COAL_MASK);
9845 wr32(E1000_FCRTC, reg);
9846
9847 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9848 * frame size, capping it at PBA - 10KB.
9849 */
9850 dmac_thr = pba - 10;
9851 reg = rd32(E1000_DMACR);
9852 reg &= ~E1000_DMACR_DMACTHR_MASK;
9853 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9854 & E1000_DMACR_DMACTHR_MASK);
9855
9856 /* transition to L0x or L1 if available..*/
9857 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9858
9859 /* watchdog timer= +-1000 usec in 32usec intervals */
9860 reg |= (1000 >> 5);
9861
9862 /* Disable BMC-to-OS Watchdog Enable */
9863 if (hw->mac.type != e1000_i354)
9864 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9865
9866 wr32(E1000_DMACR, reg);
9867
9868 /* no lower threshold to disable
9869 * coalescing(smart fifb)-UTRESH=0
9870 */
9871 wr32(E1000_DMCRTRH, 0);
9872
9873 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9874
9875 wr32(E1000_DMCTLX, reg);
9876
9877 /* free space in tx packet buffer to wake from
9878 * DMA coal
9879 */
9880 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9881 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9882
9883 /* make low power state decision controlled
9884 * by DMA coal
9885 */
9886 reg = rd32(E1000_PCIEMISC);
9887 reg &= ~E1000_PCIEMISC_LX_DECISION;
9888 wr32(E1000_PCIEMISC, reg);
9889 } /* endif adapter->dmac is not disabled */
9890 } else if (hw->mac.type == e1000_82580) {
9891 u32 reg = rd32(E1000_PCIEMISC);
9892
9893 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9894 wr32(E1000_DMACR, 0);
9895 }
9896 }
9897
9898 /**
9899 * igb_read_i2c_byte - Reads 8 bit word over I2C
9900 * @hw: pointer to hardware structure
9901 * @byte_offset: byte offset to read
9902 * @dev_addr: device address
9903 * @data: value read
9904 *
9905 * Performs byte read operation over I2C interface at
9906 * a specified device address.
9907 **/
igb_read_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 * data)9908 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9909 u8 dev_addr, u8 *data)
9910 {
9911 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9912 struct i2c_client *this_client = adapter->i2c_client;
9913 s32 status;
9914 u16 swfw_mask = 0;
9915
9916 if (!this_client)
9917 return E1000_ERR_I2C;
9918
9919 swfw_mask = E1000_SWFW_PHY0_SM;
9920
9921 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9922 return E1000_ERR_SWFW_SYNC;
9923
9924 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9925 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9926
9927 if (status < 0)
9928 return E1000_ERR_I2C;
9929 else {
9930 *data = status;
9931 return 0;
9932 }
9933 }
9934
9935 /**
9936 * igb_write_i2c_byte - Writes 8 bit word over I2C
9937 * @hw: pointer to hardware structure
9938 * @byte_offset: byte offset to write
9939 * @dev_addr: device address
9940 * @data: value to write
9941 *
9942 * Performs byte write operation over I2C interface at
9943 * a specified device address.
9944 **/
igb_write_i2c_byte(struct e1000_hw * hw,u8 byte_offset,u8 dev_addr,u8 data)9945 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9946 u8 dev_addr, u8 data)
9947 {
9948 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9949 struct i2c_client *this_client = adapter->i2c_client;
9950 s32 status;
9951 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9952
9953 if (!this_client)
9954 return E1000_ERR_I2C;
9955
9956 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9957 return E1000_ERR_SWFW_SYNC;
9958 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9959 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9960
9961 if (status)
9962 return E1000_ERR_I2C;
9963 else
9964 return 0;
9965
9966 }
9967
igb_reinit_queues(struct igb_adapter * adapter)9968 int igb_reinit_queues(struct igb_adapter *adapter)
9969 {
9970 struct net_device *netdev = adapter->netdev;
9971 struct pci_dev *pdev = adapter->pdev;
9972 int err = 0;
9973
9974 if (netif_running(netdev))
9975 igb_close(netdev);
9976
9977 igb_reset_interrupt_capability(adapter);
9978
9979 if (igb_init_interrupt_scheme(adapter, true)) {
9980 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9981 return -ENOMEM;
9982 }
9983
9984 if (netif_running(netdev))
9985 err = igb_open(netdev);
9986
9987 return err;
9988 }
9989
igb_nfc_filter_exit(struct igb_adapter * adapter)9990 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9991 {
9992 struct igb_nfc_filter *rule;
9993
9994 spin_lock(&adapter->nfc_lock);
9995
9996 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9997 igb_erase_filter(adapter, rule);
9998
9999 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10000 igb_erase_filter(adapter, rule);
10001
10002 spin_unlock(&adapter->nfc_lock);
10003 }
10004
igb_nfc_filter_restore(struct igb_adapter * adapter)10005 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10006 {
10007 struct igb_nfc_filter *rule;
10008
10009 spin_lock(&adapter->nfc_lock);
10010
10011 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10012 igb_add_filter(adapter, rule);
10013
10014 spin_unlock(&adapter->nfc_lock);
10015 }
10016 /* igb_main.c */
10017