• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2020, Intel Corporation
3  */
4 
5 #include <linux/clk-provider.h>
6 #include <linux/pci.h>
7 #include <linux/dmi.h>
8 #include "dwmac-intel.h"
9 #include "dwmac4.h"
10 #include "stmmac.h"
11 
12 struct intel_priv_data {
13 	int mdio_adhoc_addr;	/* mdio address for serdes & etc */
14 };
15 
16 /* This struct is used to associate PCI Function of MAC controller on a board,
17  * discovered via DMI, with the address of PHY connected to the MAC. The
18  * negative value of the address means that MAC controller is not connected
19  * with PHY.
20  */
21 struct stmmac_pci_func_data {
22 	unsigned int func;
23 	int phy_addr;
24 };
25 
26 struct stmmac_pci_dmi_data {
27 	const struct stmmac_pci_func_data *func;
28 	size_t nfuncs;
29 };
30 
31 struct stmmac_pci_info {
32 	int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
33 };
34 
stmmac_pci_find_phy_addr(struct pci_dev * pdev,const struct dmi_system_id * dmi_list)35 static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
36 				    const struct dmi_system_id *dmi_list)
37 {
38 	const struct stmmac_pci_func_data *func_data;
39 	const struct stmmac_pci_dmi_data *dmi_data;
40 	const struct dmi_system_id *dmi_id;
41 	int func = PCI_FUNC(pdev->devfn);
42 	size_t n;
43 
44 	dmi_id = dmi_first_match(dmi_list);
45 	if (!dmi_id)
46 		return -ENODEV;
47 
48 	dmi_data = dmi_id->driver_data;
49 	func_data = dmi_data->func;
50 
51 	for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
52 		if (func_data->func == func)
53 			return func_data->phy_addr;
54 
55 	return -ENODEV;
56 }
57 
serdes_status_poll(struct stmmac_priv * priv,int phyaddr,int phyreg,u32 mask,u32 val)58 static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
59 			      int phyreg, u32 mask, u32 val)
60 {
61 	unsigned int retries = 10;
62 	int val_rd;
63 
64 	do {
65 		val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
66 		if ((val_rd & mask) == (val & mask))
67 			return 0;
68 		udelay(POLL_DELAY_US);
69 	} while (--retries);
70 
71 	return -ETIMEDOUT;
72 }
73 
intel_serdes_powerup(struct net_device * ndev,void * priv_data)74 static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
75 {
76 	struct intel_priv_data *intel_priv = priv_data;
77 	struct stmmac_priv *priv = netdev_priv(ndev);
78 	int serdes_phy_addr = 0;
79 	u32 data = 0;
80 
81 	if (!intel_priv->mdio_adhoc_addr)
82 		return 0;
83 
84 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
85 
86 	/* assert clk_req */
87 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
88 	data |= SERDES_PLL_CLK;
89 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
90 
91 	/* check for clk_ack assertion */
92 	data = serdes_status_poll(priv, serdes_phy_addr,
93 				  SERDES_GSR0,
94 				  SERDES_PLL_CLK,
95 				  SERDES_PLL_CLK);
96 
97 	if (data) {
98 		dev_err(priv->device, "Serdes PLL clk request timeout\n");
99 		return data;
100 	}
101 
102 	/* assert lane reset */
103 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
104 	data |= SERDES_RST;
105 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
106 
107 	/* check for assert lane reset reflection */
108 	data = serdes_status_poll(priv, serdes_phy_addr,
109 				  SERDES_GSR0,
110 				  SERDES_RST,
111 				  SERDES_RST);
112 
113 	if (data) {
114 		dev_err(priv->device, "Serdes assert lane reset timeout\n");
115 		return data;
116 	}
117 
118 	/*  move power state to P0 */
119 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
120 
121 	data &= ~SERDES_PWR_ST_MASK;
122 	data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
123 
124 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
125 
126 	/* Check for P0 state */
127 	data = serdes_status_poll(priv, serdes_phy_addr,
128 				  SERDES_GSR0,
129 				  SERDES_PWR_ST_MASK,
130 				  SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
131 
132 	if (data) {
133 		dev_err(priv->device, "Serdes power state P0 timeout.\n");
134 		return data;
135 	}
136 
137 	return 0;
138 }
139 
intel_serdes_powerdown(struct net_device * ndev,void * intel_data)140 static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
141 {
142 	struct intel_priv_data *intel_priv = intel_data;
143 	struct stmmac_priv *priv = netdev_priv(ndev);
144 	int serdes_phy_addr = 0;
145 	u32 data = 0;
146 
147 	if (!intel_priv->mdio_adhoc_addr)
148 		return;
149 
150 	serdes_phy_addr = intel_priv->mdio_adhoc_addr;
151 
152 	/*  move power state to P3 */
153 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
154 
155 	data &= ~SERDES_PWR_ST_MASK;
156 	data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
157 
158 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
159 
160 	/* Check for P3 state */
161 	data = serdes_status_poll(priv, serdes_phy_addr,
162 				  SERDES_GSR0,
163 				  SERDES_PWR_ST_MASK,
164 				  SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
165 
166 	if (data) {
167 		dev_err(priv->device, "Serdes power state P3 timeout\n");
168 		return;
169 	}
170 
171 	/* de-assert clk_req */
172 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
173 	data &= ~SERDES_PLL_CLK;
174 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
175 
176 	/* check for clk_ack de-assert */
177 	data = serdes_status_poll(priv, serdes_phy_addr,
178 				  SERDES_GSR0,
179 				  SERDES_PLL_CLK,
180 				  (u32)~SERDES_PLL_CLK);
181 
182 	if (data) {
183 		dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
184 		return;
185 	}
186 
187 	/* de-assert lane reset */
188 	data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
189 	data &= ~SERDES_RST;
190 	mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
191 
192 	/* check for de-assert lane reset reflection */
193 	data = serdes_status_poll(priv, serdes_phy_addr,
194 				  SERDES_GSR0,
195 				  SERDES_RST,
196 				  (u32)~SERDES_RST);
197 
198 	if (data) {
199 		dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
200 		return;
201 	}
202 }
203 
common_default_data(struct plat_stmmacenet_data * plat)204 static void common_default_data(struct plat_stmmacenet_data *plat)
205 {
206 	plat->clk_csr = 2;	/* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
207 	plat->has_gmac = 1;
208 	plat->force_sf_dma_mode = 1;
209 
210 	plat->mdio_bus_data->needs_reset = true;
211 
212 	/* Set default value for multicast hash bins */
213 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
214 
215 	/* Set default value for unicast filter entries */
216 	plat->unicast_filter_entries = 1;
217 
218 	/* Set the maxmtu to a default of JUMBO_LEN */
219 	plat->maxmtu = JUMBO_LEN;
220 
221 	/* Set default number of RX and TX queues to use */
222 	plat->tx_queues_to_use = 1;
223 	plat->rx_queues_to_use = 1;
224 
225 	/* Disable Priority config by default */
226 	plat->tx_queues_cfg[0].use_prio = false;
227 	plat->rx_queues_cfg[0].use_prio = false;
228 
229 	/* Disable RX queues routing by default */
230 	plat->rx_queues_cfg[0].pkt_route = 0x0;
231 }
232 
intel_mgbe_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)233 static int intel_mgbe_common_data(struct pci_dev *pdev,
234 				  struct plat_stmmacenet_data *plat)
235 {
236 	char clk_name[20];
237 	int ret;
238 	int i;
239 
240 	plat->phy_addr = -1;
241 	plat->clk_csr = 5;
242 	plat->has_gmac = 0;
243 	plat->has_gmac4 = 1;
244 	plat->force_sf_dma_mode = 0;
245 	plat->tso_en = 1;
246 
247 	plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
248 
249 	for (i = 0; i < plat->rx_queues_to_use; i++) {
250 		plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
251 		plat->rx_queues_cfg[i].chan = i;
252 
253 		/* Disable Priority config by default */
254 		plat->rx_queues_cfg[i].use_prio = false;
255 
256 		/* Disable RX queues routing by default */
257 		plat->rx_queues_cfg[i].pkt_route = 0x0;
258 	}
259 
260 	for (i = 0; i < plat->tx_queues_to_use; i++) {
261 		plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
262 
263 		/* Disable Priority config by default */
264 		plat->tx_queues_cfg[i].use_prio = false;
265 	}
266 
267 	/* FIFO size is 4096 bytes for 1 tx/rx queue */
268 	plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
269 	plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
270 
271 	plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
272 	plat->tx_queues_cfg[0].weight = 0x09;
273 	plat->tx_queues_cfg[1].weight = 0x0A;
274 	plat->tx_queues_cfg[2].weight = 0x0B;
275 	plat->tx_queues_cfg[3].weight = 0x0C;
276 	plat->tx_queues_cfg[4].weight = 0x0D;
277 	plat->tx_queues_cfg[5].weight = 0x0E;
278 	plat->tx_queues_cfg[6].weight = 0x0F;
279 	plat->tx_queues_cfg[7].weight = 0x10;
280 
281 	plat->dma_cfg->pbl = 32;
282 	plat->dma_cfg->pblx8 = true;
283 	plat->dma_cfg->fixed_burst = 0;
284 	plat->dma_cfg->mixed_burst = 0;
285 	plat->dma_cfg->aal = 0;
286 
287 	plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
288 				 GFP_KERNEL);
289 	if (!plat->axi)
290 		return -ENOMEM;
291 
292 	plat->axi->axi_lpi_en = 0;
293 	plat->axi->axi_xit_frm = 0;
294 	plat->axi->axi_wr_osr_lmt = 1;
295 	plat->axi->axi_rd_osr_lmt = 1;
296 	plat->axi->axi_blen[0] = 4;
297 	plat->axi->axi_blen[1] = 8;
298 	plat->axi->axi_blen[2] = 16;
299 
300 	plat->ptp_max_adj = plat->clk_ptp_rate;
301 	plat->eee_usecs_rate = plat->clk_ptp_rate;
302 
303 	/* Set system clock */
304 	sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
305 
306 	plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
307 						   clk_name, NULL, 0,
308 						   plat->clk_ptp_rate);
309 
310 	if (IS_ERR(plat->stmmac_clk)) {
311 		dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
312 		plat->stmmac_clk = NULL;
313 	}
314 
315 	ret = clk_prepare_enable(plat->stmmac_clk);
316 	if (ret) {
317 		clk_unregister_fixed_rate(plat->stmmac_clk);
318 		return ret;
319 	}
320 
321 	/* Set default value for multicast hash bins */
322 	plat->multicast_filter_bins = HASH_TABLE_SIZE;
323 
324 	/* Set default value for unicast filter entries */
325 	plat->unicast_filter_entries = 1;
326 
327 	/* Set the maxmtu to a default of JUMBO_LEN */
328 	plat->maxmtu = JUMBO_LEN;
329 
330 	plat->vlan_fail_q_en = true;
331 
332 	/* Use the last Rx queue */
333 	plat->vlan_fail_q = plat->rx_queues_to_use - 1;
334 
335 	return 0;
336 }
337 
ehl_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)338 static int ehl_common_data(struct pci_dev *pdev,
339 			   struct plat_stmmacenet_data *plat)
340 {
341 	plat->rx_queues_to_use = 8;
342 	plat->tx_queues_to_use = 8;
343 	plat->clk_ptp_rate = 200000000;
344 
345 	return intel_mgbe_common_data(pdev, plat);
346 }
347 
ehl_sgmii_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)348 static int ehl_sgmii_data(struct pci_dev *pdev,
349 			  struct plat_stmmacenet_data *plat)
350 {
351 	plat->bus_id = 1;
352 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
353 
354 	plat->serdes_powerup = intel_serdes_powerup;
355 	plat->serdes_powerdown = intel_serdes_powerdown;
356 
357 	return ehl_common_data(pdev, plat);
358 }
359 
360 static struct stmmac_pci_info ehl_sgmii1g_info = {
361 	.setup = ehl_sgmii_data,
362 };
363 
ehl_rgmii_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)364 static int ehl_rgmii_data(struct pci_dev *pdev,
365 			  struct plat_stmmacenet_data *plat)
366 {
367 	plat->bus_id = 1;
368 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
369 
370 	return ehl_common_data(pdev, plat);
371 }
372 
373 static struct stmmac_pci_info ehl_rgmii1g_info = {
374 	.setup = ehl_rgmii_data,
375 };
376 
ehl_pse0_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)377 static int ehl_pse0_common_data(struct pci_dev *pdev,
378 				struct plat_stmmacenet_data *plat)
379 {
380 	plat->bus_id = 2;
381 	plat->addr64 = 32;
382 	return ehl_common_data(pdev, plat);
383 }
384 
ehl_pse0_rgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)385 static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
386 				 struct plat_stmmacenet_data *plat)
387 {
388 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
389 	return ehl_pse0_common_data(pdev, plat);
390 }
391 
392 static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
393 	.setup = ehl_pse0_rgmii1g_data,
394 };
395 
ehl_pse0_sgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)396 static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
397 				 struct plat_stmmacenet_data *plat)
398 {
399 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
400 	plat->serdes_powerup = intel_serdes_powerup;
401 	plat->serdes_powerdown = intel_serdes_powerdown;
402 	return ehl_pse0_common_data(pdev, plat);
403 }
404 
405 static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
406 	.setup = ehl_pse0_sgmii1g_data,
407 };
408 
ehl_pse1_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)409 static int ehl_pse1_common_data(struct pci_dev *pdev,
410 				struct plat_stmmacenet_data *plat)
411 {
412 	plat->bus_id = 3;
413 	plat->addr64 = 32;
414 	return ehl_common_data(pdev, plat);
415 }
416 
ehl_pse1_rgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)417 static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
418 				 struct plat_stmmacenet_data *plat)
419 {
420 	plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
421 	return ehl_pse1_common_data(pdev, plat);
422 }
423 
424 static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
425 	.setup = ehl_pse1_rgmii1g_data,
426 };
427 
ehl_pse1_sgmii1g_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)428 static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
429 				 struct plat_stmmacenet_data *plat)
430 {
431 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
432 	plat->serdes_powerup = intel_serdes_powerup;
433 	plat->serdes_powerdown = intel_serdes_powerdown;
434 	return ehl_pse1_common_data(pdev, plat);
435 }
436 
437 static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
438 	.setup = ehl_pse1_sgmii1g_data,
439 };
440 
tgl_common_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)441 static int tgl_common_data(struct pci_dev *pdev,
442 			   struct plat_stmmacenet_data *plat)
443 {
444 	plat->rx_queues_to_use = 6;
445 	plat->tx_queues_to_use = 4;
446 	plat->clk_ptp_rate = 200000000;
447 
448 	return intel_mgbe_common_data(pdev, plat);
449 }
450 
tgl_sgmii_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)451 static int tgl_sgmii_data(struct pci_dev *pdev,
452 			  struct plat_stmmacenet_data *plat)
453 {
454 	plat->bus_id = 1;
455 	plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
456 	plat->serdes_powerup = intel_serdes_powerup;
457 	plat->serdes_powerdown = intel_serdes_powerdown;
458 	return tgl_common_data(pdev, plat);
459 }
460 
461 static struct stmmac_pci_info tgl_sgmii1g_info = {
462 	.setup = tgl_sgmii_data,
463 };
464 
465 static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
466 	{
467 		.func = 6,
468 		.phy_addr = 1,
469 	},
470 };
471 
472 static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
473 	.func = galileo_stmmac_func_data,
474 	.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
475 };
476 
477 static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
478 	{
479 		.func = 6,
480 		.phy_addr = 1,
481 	},
482 	{
483 		.func = 7,
484 		.phy_addr = 1,
485 	},
486 };
487 
488 static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
489 	.func = iot2040_stmmac_func_data,
490 	.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
491 };
492 
493 static const struct dmi_system_id quark_pci_dmi[] = {
494 	{
495 		.matches = {
496 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
497 		},
498 		.driver_data = (void *)&galileo_stmmac_dmi_data,
499 	},
500 	{
501 		.matches = {
502 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
503 		},
504 		.driver_data = (void *)&galileo_stmmac_dmi_data,
505 	},
506 	/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
507 	 * The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
508 	 * has only one pci network device while other asset tags are
509 	 * for IOT2040 which has two.
510 	 */
511 	{
512 		.matches = {
513 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
514 			DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
515 					"6ES7647-0AA00-0YA2"),
516 		},
517 		.driver_data = (void *)&galileo_stmmac_dmi_data,
518 	},
519 	{
520 		.matches = {
521 			DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
522 		},
523 		.driver_data = (void *)&iot2040_stmmac_dmi_data,
524 	},
525 	{}
526 };
527 
quark_default_data(struct pci_dev * pdev,struct plat_stmmacenet_data * plat)528 static int quark_default_data(struct pci_dev *pdev,
529 			      struct plat_stmmacenet_data *plat)
530 {
531 	int ret;
532 
533 	/* Set common default data first */
534 	common_default_data(plat);
535 
536 	/* Refuse to load the driver and register net device if MAC controller
537 	 * does not connect to any PHY interface.
538 	 */
539 	ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
540 	if (ret < 0) {
541 		/* Return error to the caller on DMI enabled boards. */
542 		if (dmi_get_system_info(DMI_BOARD_NAME))
543 			return ret;
544 
545 		/* Galileo boards with old firmware don't support DMI. We always
546 		 * use 1 here as PHY address, so at least the first found MAC
547 		 * controller would be probed.
548 		 */
549 		ret = 1;
550 	}
551 
552 	plat->bus_id = pci_dev_id(pdev);
553 	plat->phy_addr = ret;
554 	plat->phy_interface = PHY_INTERFACE_MODE_RMII;
555 
556 	plat->dma_cfg->pbl = 16;
557 	plat->dma_cfg->pblx8 = true;
558 	plat->dma_cfg->fixed_burst = 1;
559 	/* AXI (TODO) */
560 
561 	return 0;
562 }
563 
564 static const struct stmmac_pci_info quark_info = {
565 	.setup = quark_default_data,
566 };
567 
568 /**
569  * intel_eth_pci_probe
570  *
571  * @pdev: pci device pointer
572  * @id: pointer to table of device id/id's.
573  *
574  * Description: This probing function gets called for all PCI devices which
575  * match the ID table and are not "owned" by other driver yet. This function
576  * gets passed a "struct pci_dev *" for each device whose entry in the ID table
577  * matches the device. The probe functions returns zero when the driver choose
578  * to take "ownership" of the device or an error code(-ve no) otherwise.
579  */
intel_eth_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)580 static int intel_eth_pci_probe(struct pci_dev *pdev,
581 			       const struct pci_device_id *id)
582 {
583 	struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
584 	struct intel_priv_data *intel_priv;
585 	struct plat_stmmacenet_data *plat;
586 	struct stmmac_resources res;
587 	int ret;
588 
589 	intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
590 	if (!intel_priv)
591 		return -ENOMEM;
592 
593 	plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
594 	if (!plat)
595 		return -ENOMEM;
596 
597 	plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
598 					   sizeof(*plat->mdio_bus_data),
599 					   GFP_KERNEL);
600 	if (!plat->mdio_bus_data)
601 		return -ENOMEM;
602 
603 	plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
604 				     GFP_KERNEL);
605 	if (!plat->dma_cfg)
606 		return -ENOMEM;
607 
608 	/* Enable pci device */
609 	ret = pci_enable_device(pdev);
610 	if (ret) {
611 		dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
612 			__func__);
613 		return ret;
614 	}
615 
616 	ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
617 	if (ret)
618 		return ret;
619 
620 	pci_set_master(pdev);
621 
622 	plat->bsp_priv = intel_priv;
623 	intel_priv->mdio_adhoc_addr = 0x15;
624 
625 	ret = info->setup(pdev, plat);
626 	if (ret)
627 		return ret;
628 
629 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
630 	if (ret < 0)
631 		return ret;
632 
633 	memset(&res, 0, sizeof(res));
634 	res.addr = pcim_iomap_table(pdev)[0];
635 	res.wol_irq = pci_irq_vector(pdev, 0);
636 	res.irq = pci_irq_vector(pdev, 0);
637 
638 	if (plat->eee_usecs_rate > 0) {
639 		u32 tx_lpi_usec;
640 
641 		tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
642 		writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
643 	}
644 
645 	ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
646 	if (ret) {
647 		pci_free_irq_vectors(pdev);
648 		clk_disable_unprepare(plat->stmmac_clk);
649 		clk_unregister_fixed_rate(plat->stmmac_clk);
650 	}
651 
652 	return ret;
653 }
654 
655 /**
656  * intel_eth_pci_remove
657  *
658  * @pdev: platform device pointer
659  * Description: this function calls the main to free the net resources
660  * and releases the PCI resources.
661  */
intel_eth_pci_remove(struct pci_dev * pdev)662 static void intel_eth_pci_remove(struct pci_dev *pdev)
663 {
664 	struct net_device *ndev = dev_get_drvdata(&pdev->dev);
665 	struct stmmac_priv *priv = netdev_priv(ndev);
666 
667 	stmmac_dvr_remove(&pdev->dev);
668 
669 	pci_free_irq_vectors(pdev);
670 
671 	clk_unregister_fixed_rate(priv->plat->stmmac_clk);
672 
673 	pcim_iounmap_regions(pdev, BIT(0));
674 
675 	pci_disable_device(pdev);
676 }
677 
intel_eth_pci_suspend(struct device * dev)678 static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
679 {
680 	struct pci_dev *pdev = to_pci_dev(dev);
681 	int ret;
682 
683 	ret = stmmac_suspend(dev);
684 	if (ret)
685 		return ret;
686 
687 	ret = pci_save_state(pdev);
688 	if (ret)
689 		return ret;
690 
691 	pci_disable_device(pdev);
692 	pci_wake_from_d3(pdev, true);
693 	return 0;
694 }
695 
intel_eth_pci_resume(struct device * dev)696 static int __maybe_unused intel_eth_pci_resume(struct device *dev)
697 {
698 	struct pci_dev *pdev = to_pci_dev(dev);
699 	int ret;
700 
701 	pci_restore_state(pdev);
702 	pci_set_power_state(pdev, PCI_D0);
703 
704 	ret = pci_enable_device(pdev);
705 	if (ret)
706 		return ret;
707 
708 	pci_set_master(pdev);
709 
710 	return stmmac_resume(dev);
711 }
712 
713 static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
714 			 intel_eth_pci_resume);
715 
716 #define PCI_DEVICE_ID_INTEL_QUARK_ID			0x0937
717 #define PCI_DEVICE_ID_INTEL_EHL_RGMII1G_ID		0x4b30
718 #define PCI_DEVICE_ID_INTEL_EHL_SGMII1G_ID		0x4b31
719 #define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5_ID		0x4b32
720 /* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
721  * which are named PSE0 and PSE1
722  */
723 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G_ID		0x4ba0
724 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G_ID		0x4ba1
725 #define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5_ID	0x4ba2
726 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G_ID		0x4bb0
727 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G_ID		0x4bb1
728 #define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5_ID	0x4bb2
729 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0_ID		0x43ac
730 #define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1_ID		0x43a2
731 #define PCI_DEVICE_ID_INTEL_TGL_SGMII1G_ID		0xa0ac
732 
733 static const struct pci_device_id intel_eth_pci_id_table[] = {
734 	{ PCI_DEVICE_DATA(INTEL, QUARK_ID, &quark_info) },
735 	{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G_ID, &ehl_rgmii1g_info) },
736 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G_ID, &ehl_sgmii1g_info) },
737 	{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5_ID, &ehl_sgmii1g_info) },
738 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G_ID, &ehl_pse0_rgmii1g_info) },
739 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G_ID, &ehl_pse0_sgmii1g_info) },
740 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5_ID, &ehl_pse0_sgmii1g_info) },
741 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G_ID, &ehl_pse1_rgmii1g_info) },
742 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G_ID, &ehl_pse1_sgmii1g_info) },
743 	{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5_ID, &ehl_pse1_sgmii1g_info) },
744 	{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G_ID, &tgl_sgmii1g_info) },
745 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0_ID, &tgl_sgmii1g_info) },
746 	{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1_ID, &tgl_sgmii1g_info) },
747 	{}
748 };
749 MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
750 
751 static struct pci_driver intel_eth_pci_driver = {
752 	.name = "intel-eth-pci",
753 	.id_table = intel_eth_pci_id_table,
754 	.probe = intel_eth_pci_probe,
755 	.remove = intel_eth_pci_remove,
756 	.driver         = {
757 		.pm     = &intel_eth_pm_ops,
758 	},
759 };
760 
761 module_pci_driver(intel_eth_pci_driver);
762 
763 MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
764 MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
765 MODULE_LICENSE("GPL v2");
766