• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49 
50 /* As long as the interface is active, we keep the timestamping counter enabled
51  * with fine resolution and binary rollover. This avoid non-monotonic behavior
52  * (clock jumps) when changing timestamping settings at runtime.
53  */
54 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55 				 PTP_TCR_TSCTRLSSR)
56 
57 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
75 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
76 
77 static int flow_ctrl = FLOW_AUTO;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static const struct net_device_ops stmmac_netdev_ops;
118 static void stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)124 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125 {
126 	int ret = 0;
127 
128 	if (enabled) {
129 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
130 		if (ret)
131 			return ret;
132 		ret = clk_prepare_enable(priv->plat->pclk);
133 		if (ret) {
134 			clk_disable_unprepare(priv->plat->stmmac_clk);
135 			return ret;
136 		}
137 	} else {
138 		clk_disable_unprepare(priv->plat->stmmac_clk);
139 		clk_disable_unprepare(priv->plat->pclk);
140 	}
141 
142 	return ret;
143 }
144 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145 
146 /**
147  * stmmac_verify_args - verify the driver parameters.
148  * Description: it checks the driver parameters and set a default in case of
149  * errors.
150  */
stmmac_verify_args(void)151 static void stmmac_verify_args(void)
152 {
153 	if (unlikely(watchdog < 0))
154 		watchdog = TX_TIMEO;
155 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 		buf_sz = DEFAULT_BUFSIZE;
157 	if (unlikely(flow_ctrl > 1))
158 		flow_ctrl = FLOW_AUTO;
159 	else if (likely(flow_ctrl < 0))
160 		flow_ctrl = FLOW_OFF;
161 	if (unlikely((pause < 0) || (pause > 0xffff)))
162 		pause = PAUSE_TIME;
163 	if (eee_timer < 0)
164 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166 
167 /**
168  * stmmac_disable_all_queues - Disable all queues
169  * @priv: driver private structure
170  */
stmmac_disable_all_queues(struct stmmac_priv * priv)171 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172 {
173 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176 	u32 queue;
177 
178 	for (queue = 0; queue < maxq; queue++) {
179 		struct stmmac_channel *ch = &priv->channel[queue];
180 
181 		if (queue < rx_queues_cnt)
182 			napi_disable(&ch->rx_napi);
183 		if (queue < tx_queues_cnt)
184 			napi_disable(&ch->tx_napi);
185 	}
186 }
187 
188 /**
189  * stmmac_enable_all_queues - Enable all queues
190  * @priv: driver private structure
191  */
stmmac_enable_all_queues(struct stmmac_priv * priv)192 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193 {
194 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197 	u32 queue;
198 
199 	for (queue = 0; queue < maxq; queue++) {
200 		struct stmmac_channel *ch = &priv->channel[queue];
201 
202 		if (queue < rx_queues_cnt)
203 			napi_enable(&ch->rx_napi);
204 		if (queue < tx_queues_cnt)
205 			napi_enable(&ch->tx_napi);
206 	}
207 }
208 
stmmac_service_event_schedule(struct stmmac_priv * priv)209 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210 {
211 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
212 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213 		queue_work(priv->wq, &priv->service_task);
214 }
215 
stmmac_global_err(struct stmmac_priv * priv)216 static void stmmac_global_err(struct stmmac_priv *priv)
217 {
218 	netif_carrier_off(priv->dev);
219 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220 	stmmac_service_event_schedule(priv);
221 }
222 
223 /**
224  * stmmac_clk_csr_set - dynamically set the MDC clock
225  * @priv: driver private structure
226  * Description: this is to dynamically set the MDC clock according to the csr
227  * clock input.
228  * Note:
229  *	If a specific clk_csr value is passed from the platform
230  *	this means that the CSR Clock Range selection cannot be
231  *	changed at run-time and it is fixed (as reported in the driver
232  *	documentation). Viceversa the driver will try to set the MDC
233  *	clock dynamically according to the actual clock input.
234  */
stmmac_clk_csr_set(struct stmmac_priv * priv)235 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236 {
237 	u32 clk_rate;
238 
239 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
240 
241 	/* Platform provided default clk_csr would be assumed valid
242 	 * for all other cases except for the below mentioned ones.
243 	 * For values higher than the IEEE 802.3 specified frequency
244 	 * we can not estimate the proper divider as it is not known
245 	 * the frequency of clk_csr_i. So we do not change the default
246 	 * divider.
247 	 */
248 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249 		if (clk_rate < CSR_F_35M)
250 			priv->clk_csr = STMMAC_CSR_20_35M;
251 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252 			priv->clk_csr = STMMAC_CSR_35_60M;
253 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254 			priv->clk_csr = STMMAC_CSR_60_100M;
255 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256 			priv->clk_csr = STMMAC_CSR_100_150M;
257 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258 			priv->clk_csr = STMMAC_CSR_150_250M;
259 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260 			priv->clk_csr = STMMAC_CSR_250_300M;
261 	}
262 
263 	if (priv->plat->has_sun8i) {
264 		if (clk_rate > 160000000)
265 			priv->clk_csr = 0x03;
266 		else if (clk_rate > 80000000)
267 			priv->clk_csr = 0x02;
268 		else if (clk_rate > 40000000)
269 			priv->clk_csr = 0x01;
270 		else
271 			priv->clk_csr = 0;
272 	}
273 
274 	if (priv->plat->has_xgmac) {
275 		if (clk_rate > 400000000)
276 			priv->clk_csr = 0x5;
277 		else if (clk_rate > 350000000)
278 			priv->clk_csr = 0x4;
279 		else if (clk_rate > 300000000)
280 			priv->clk_csr = 0x3;
281 		else if (clk_rate > 250000000)
282 			priv->clk_csr = 0x2;
283 		else if (clk_rate > 150000000)
284 			priv->clk_csr = 0x1;
285 		else
286 			priv->clk_csr = 0x0;
287 	}
288 }
289 
print_pkt(unsigned char * buf,int len)290 static void print_pkt(unsigned char *buf, int len)
291 {
292 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294 }
295 
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)296 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297 {
298 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299 	u32 avail;
300 
301 	if (tx_q->dirty_tx > tx_q->cur_tx)
302 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303 	else
304 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305 
306 	return avail;
307 }
308 
309 /**
310  * stmmac_rx_dirty - Get RX queue dirty
311  * @priv: driver private structure
312  * @queue: RX queue index
313  */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)314 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315 {
316 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317 	u32 dirty;
318 
319 	if (rx_q->dirty_rx <= rx_q->cur_rx)
320 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
321 	else
322 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323 
324 	return dirty;
325 }
326 
327 /**
328  * stmmac_enable_eee_mode - check and enter in LPI mode
329  * @priv: driver private structure
330  * Description: this function is to verify and enter in LPI mode in case of
331  * EEE.
332  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)333 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334 {
335 	u32 tx_cnt = priv->plat->tx_queues_to_use;
336 	u32 queue;
337 
338 	/* check if all TX queues have the work finished */
339 	for (queue = 0; queue < tx_cnt; queue++) {
340 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341 
342 		if (tx_q->dirty_tx != tx_q->cur_tx)
343 			return; /* still unfinished work */
344 	}
345 
346 	/* Check and enter in LPI mode */
347 	if (!priv->tx_path_in_lpi_mode)
348 		stmmac_set_eee_mode(priv, priv->hw,
349 				priv->plat->en_tx_lpi_clockgating);
350 }
351 
352 /**
353  * stmmac_disable_eee_mode - disable and exit from LPI mode
354  * @priv: driver private structure
355  * Description: this function is to exit and disable EEE in case of
356  * LPI state is true. This is called by the xmit.
357  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)358 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359 {
360 	stmmac_reset_eee_mode(priv, priv->hw);
361 	del_timer_sync(&priv->eee_ctrl_timer);
362 	priv->tx_path_in_lpi_mode = false;
363 }
364 
365 /**
366  * stmmac_eee_ctrl_timer - EEE TX SW timer.
367  * @t:  timer_list struct containing private info
368  * Description:
369  *  if there is no data transfer and if we are not in LPI state,
370  *  then MAC Transmitter can be moved to LPI state.
371  */
stmmac_eee_ctrl_timer(struct timer_list * t)372 static void stmmac_eee_ctrl_timer(struct timer_list *t)
373 {
374 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375 
376 	stmmac_enable_eee_mode(priv);
377 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378 }
379 
380 /**
381  * stmmac_eee_init - init EEE
382  * @priv: driver private structure
383  * Description:
384  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
385  *  can also manage EEE, this function enable the LPI state and start related
386  *  timer.
387  */
stmmac_eee_init(struct stmmac_priv * priv)388 bool stmmac_eee_init(struct stmmac_priv *priv)
389 {
390 	int eee_tw_timer = priv->eee_tw_timer;
391 
392 	/* Using PCS we cannot dial with the phy registers at this stage
393 	 * so we do not support extra feature like EEE.
394 	 */
395 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
396 	    priv->hw->pcs == STMMAC_PCS_RTBI)
397 		return false;
398 
399 	/* Check if MAC core supports the EEE feature. */
400 	if (!priv->dma_cap.eee)
401 		return false;
402 
403 	mutex_lock(&priv->lock);
404 
405 	/* Check if it needs to be deactivated */
406 	if (!priv->eee_active) {
407 		if (priv->eee_enabled) {
408 			netdev_dbg(priv->dev, "disable EEE\n");
409 			del_timer_sync(&priv->eee_ctrl_timer);
410 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411 		}
412 		mutex_unlock(&priv->lock);
413 		return false;
414 	}
415 
416 	if (priv->eee_active && !priv->eee_enabled) {
417 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 				     eee_tw_timer);
420 	}
421 
422 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423 
424 	mutex_unlock(&priv->lock);
425 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 	return true;
427 }
428 
429 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
430  * @priv: driver private structure
431  * @p : descriptor pointer
432  * @skb : the socket buffer
433  * Description :
434  * This function will read timestamp from the descriptor & pass it to stack.
435  * and also perform some sanity checks.
436  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)437 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438 				   struct dma_desc *p, struct sk_buff *skb)
439 {
440 	struct skb_shared_hwtstamps shhwtstamp;
441 	bool found = false;
442 	u64 ns = 0;
443 
444 	if (!priv->hwts_tx_en)
445 		return;
446 
447 	/* exit if skb doesn't support hw tstamp */
448 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449 		return;
450 
451 	/* check tx tstamp status */
452 	if (stmmac_get_tx_timestamp_status(priv, p)) {
453 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454 		found = true;
455 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456 		found = true;
457 	}
458 
459 	if (found) {
460 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
462 
463 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464 		/* pass tstamp to stack */
465 		skb_tstamp_tx(skb, &shhwtstamp);
466 	}
467 }
468 
469 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
470  * @priv: driver private structure
471  * @p : descriptor pointer
472  * @np : next descriptor pointer
473  * @skb : the socket buffer
474  * Description :
475  * This function will read received packet's timestamp from the descriptor
476  * and pass it to stack. It also perform some sanity checks.
477  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)478 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479 				   struct dma_desc *np, struct sk_buff *skb)
480 {
481 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
482 	struct dma_desc *desc = p;
483 	u64 ns = 0;
484 
485 	if (!priv->hwts_rx_en)
486 		return;
487 	/* For GMAC4, the valid timestamp is from CTX next desc. */
488 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489 		desc = np;
490 
491 	/* Check if timestamp is available */
492 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495 		shhwtstamp = skb_hwtstamps(skb);
496 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
498 	} else  {
499 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500 	}
501 }
502 
503 /**
504  *  stmmac_hwtstamp_set - control hardware timestamping.
505  *  @dev: device pointer.
506  *  @ifr: An IOCTL specific structure, that can contain a pointer to
507  *  a proprietary structure used to pass information to the driver.
508  *  Description:
509  *  This function configures the MAC to enable/disable both outgoing(TX)
510  *  and incoming(RX) packets time stamping based on user input.
511  *  Return Value:
512  *  0 on success and an appropriate -ve integer on failure.
513  */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)514 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515 {
516 	struct stmmac_priv *priv = netdev_priv(dev);
517 	struct hwtstamp_config config;
518 	u32 ptp_v2 = 0;
519 	u32 tstamp_all = 0;
520 	u32 ptp_over_ipv4_udp = 0;
521 	u32 ptp_over_ipv6_udp = 0;
522 	u32 ptp_over_ethernet = 0;
523 	u32 snap_type_sel = 0;
524 	u32 ts_master_en = 0;
525 	u32 ts_event_en = 0;
526 
527 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528 		netdev_alert(priv->dev, "No support for HW time stamping\n");
529 		priv->hwts_tx_en = 0;
530 		priv->hwts_rx_en = 0;
531 
532 		return -EOPNOTSUPP;
533 	}
534 
535 	if (copy_from_user(&config, ifr->ifr_data,
536 			   sizeof(config)))
537 		return -EFAULT;
538 
539 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540 		   __func__, config.flags, config.tx_type, config.rx_filter);
541 
542 	/* reserved for future extensions */
543 	if (config.flags)
544 		return -EINVAL;
545 
546 	if (config.tx_type != HWTSTAMP_TX_OFF &&
547 	    config.tx_type != HWTSTAMP_TX_ON)
548 		return -ERANGE;
549 
550 	if (priv->adv_ts) {
551 		switch (config.rx_filter) {
552 		case HWTSTAMP_FILTER_NONE:
553 			/* time stamp no incoming packet at all */
554 			config.rx_filter = HWTSTAMP_FILTER_NONE;
555 			break;
556 
557 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558 			/* PTP v1, UDP, any kind of event packet */
559 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560 			/* 'xmac' hardware can support Sync, Pdelay_Req and
561 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
562 			 * This leaves Delay_Req timestamps out.
563 			 * Enable all events *and* general purpose message
564 			 * timestamping
565 			 */
566 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569 			break;
570 
571 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 			/* PTP v1, UDP, Sync packet */
573 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574 			/* take time stamp for SYNC messages only */
575 			ts_event_en = PTP_TCR_TSEVNTENA;
576 
577 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579 			break;
580 
581 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582 			/* PTP v1, UDP, Delay_req packet */
583 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584 			/* take time stamp for Delay_Req messages only */
585 			ts_master_en = PTP_TCR_TSMSTRENA;
586 			ts_event_en = PTP_TCR_TSEVNTENA;
587 
588 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590 			break;
591 
592 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593 			/* PTP v2, UDP, any kind of event packet */
594 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595 			ptp_v2 = PTP_TCR_TSVER2ENA;
596 			/* take time stamp for all event messages */
597 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598 
599 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 			break;
602 
603 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 			/* PTP v2, UDP, Sync packet */
605 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 			ptp_v2 = PTP_TCR_TSVER2ENA;
607 			/* take time stamp for SYNC messages only */
608 			ts_event_en = PTP_TCR_TSEVNTENA;
609 
610 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 			break;
613 
614 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 			/* PTP v2, UDP, Delay_req packet */
616 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 			ptp_v2 = PTP_TCR_TSVER2ENA;
618 			/* take time stamp for Delay_Req messages only */
619 			ts_master_en = PTP_TCR_TSMSTRENA;
620 			ts_event_en = PTP_TCR_TSEVNTENA;
621 
622 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 			break;
625 
626 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 			/* PTP v2/802.AS1 any layer, any kind of event packet */
628 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 			ptp_v2 = PTP_TCR_TSVER2ENA;
630 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631 			if (priv->synopsys_id < DWMAC_CORE_4_10)
632 				ts_event_en = PTP_TCR_TSEVNTENA;
633 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 			ptp_over_ethernet = PTP_TCR_TSIPENA;
636 			break;
637 
638 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 			/* PTP v2/802.AS1, any layer, Sync packet */
640 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 			ptp_v2 = PTP_TCR_TSVER2ENA;
642 			/* take time stamp for SYNC messages only */
643 			ts_event_en = PTP_TCR_TSEVNTENA;
644 
645 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 			ptp_over_ethernet = PTP_TCR_TSIPENA;
648 			break;
649 
650 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 			/* PTP v2/802.AS1, any layer, Delay_req packet */
652 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 			ptp_v2 = PTP_TCR_TSVER2ENA;
654 			/* take time stamp for Delay_Req messages only */
655 			ts_master_en = PTP_TCR_TSMSTRENA;
656 			ts_event_en = PTP_TCR_TSEVNTENA;
657 
658 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 			ptp_over_ethernet = PTP_TCR_TSIPENA;
661 			break;
662 
663 		case HWTSTAMP_FILTER_NTP_ALL:
664 		case HWTSTAMP_FILTER_ALL:
665 			/* time stamp any incoming packet */
666 			config.rx_filter = HWTSTAMP_FILTER_ALL;
667 			tstamp_all = PTP_TCR_TSENALL;
668 			break;
669 
670 		default:
671 			return -ERANGE;
672 		}
673 	} else {
674 		switch (config.rx_filter) {
675 		case HWTSTAMP_FILTER_NONE:
676 			config.rx_filter = HWTSTAMP_FILTER_NONE;
677 			break;
678 		default:
679 			/* PTP v1, UDP, any kind of event packet */
680 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 			break;
682 		}
683 	}
684 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686 
687 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
688 
689 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
690 		priv->systime_flags |= tstamp_all | ptp_v2 |
691 				       ptp_over_ethernet | ptp_over_ipv6_udp |
692 				       ptp_over_ipv4_udp | ts_event_en |
693 				       ts_master_en | snap_type_sel;
694 	}
695 
696 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697 
698 	memcpy(&priv->tstamp_config, &config, sizeof(config));
699 
700 	return copy_to_user(ifr->ifr_data, &config,
701 			    sizeof(config)) ? -EFAULT : 0;
702 }
703 
704 /**
705  *  stmmac_hwtstamp_get - read hardware timestamping.
706  *  @dev: device pointer.
707  *  @ifr: An IOCTL specific structure, that can contain a pointer to
708  *  a proprietary structure used to pass information to the driver.
709  *  Description:
710  *  This function obtain the current hardware timestamping settings
711  *  as requested.
712  */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)713 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714 {
715 	struct stmmac_priv *priv = netdev_priv(dev);
716 	struct hwtstamp_config *config = &priv->tstamp_config;
717 
718 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719 		return -EOPNOTSUPP;
720 
721 	return copy_to_user(ifr->ifr_data, config,
722 			    sizeof(*config)) ? -EFAULT : 0;
723 }
724 
725 /**
726  * stmmac_init_tstamp_counter - init hardware timestamping counter
727  * @priv: driver private structure
728  * @systime_flags: timestamping flags
729  * Description:
730  * Initialize hardware counter for packet timestamping.
731  * This is valid as long as the interface is open and not suspended.
732  * Will be rerun after resuming from suspend, case in which the timestamping
733  * flags updated by stmmac_hwtstamp_set() also need to be restored.
734  */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)735 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736 {
737 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738 	struct timespec64 now;
739 	u32 sec_inc = 0;
740 	u64 temp = 0;
741 	int ret;
742 
743 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
744 		return -EOPNOTSUPP;
745 
746 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
747 	if (ret < 0) {
748 		netdev_warn(priv->dev,
749 			    "failed to enable PTP reference clock: %pe\n",
750 			    ERR_PTR(ret));
751 		return ret;
752 	}
753 
754 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
755 	priv->systime_flags = systime_flags;
756 
757 	/* program Sub Second Increment reg */
758 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
759 					   priv->plat->clk_ptp_rate,
760 					   xmac, &sec_inc);
761 	temp = div_u64(1000000000ULL, sec_inc);
762 
763 	/* Store sub second increment for later use */
764 	priv->sub_second_inc = sec_inc;
765 
766 	/* calculate default added value:
767 	 * formula is :
768 	 * addend = (2^32)/freq_div_ratio;
769 	 * where, freq_div_ratio = 1e9ns/sec_inc
770 	 */
771 	temp = (u64)(temp << 32);
772 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
773 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
774 
775 	/* initialize system time */
776 	ktime_get_real_ts64(&now);
777 
778 	/* lower 32 bits of tv_sec are safe until y2106 */
779 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
780 
781 	return 0;
782 }
783 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
784 
785 /**
786  * stmmac_init_ptp - init PTP
787  * @priv: driver private structure
788  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
789  * This is done by looking at the HW cap. register.
790  * This function also registers the ptp driver.
791  */
stmmac_init_ptp(struct stmmac_priv * priv)792 static int stmmac_init_ptp(struct stmmac_priv *priv)
793 {
794 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
795 	int ret;
796 
797 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
798 	if (ret)
799 		return ret;
800 
801 	priv->adv_ts = 0;
802 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
803 	if (xmac && priv->dma_cap.atime_stamp)
804 		priv->adv_ts = 1;
805 	/* Dwmac 3.x core with extend_desc can support adv_ts */
806 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
807 		priv->adv_ts = 1;
808 
809 	if (priv->dma_cap.time_stamp)
810 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
811 
812 	if (priv->adv_ts)
813 		netdev_info(priv->dev,
814 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
815 
816 	priv->hwts_tx_en = 0;
817 	priv->hwts_rx_en = 0;
818 
819 	return 0;
820 }
821 
stmmac_release_ptp(struct stmmac_priv * priv)822 static void stmmac_release_ptp(struct stmmac_priv *priv)
823 {
824 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
825 	stmmac_ptp_unregister(priv);
826 }
827 
828 /**
829  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
830  *  @priv: driver private structure
831  *  @duplex: duplex passed to the next function
832  *  Description: It is used for configuring the flow control in all queues
833  */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)834 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
835 {
836 	u32 tx_cnt = priv->plat->tx_queues_to_use;
837 
838 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
839 			priv->pause, tx_cnt);
840 }
841 
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)842 static void stmmac_validate(struct phylink_config *config,
843 			    unsigned long *supported,
844 			    struct phylink_link_state *state)
845 {
846 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
847 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
848 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
849 	int tx_cnt = priv->plat->tx_queues_to_use;
850 	int max_speed = priv->plat->max_speed;
851 
852 	phylink_set(mac_supported, 10baseT_Half);
853 	phylink_set(mac_supported, 10baseT_Full);
854 	phylink_set(mac_supported, 100baseT_Half);
855 	phylink_set(mac_supported, 100baseT_Full);
856 	phylink_set(mac_supported, 1000baseT_Half);
857 	phylink_set(mac_supported, 1000baseT_Full);
858 	phylink_set(mac_supported, 1000baseKX_Full);
859 
860 	phylink_set(mac_supported, Autoneg);
861 	phylink_set(mac_supported, Pause);
862 	phylink_set(mac_supported, Asym_Pause);
863 	phylink_set_port_modes(mac_supported);
864 
865 	/* Cut down 1G if asked to */
866 	if ((max_speed > 0) && (max_speed < 1000)) {
867 		phylink_set(mask, 1000baseT_Full);
868 		phylink_set(mask, 1000baseX_Full);
869 	} else if (priv->plat->has_xgmac) {
870 		if (!max_speed || (max_speed >= 2500)) {
871 			phylink_set(mac_supported, 2500baseT_Full);
872 			phylink_set(mac_supported, 2500baseX_Full);
873 		}
874 		if (!max_speed || (max_speed >= 5000)) {
875 			phylink_set(mac_supported, 5000baseT_Full);
876 		}
877 		if (!max_speed || (max_speed >= 10000)) {
878 			phylink_set(mac_supported, 10000baseSR_Full);
879 			phylink_set(mac_supported, 10000baseLR_Full);
880 			phylink_set(mac_supported, 10000baseER_Full);
881 			phylink_set(mac_supported, 10000baseLRM_Full);
882 			phylink_set(mac_supported, 10000baseT_Full);
883 			phylink_set(mac_supported, 10000baseKX4_Full);
884 			phylink_set(mac_supported, 10000baseKR_Full);
885 		}
886 		if (!max_speed || (max_speed >= 25000)) {
887 			phylink_set(mac_supported, 25000baseCR_Full);
888 			phylink_set(mac_supported, 25000baseKR_Full);
889 			phylink_set(mac_supported, 25000baseSR_Full);
890 		}
891 		if (!max_speed || (max_speed >= 40000)) {
892 			phylink_set(mac_supported, 40000baseKR4_Full);
893 			phylink_set(mac_supported, 40000baseCR4_Full);
894 			phylink_set(mac_supported, 40000baseSR4_Full);
895 			phylink_set(mac_supported, 40000baseLR4_Full);
896 		}
897 		if (!max_speed || (max_speed >= 50000)) {
898 			phylink_set(mac_supported, 50000baseCR2_Full);
899 			phylink_set(mac_supported, 50000baseKR2_Full);
900 			phylink_set(mac_supported, 50000baseSR2_Full);
901 			phylink_set(mac_supported, 50000baseKR_Full);
902 			phylink_set(mac_supported, 50000baseSR_Full);
903 			phylink_set(mac_supported, 50000baseCR_Full);
904 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
905 			phylink_set(mac_supported, 50000baseDR_Full);
906 		}
907 		if (!max_speed || (max_speed >= 100000)) {
908 			phylink_set(mac_supported, 100000baseKR4_Full);
909 			phylink_set(mac_supported, 100000baseSR4_Full);
910 			phylink_set(mac_supported, 100000baseCR4_Full);
911 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
912 			phylink_set(mac_supported, 100000baseKR2_Full);
913 			phylink_set(mac_supported, 100000baseSR2_Full);
914 			phylink_set(mac_supported, 100000baseCR2_Full);
915 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
916 			phylink_set(mac_supported, 100000baseDR2_Full);
917 		}
918 	}
919 
920 	/* Half-Duplex can only work with single queue */
921 	if (tx_cnt > 1) {
922 		phylink_set(mask, 10baseT_Half);
923 		phylink_set(mask, 100baseT_Half);
924 		phylink_set(mask, 1000baseT_Half);
925 	}
926 
927 	linkmode_and(supported, supported, mac_supported);
928 	linkmode_andnot(supported, supported, mask);
929 
930 	linkmode_and(state->advertising, state->advertising, mac_supported);
931 	linkmode_andnot(state->advertising, state->advertising, mask);
932 
933 	/* If PCS is supported, check which modes it supports. */
934 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
935 }
936 
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)937 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
938 				     struct phylink_link_state *state)
939 {
940 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
941 
942 	state->link = 0;
943 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
944 }
945 
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
950 
951 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
952 }
953 
stmmac_mac_an_restart(struct phylink_config * config)954 static void stmmac_mac_an_restart(struct phylink_config *config)
955 {
956 	/* Not Supported */
957 }
958 
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)959 static void stmmac_mac_link_down(struct phylink_config *config,
960 				 unsigned int mode, phy_interface_t interface)
961 {
962 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
963 
964 	stmmac_mac_set(priv, priv->ioaddr, false);
965 	priv->eee_active = false;
966 	priv->tx_lpi_enabled = false;
967 	stmmac_eee_init(priv);
968 	stmmac_set_eee_pls(priv, priv->hw, false);
969 }
970 
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)971 static void stmmac_mac_link_up(struct phylink_config *config,
972 			       struct phy_device *phy,
973 			       unsigned int mode, phy_interface_t interface,
974 			       int speed, int duplex,
975 			       bool tx_pause, bool rx_pause)
976 {
977 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
978 	u32 ctrl;
979 
980 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
981 
982 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
983 	ctrl &= ~priv->hw->link.speed_mask;
984 
985 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
986 		switch (speed) {
987 		case SPEED_10000:
988 			ctrl |= priv->hw->link.xgmii.speed10000;
989 			break;
990 		case SPEED_5000:
991 			ctrl |= priv->hw->link.xgmii.speed5000;
992 			break;
993 		case SPEED_2500:
994 			ctrl |= priv->hw->link.xgmii.speed2500;
995 			break;
996 		default:
997 			return;
998 		}
999 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1000 		switch (speed) {
1001 		case SPEED_100000:
1002 			ctrl |= priv->hw->link.xlgmii.speed100000;
1003 			break;
1004 		case SPEED_50000:
1005 			ctrl |= priv->hw->link.xlgmii.speed50000;
1006 			break;
1007 		case SPEED_40000:
1008 			ctrl |= priv->hw->link.xlgmii.speed40000;
1009 			break;
1010 		case SPEED_25000:
1011 			ctrl |= priv->hw->link.xlgmii.speed25000;
1012 			break;
1013 		case SPEED_10000:
1014 			ctrl |= priv->hw->link.xgmii.speed10000;
1015 			break;
1016 		case SPEED_2500:
1017 			ctrl |= priv->hw->link.speed2500;
1018 			break;
1019 		case SPEED_1000:
1020 			ctrl |= priv->hw->link.speed1000;
1021 			break;
1022 		default:
1023 			return;
1024 		}
1025 	} else {
1026 		switch (speed) {
1027 		case SPEED_2500:
1028 			ctrl |= priv->hw->link.speed2500;
1029 			break;
1030 		case SPEED_1000:
1031 			ctrl |= priv->hw->link.speed1000;
1032 			break;
1033 		case SPEED_100:
1034 			ctrl |= priv->hw->link.speed100;
1035 			break;
1036 		case SPEED_10:
1037 			ctrl |= priv->hw->link.speed10;
1038 			break;
1039 		default:
1040 			return;
1041 		}
1042 	}
1043 
1044 	priv->speed = speed;
1045 
1046 	if (priv->plat->fix_mac_speed)
1047 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1048 
1049 	if (!duplex)
1050 		ctrl &= ~priv->hw->link.duplex;
1051 	else
1052 		ctrl |= priv->hw->link.duplex;
1053 
1054 	/* Flow Control operation */
1055 	if (tx_pause && rx_pause)
1056 		stmmac_mac_flow_ctrl(priv, duplex);
1057 
1058 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1059 
1060 	stmmac_mac_set(priv, priv->ioaddr, true);
1061 	if (phy && priv->dma_cap.eee) {
1062 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1063 		priv->eee_enabled = stmmac_eee_init(priv);
1064 		priv->tx_lpi_enabled = priv->eee_enabled;
1065 		stmmac_set_eee_pls(priv, priv->hw, true);
1066 	}
1067 }
1068 
1069 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1070 	.validate = stmmac_validate,
1071 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1072 	.mac_config = stmmac_mac_config,
1073 	.mac_an_restart = stmmac_mac_an_restart,
1074 	.mac_link_down = stmmac_mac_link_down,
1075 	.mac_link_up = stmmac_mac_link_up,
1076 };
1077 
1078 /**
1079  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1080  * @priv: driver private structure
1081  * Description: this is to verify if the HW supports the PCS.
1082  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1083  * configured for the TBI, RTBI, or SGMII PHY interface.
1084  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1085 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1086 {
1087 	int interface = priv->plat->interface;
1088 
1089 	if (priv->dma_cap.pcs) {
1090 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1091 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1092 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1093 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1094 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1095 			priv->hw->pcs = STMMAC_PCS_RGMII;
1096 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1097 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1098 			priv->hw->pcs = STMMAC_PCS_SGMII;
1099 		}
1100 	}
1101 }
1102 
1103 /**
1104  * stmmac_init_phy - PHY initialization
1105  * @dev: net device structure
1106  * Description: it initializes the driver's PHY state, and attaches the PHY
1107  * to the mac driver.
1108  *  Return value:
1109  *  0 on success
1110  */
stmmac_init_phy(struct net_device * dev)1111 static int stmmac_init_phy(struct net_device *dev)
1112 {
1113 	struct stmmac_priv *priv = netdev_priv(dev);
1114 	struct device_node *node;
1115 	int ret;
1116 
1117 	node = priv->plat->phylink_node;
1118 
1119 	if (node)
1120 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1121 
1122 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1123 	 * manually parse it
1124 	 */
1125 	if (!node || ret) {
1126 		int addr = priv->plat->phy_addr;
1127 		struct phy_device *phydev;
1128 
1129 		phydev = mdiobus_get_phy(priv->mii, addr);
1130 		if (!phydev) {
1131 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1132 			return -ENODEV;
1133 		}
1134 
1135 		ret = phylink_connect_phy(priv->phylink, phydev);
1136 	}
1137 
1138 	if (!priv->plat->pmt) {
1139 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1140 
1141 		phylink_ethtool_get_wol(priv->phylink, &wol);
1142 		device_set_wakeup_capable(priv->device, !!wol.supported);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
stmmac_phy_setup(struct stmmac_priv * priv)1148 static int stmmac_phy_setup(struct stmmac_priv *priv)
1149 {
1150 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1151 	int mode = priv->plat->phy_interface;
1152 	struct phylink *phylink;
1153 
1154 	priv->phylink_config.dev = &priv->dev->dev;
1155 	priv->phylink_config.type = PHYLINK_NETDEV;
1156 	priv->phylink_config.pcs_poll = true;
1157 
1158 	if (!fwnode)
1159 		fwnode = dev_fwnode(priv->device);
1160 
1161 	phylink = phylink_create(&priv->phylink_config, fwnode,
1162 				 mode, &stmmac_phylink_mac_ops);
1163 	if (IS_ERR(phylink))
1164 		return PTR_ERR(phylink);
1165 
1166 	priv->phylink = phylink;
1167 	return 0;
1168 }
1169 
stmmac_display_rx_rings(struct stmmac_priv * priv)1170 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1171 {
1172 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1173 	unsigned int desc_size;
1174 	void *head_rx;
1175 	u32 queue;
1176 
1177 	/* Display RX rings */
1178 	for (queue = 0; queue < rx_cnt; queue++) {
1179 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1180 
1181 		pr_info("\tRX Queue %u rings\n", queue);
1182 
1183 		if (priv->extend_desc) {
1184 			head_rx = (void *)rx_q->dma_erx;
1185 			desc_size = sizeof(struct dma_extended_desc);
1186 		} else {
1187 			head_rx = (void *)rx_q->dma_rx;
1188 			desc_size = sizeof(struct dma_desc);
1189 		}
1190 
1191 		/* Display RX ring */
1192 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1193 				    rx_q->dma_rx_phy, desc_size);
1194 	}
1195 }
1196 
stmmac_display_tx_rings(struct stmmac_priv * priv)1197 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1198 {
1199 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1200 	unsigned int desc_size;
1201 	void *head_tx;
1202 	u32 queue;
1203 
1204 	/* Display TX rings */
1205 	for (queue = 0; queue < tx_cnt; queue++) {
1206 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1207 
1208 		pr_info("\tTX Queue %d rings\n", queue);
1209 
1210 		if (priv->extend_desc) {
1211 			head_tx = (void *)tx_q->dma_etx;
1212 			desc_size = sizeof(struct dma_extended_desc);
1213 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1214 			head_tx = (void *)tx_q->dma_entx;
1215 			desc_size = sizeof(struct dma_edesc);
1216 		} else {
1217 			head_tx = (void *)tx_q->dma_tx;
1218 			desc_size = sizeof(struct dma_desc);
1219 		}
1220 
1221 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1222 				    tx_q->dma_tx_phy, desc_size);
1223 	}
1224 }
1225 
stmmac_display_rings(struct stmmac_priv * priv)1226 static void stmmac_display_rings(struct stmmac_priv *priv)
1227 {
1228 	/* Display RX ring */
1229 	stmmac_display_rx_rings(priv);
1230 
1231 	/* Display TX ring */
1232 	stmmac_display_tx_rings(priv);
1233 }
1234 
stmmac_set_bfsize(int mtu,int bufsize)1235 static int stmmac_set_bfsize(int mtu, int bufsize)
1236 {
1237 	int ret = bufsize;
1238 
1239 	if (mtu >= BUF_SIZE_8KiB)
1240 		ret = BUF_SIZE_16KiB;
1241 	else if (mtu >= BUF_SIZE_4KiB)
1242 		ret = BUF_SIZE_8KiB;
1243 	else if (mtu >= BUF_SIZE_2KiB)
1244 		ret = BUF_SIZE_4KiB;
1245 	else if (mtu > DEFAULT_BUFSIZE)
1246 		ret = BUF_SIZE_2KiB;
1247 	else
1248 		ret = DEFAULT_BUFSIZE;
1249 
1250 	return ret;
1251 }
1252 
1253 /**
1254  * stmmac_clear_rx_descriptors - clear RX descriptors
1255  * @priv: driver private structure
1256  * @queue: RX queue index
1257  * Description: this function is called to clear the RX descriptors
1258  * in case of both basic and extended descriptors are used.
1259  */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1260 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1261 {
1262 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1263 	int i;
1264 
1265 	/* Clear the RX descriptors */
1266 	for (i = 0; i < priv->dma_rx_size; i++)
1267 		if (priv->extend_desc)
1268 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1269 					priv->use_riwt, priv->mode,
1270 					(i == priv->dma_rx_size - 1),
1271 					priv->dma_buf_sz);
1272 		else
1273 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1274 					priv->use_riwt, priv->mode,
1275 					(i == priv->dma_rx_size - 1),
1276 					priv->dma_buf_sz);
1277 }
1278 
1279 /**
1280  * stmmac_clear_tx_descriptors - clear tx descriptors
1281  * @priv: driver private structure
1282  * @queue: TX queue index.
1283  * Description: this function is called to clear the TX descriptors
1284  * in case of both basic and extended descriptors are used.
1285  */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1286 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1287 {
1288 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1289 	int i;
1290 
1291 	/* Clear the TX descriptors */
1292 	for (i = 0; i < priv->dma_tx_size; i++) {
1293 		int last = (i == (priv->dma_tx_size - 1));
1294 		struct dma_desc *p;
1295 
1296 		if (priv->extend_desc)
1297 			p = &tx_q->dma_etx[i].basic;
1298 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1299 			p = &tx_q->dma_entx[i].basic;
1300 		else
1301 			p = &tx_q->dma_tx[i];
1302 
1303 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1304 	}
1305 }
1306 
1307 /**
1308  * stmmac_clear_descriptors - clear descriptors
1309  * @priv: driver private structure
1310  * Description: this function is called to clear the TX and RX descriptors
1311  * in case of both basic and extended descriptors are used.
1312  */
stmmac_clear_descriptors(struct stmmac_priv * priv)1313 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1314 {
1315 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1316 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1317 	u32 queue;
1318 
1319 	/* Clear the RX descriptors */
1320 	for (queue = 0; queue < rx_queue_cnt; queue++)
1321 		stmmac_clear_rx_descriptors(priv, queue);
1322 
1323 	/* Clear the TX descriptors */
1324 	for (queue = 0; queue < tx_queue_cnt; queue++)
1325 		stmmac_clear_tx_descriptors(priv, queue);
1326 }
1327 
1328 /**
1329  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1330  * @priv: driver private structure
1331  * @p: descriptor pointer
1332  * @i: descriptor index
1333  * @flags: gfp flag
1334  * @queue: RX queue index
1335  * Description: this function is called to allocate a receive buffer, perform
1336  * the DMA mapping and init the descriptor.
1337  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1338 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1339 				  int i, gfp_t flags, u32 queue)
1340 {
1341 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1342 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1343 
1344 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1345 	if (!buf->page)
1346 		return -ENOMEM;
1347 
1348 	if (priv->sph) {
1349 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1350 		if (!buf->sec_page)
1351 			return -ENOMEM;
1352 
1353 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1354 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1355 	} else {
1356 		buf->sec_page = NULL;
1357 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1358 	}
1359 
1360 	buf->addr = page_pool_get_dma_addr(buf->page);
1361 	stmmac_set_desc_addr(priv, p, buf->addr);
1362 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1363 		stmmac_init_desc3(priv, p);
1364 
1365 	return 0;
1366 }
1367 
1368 /**
1369  * stmmac_free_rx_buffer - free RX dma buffers
1370  * @priv: private structure
1371  * @queue: RX queue index
1372  * @i: buffer index.
1373  */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1374 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1375 {
1376 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1377 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1378 
1379 	if (buf->page)
1380 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1381 	buf->page = NULL;
1382 
1383 	if (buf->sec_page)
1384 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1385 	buf->sec_page = NULL;
1386 }
1387 
1388 /**
1389  * stmmac_free_tx_buffer - free RX dma buffers
1390  * @priv: private structure
1391  * @queue: RX queue index
1392  * @i: buffer index.
1393  */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1394 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1395 {
1396 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1397 
1398 	if (tx_q->tx_skbuff_dma[i].buf) {
1399 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1400 			dma_unmap_page(priv->device,
1401 				       tx_q->tx_skbuff_dma[i].buf,
1402 				       tx_q->tx_skbuff_dma[i].len,
1403 				       DMA_TO_DEVICE);
1404 		else
1405 			dma_unmap_single(priv->device,
1406 					 tx_q->tx_skbuff_dma[i].buf,
1407 					 tx_q->tx_skbuff_dma[i].len,
1408 					 DMA_TO_DEVICE);
1409 	}
1410 
1411 	if (tx_q->tx_skbuff[i]) {
1412 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1413 		tx_q->tx_skbuff[i] = NULL;
1414 		tx_q->tx_skbuff_dma[i].buf = 0;
1415 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1416 	}
1417 }
1418 
1419 /**
1420  * init_dma_rx_desc_rings - init the RX descriptor rings
1421  * @dev: net device structure
1422  * @flags: gfp flag.
1423  * Description: this function initializes the DMA RX descriptors
1424  * and allocates the socket buffers. It supports the chained and ring
1425  * modes.
1426  */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1427 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1428 {
1429 	struct stmmac_priv *priv = netdev_priv(dev);
1430 	u32 rx_count = priv->plat->rx_queues_to_use;
1431 	int ret = -ENOMEM;
1432 	int queue;
1433 	int i;
1434 
1435 	/* RX INITIALIZATION */
1436 	netif_dbg(priv, probe, priv->dev,
1437 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1438 
1439 	for (queue = 0; queue < rx_count; queue++) {
1440 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1441 
1442 		netif_dbg(priv, probe, priv->dev,
1443 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1444 			  (u32)rx_q->dma_rx_phy);
1445 
1446 		stmmac_clear_rx_descriptors(priv, queue);
1447 
1448 		for (i = 0; i < priv->dma_rx_size; i++) {
1449 			struct dma_desc *p;
1450 
1451 			if (priv->extend_desc)
1452 				p = &((rx_q->dma_erx + i)->basic);
1453 			else
1454 				p = rx_q->dma_rx + i;
1455 
1456 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1457 						     queue);
1458 			if (ret)
1459 				goto err_init_rx_buffers;
1460 		}
1461 
1462 		rx_q->cur_rx = 0;
1463 		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1464 
1465 		/* Setup the chained descriptor addresses */
1466 		if (priv->mode == STMMAC_CHAIN_MODE) {
1467 			if (priv->extend_desc)
1468 				stmmac_mode_init(priv, rx_q->dma_erx,
1469 						 rx_q->dma_rx_phy,
1470 						 priv->dma_rx_size, 1);
1471 			else
1472 				stmmac_mode_init(priv, rx_q->dma_rx,
1473 						 rx_q->dma_rx_phy,
1474 						 priv->dma_rx_size, 0);
1475 		}
1476 	}
1477 
1478 	return 0;
1479 
1480 err_init_rx_buffers:
1481 	while (queue >= 0) {
1482 		while (--i >= 0)
1483 			stmmac_free_rx_buffer(priv, queue, i);
1484 
1485 		if (queue == 0)
1486 			break;
1487 
1488 		i = priv->dma_rx_size;
1489 		queue--;
1490 	}
1491 
1492 	return ret;
1493 }
1494 
1495 /**
1496  * init_dma_tx_desc_rings - init the TX descriptor rings
1497  * @dev: net device structure.
1498  * Description: this function initializes the DMA TX descriptors
1499  * and allocates the socket buffers. It supports the chained and ring
1500  * modes.
1501  */
init_dma_tx_desc_rings(struct net_device * dev)1502 static int init_dma_tx_desc_rings(struct net_device *dev)
1503 {
1504 	struct stmmac_priv *priv = netdev_priv(dev);
1505 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1506 	u32 queue;
1507 	int i;
1508 
1509 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1510 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1511 
1512 		netif_dbg(priv, probe, priv->dev,
1513 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1514 			 (u32)tx_q->dma_tx_phy);
1515 
1516 		/* Setup the chained descriptor addresses */
1517 		if (priv->mode == STMMAC_CHAIN_MODE) {
1518 			if (priv->extend_desc)
1519 				stmmac_mode_init(priv, tx_q->dma_etx,
1520 						 tx_q->dma_tx_phy,
1521 						 priv->dma_tx_size, 1);
1522 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1523 				stmmac_mode_init(priv, tx_q->dma_tx,
1524 						 tx_q->dma_tx_phy,
1525 						 priv->dma_tx_size, 0);
1526 		}
1527 
1528 		for (i = 0; i < priv->dma_tx_size; i++) {
1529 			struct dma_desc *p;
1530 			if (priv->extend_desc)
1531 				p = &((tx_q->dma_etx + i)->basic);
1532 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1533 				p = &((tx_q->dma_entx + i)->basic);
1534 			else
1535 				p = tx_q->dma_tx + i;
1536 
1537 			stmmac_clear_desc(priv, p);
1538 
1539 			tx_q->tx_skbuff_dma[i].buf = 0;
1540 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1541 			tx_q->tx_skbuff_dma[i].len = 0;
1542 			tx_q->tx_skbuff_dma[i].last_segment = false;
1543 			tx_q->tx_skbuff[i] = NULL;
1544 		}
1545 
1546 		tx_q->dirty_tx = 0;
1547 		tx_q->cur_tx = 0;
1548 		tx_q->mss = 0;
1549 
1550 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  * init_dma_desc_rings - init the RX/TX descriptor rings
1558  * @dev: net device structure
1559  * @flags: gfp flag.
1560  * Description: this function initializes the DMA RX/TX descriptors
1561  * and allocates the socket buffers. It supports the chained and ring
1562  * modes.
1563  */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1564 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1565 {
1566 	struct stmmac_priv *priv = netdev_priv(dev);
1567 	int ret;
1568 
1569 	ret = init_dma_rx_desc_rings(dev, flags);
1570 	if (ret)
1571 		return ret;
1572 
1573 	ret = init_dma_tx_desc_rings(dev);
1574 
1575 	stmmac_clear_descriptors(priv);
1576 
1577 	if (netif_msg_hw(priv))
1578 		stmmac_display_rings(priv);
1579 
1580 	return ret;
1581 }
1582 
1583 /**
1584  * dma_free_rx_skbufs - free RX dma buffers
1585  * @priv: private structure
1586  * @queue: RX queue index
1587  */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1588 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1589 {
1590 	int i;
1591 
1592 	for (i = 0; i < priv->dma_rx_size; i++)
1593 		stmmac_free_rx_buffer(priv, queue, i);
1594 }
1595 
1596 /**
1597  * dma_free_tx_skbufs - free TX dma buffers
1598  * @priv: private structure
1599  * @queue: TX queue index
1600  */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1601 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1602 {
1603 	int i;
1604 
1605 	for (i = 0; i < priv->dma_tx_size; i++)
1606 		stmmac_free_tx_buffer(priv, queue, i);
1607 }
1608 
1609 /**
1610  * stmmac_free_tx_skbufs - free TX skb buffers
1611  * @priv: private structure
1612  */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1613 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1614 {
1615 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1616 	u32 queue;
1617 
1618 	for (queue = 0; queue < tx_queue_cnt; queue++)
1619 		dma_free_tx_skbufs(priv, queue);
1620 }
1621 
1622 /**
1623  * free_dma_rx_desc_resources - free RX dma desc resources
1624  * @priv: private structure
1625  */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1626 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1627 {
1628 	u32 rx_count = priv->plat->rx_queues_to_use;
1629 	u32 queue;
1630 
1631 	/* Free RX queue resources */
1632 	for (queue = 0; queue < rx_count; queue++) {
1633 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1634 
1635 		/* Release the DMA RX socket buffers */
1636 		dma_free_rx_skbufs(priv, queue);
1637 
1638 		/* Free DMA regions of consistent memory previously allocated */
1639 		if (!priv->extend_desc)
1640 			dma_free_coherent(priv->device, priv->dma_rx_size *
1641 					  sizeof(struct dma_desc),
1642 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1643 		else
1644 			dma_free_coherent(priv->device, priv->dma_rx_size *
1645 					  sizeof(struct dma_extended_desc),
1646 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1647 
1648 		kfree(rx_q->buf_pool);
1649 		if (rx_q->page_pool)
1650 			page_pool_destroy(rx_q->page_pool);
1651 	}
1652 }
1653 
1654 /**
1655  * free_dma_tx_desc_resources - free TX dma desc resources
1656  * @priv: private structure
1657  */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1658 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1659 {
1660 	u32 tx_count = priv->plat->tx_queues_to_use;
1661 	u32 queue;
1662 
1663 	/* Free TX queue resources */
1664 	for (queue = 0; queue < tx_count; queue++) {
1665 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1666 		size_t size;
1667 		void *addr;
1668 
1669 		/* Release the DMA TX socket buffers */
1670 		dma_free_tx_skbufs(priv, queue);
1671 
1672 		if (priv->extend_desc) {
1673 			size = sizeof(struct dma_extended_desc);
1674 			addr = tx_q->dma_etx;
1675 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1676 			size = sizeof(struct dma_edesc);
1677 			addr = tx_q->dma_entx;
1678 		} else {
1679 			size = sizeof(struct dma_desc);
1680 			addr = tx_q->dma_tx;
1681 		}
1682 
1683 		size *= priv->dma_tx_size;
1684 
1685 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1686 
1687 		kfree(tx_q->tx_skbuff_dma);
1688 		kfree(tx_q->tx_skbuff);
1689 	}
1690 }
1691 
1692 /**
1693  * alloc_dma_rx_desc_resources - alloc RX resources.
1694  * @priv: private structure
1695  * Description: according to which descriptor can be used (extend or basic)
1696  * this function allocates the resources for TX and RX paths. In case of
1697  * reception, for example, it pre-allocated the RX socket buffer in order to
1698  * allow zero-copy mechanism.
1699  */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1700 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1701 {
1702 	u32 rx_count = priv->plat->rx_queues_to_use;
1703 	int ret = -ENOMEM;
1704 	u32 queue;
1705 
1706 	/* RX queues buffers and DMA */
1707 	for (queue = 0; queue < rx_count; queue++) {
1708 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1709 		struct page_pool_params pp_params = { 0 };
1710 		unsigned int num_pages;
1711 
1712 		rx_q->queue_index = queue;
1713 		rx_q->priv_data = priv;
1714 
1715 		pp_params.flags = PP_FLAG_DMA_MAP;
1716 		pp_params.pool_size = priv->dma_rx_size;
1717 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1718 		pp_params.order = ilog2(num_pages);
1719 		pp_params.nid = dev_to_node(priv->device);
1720 		pp_params.dev = priv->device;
1721 		pp_params.dma_dir = DMA_FROM_DEVICE;
1722 
1723 		rx_q->page_pool = page_pool_create(&pp_params);
1724 		if (IS_ERR(rx_q->page_pool)) {
1725 			ret = PTR_ERR(rx_q->page_pool);
1726 			rx_q->page_pool = NULL;
1727 			goto err_dma;
1728 		}
1729 
1730 		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1731 					 sizeof(*rx_q->buf_pool),
1732 					 GFP_KERNEL);
1733 		if (!rx_q->buf_pool)
1734 			goto err_dma;
1735 
1736 		if (priv->extend_desc) {
1737 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1738 							   priv->dma_rx_size *
1739 							   sizeof(struct dma_extended_desc),
1740 							   &rx_q->dma_rx_phy,
1741 							   GFP_KERNEL);
1742 			if (!rx_q->dma_erx)
1743 				goto err_dma;
1744 
1745 		} else {
1746 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1747 							  priv->dma_rx_size *
1748 							  sizeof(struct dma_desc),
1749 							  &rx_q->dma_rx_phy,
1750 							  GFP_KERNEL);
1751 			if (!rx_q->dma_rx)
1752 				goto err_dma;
1753 		}
1754 	}
1755 
1756 	return 0;
1757 
1758 err_dma:
1759 	free_dma_rx_desc_resources(priv);
1760 
1761 	return ret;
1762 }
1763 
1764 /**
1765  * alloc_dma_tx_desc_resources - alloc TX resources.
1766  * @priv: private structure
1767  * Description: according to which descriptor can be used (extend or basic)
1768  * this function allocates the resources for TX and RX paths. In case of
1769  * reception, for example, it pre-allocated the RX socket buffer in order to
1770  * allow zero-copy mechanism.
1771  */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1772 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1773 {
1774 	u32 tx_count = priv->plat->tx_queues_to_use;
1775 	int ret = -ENOMEM;
1776 	u32 queue;
1777 
1778 	/* TX queues buffers and DMA */
1779 	for (queue = 0; queue < tx_count; queue++) {
1780 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1781 		size_t size;
1782 		void *addr;
1783 
1784 		tx_q->queue_index = queue;
1785 		tx_q->priv_data = priv;
1786 
1787 		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1788 					      sizeof(*tx_q->tx_skbuff_dma),
1789 					      GFP_KERNEL);
1790 		if (!tx_q->tx_skbuff_dma)
1791 			goto err_dma;
1792 
1793 		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1794 					  sizeof(struct sk_buff *),
1795 					  GFP_KERNEL);
1796 		if (!tx_q->tx_skbuff)
1797 			goto err_dma;
1798 
1799 		if (priv->extend_desc)
1800 			size = sizeof(struct dma_extended_desc);
1801 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1802 			size = sizeof(struct dma_edesc);
1803 		else
1804 			size = sizeof(struct dma_desc);
1805 
1806 		size *= priv->dma_tx_size;
1807 
1808 		addr = dma_alloc_coherent(priv->device, size,
1809 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1810 		if (!addr)
1811 			goto err_dma;
1812 
1813 		if (priv->extend_desc)
1814 			tx_q->dma_etx = addr;
1815 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1816 			tx_q->dma_entx = addr;
1817 		else
1818 			tx_q->dma_tx = addr;
1819 	}
1820 
1821 	return 0;
1822 
1823 err_dma:
1824 	free_dma_tx_desc_resources(priv);
1825 	return ret;
1826 }
1827 
1828 /**
1829  * alloc_dma_desc_resources - alloc TX/RX resources.
1830  * @priv: private structure
1831  * Description: according to which descriptor can be used (extend or basic)
1832  * this function allocates the resources for TX and RX paths. In case of
1833  * reception, for example, it pre-allocated the RX socket buffer in order to
1834  * allow zero-copy mechanism.
1835  */
alloc_dma_desc_resources(struct stmmac_priv * priv)1836 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1837 {
1838 	/* RX Allocation */
1839 	int ret = alloc_dma_rx_desc_resources(priv);
1840 
1841 	if (ret)
1842 		return ret;
1843 
1844 	ret = alloc_dma_tx_desc_resources(priv);
1845 
1846 	return ret;
1847 }
1848 
1849 /**
1850  * free_dma_desc_resources - free dma desc resources
1851  * @priv: private structure
1852  */
free_dma_desc_resources(struct stmmac_priv * priv)1853 static void free_dma_desc_resources(struct stmmac_priv *priv)
1854 {
1855 	/* Release the DMA RX socket buffers */
1856 	free_dma_rx_desc_resources(priv);
1857 
1858 	/* Release the DMA TX socket buffers */
1859 	free_dma_tx_desc_resources(priv);
1860 }
1861 
1862 /**
1863  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1864  *  @priv: driver private structure
1865  *  Description: It is used for enabling the rx queues in the MAC
1866  */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1867 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1868 {
1869 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1870 	int queue;
1871 	u8 mode;
1872 
1873 	for (queue = 0; queue < rx_queues_count; queue++) {
1874 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1875 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1876 	}
1877 }
1878 
1879 /**
1880  * stmmac_start_rx_dma - start RX DMA channel
1881  * @priv: driver private structure
1882  * @chan: RX channel index
1883  * Description:
1884  * This starts a RX DMA channel
1885  */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1886 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1887 {
1888 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1889 	stmmac_start_rx(priv, priv->ioaddr, chan);
1890 }
1891 
1892 /**
1893  * stmmac_start_tx_dma - start TX DMA channel
1894  * @priv: driver private structure
1895  * @chan: TX channel index
1896  * Description:
1897  * This starts a TX DMA channel
1898  */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1899 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1900 {
1901 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1902 	stmmac_start_tx(priv, priv->ioaddr, chan);
1903 }
1904 
1905 /**
1906  * stmmac_stop_rx_dma - stop RX DMA channel
1907  * @priv: driver private structure
1908  * @chan: RX channel index
1909  * Description:
1910  * This stops a RX DMA channel
1911  */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1912 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1913 {
1914 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1915 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1916 }
1917 
1918 /**
1919  * stmmac_stop_tx_dma - stop TX DMA channel
1920  * @priv: driver private structure
1921  * @chan: TX channel index
1922  * Description:
1923  * This stops a TX DMA channel
1924  */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1925 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1926 {
1927 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1928 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1929 }
1930 
1931 /**
1932  * stmmac_start_all_dma - start all RX and TX DMA channels
1933  * @priv: driver private structure
1934  * Description:
1935  * This starts all the RX and TX DMA channels
1936  */
stmmac_start_all_dma(struct stmmac_priv * priv)1937 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1938 {
1939 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1940 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1941 	u32 chan = 0;
1942 
1943 	for (chan = 0; chan < rx_channels_count; chan++)
1944 		stmmac_start_rx_dma(priv, chan);
1945 
1946 	for (chan = 0; chan < tx_channels_count; chan++)
1947 		stmmac_start_tx_dma(priv, chan);
1948 }
1949 
1950 /**
1951  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1952  * @priv: driver private structure
1953  * Description:
1954  * This stops the RX and TX DMA channels
1955  */
stmmac_stop_all_dma(struct stmmac_priv * priv)1956 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1957 {
1958 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1959 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1960 	u32 chan = 0;
1961 
1962 	for (chan = 0; chan < rx_channels_count; chan++)
1963 		stmmac_stop_rx_dma(priv, chan);
1964 
1965 	for (chan = 0; chan < tx_channels_count; chan++)
1966 		stmmac_stop_tx_dma(priv, chan);
1967 }
1968 
1969 /**
1970  *  stmmac_dma_operation_mode - HW DMA operation mode
1971  *  @priv: driver private structure
1972  *  Description: it is used for configuring the DMA operation mode register in
1973  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1974  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1975 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1976 {
1977 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1978 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1979 	int rxfifosz = priv->plat->rx_fifo_size;
1980 	int txfifosz = priv->plat->tx_fifo_size;
1981 	u32 txmode = 0;
1982 	u32 rxmode = 0;
1983 	u32 chan = 0;
1984 	u8 qmode = 0;
1985 
1986 	if (rxfifosz == 0)
1987 		rxfifosz = priv->dma_cap.rx_fifo_size;
1988 	if (txfifosz == 0)
1989 		txfifosz = priv->dma_cap.tx_fifo_size;
1990 
1991 	/* Adjust for real per queue fifo size */
1992 	rxfifosz /= rx_channels_count;
1993 	txfifosz /= tx_channels_count;
1994 
1995 	if (priv->plat->force_thresh_dma_mode) {
1996 		txmode = tc;
1997 		rxmode = tc;
1998 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1999 		/*
2000 		 * In case of GMAC, SF mode can be enabled
2001 		 * to perform the TX COE in HW. This depends on:
2002 		 * 1) TX COE if actually supported
2003 		 * 2) There is no bugged Jumbo frame support
2004 		 *    that needs to not insert csum in the TDES.
2005 		 */
2006 		txmode = SF_DMA_MODE;
2007 		rxmode = SF_DMA_MODE;
2008 		priv->xstats.threshold = SF_DMA_MODE;
2009 	} else {
2010 		txmode = tc;
2011 		rxmode = SF_DMA_MODE;
2012 	}
2013 
2014 	/* configure all channels */
2015 	for (chan = 0; chan < rx_channels_count; chan++) {
2016 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2017 
2018 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2019 				rxfifosz, qmode);
2020 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2021 				chan);
2022 	}
2023 
2024 	for (chan = 0; chan < tx_channels_count; chan++) {
2025 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2026 
2027 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2028 				txfifosz, qmode);
2029 	}
2030 }
2031 
2032 /**
2033  * stmmac_tx_clean - to manage the transmission completion
2034  * @priv: driver private structure
2035  * @budget: napi budget limiting this functions packet handling
2036  * @queue: TX queue index
2037  * Description: it reclaims the transmit resources after transmission completes.
2038  */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2039 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2040 {
2041 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2042 	unsigned int bytes_compl = 0, pkts_compl = 0;
2043 	unsigned int entry, count = 0;
2044 
2045 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2046 
2047 	priv->xstats.tx_clean++;
2048 
2049 	entry = tx_q->dirty_tx;
2050 	while ((entry != tx_q->cur_tx) && (count < budget)) {
2051 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
2052 		struct dma_desc *p;
2053 		int status;
2054 
2055 		if (priv->extend_desc)
2056 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2057 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2058 			p = &tx_q->dma_entx[entry].basic;
2059 		else
2060 			p = tx_q->dma_tx + entry;
2061 
2062 		status = stmmac_tx_status(priv, &priv->dev->stats,
2063 				&priv->xstats, p, priv->ioaddr);
2064 		/* Check if the descriptor is owned by the DMA */
2065 		if (unlikely(status & tx_dma_own))
2066 			break;
2067 
2068 		count++;
2069 
2070 		/* Make sure descriptor fields are read after reading
2071 		 * the own bit.
2072 		 */
2073 		dma_rmb();
2074 
2075 		/* Just consider the last segment and ...*/
2076 		if (likely(!(status & tx_not_ls))) {
2077 			/* ... verify the status error condition */
2078 			if (unlikely(status & tx_err)) {
2079 				priv->dev->stats.tx_errors++;
2080 			} else {
2081 				priv->dev->stats.tx_packets++;
2082 				priv->xstats.tx_pkt_n++;
2083 			}
2084 			stmmac_get_tx_hwtstamp(priv, p, skb);
2085 		}
2086 
2087 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2088 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2089 				dma_unmap_page(priv->device,
2090 					       tx_q->tx_skbuff_dma[entry].buf,
2091 					       tx_q->tx_skbuff_dma[entry].len,
2092 					       DMA_TO_DEVICE);
2093 			else
2094 				dma_unmap_single(priv->device,
2095 						 tx_q->tx_skbuff_dma[entry].buf,
2096 						 tx_q->tx_skbuff_dma[entry].len,
2097 						 DMA_TO_DEVICE);
2098 			tx_q->tx_skbuff_dma[entry].buf = 0;
2099 			tx_q->tx_skbuff_dma[entry].len = 0;
2100 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2101 		}
2102 
2103 		stmmac_clean_desc3(priv, tx_q, p);
2104 
2105 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2106 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2107 
2108 		if (likely(skb != NULL)) {
2109 			pkts_compl++;
2110 			bytes_compl += skb->len;
2111 			dev_consume_skb_any(skb);
2112 			tx_q->tx_skbuff[entry] = NULL;
2113 		}
2114 
2115 		stmmac_release_tx_desc(priv, p, priv->mode);
2116 
2117 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2118 	}
2119 	tx_q->dirty_tx = entry;
2120 
2121 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2122 				  pkts_compl, bytes_compl);
2123 
2124 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2125 								queue))) &&
2126 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2127 
2128 		netif_dbg(priv, tx_done, priv->dev,
2129 			  "%s: restart transmit\n", __func__);
2130 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2131 	}
2132 
2133 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2134 		stmmac_enable_eee_mode(priv);
2135 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2136 	}
2137 
2138 	/* We still have pending packets, let's call for a new scheduling */
2139 	if (tx_q->dirty_tx != tx_q->cur_tx)
2140 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2141 
2142 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2143 
2144 	return count;
2145 }
2146 
2147 /**
2148  * stmmac_tx_err - to manage the tx error
2149  * @priv: driver private structure
2150  * @chan: channel index
2151  * Description: it cleans the descriptors and restarts the transmission
2152  * in case of transmission errors.
2153  */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2154 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2155 {
2156 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2157 
2158 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2159 
2160 	stmmac_stop_tx_dma(priv, chan);
2161 	dma_free_tx_skbufs(priv, chan);
2162 	stmmac_clear_tx_descriptors(priv, chan);
2163 	tx_q->dirty_tx = 0;
2164 	tx_q->cur_tx = 0;
2165 	tx_q->mss = 0;
2166 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2167 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2168 			    tx_q->dma_tx_phy, chan);
2169 	stmmac_start_tx_dma(priv, chan);
2170 
2171 	priv->dev->stats.tx_errors++;
2172 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2173 }
2174 
2175 /**
2176  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2177  *  @priv: driver private structure
2178  *  @txmode: TX operating mode
2179  *  @rxmode: RX operating mode
2180  *  @chan: channel index
2181  *  Description: it is used for configuring of the DMA operation mode in
2182  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2183  *  mode.
2184  */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2185 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2186 					  u32 rxmode, u32 chan)
2187 {
2188 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2189 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2190 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2191 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2192 	int rxfifosz = priv->plat->rx_fifo_size;
2193 	int txfifosz = priv->plat->tx_fifo_size;
2194 
2195 	if (rxfifosz == 0)
2196 		rxfifosz = priv->dma_cap.rx_fifo_size;
2197 	if (txfifosz == 0)
2198 		txfifosz = priv->dma_cap.tx_fifo_size;
2199 
2200 	/* Adjust for real per queue fifo size */
2201 	rxfifosz /= rx_channels_count;
2202 	txfifosz /= tx_channels_count;
2203 
2204 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2205 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2206 }
2207 
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2208 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2209 {
2210 	int ret;
2211 
2212 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2213 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2214 	if (ret && (ret != -EINVAL)) {
2215 		stmmac_global_err(priv);
2216 		return true;
2217 	}
2218 
2219 	return false;
2220 }
2221 
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2222 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2223 {
2224 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2225 						 &priv->xstats, chan);
2226 	struct stmmac_channel *ch = &priv->channel[chan];
2227 	unsigned long flags;
2228 
2229 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2230 		if (napi_schedule_prep(&ch->rx_napi)) {
2231 			spin_lock_irqsave(&ch->lock, flags);
2232 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2233 			spin_unlock_irqrestore(&ch->lock, flags);
2234 			__napi_schedule(&ch->rx_napi);
2235 		}
2236 	}
2237 
2238 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2239 		if (napi_schedule_prep(&ch->tx_napi)) {
2240 			spin_lock_irqsave(&ch->lock, flags);
2241 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2242 			spin_unlock_irqrestore(&ch->lock, flags);
2243 			__napi_schedule(&ch->tx_napi);
2244 		}
2245 	}
2246 
2247 	return status;
2248 }
2249 
2250 /**
2251  * stmmac_dma_interrupt - DMA ISR
2252  * @priv: driver private structure
2253  * Description: this is the DMA ISR. It is called by the main ISR.
2254  * It calls the dwmac dma routine and schedule poll method in case of some
2255  * work can be done.
2256  */
stmmac_dma_interrupt(struct stmmac_priv * priv)2257 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2258 {
2259 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2260 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2261 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2262 				tx_channel_count : rx_channel_count;
2263 	u32 chan;
2264 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2265 
2266 	/* Make sure we never check beyond our status buffer. */
2267 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2268 		channels_to_check = ARRAY_SIZE(status);
2269 
2270 	for (chan = 0; chan < channels_to_check; chan++)
2271 		status[chan] = stmmac_napi_check(priv, chan);
2272 
2273 	for (chan = 0; chan < tx_channel_count; chan++) {
2274 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2275 			/* Try to bump up the dma threshold on this failure */
2276 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2277 			    (tc <= 256)) {
2278 				tc += 64;
2279 				if (priv->plat->force_thresh_dma_mode)
2280 					stmmac_set_dma_operation_mode(priv,
2281 								      tc,
2282 								      tc,
2283 								      chan);
2284 				else
2285 					stmmac_set_dma_operation_mode(priv,
2286 								    tc,
2287 								    SF_DMA_MODE,
2288 								    chan);
2289 				priv->xstats.threshold = tc;
2290 			}
2291 		} else if (unlikely(status[chan] == tx_hard_error)) {
2292 			stmmac_tx_err(priv, chan);
2293 		}
2294 	}
2295 }
2296 
2297 /**
2298  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2299  * @priv: driver private structure
2300  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2301  */
stmmac_mmc_setup(struct stmmac_priv * priv)2302 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2303 {
2304 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2305 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2306 
2307 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2308 
2309 	if (priv->dma_cap.rmon) {
2310 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2311 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2312 	} else
2313 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2314 }
2315 
2316 /**
2317  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2318  * @priv: driver private structure
2319  * Description:
2320  *  new GMAC chip generations have a new register to indicate the
2321  *  presence of the optional feature/functions.
2322  *  This can be also used to override the value passed through the
2323  *  platform and necessary for old MAC10/100 and GMAC chips.
2324  */
stmmac_get_hw_features(struct stmmac_priv * priv)2325 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2326 {
2327 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2328 }
2329 
2330 /**
2331  * stmmac_check_ether_addr - check if the MAC addr is valid
2332  * @priv: driver private structure
2333  * Description:
2334  * it is to verify if the MAC address is valid, in case of failures it
2335  * generates a random MAC address
2336  */
stmmac_check_ether_addr(struct stmmac_priv * priv)2337 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2338 {
2339 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2340 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2341 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2342 			eth_hw_addr_random(priv->dev);
2343 		dev_info(priv->device, "device MAC address %pM\n",
2344 			 priv->dev->dev_addr);
2345 	}
2346 }
2347 
2348 /**
2349  * stmmac_init_dma_engine - DMA init.
2350  * @priv: driver private structure
2351  * Description:
2352  * It inits the DMA invoking the specific MAC/GMAC callback.
2353  * Some DMA parameters can be passed from the platform;
2354  * in case of these are not passed a default is kept for the MAC or GMAC.
2355  */
stmmac_init_dma_engine(struct stmmac_priv * priv)2356 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2357 {
2358 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2359 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2360 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2361 	struct stmmac_rx_queue *rx_q;
2362 	struct stmmac_tx_queue *tx_q;
2363 	u32 chan = 0;
2364 	int atds = 0;
2365 	int ret = 0;
2366 
2367 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2368 		dev_err(priv->device, "Invalid DMA configuration\n");
2369 		return -EINVAL;
2370 	}
2371 
2372 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2373 		atds = 1;
2374 
2375 	ret = stmmac_reset(priv, priv->ioaddr);
2376 	if (ret) {
2377 		dev_err(priv->device, "Failed to reset the dma\n");
2378 		return ret;
2379 	}
2380 
2381 	/* DMA Configuration */
2382 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2383 
2384 	if (priv->plat->axi)
2385 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2386 
2387 	/* DMA CSR Channel configuration */
2388 	for (chan = 0; chan < dma_csr_ch; chan++)
2389 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2390 
2391 	/* DMA RX Channel Configuration */
2392 	for (chan = 0; chan < rx_channels_count; chan++) {
2393 		rx_q = &priv->rx_queue[chan];
2394 
2395 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2396 				    rx_q->dma_rx_phy, chan);
2397 
2398 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2399 				     (priv->dma_rx_size *
2400 				      sizeof(struct dma_desc));
2401 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2402 				       rx_q->rx_tail_addr, chan);
2403 	}
2404 
2405 	/* DMA TX Channel Configuration */
2406 	for (chan = 0; chan < tx_channels_count; chan++) {
2407 		tx_q = &priv->tx_queue[chan];
2408 
2409 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2410 				    tx_q->dma_tx_phy, chan);
2411 
2412 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2413 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2414 				       tx_q->tx_tail_addr, chan);
2415 	}
2416 
2417 	return ret;
2418 }
2419 
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2420 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2421 {
2422 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2423 
2424 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2425 }
2426 
2427 /**
2428  * stmmac_tx_timer - mitigation sw timer for tx.
2429  * @t: data pointer
2430  * Description:
2431  * This is the timer handler to directly invoke the stmmac_tx_clean.
2432  */
stmmac_tx_timer(struct timer_list * t)2433 static void stmmac_tx_timer(struct timer_list *t)
2434 {
2435 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2436 	struct stmmac_priv *priv = tx_q->priv_data;
2437 	struct stmmac_channel *ch;
2438 
2439 	ch = &priv->channel[tx_q->queue_index];
2440 
2441 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2442 		unsigned long flags;
2443 
2444 		spin_lock_irqsave(&ch->lock, flags);
2445 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2446 		spin_unlock_irqrestore(&ch->lock, flags);
2447 		__napi_schedule(&ch->tx_napi);
2448 	}
2449 }
2450 
2451 /**
2452  * stmmac_init_coalesce - init mitigation options.
2453  * @priv: driver private structure
2454  * Description:
2455  * This inits the coalesce parameters: i.e. timer rate,
2456  * timer handler and default threshold used for enabling the
2457  * interrupt on completion bit.
2458  */
stmmac_init_coalesce(struct stmmac_priv * priv)2459 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2460 {
2461 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2462 	u32 chan;
2463 
2464 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2465 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2466 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2467 
2468 	for (chan = 0; chan < tx_channel_count; chan++) {
2469 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2470 
2471 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2472 	}
2473 }
2474 
stmmac_set_rings_length(struct stmmac_priv * priv)2475 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2476 {
2477 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2478 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2479 	u32 chan;
2480 
2481 	/* set TX ring length */
2482 	for (chan = 0; chan < tx_channels_count; chan++)
2483 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2484 				       (priv->dma_tx_size - 1), chan);
2485 
2486 	/* set RX ring length */
2487 	for (chan = 0; chan < rx_channels_count; chan++)
2488 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2489 				       (priv->dma_rx_size - 1), chan);
2490 }
2491 
2492 /**
2493  *  stmmac_set_tx_queue_weight - Set TX queue weight
2494  *  @priv: driver private structure
2495  *  Description: It is used for setting TX queues weight
2496  */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2497 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2498 {
2499 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2500 	u32 weight;
2501 	u32 queue;
2502 
2503 	for (queue = 0; queue < tx_queues_count; queue++) {
2504 		weight = priv->plat->tx_queues_cfg[queue].weight;
2505 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2506 	}
2507 }
2508 
2509 /**
2510  *  stmmac_configure_cbs - Configure CBS in TX queue
2511  *  @priv: driver private structure
2512  *  Description: It is used for configuring CBS in AVB TX queues
2513  */
stmmac_configure_cbs(struct stmmac_priv * priv)2514 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2515 {
2516 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2517 	u32 mode_to_use;
2518 	u32 queue;
2519 
2520 	/* queue 0 is reserved for legacy traffic */
2521 	for (queue = 1; queue < tx_queues_count; queue++) {
2522 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2523 		if (mode_to_use == MTL_QUEUE_DCB)
2524 			continue;
2525 
2526 		stmmac_config_cbs(priv, priv->hw,
2527 				priv->plat->tx_queues_cfg[queue].send_slope,
2528 				priv->plat->tx_queues_cfg[queue].idle_slope,
2529 				priv->plat->tx_queues_cfg[queue].high_credit,
2530 				priv->plat->tx_queues_cfg[queue].low_credit,
2531 				queue);
2532 	}
2533 }
2534 
2535 /**
2536  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2537  *  @priv: driver private structure
2538  *  Description: It is used for mapping RX queues to RX dma channels
2539  */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2540 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2541 {
2542 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2543 	u32 queue;
2544 	u32 chan;
2545 
2546 	for (queue = 0; queue < rx_queues_count; queue++) {
2547 		chan = priv->plat->rx_queues_cfg[queue].chan;
2548 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2549 	}
2550 }
2551 
2552 /**
2553  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2554  *  @priv: driver private structure
2555  *  Description: It is used for configuring the RX Queue Priority
2556  */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2557 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2558 {
2559 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2560 	u32 queue;
2561 	u32 prio;
2562 
2563 	for (queue = 0; queue < rx_queues_count; queue++) {
2564 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2565 			continue;
2566 
2567 		prio = priv->plat->rx_queues_cfg[queue].prio;
2568 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2569 	}
2570 }
2571 
2572 /**
2573  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2574  *  @priv: driver private structure
2575  *  Description: It is used for configuring the TX Queue Priority
2576  */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2577 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2578 {
2579 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2580 	u32 queue;
2581 	u32 prio;
2582 
2583 	for (queue = 0; queue < tx_queues_count; queue++) {
2584 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2585 			continue;
2586 
2587 		prio = priv->plat->tx_queues_cfg[queue].prio;
2588 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2589 	}
2590 }
2591 
2592 /**
2593  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2594  *  @priv: driver private structure
2595  *  Description: It is used for configuring the RX queue routing
2596  */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2597 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2598 {
2599 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2600 	u32 queue;
2601 	u8 packet;
2602 
2603 	for (queue = 0; queue < rx_queues_count; queue++) {
2604 		/* no specific packet type routing specified for the queue */
2605 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2606 			continue;
2607 
2608 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2609 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2610 	}
2611 }
2612 
stmmac_mac_config_rss(struct stmmac_priv * priv)2613 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2614 {
2615 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2616 		priv->rss.enable = false;
2617 		return;
2618 	}
2619 
2620 	if (priv->dev->features & NETIF_F_RXHASH)
2621 		priv->rss.enable = true;
2622 	else
2623 		priv->rss.enable = false;
2624 
2625 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2626 			     priv->plat->rx_queues_to_use);
2627 }
2628 
2629 /**
2630  *  stmmac_mtl_configuration - Configure MTL
2631  *  @priv: driver private structure
2632  *  Description: It is used for configurring MTL
2633  */
stmmac_mtl_configuration(struct stmmac_priv * priv)2634 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2635 {
2636 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2637 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2638 
2639 	if (tx_queues_count > 1)
2640 		stmmac_set_tx_queue_weight(priv);
2641 
2642 	/* Configure MTL RX algorithms */
2643 	if (rx_queues_count > 1)
2644 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2645 				priv->plat->rx_sched_algorithm);
2646 
2647 	/* Configure MTL TX algorithms */
2648 	if (tx_queues_count > 1)
2649 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2650 				priv->plat->tx_sched_algorithm);
2651 
2652 	/* Configure CBS in AVB TX queues */
2653 	if (tx_queues_count > 1)
2654 		stmmac_configure_cbs(priv);
2655 
2656 	/* Map RX MTL to DMA channels */
2657 	stmmac_rx_queue_dma_chan_map(priv);
2658 
2659 	/* Enable MAC RX Queues */
2660 	stmmac_mac_enable_rx_queues(priv);
2661 
2662 	/* Set RX priorities */
2663 	if (rx_queues_count > 1)
2664 		stmmac_mac_config_rx_queues_prio(priv);
2665 
2666 	/* Set TX priorities */
2667 	if (tx_queues_count > 1)
2668 		stmmac_mac_config_tx_queues_prio(priv);
2669 
2670 	/* Set RX routing */
2671 	if (rx_queues_count > 1)
2672 		stmmac_mac_config_rx_queues_routing(priv);
2673 
2674 	/* Receive Side Scaling */
2675 	if (rx_queues_count > 1)
2676 		stmmac_mac_config_rss(priv);
2677 }
2678 
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2679 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2680 {
2681 	if (priv->dma_cap.asp) {
2682 		netdev_info(priv->dev, "Enabling Safety Features\n");
2683 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2684 	} else {
2685 		netdev_info(priv->dev, "No Safety Features support found\n");
2686 	}
2687 }
2688 
2689 /**
2690  * stmmac_hw_setup - setup mac in a usable state.
2691  *  @dev : pointer to the device structure.
2692  *  @ptp_register: register PTP if set
2693  *  Description:
2694  *  this is the main function to setup the HW in a usable state because the
2695  *  dma engine is reset, the core registers are configured (e.g. AXI,
2696  *  Checksum features, timers). The DMA is ready to start receiving and
2697  *  transmitting.
2698  *  Return value:
2699  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2700  *  file on failure.
2701  */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)2702 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2703 {
2704 	struct stmmac_priv *priv = netdev_priv(dev);
2705 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2706 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2707 	u32 chan;
2708 	int ret;
2709 
2710 	/* DMA initialization and SW reset */
2711 	ret = stmmac_init_dma_engine(priv);
2712 	if (ret < 0) {
2713 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2714 			   __func__);
2715 		return ret;
2716 	}
2717 
2718 	/* Copy the MAC addr into the HW  */
2719 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2720 
2721 	/* PS and related bits will be programmed according to the speed */
2722 	if (priv->hw->pcs) {
2723 		int speed = priv->plat->mac_port_sel_speed;
2724 
2725 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2726 		    (speed == SPEED_1000)) {
2727 			priv->hw->ps = speed;
2728 		} else {
2729 			dev_warn(priv->device, "invalid port speed\n");
2730 			priv->hw->ps = 0;
2731 		}
2732 	}
2733 
2734 	/* Initialize the MAC Core */
2735 	stmmac_core_init(priv, priv->hw, dev);
2736 
2737 	/* Initialize MTL*/
2738 	stmmac_mtl_configuration(priv);
2739 
2740 	/* Initialize Safety Features */
2741 	stmmac_safety_feat_configuration(priv);
2742 
2743 	ret = stmmac_rx_ipc(priv, priv->hw);
2744 	if (!ret) {
2745 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2746 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2747 		priv->hw->rx_csum = 0;
2748 	}
2749 
2750 	/* Enable the MAC Rx/Tx */
2751 	stmmac_mac_set(priv, priv->ioaddr, true);
2752 
2753 	/* Set the HW DMA mode and the COE */
2754 	stmmac_dma_operation_mode(priv);
2755 
2756 	stmmac_mmc_setup(priv);
2757 
2758 	ret = stmmac_init_ptp(priv);
2759 	if (ret == -EOPNOTSUPP)
2760 		netdev_warn(priv->dev, "PTP not supported by HW\n");
2761 	else if (ret)
2762 		netdev_warn(priv->dev, "PTP init failed\n");
2763 	else if (ptp_register)
2764 		stmmac_ptp_register(priv);
2765 
2766 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2767 
2768 	/* Convert the timer from msec to usec */
2769 	if (!priv->tx_lpi_timer)
2770 		priv->tx_lpi_timer = eee_timer * 1000;
2771 
2772 	if (priv->use_riwt) {
2773 		if (!priv->rx_riwt)
2774 			priv->rx_riwt = DEF_DMA_RIWT;
2775 
2776 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2777 	}
2778 
2779 	if (priv->hw->pcs)
2780 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2781 
2782 	/* set TX and RX rings length */
2783 	stmmac_set_rings_length(priv);
2784 
2785 	/* Enable TSO */
2786 	if (priv->tso) {
2787 		for (chan = 0; chan < tx_cnt; chan++) {
2788 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2789 
2790 			/* TSO and TBS cannot co-exist */
2791 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
2792 				continue;
2793 
2794 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2795 		}
2796 	}
2797 
2798 	/* Enable Split Header */
2799 	if (priv->sph && priv->hw->rx_csum) {
2800 		for (chan = 0; chan < rx_cnt; chan++)
2801 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2802 	}
2803 
2804 	/* VLAN Tag Insertion */
2805 	if (priv->dma_cap.vlins)
2806 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2807 
2808 	/* TBS */
2809 	for (chan = 0; chan < tx_cnt; chan++) {
2810 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2811 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2812 
2813 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2814 	}
2815 
2816 	/* Configure real RX and TX queues */
2817 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2818 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2819 
2820 	/* Start the ball rolling... */
2821 	stmmac_start_all_dma(priv);
2822 
2823 	return 0;
2824 }
2825 
stmmac_hw_teardown(struct net_device * dev)2826 static void stmmac_hw_teardown(struct net_device *dev)
2827 {
2828 	struct stmmac_priv *priv = netdev_priv(dev);
2829 
2830 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2831 }
2832 
2833 /**
2834  *  stmmac_open - open entry point of the driver
2835  *  @dev : pointer to the device structure.
2836  *  Description:
2837  *  This function is the open entry point of the driver.
2838  *  Return value:
2839  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2840  *  file on failure.
2841  */
stmmac_open(struct net_device * dev)2842 static int stmmac_open(struct net_device *dev)
2843 {
2844 	struct stmmac_priv *priv = netdev_priv(dev);
2845 	int bfsize = 0;
2846 	u32 chan;
2847 	int ret;
2848 
2849 	ret = pm_runtime_get_sync(priv->device);
2850 	if (ret < 0) {
2851 		pm_runtime_put_noidle(priv->device);
2852 		return ret;
2853 	}
2854 
2855 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2856 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2857 	    priv->hw->xpcs == NULL) {
2858 		ret = stmmac_init_phy(dev);
2859 		if (ret) {
2860 			netdev_err(priv->dev,
2861 				   "%s: Cannot attach to PHY (error: %d)\n",
2862 				   __func__, ret);
2863 			goto init_phy_error;
2864 		}
2865 	}
2866 
2867 	/* Extra statistics */
2868 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2869 	priv->xstats.threshold = tc;
2870 
2871 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2872 	if (bfsize < 0)
2873 		bfsize = 0;
2874 
2875 	if (bfsize < BUF_SIZE_16KiB)
2876 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2877 
2878 	priv->dma_buf_sz = bfsize;
2879 	buf_sz = bfsize;
2880 
2881 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2882 
2883 	if (!priv->dma_tx_size)
2884 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2885 	if (!priv->dma_rx_size)
2886 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2887 
2888 	/* Earlier check for TBS */
2889 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2890 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2891 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2892 
2893 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
2894 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2895 	}
2896 
2897 	ret = alloc_dma_desc_resources(priv);
2898 	if (ret < 0) {
2899 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2900 			   __func__);
2901 		goto dma_desc_error;
2902 	}
2903 
2904 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2905 	if (ret < 0) {
2906 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2907 			   __func__);
2908 		goto init_error;
2909 	}
2910 
2911 	ret = stmmac_hw_setup(dev, true);
2912 	if (ret < 0) {
2913 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2914 		goto init_error;
2915 	}
2916 
2917 	stmmac_init_coalesce(priv);
2918 
2919 	phylink_start(priv->phylink);
2920 	/* We may have called phylink_speed_down before */
2921 	phylink_speed_up(priv->phylink);
2922 
2923 	/* Request the IRQ lines */
2924 	ret = request_irq(dev->irq, stmmac_interrupt,
2925 			  IRQF_SHARED, dev->name, dev);
2926 	if (unlikely(ret < 0)) {
2927 		netdev_err(priv->dev,
2928 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2929 			   __func__, dev->irq, ret);
2930 		goto irq_error;
2931 	}
2932 
2933 	/* Request the Wake IRQ in case of another line is used for WoL */
2934 	if (priv->wol_irq != dev->irq) {
2935 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2936 				  IRQF_SHARED, dev->name, dev);
2937 		if (unlikely(ret < 0)) {
2938 			netdev_err(priv->dev,
2939 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2940 				   __func__, priv->wol_irq, ret);
2941 			goto wolirq_error;
2942 		}
2943 	}
2944 
2945 	/* Request the IRQ lines */
2946 	if (priv->lpi_irq > 0) {
2947 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2948 				  dev->name, dev);
2949 		if (unlikely(ret < 0)) {
2950 			netdev_err(priv->dev,
2951 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2952 				   __func__, priv->lpi_irq, ret);
2953 			goto lpiirq_error;
2954 		}
2955 	}
2956 
2957 	stmmac_enable_all_queues(priv);
2958 	netif_tx_start_all_queues(priv->dev);
2959 
2960 	return 0;
2961 
2962 lpiirq_error:
2963 	if (priv->wol_irq != dev->irq)
2964 		free_irq(priv->wol_irq, dev);
2965 wolirq_error:
2966 	free_irq(dev->irq, dev);
2967 irq_error:
2968 	phylink_stop(priv->phylink);
2969 
2970 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2971 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2972 
2973 	stmmac_hw_teardown(dev);
2974 init_error:
2975 	free_dma_desc_resources(priv);
2976 dma_desc_error:
2977 	phylink_disconnect_phy(priv->phylink);
2978 init_phy_error:
2979 	pm_runtime_put(priv->device);
2980 	return ret;
2981 }
2982 
2983 /**
2984  *  stmmac_release - close entry point of the driver
2985  *  @dev : device pointer.
2986  *  Description:
2987  *  This is the stop entry point of the driver.
2988  */
stmmac_release(struct net_device * dev)2989 static int stmmac_release(struct net_device *dev)
2990 {
2991 	struct stmmac_priv *priv = netdev_priv(dev);
2992 	u32 chan;
2993 
2994 	if (device_may_wakeup(priv->device))
2995 		phylink_speed_down(priv->phylink, false);
2996 	/* Stop and disconnect the PHY */
2997 	phylink_stop(priv->phylink);
2998 	phylink_disconnect_phy(priv->phylink);
2999 
3000 	stmmac_disable_all_queues(priv);
3001 
3002 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3003 		del_timer_sync(&priv->tx_queue[chan].txtimer);
3004 
3005 	/* Free the IRQ lines */
3006 	free_irq(dev->irq, dev);
3007 	if (priv->wol_irq != dev->irq)
3008 		free_irq(priv->wol_irq, dev);
3009 	if (priv->lpi_irq > 0)
3010 		free_irq(priv->lpi_irq, dev);
3011 
3012 	if (priv->eee_enabled) {
3013 		priv->tx_path_in_lpi_mode = false;
3014 		del_timer_sync(&priv->eee_ctrl_timer);
3015 	}
3016 
3017 	/* Stop TX/RX DMA and clear the descriptors */
3018 	stmmac_stop_all_dma(priv);
3019 
3020 	/* Release and free the Rx/Tx resources */
3021 	free_dma_desc_resources(priv);
3022 
3023 	/* Disable the MAC Rx/Tx */
3024 	stmmac_mac_set(priv, priv->ioaddr, false);
3025 
3026 	netif_carrier_off(dev);
3027 
3028 	stmmac_release_ptp(priv);
3029 
3030 	pm_runtime_put(priv->device);
3031 
3032 	return 0;
3033 }
3034 
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3035 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3036 			       struct stmmac_tx_queue *tx_q)
3037 {
3038 	u16 tag = 0x0, inner_tag = 0x0;
3039 	u32 inner_type = 0x0;
3040 	struct dma_desc *p;
3041 
3042 	if (!priv->dma_cap.vlins)
3043 		return false;
3044 	if (!skb_vlan_tag_present(skb))
3045 		return false;
3046 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3047 		inner_tag = skb_vlan_tag_get(skb);
3048 		inner_type = STMMAC_VLAN_INSERT;
3049 	}
3050 
3051 	tag = skb_vlan_tag_get(skb);
3052 
3053 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3054 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3055 	else
3056 		p = &tx_q->dma_tx[tx_q->cur_tx];
3057 
3058 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3059 		return false;
3060 
3061 	stmmac_set_tx_owner(priv, p);
3062 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3063 	return true;
3064 }
3065 
3066 /**
3067  *  stmmac_tso_allocator - close entry point of the driver
3068  *  @priv: driver private structure
3069  *  @des: buffer start address
3070  *  @total_len: total length to fill in descriptors
3071  *  @last_segment: condition for the last descriptor
3072  *  @queue: TX queue index
3073  *  Description:
3074  *  This function fills descriptor and request new descriptors according to
3075  *  buffer length to fill
3076  */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3077 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3078 				 int total_len, bool last_segment, u32 queue)
3079 {
3080 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3081 	struct dma_desc *desc;
3082 	u32 buff_size;
3083 	int tmp_len;
3084 
3085 	tmp_len = total_len;
3086 
3087 	while (tmp_len > 0) {
3088 		dma_addr_t curr_addr;
3089 
3090 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3091 						priv->dma_tx_size);
3092 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3093 
3094 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3095 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3096 		else
3097 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3098 
3099 		curr_addr = des + (total_len - tmp_len);
3100 		if (priv->dma_cap.addr64 <= 32)
3101 			desc->des0 = cpu_to_le32(curr_addr);
3102 		else
3103 			stmmac_set_desc_addr(priv, desc, curr_addr);
3104 
3105 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3106 			    TSO_MAX_BUFF_SIZE : tmp_len;
3107 
3108 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3109 				0, 1,
3110 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3111 				0, 0);
3112 
3113 		tmp_len -= TSO_MAX_BUFF_SIZE;
3114 	}
3115 }
3116 
3117 /**
3118  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3119  *  @skb : the socket buffer
3120  *  @dev : device pointer
3121  *  Description: this is the transmit function that is called on TSO frames
3122  *  (support available on GMAC4 and newer chips).
3123  *  Diagram below show the ring programming in case of TSO frames:
3124  *
3125  *  First Descriptor
3126  *   --------
3127  *   | DES0 |---> buffer1 = L2/L3/L4 header
3128  *   | DES1 |---> TCP Payload (can continue on next descr...)
3129  *   | DES2 |---> buffer 1 and 2 len
3130  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3131  *   --------
3132  *	|
3133  *     ...
3134  *	|
3135  *   --------
3136  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3137  *   | DES1 | --|
3138  *   | DES2 | --> buffer 1 and 2 len
3139  *   | DES3 |
3140  *   --------
3141  *
3142  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3143  */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3144 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3145 {
3146 	struct dma_desc *desc, *first, *mss_desc = NULL;
3147 	struct stmmac_priv *priv = netdev_priv(dev);
3148 	int desc_size, tmp_pay_len = 0, first_tx;
3149 	int nfrags = skb_shinfo(skb)->nr_frags;
3150 	u32 queue = skb_get_queue_mapping(skb);
3151 	unsigned int first_entry, tx_packets;
3152 	struct stmmac_tx_queue *tx_q;
3153 	bool has_vlan, set_ic;
3154 	u8 proto_hdr_len, hdr;
3155 	u32 pay_len, mss;
3156 	dma_addr_t des;
3157 	int i;
3158 
3159 	tx_q = &priv->tx_queue[queue];
3160 	first_tx = tx_q->cur_tx;
3161 
3162 	/* Compute header lengths */
3163 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3164 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3165 		hdr = sizeof(struct udphdr);
3166 	} else {
3167 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168 		hdr = tcp_hdrlen(skb);
3169 	}
3170 
3171 	/* Desc availability based on threshold should be enough safe */
3172 	if (unlikely(stmmac_tx_avail(priv, queue) <
3173 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3174 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3175 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3176 								queue));
3177 			/* This is a hard error, log it. */
3178 			netdev_err(priv->dev,
3179 				   "%s: Tx Ring full when queue awake\n",
3180 				   __func__);
3181 		}
3182 		return NETDEV_TX_BUSY;
3183 	}
3184 
3185 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3186 
3187 	mss = skb_shinfo(skb)->gso_size;
3188 
3189 	/* set new MSS value if needed */
3190 	if (mss != tx_q->mss) {
3191 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3192 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3193 		else
3194 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3195 
3196 		stmmac_set_mss(priv, mss_desc, mss);
3197 		tx_q->mss = mss;
3198 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3199 						priv->dma_tx_size);
3200 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3201 	}
3202 
3203 	if (netif_msg_tx_queued(priv)) {
3204 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3205 			__func__, hdr, proto_hdr_len, pay_len, mss);
3206 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3207 			skb->data_len);
3208 	}
3209 
3210 	/* Check if VLAN can be inserted by HW */
3211 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3212 
3213 	first_entry = tx_q->cur_tx;
3214 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3215 
3216 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3217 		desc = &tx_q->dma_entx[first_entry].basic;
3218 	else
3219 		desc = &tx_q->dma_tx[first_entry];
3220 	first = desc;
3221 
3222 	if (has_vlan)
3223 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3224 
3225 	/* first descriptor: fill Headers on Buf1 */
3226 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3227 			     DMA_TO_DEVICE);
3228 	if (dma_mapping_error(priv->device, des))
3229 		goto dma_map_err;
3230 
3231 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3232 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3233 
3234 	if (priv->dma_cap.addr64 <= 32) {
3235 		first->des0 = cpu_to_le32(des);
3236 
3237 		/* Fill start of payload in buff2 of first descriptor */
3238 		if (pay_len)
3239 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3240 
3241 		/* If needed take extra descriptors to fill the remaining payload */
3242 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3243 	} else {
3244 		stmmac_set_desc_addr(priv, first, des);
3245 		tmp_pay_len = pay_len;
3246 		des += proto_hdr_len;
3247 		pay_len = 0;
3248 	}
3249 
3250 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3251 
3252 	/* Prepare fragments */
3253 	for (i = 0; i < nfrags; i++) {
3254 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3255 
3256 		des = skb_frag_dma_map(priv->device, frag, 0,
3257 				       skb_frag_size(frag),
3258 				       DMA_TO_DEVICE);
3259 		if (dma_mapping_error(priv->device, des))
3260 			goto dma_map_err;
3261 
3262 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3263 				     (i == nfrags - 1), queue);
3264 
3265 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3266 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3267 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3268 	}
3269 
3270 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3271 
3272 	/* Only the last descriptor gets to point to the skb. */
3273 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3274 
3275 	/* Manage tx mitigation */
3276 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3277 	tx_q->tx_count_frames += tx_packets;
3278 
3279 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3280 		set_ic = true;
3281 	else if (!priv->tx_coal_frames)
3282 		set_ic = false;
3283 	else if (tx_packets > priv->tx_coal_frames)
3284 		set_ic = true;
3285 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3286 		set_ic = true;
3287 	else
3288 		set_ic = false;
3289 
3290 	if (set_ic) {
3291 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3292 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3293 		else
3294 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3295 
3296 		tx_q->tx_count_frames = 0;
3297 		stmmac_set_tx_ic(priv, desc);
3298 		priv->xstats.tx_set_ic_bit++;
3299 	}
3300 
3301 	/* We've used all descriptors we need for this skb, however,
3302 	 * advance cur_tx so that it references a fresh descriptor.
3303 	 * ndo_start_xmit will fill this descriptor the next time it's
3304 	 * called and stmmac_tx_clean may clean up to this descriptor.
3305 	 */
3306 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3307 
3308 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3309 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3310 			  __func__);
3311 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3312 	}
3313 
3314 	dev->stats.tx_bytes += skb->len;
3315 	priv->xstats.tx_tso_frames++;
3316 	priv->xstats.tx_tso_nfrags += nfrags;
3317 
3318 	if (priv->sarc_type)
3319 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3320 
3321 	skb_tx_timestamp(skb);
3322 
3323 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3324 		     priv->hwts_tx_en)) {
3325 		/* declare that device is doing timestamping */
3326 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3327 		stmmac_enable_tx_timestamp(priv, first);
3328 	}
3329 
3330 	/* Complete the first descriptor before granting the DMA */
3331 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3332 			proto_hdr_len,
3333 			pay_len,
3334 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3335 			hdr / 4, (skb->len - proto_hdr_len));
3336 
3337 	/* If context desc is used to change MSS */
3338 	if (mss_desc) {
3339 		/* Make sure that first descriptor has been completely
3340 		 * written, including its own bit. This is because MSS is
3341 		 * actually before first descriptor, so we need to make
3342 		 * sure that MSS's own bit is the last thing written.
3343 		 */
3344 		dma_wmb();
3345 		stmmac_set_tx_owner(priv, mss_desc);
3346 	}
3347 
3348 	/* The own bit must be the latest setting done when prepare the
3349 	 * descriptor and then barrier is needed to make sure that
3350 	 * all is coherent before granting the DMA engine.
3351 	 */
3352 	wmb();
3353 
3354 	if (netif_msg_pktdata(priv)) {
3355 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3356 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3357 			tx_q->cur_tx, first, nfrags);
3358 		pr_info(">>> frame to be transmitted: ");
3359 		print_pkt(skb->data, skb_headlen(skb));
3360 	}
3361 
3362 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3363 
3364 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3365 		desc_size = sizeof(struct dma_edesc);
3366 	else
3367 		desc_size = sizeof(struct dma_desc);
3368 
3369 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3370 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3371 	stmmac_tx_timer_arm(priv, queue);
3372 
3373 	return NETDEV_TX_OK;
3374 
3375 dma_map_err:
3376 	dev_err(priv->device, "Tx dma map failed\n");
3377 	dev_kfree_skb(skb);
3378 	priv->dev->stats.tx_dropped++;
3379 	return NETDEV_TX_OK;
3380 }
3381 
3382 /**
3383  *  stmmac_xmit - Tx entry point of the driver
3384  *  @skb : the socket buffer
3385  *  @dev : device pointer
3386  *  Description : this is the tx entry point of the driver.
3387  *  It programs the chain or the ring and supports oversized frames
3388  *  and SG feature.
3389  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3390 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3391 {
3392 	unsigned int first_entry, tx_packets, enh_desc;
3393 	struct stmmac_priv *priv = netdev_priv(dev);
3394 	unsigned int nopaged_len = skb_headlen(skb);
3395 	int i, csum_insertion = 0, is_jumbo = 0;
3396 	u32 queue = skb_get_queue_mapping(skb);
3397 	int nfrags = skb_shinfo(skb)->nr_frags;
3398 	int gso = skb_shinfo(skb)->gso_type;
3399 	struct dma_edesc *tbs_desc = NULL;
3400 	int entry, desc_size, first_tx;
3401 	struct dma_desc *desc, *first;
3402 	struct stmmac_tx_queue *tx_q;
3403 	bool has_vlan, set_ic;
3404 	dma_addr_t des;
3405 
3406 	tx_q = &priv->tx_queue[queue];
3407 	first_tx = tx_q->cur_tx;
3408 
3409 	if (priv->tx_path_in_lpi_mode)
3410 		stmmac_disable_eee_mode(priv);
3411 
3412 	/* Manage oversized TCP frames for GMAC4 device */
3413 	if (skb_is_gso(skb) && priv->tso) {
3414 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3415 			return stmmac_tso_xmit(skb, dev);
3416 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3417 			return stmmac_tso_xmit(skb, dev);
3418 	}
3419 
3420 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3421 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3422 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3423 								queue));
3424 			/* This is a hard error, log it. */
3425 			netdev_err(priv->dev,
3426 				   "%s: Tx Ring full when queue awake\n",
3427 				   __func__);
3428 		}
3429 		return NETDEV_TX_BUSY;
3430 	}
3431 
3432 	/* Check if VLAN can be inserted by HW */
3433 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3434 
3435 	entry = tx_q->cur_tx;
3436 	first_entry = entry;
3437 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3438 
3439 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3440 
3441 	if (likely(priv->extend_desc))
3442 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3443 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3444 		desc = &tx_q->dma_entx[entry].basic;
3445 	else
3446 		desc = tx_q->dma_tx + entry;
3447 
3448 	first = desc;
3449 
3450 	if (has_vlan)
3451 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3452 
3453 	enh_desc = priv->plat->enh_desc;
3454 	/* To program the descriptors according to the size of the frame */
3455 	if (enh_desc)
3456 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3457 
3458 	if (unlikely(is_jumbo)) {
3459 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3460 		if (unlikely(entry < 0) && (entry != -EINVAL))
3461 			goto dma_map_err;
3462 	}
3463 
3464 	for (i = 0; i < nfrags; i++) {
3465 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3466 		int len = skb_frag_size(frag);
3467 		bool last_segment = (i == (nfrags - 1));
3468 
3469 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3470 		WARN_ON(tx_q->tx_skbuff[entry]);
3471 
3472 		if (likely(priv->extend_desc))
3473 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3474 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3475 			desc = &tx_q->dma_entx[entry].basic;
3476 		else
3477 			desc = tx_q->dma_tx + entry;
3478 
3479 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3480 				       DMA_TO_DEVICE);
3481 		if (dma_mapping_error(priv->device, des))
3482 			goto dma_map_err; /* should reuse desc w/o issues */
3483 
3484 		tx_q->tx_skbuff_dma[entry].buf = des;
3485 
3486 		stmmac_set_desc_addr(priv, desc, des);
3487 
3488 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3489 		tx_q->tx_skbuff_dma[entry].len = len;
3490 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3491 
3492 		/* Prepare the descriptor and set the own bit too */
3493 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3494 				priv->mode, 1, last_segment, skb->len);
3495 	}
3496 
3497 	/* Only the last descriptor gets to point to the skb. */
3498 	tx_q->tx_skbuff[entry] = skb;
3499 
3500 	/* According to the coalesce parameter the IC bit for the latest
3501 	 * segment is reset and the timer re-started to clean the tx status.
3502 	 * This approach takes care about the fragments: desc is the first
3503 	 * element in case of no SG.
3504 	 */
3505 	tx_packets = (entry + 1) - first_tx;
3506 	tx_q->tx_count_frames += tx_packets;
3507 
3508 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3509 		set_ic = true;
3510 	else if (!priv->tx_coal_frames)
3511 		set_ic = false;
3512 	else if (tx_packets > priv->tx_coal_frames)
3513 		set_ic = true;
3514 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3515 		set_ic = true;
3516 	else
3517 		set_ic = false;
3518 
3519 	if (set_ic) {
3520 		if (likely(priv->extend_desc))
3521 			desc = &tx_q->dma_etx[entry].basic;
3522 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3523 			desc = &tx_q->dma_entx[entry].basic;
3524 		else
3525 			desc = &tx_q->dma_tx[entry];
3526 
3527 		tx_q->tx_count_frames = 0;
3528 		stmmac_set_tx_ic(priv, desc);
3529 		priv->xstats.tx_set_ic_bit++;
3530 	}
3531 
3532 	/* We've used all descriptors we need for this skb, however,
3533 	 * advance cur_tx so that it references a fresh descriptor.
3534 	 * ndo_start_xmit will fill this descriptor the next time it's
3535 	 * called and stmmac_tx_clean may clean up to this descriptor.
3536 	 */
3537 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3538 	tx_q->cur_tx = entry;
3539 
3540 	if (netif_msg_pktdata(priv)) {
3541 		netdev_dbg(priv->dev,
3542 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3543 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3544 			   entry, first, nfrags);
3545 
3546 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3547 		print_pkt(skb->data, skb->len);
3548 	}
3549 
3550 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3551 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3552 			  __func__);
3553 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3554 	}
3555 
3556 	dev->stats.tx_bytes += skb->len;
3557 
3558 	if (priv->sarc_type)
3559 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3560 
3561 	skb_tx_timestamp(skb);
3562 
3563 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3564 	 * problems because all the descriptors are actually ready to be
3565 	 * passed to the DMA engine.
3566 	 */
3567 	if (likely(!is_jumbo)) {
3568 		bool last_segment = (nfrags == 0);
3569 
3570 		des = dma_map_single(priv->device, skb->data,
3571 				     nopaged_len, DMA_TO_DEVICE);
3572 		if (dma_mapping_error(priv->device, des))
3573 			goto dma_map_err;
3574 
3575 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3576 
3577 		stmmac_set_desc_addr(priv, first, des);
3578 
3579 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3580 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3581 
3582 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3583 			     priv->hwts_tx_en)) {
3584 			/* declare that device is doing timestamping */
3585 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3586 			stmmac_enable_tx_timestamp(priv, first);
3587 		}
3588 
3589 		/* Prepare the first descriptor setting the OWN bit too */
3590 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3591 				csum_insertion, priv->mode, 0, last_segment,
3592 				skb->len);
3593 	}
3594 
3595 	if (tx_q->tbs & STMMAC_TBS_EN) {
3596 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3597 
3598 		tbs_desc = &tx_q->dma_entx[first_entry];
3599 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3600 	}
3601 
3602 	stmmac_set_tx_owner(priv, first);
3603 
3604 	/* The own bit must be the latest setting done when prepare the
3605 	 * descriptor and then barrier is needed to make sure that
3606 	 * all is coherent before granting the DMA engine.
3607 	 */
3608 	wmb();
3609 
3610 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3611 
3612 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3613 
3614 	if (likely(priv->extend_desc))
3615 		desc_size = sizeof(struct dma_extended_desc);
3616 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3617 		desc_size = sizeof(struct dma_edesc);
3618 	else
3619 		desc_size = sizeof(struct dma_desc);
3620 
3621 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3622 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3623 	stmmac_tx_timer_arm(priv, queue);
3624 
3625 	return NETDEV_TX_OK;
3626 
3627 dma_map_err:
3628 	netdev_err(priv->dev, "Tx DMA map failed\n");
3629 	dev_kfree_skb(skb);
3630 	priv->dev->stats.tx_dropped++;
3631 	return NETDEV_TX_OK;
3632 }
3633 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3634 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3635 {
3636 	struct vlan_ethhdr *veth;
3637 	__be16 vlan_proto;
3638 	u16 vlanid;
3639 
3640 	veth = (struct vlan_ethhdr *)skb->data;
3641 	vlan_proto = veth->h_vlan_proto;
3642 
3643 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3644 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3645 	    (vlan_proto == htons(ETH_P_8021AD) &&
3646 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3647 		/* pop the vlan tag */
3648 		vlanid = ntohs(veth->h_vlan_TCI);
3649 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3650 		skb_pull(skb, VLAN_HLEN);
3651 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3652 	}
3653 }
3654 
3655 /**
3656  * stmmac_rx_refill - refill used skb preallocated buffers
3657  * @priv: driver private structure
3658  * @queue: RX queue index
3659  * Description : this is to reallocate the skb for the reception process
3660  * that is based on zero-copy.
3661  */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3662 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3663 {
3664 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3665 	int len, dirty = stmmac_rx_dirty(priv, queue);
3666 	unsigned int entry = rx_q->dirty_rx;
3667 
3668 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3669 
3670 	while (dirty-- > 0) {
3671 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3672 		struct dma_desc *p;
3673 		bool use_rx_wd;
3674 
3675 		if (priv->extend_desc)
3676 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3677 		else
3678 			p = rx_q->dma_rx + entry;
3679 
3680 		if (!buf->page) {
3681 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3682 			if (!buf->page)
3683 				break;
3684 		}
3685 
3686 		if (priv->sph && !buf->sec_page) {
3687 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3688 			if (!buf->sec_page)
3689 				break;
3690 
3691 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3692 
3693 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3694 						   len, DMA_FROM_DEVICE);
3695 		}
3696 
3697 		buf->addr = page_pool_get_dma_addr(buf->page);
3698 
3699 		/* Sync whole allocation to device. This will invalidate old
3700 		 * data.
3701 		 */
3702 		dma_sync_single_for_device(priv->device, buf->addr, len,
3703 					   DMA_FROM_DEVICE);
3704 
3705 		stmmac_set_desc_addr(priv, p, buf->addr);
3706 		if (priv->sph)
3707 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3708 		else
3709 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3710 		stmmac_refill_desc3(priv, rx_q, p);
3711 
3712 		rx_q->rx_count_frames++;
3713 		rx_q->rx_count_frames += priv->rx_coal_frames;
3714 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3715 			rx_q->rx_count_frames = 0;
3716 
3717 		use_rx_wd = !priv->rx_coal_frames;
3718 		use_rx_wd |= rx_q->rx_count_frames > 0;
3719 		if (!priv->use_riwt)
3720 			use_rx_wd = false;
3721 
3722 		dma_wmb();
3723 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3724 
3725 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3726 	}
3727 	rx_q->dirty_rx = entry;
3728 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3729 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3730 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3731 }
3732 
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3733 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3734 				       struct dma_desc *p,
3735 				       int status, unsigned int len)
3736 {
3737 	unsigned int plen = 0, hlen = 0;
3738 	int coe = priv->hw->rx_csum;
3739 
3740 	/* Not first descriptor, buffer is always zero */
3741 	if (priv->sph && len)
3742 		return 0;
3743 
3744 	/* First descriptor, get split header length */
3745 	stmmac_get_rx_header_len(priv, p, &hlen);
3746 	if (priv->sph && hlen) {
3747 		priv->xstats.rx_split_hdr_pkt_n++;
3748 		return hlen;
3749 	}
3750 
3751 	/* First descriptor, not last descriptor and not split header */
3752 	if (status & rx_not_ls)
3753 		return priv->dma_buf_sz;
3754 
3755 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3756 
3757 	/* First descriptor and last descriptor and not split header */
3758 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3759 }
3760 
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3761 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3762 				       struct dma_desc *p,
3763 				       int status, unsigned int len)
3764 {
3765 	int coe = priv->hw->rx_csum;
3766 	unsigned int plen = 0;
3767 
3768 	/* Not split header, buffer is not available */
3769 	if (!priv->sph)
3770 		return 0;
3771 
3772 	/* Not last descriptor */
3773 	if (status & rx_not_ls)
3774 		return priv->dma_buf_sz;
3775 
3776 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3777 
3778 	/* Last descriptor */
3779 	return plen - len;
3780 }
3781 
3782 /**
3783  * stmmac_rx - manage the receive process
3784  * @priv: driver private structure
3785  * @limit: napi bugget
3786  * @queue: RX queue index.
3787  * Description :  this the function called by the napi poll method.
3788  * It gets all the frames inside the ring.
3789  */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3790 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3791 {
3792 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3793 	struct stmmac_channel *ch = &priv->channel[queue];
3794 	unsigned int count = 0, error = 0, len = 0;
3795 	int status = 0, coe = priv->hw->rx_csum;
3796 	unsigned int next_entry = rx_q->cur_rx;
3797 	unsigned int desc_size;
3798 	struct sk_buff *skb = NULL;
3799 
3800 	if (netif_msg_rx_status(priv)) {
3801 		void *rx_head;
3802 
3803 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3804 		if (priv->extend_desc) {
3805 			rx_head = (void *)rx_q->dma_erx;
3806 			desc_size = sizeof(struct dma_extended_desc);
3807 		} else {
3808 			rx_head = (void *)rx_q->dma_rx;
3809 			desc_size = sizeof(struct dma_desc);
3810 		}
3811 
3812 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3813 				    rx_q->dma_rx_phy, desc_size);
3814 	}
3815 	while (count < limit) {
3816 		unsigned int buf1_len = 0, buf2_len = 0;
3817 		enum pkt_hash_types hash_type;
3818 		struct stmmac_rx_buffer *buf;
3819 		struct dma_desc *np, *p;
3820 		int entry;
3821 		u32 hash;
3822 
3823 		if (!count && rx_q->state_saved) {
3824 			skb = rx_q->state.skb;
3825 			error = rx_q->state.error;
3826 			len = rx_q->state.len;
3827 		} else {
3828 			rx_q->state_saved = false;
3829 			skb = NULL;
3830 			error = 0;
3831 			len = 0;
3832 		}
3833 
3834 		if (count >= limit)
3835 			break;
3836 
3837 read_again:
3838 		buf1_len = 0;
3839 		buf2_len = 0;
3840 		entry = next_entry;
3841 		buf = &rx_q->buf_pool[entry];
3842 
3843 		if (priv->extend_desc)
3844 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3845 		else
3846 			p = rx_q->dma_rx + entry;
3847 
3848 		/* read the status of the incoming frame */
3849 		status = stmmac_rx_status(priv, &priv->dev->stats,
3850 				&priv->xstats, p);
3851 		/* check if managed by the DMA otherwise go ahead */
3852 		if (unlikely(status & dma_own))
3853 			break;
3854 
3855 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3856 						priv->dma_rx_size);
3857 		next_entry = rx_q->cur_rx;
3858 
3859 		if (priv->extend_desc)
3860 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3861 		else
3862 			np = rx_q->dma_rx + next_entry;
3863 
3864 		prefetch(np);
3865 
3866 		if (priv->extend_desc)
3867 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3868 					&priv->xstats, rx_q->dma_erx + entry);
3869 		if (unlikely(status == discard_frame)) {
3870 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3871 			buf->page = NULL;
3872 			error = 1;
3873 			if (!priv->hwts_rx_en)
3874 				priv->dev->stats.rx_errors++;
3875 		}
3876 
3877 		if (unlikely(error && (status & rx_not_ls)))
3878 			goto read_again;
3879 		if (unlikely(error)) {
3880 			dev_kfree_skb(skb);
3881 			skb = NULL;
3882 			count++;
3883 			continue;
3884 		}
3885 
3886 		/* Buffer is good. Go on. */
3887 
3888 		prefetch(page_address(buf->page));
3889 		if (buf->sec_page)
3890 			prefetch(page_address(buf->sec_page));
3891 
3892 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3893 		len += buf1_len;
3894 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3895 		len += buf2_len;
3896 
3897 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3898 		 * Type frames (LLC/LLC-SNAP)
3899 		 *
3900 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3901 		 * feature is always disabled and packets need to be
3902 		 * stripped manually.
3903 		 */
3904 		if (likely(!(status & rx_not_ls)) &&
3905 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3906 		     unlikely(status != llc_snap))) {
3907 			if (buf2_len)
3908 				buf2_len -= ETH_FCS_LEN;
3909 			else
3910 				buf1_len -= ETH_FCS_LEN;
3911 
3912 			len -= ETH_FCS_LEN;
3913 		}
3914 
3915 		if (!skb) {
3916 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3917 			if (!skb) {
3918 				priv->dev->stats.rx_dropped++;
3919 				count++;
3920 				goto drain_data;
3921 			}
3922 
3923 			dma_sync_single_for_cpu(priv->device, buf->addr,
3924 						buf1_len, DMA_FROM_DEVICE);
3925 			skb_copy_to_linear_data(skb, page_address(buf->page),
3926 						buf1_len);
3927 			skb_put(skb, buf1_len);
3928 
3929 			/* Data payload copied into SKB, page ready for recycle */
3930 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3931 			buf->page = NULL;
3932 		} else if (buf1_len) {
3933 			dma_sync_single_for_cpu(priv->device, buf->addr,
3934 						buf1_len, DMA_FROM_DEVICE);
3935 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3936 					buf->page, 0, buf1_len,
3937 					priv->dma_buf_sz);
3938 
3939 			/* Data payload appended into SKB */
3940 			page_pool_release_page(rx_q->page_pool, buf->page);
3941 			buf->page = NULL;
3942 		}
3943 
3944 		if (buf2_len) {
3945 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3946 						buf2_len, DMA_FROM_DEVICE);
3947 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3948 					buf->sec_page, 0, buf2_len,
3949 					priv->dma_buf_sz);
3950 
3951 			/* Data payload appended into SKB */
3952 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3953 			buf->sec_page = NULL;
3954 		}
3955 
3956 drain_data:
3957 		if (likely(status & rx_not_ls))
3958 			goto read_again;
3959 		if (!skb)
3960 			continue;
3961 
3962 		/* Got entire packet into SKB. Finish it. */
3963 
3964 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3965 		stmmac_rx_vlan(priv->dev, skb);
3966 		skb->protocol = eth_type_trans(skb, priv->dev);
3967 
3968 		if (unlikely(!coe))
3969 			skb_checksum_none_assert(skb);
3970 		else
3971 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3972 
3973 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3974 			skb_set_hash(skb, hash, hash_type);
3975 
3976 		skb_record_rx_queue(skb, queue);
3977 		napi_gro_receive(&ch->rx_napi, skb);
3978 		skb = NULL;
3979 
3980 		priv->dev->stats.rx_packets++;
3981 		priv->dev->stats.rx_bytes += len;
3982 		count++;
3983 	}
3984 
3985 	if (status & rx_not_ls || skb) {
3986 		rx_q->state_saved = true;
3987 		rx_q->state.skb = skb;
3988 		rx_q->state.error = error;
3989 		rx_q->state.len = len;
3990 	}
3991 
3992 	stmmac_rx_refill(priv, queue);
3993 
3994 	priv->xstats.rx_pkt_n += count;
3995 
3996 	return count;
3997 }
3998 
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)3999 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4000 {
4001 	struct stmmac_channel *ch =
4002 		container_of(napi, struct stmmac_channel, rx_napi);
4003 	struct stmmac_priv *priv = ch->priv_data;
4004 	u32 chan = ch->index;
4005 	int work_done;
4006 
4007 	priv->xstats.napi_poll++;
4008 
4009 	work_done = stmmac_rx(priv, budget, chan);
4010 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4011 		unsigned long flags;
4012 
4013 		spin_lock_irqsave(&ch->lock, flags);
4014 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4015 		spin_unlock_irqrestore(&ch->lock, flags);
4016 	}
4017 
4018 	return work_done;
4019 }
4020 
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)4021 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4022 {
4023 	struct stmmac_channel *ch =
4024 		container_of(napi, struct stmmac_channel, tx_napi);
4025 	struct stmmac_priv *priv = ch->priv_data;
4026 	u32 chan = ch->index;
4027 	int work_done;
4028 
4029 	priv->xstats.napi_poll++;
4030 
4031 	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4032 	work_done = min(work_done, budget);
4033 
4034 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4035 		unsigned long flags;
4036 
4037 		spin_lock_irqsave(&ch->lock, flags);
4038 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4039 		spin_unlock_irqrestore(&ch->lock, flags);
4040 	}
4041 
4042 	return work_done;
4043 }
4044 
4045 /**
4046  *  stmmac_tx_timeout
4047  *  @dev : Pointer to net device structure
4048  *  @txqueue: the index of the hanging transmit queue
4049  *  Description: this function is called when a packet transmission fails to
4050  *   complete within a reasonable time. The driver will mark the error in the
4051  *   netdev structure and arrange for the device to be reset to a sane state
4052  *   in order to transmit a new packet.
4053  */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)4054 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4055 {
4056 	struct stmmac_priv *priv = netdev_priv(dev);
4057 
4058 	stmmac_global_err(priv);
4059 }
4060 
4061 /**
4062  *  stmmac_set_rx_mode - entry point for multicast addressing
4063  *  @dev : pointer to the device structure
4064  *  Description:
4065  *  This function is a driver entry point which gets called by the kernel
4066  *  whenever multicast addresses must be enabled/disabled.
4067  *  Return value:
4068  *  void.
4069  */
stmmac_set_rx_mode(struct net_device * dev)4070 static void stmmac_set_rx_mode(struct net_device *dev)
4071 {
4072 	struct stmmac_priv *priv = netdev_priv(dev);
4073 
4074 	stmmac_set_filter(priv, priv->hw, dev);
4075 }
4076 
4077 /**
4078  *  stmmac_change_mtu - entry point to change MTU size for the device.
4079  *  @dev : device pointer.
4080  *  @new_mtu : the new MTU size for the device.
4081  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
4082  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
4083  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
4084  *  Return value:
4085  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4086  *  file on failure.
4087  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4088 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4089 {
4090 	struct stmmac_priv *priv = netdev_priv(dev);
4091 	int txfifosz = priv->plat->tx_fifo_size;
4092 	const int mtu = new_mtu;
4093 
4094 	if (txfifosz == 0)
4095 		txfifosz = priv->dma_cap.tx_fifo_size;
4096 
4097 	txfifosz /= priv->plat->tx_queues_to_use;
4098 
4099 	if (netif_running(dev)) {
4100 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
4101 		return -EBUSY;
4102 	}
4103 
4104 	new_mtu = STMMAC_ALIGN(new_mtu);
4105 
4106 	/* If condition true, FIFO is too small or MTU too large */
4107 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4108 		return -EINVAL;
4109 
4110 	dev->mtu = mtu;
4111 
4112 	netdev_update_features(dev);
4113 
4114 	return 0;
4115 }
4116 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4117 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4118 					     netdev_features_t features)
4119 {
4120 	struct stmmac_priv *priv = netdev_priv(dev);
4121 
4122 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4123 		features &= ~NETIF_F_RXCSUM;
4124 
4125 	if (!priv->plat->tx_coe)
4126 		features &= ~NETIF_F_CSUM_MASK;
4127 
4128 	/* Some GMAC devices have a bugged Jumbo frame support that
4129 	 * needs to have the Tx COE disabled for oversized frames
4130 	 * (due to limited buffer sizes). In this case we disable
4131 	 * the TX csum insertion in the TDES and not use SF.
4132 	 */
4133 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4134 		features &= ~NETIF_F_CSUM_MASK;
4135 
4136 	/* Disable tso if asked by ethtool */
4137 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4138 		if (features & NETIF_F_TSO)
4139 			priv->tso = true;
4140 		else
4141 			priv->tso = false;
4142 	}
4143 
4144 	return features;
4145 }
4146 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4147 static int stmmac_set_features(struct net_device *netdev,
4148 			       netdev_features_t features)
4149 {
4150 	struct stmmac_priv *priv = netdev_priv(netdev);
4151 	bool sph_en;
4152 	u32 chan;
4153 
4154 	/* Keep the COE Type in case of csum is supporting */
4155 	if (features & NETIF_F_RXCSUM)
4156 		priv->hw->rx_csum = priv->plat->rx_coe;
4157 	else
4158 		priv->hw->rx_csum = 0;
4159 	/* No check needed because rx_coe has been set before and it will be
4160 	 * fixed in case of issue.
4161 	 */
4162 	stmmac_rx_ipc(priv, priv->hw);
4163 
4164 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4165 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4166 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4167 
4168 	return 0;
4169 }
4170 
4171 /**
4172  *  stmmac_interrupt - main ISR
4173  *  @irq: interrupt number.
4174  *  @dev_id: to pass the net device pointer (must be valid).
4175  *  Description: this is the main driver interrupt service routine.
4176  *  It can call:
4177  *  o DMA service routine (to manage incoming frame reception and transmission
4178  *    status)
4179  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4180  *    interrupts.
4181  */
stmmac_interrupt(int irq,void * dev_id)4182 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4183 {
4184 	struct net_device *dev = (struct net_device *)dev_id;
4185 	struct stmmac_priv *priv = netdev_priv(dev);
4186 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4187 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4188 	u32 queues_count;
4189 	u32 queue;
4190 	bool xmac;
4191 
4192 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4193 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4194 
4195 	if (priv->irq_wake)
4196 		pm_wakeup_event(priv->device, 0);
4197 
4198 	/* Check if adapter is up */
4199 	if (test_bit(STMMAC_DOWN, &priv->state))
4200 		return IRQ_HANDLED;
4201 	/* Check if a fatal error happened */
4202 	if (stmmac_safety_feat_interrupt(priv))
4203 		return IRQ_HANDLED;
4204 
4205 	/* To handle GMAC own interrupts */
4206 	if ((priv->plat->has_gmac) || xmac) {
4207 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4208 
4209 		if (unlikely(status)) {
4210 			/* For LPI we need to save the tx status */
4211 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4212 				priv->tx_path_in_lpi_mode = true;
4213 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4214 				priv->tx_path_in_lpi_mode = false;
4215 		}
4216 
4217 		for (queue = 0; queue < queues_count; queue++) {
4218 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
4219 							    queue);
4220 		}
4221 
4222 		/* PCS link status */
4223 		if (priv->hw->pcs) {
4224 			if (priv->xstats.pcs_link)
4225 				netif_carrier_on(dev);
4226 			else
4227 				netif_carrier_off(dev);
4228 		}
4229 	}
4230 
4231 	/* To handle DMA interrupts */
4232 	stmmac_dma_interrupt(priv);
4233 
4234 	return IRQ_HANDLED;
4235 }
4236 
4237 #ifdef CONFIG_NET_POLL_CONTROLLER
4238 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4239  * to allow network I/O with interrupts disabled.
4240  */
stmmac_poll_controller(struct net_device * dev)4241 static void stmmac_poll_controller(struct net_device *dev)
4242 {
4243 	disable_irq(dev->irq);
4244 	stmmac_interrupt(dev->irq, dev);
4245 	enable_irq(dev->irq);
4246 }
4247 #endif
4248 
4249 /**
4250  *  stmmac_ioctl - Entry point for the Ioctl
4251  *  @dev: Device pointer.
4252  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4253  *  a proprietary structure used to pass information to the driver.
4254  *  @cmd: IOCTL command
4255  *  Description:
4256  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4257  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4258 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4259 {
4260 	struct stmmac_priv *priv = netdev_priv (dev);
4261 	int ret = -EOPNOTSUPP;
4262 
4263 	if (!netif_running(dev))
4264 		return -EINVAL;
4265 
4266 	switch (cmd) {
4267 	case SIOCGMIIPHY:
4268 	case SIOCGMIIREG:
4269 	case SIOCSMIIREG:
4270 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4271 		break;
4272 	case SIOCSHWTSTAMP:
4273 		ret = stmmac_hwtstamp_set(dev, rq);
4274 		break;
4275 	case SIOCGHWTSTAMP:
4276 		ret = stmmac_hwtstamp_get(dev, rq);
4277 		break;
4278 	default:
4279 		break;
4280 	}
4281 
4282 	return ret;
4283 }
4284 
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4285 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4286 				    void *cb_priv)
4287 {
4288 	struct stmmac_priv *priv = cb_priv;
4289 	int ret = -EOPNOTSUPP;
4290 
4291 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4292 		return ret;
4293 
4294 	stmmac_disable_all_queues(priv);
4295 
4296 	switch (type) {
4297 	case TC_SETUP_CLSU32:
4298 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4299 		break;
4300 	case TC_SETUP_CLSFLOWER:
4301 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4302 		break;
4303 	default:
4304 		break;
4305 	}
4306 
4307 	stmmac_enable_all_queues(priv);
4308 	return ret;
4309 }
4310 
4311 static LIST_HEAD(stmmac_block_cb_list);
4312 
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4313 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4314 			   void *type_data)
4315 {
4316 	struct stmmac_priv *priv = netdev_priv(ndev);
4317 
4318 	switch (type) {
4319 	case TC_SETUP_BLOCK:
4320 		return flow_block_cb_setup_simple(type_data,
4321 						  &stmmac_block_cb_list,
4322 						  stmmac_setup_tc_block_cb,
4323 						  priv, priv, true);
4324 	case TC_SETUP_QDISC_CBS:
4325 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4326 	case TC_SETUP_QDISC_TAPRIO:
4327 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4328 	case TC_SETUP_QDISC_ETF:
4329 		return stmmac_tc_setup_etf(priv, priv, type_data);
4330 	default:
4331 		return -EOPNOTSUPP;
4332 	}
4333 }
4334 
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4335 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4336 			       struct net_device *sb_dev)
4337 {
4338 	int gso = skb_shinfo(skb)->gso_type;
4339 
4340 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4341 		/*
4342 		 * There is no way to determine the number of TSO/USO
4343 		 * capable Queues. Let's use always the Queue 0
4344 		 * because if TSO/USO is supported then at least this
4345 		 * one will be capable.
4346 		 */
4347 		return 0;
4348 	}
4349 
4350 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4351 }
4352 
stmmac_set_mac_address(struct net_device * ndev,void * addr)4353 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4354 {
4355 	struct stmmac_priv *priv = netdev_priv(ndev);
4356 	int ret = 0;
4357 
4358 	ret = pm_runtime_get_sync(priv->device);
4359 	if (ret < 0) {
4360 		pm_runtime_put_noidle(priv->device);
4361 		return ret;
4362 	}
4363 
4364 	ret = eth_mac_addr(ndev, addr);
4365 	if (ret)
4366 		goto set_mac_error;
4367 
4368 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4369 
4370 set_mac_error:
4371 	pm_runtime_put(priv->device);
4372 
4373 	return ret;
4374 }
4375 
4376 #ifdef CONFIG_DEBUG_FS
4377 static struct dentry *stmmac_fs_dir;
4378 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4379 static void sysfs_display_ring(void *head, int size, int extend_desc,
4380 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
4381 {
4382 	int i;
4383 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4384 	struct dma_desc *p = (struct dma_desc *)head;
4385 	dma_addr_t dma_addr;
4386 
4387 	for (i = 0; i < size; i++) {
4388 		if (extend_desc) {
4389 			dma_addr = dma_phy_addr + i * sizeof(*ep);
4390 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4391 				   i, &dma_addr,
4392 				   le32_to_cpu(ep->basic.des0),
4393 				   le32_to_cpu(ep->basic.des1),
4394 				   le32_to_cpu(ep->basic.des2),
4395 				   le32_to_cpu(ep->basic.des3));
4396 			ep++;
4397 		} else {
4398 			dma_addr = dma_phy_addr + i * sizeof(*p);
4399 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4400 				   i, &dma_addr,
4401 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4402 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4403 			p++;
4404 		}
4405 		seq_printf(seq, "\n");
4406 	}
4407 }
4408 
stmmac_rings_status_show(struct seq_file * seq,void * v)4409 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4410 {
4411 	struct net_device *dev = seq->private;
4412 	struct stmmac_priv *priv = netdev_priv(dev);
4413 	u32 rx_count = priv->plat->rx_queues_to_use;
4414 	u32 tx_count = priv->plat->tx_queues_to_use;
4415 	u32 queue;
4416 
4417 	if ((dev->flags & IFF_UP) == 0)
4418 		return 0;
4419 
4420 	for (queue = 0; queue < rx_count; queue++) {
4421 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4422 
4423 		seq_printf(seq, "RX Queue %d:\n", queue);
4424 
4425 		if (priv->extend_desc) {
4426 			seq_printf(seq, "Extended descriptor ring:\n");
4427 			sysfs_display_ring((void *)rx_q->dma_erx,
4428 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4429 		} else {
4430 			seq_printf(seq, "Descriptor ring:\n");
4431 			sysfs_display_ring((void *)rx_q->dma_rx,
4432 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4433 		}
4434 	}
4435 
4436 	for (queue = 0; queue < tx_count; queue++) {
4437 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4438 
4439 		seq_printf(seq, "TX Queue %d:\n", queue);
4440 
4441 		if (priv->extend_desc) {
4442 			seq_printf(seq, "Extended descriptor ring:\n");
4443 			sysfs_display_ring((void *)tx_q->dma_etx,
4444 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4445 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4446 			seq_printf(seq, "Descriptor ring:\n");
4447 			sysfs_display_ring((void *)tx_q->dma_tx,
4448 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4449 		}
4450 	}
4451 
4452 	return 0;
4453 }
4454 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4455 
stmmac_dma_cap_show(struct seq_file * seq,void * v)4456 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4457 {
4458 	struct net_device *dev = seq->private;
4459 	struct stmmac_priv *priv = netdev_priv(dev);
4460 
4461 	if (!priv->hw_cap_support) {
4462 		seq_printf(seq, "DMA HW features not supported\n");
4463 		return 0;
4464 	}
4465 
4466 	seq_printf(seq, "==============================\n");
4467 	seq_printf(seq, "\tDMA HW features\n");
4468 	seq_printf(seq, "==============================\n");
4469 
4470 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4471 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4472 	seq_printf(seq, "\t1000 Mbps: %s\n",
4473 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4474 	seq_printf(seq, "\tHalf duplex: %s\n",
4475 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4476 	seq_printf(seq, "\tHash Filter: %s\n",
4477 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4478 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4479 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4480 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4481 		   (priv->dma_cap.pcs) ? "Y" : "N");
4482 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4483 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4484 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4485 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4486 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4487 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4488 	seq_printf(seq, "\tRMON module: %s\n",
4489 		   (priv->dma_cap.rmon) ? "Y" : "N");
4490 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4491 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4492 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4493 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4494 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4495 		   (priv->dma_cap.eee) ? "Y" : "N");
4496 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4497 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4498 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4499 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4500 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4501 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4502 	} else {
4503 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4504 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4505 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4506 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4507 	}
4508 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4509 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4510 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4511 		   priv->dma_cap.number_rx_channel);
4512 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4513 		   priv->dma_cap.number_tx_channel);
4514 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4515 		   priv->dma_cap.number_rx_queues);
4516 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4517 		   priv->dma_cap.number_tx_queues);
4518 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4519 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4520 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4521 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4522 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4523 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4524 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4525 		   priv->dma_cap.pps_out_num);
4526 	seq_printf(seq, "\tSafety Features: %s\n",
4527 		   priv->dma_cap.asp ? "Y" : "N");
4528 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4529 		   priv->dma_cap.frpsel ? "Y" : "N");
4530 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4531 		   priv->dma_cap.addr64);
4532 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4533 		   priv->dma_cap.rssen ? "Y" : "N");
4534 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4535 		   priv->dma_cap.vlhash ? "Y" : "N");
4536 	seq_printf(seq, "\tSplit Header: %s\n",
4537 		   priv->dma_cap.sphen ? "Y" : "N");
4538 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4539 		   priv->dma_cap.vlins ? "Y" : "N");
4540 	seq_printf(seq, "\tDouble VLAN: %s\n",
4541 		   priv->dma_cap.dvlan ? "Y" : "N");
4542 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4543 		   priv->dma_cap.l3l4fnum);
4544 	seq_printf(seq, "\tARP Offloading: %s\n",
4545 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4546 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4547 		   priv->dma_cap.estsel ? "Y" : "N");
4548 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4549 		   priv->dma_cap.fpesel ? "Y" : "N");
4550 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4551 		   priv->dma_cap.tbssel ? "Y" : "N");
4552 	return 0;
4553 }
4554 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4555 
4556 /* Use network device events to rename debugfs file entries.
4557  */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4558 static int stmmac_device_event(struct notifier_block *unused,
4559 			       unsigned long event, void *ptr)
4560 {
4561 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4562 	struct stmmac_priv *priv = netdev_priv(dev);
4563 
4564 	if (dev->netdev_ops != &stmmac_netdev_ops)
4565 		goto done;
4566 
4567 	switch (event) {
4568 	case NETDEV_CHANGENAME:
4569 		if (priv->dbgfs_dir)
4570 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4571 							 priv->dbgfs_dir,
4572 							 stmmac_fs_dir,
4573 							 dev->name);
4574 		break;
4575 	}
4576 done:
4577 	return NOTIFY_DONE;
4578 }
4579 
4580 static struct notifier_block stmmac_notifier = {
4581 	.notifier_call = stmmac_device_event,
4582 };
4583 
stmmac_init_fs(struct net_device * dev)4584 static void stmmac_init_fs(struct net_device *dev)
4585 {
4586 	struct stmmac_priv *priv = netdev_priv(dev);
4587 
4588 	rtnl_lock();
4589 
4590 	/* Create per netdev entries */
4591 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4592 
4593 	/* Entry to report DMA RX/TX rings */
4594 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4595 			    &stmmac_rings_status_fops);
4596 
4597 	/* Entry to report the DMA HW features */
4598 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4599 			    &stmmac_dma_cap_fops);
4600 
4601 	rtnl_unlock();
4602 }
4603 
stmmac_exit_fs(struct net_device * dev)4604 static void stmmac_exit_fs(struct net_device *dev)
4605 {
4606 	struct stmmac_priv *priv = netdev_priv(dev);
4607 
4608 	debugfs_remove_recursive(priv->dbgfs_dir);
4609 }
4610 #endif /* CONFIG_DEBUG_FS */
4611 
stmmac_vid_crc32_le(__le16 vid_le)4612 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4613 {
4614 	unsigned char *data = (unsigned char *)&vid_le;
4615 	unsigned char data_byte = 0;
4616 	u32 crc = ~0x0;
4617 	u32 temp = 0;
4618 	int i, bits;
4619 
4620 	bits = get_bitmask_order(VLAN_VID_MASK);
4621 	for (i = 0; i < bits; i++) {
4622 		if ((i % 8) == 0)
4623 			data_byte = data[i / 8];
4624 
4625 		temp = ((crc & 1) ^ data_byte) & 1;
4626 		crc >>= 1;
4627 		data_byte >>= 1;
4628 
4629 		if (temp)
4630 			crc ^= 0xedb88320;
4631 	}
4632 
4633 	return crc;
4634 }
4635 
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4636 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4637 {
4638 	u32 crc, hash = 0;
4639 	__le16 pmatch = 0;
4640 	int count = 0;
4641 	u16 vid = 0;
4642 
4643 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4644 		__le16 vid_le = cpu_to_le16(vid);
4645 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4646 		hash |= (1 << crc);
4647 		count++;
4648 	}
4649 
4650 	if (!priv->dma_cap.vlhash) {
4651 		if (count > 2) /* VID = 0 always passes filter */
4652 			return -EOPNOTSUPP;
4653 
4654 		pmatch = cpu_to_le16(vid);
4655 		hash = 0;
4656 	}
4657 
4658 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4659 }
4660 
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4661 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4662 {
4663 	struct stmmac_priv *priv = netdev_priv(ndev);
4664 	bool is_double = false;
4665 	int ret;
4666 
4667 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4668 		is_double = true;
4669 
4670 	set_bit(vid, priv->active_vlans);
4671 	ret = stmmac_vlan_update(priv, is_double);
4672 	if (ret) {
4673 		clear_bit(vid, priv->active_vlans);
4674 		return ret;
4675 	}
4676 
4677 	if (priv->hw->num_vlan) {
4678 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4679 		if (ret)
4680 			return ret;
4681 	}
4682 
4683 	return 0;
4684 }
4685 
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4686 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4687 {
4688 	struct stmmac_priv *priv = netdev_priv(ndev);
4689 	bool is_double = false;
4690 	int ret;
4691 
4692 	ret = pm_runtime_get_sync(priv->device);
4693 	if (ret < 0) {
4694 		pm_runtime_put_noidle(priv->device);
4695 		return ret;
4696 	}
4697 
4698 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4699 		is_double = true;
4700 
4701 	clear_bit(vid, priv->active_vlans);
4702 
4703 	if (priv->hw->num_vlan) {
4704 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4705 		if (ret)
4706 			goto del_vlan_error;
4707 	}
4708 
4709 	ret = stmmac_vlan_update(priv, is_double);
4710 
4711 del_vlan_error:
4712 	pm_runtime_put(priv->device);
4713 
4714 	return ret;
4715 }
4716 
4717 static const struct net_device_ops stmmac_netdev_ops = {
4718 	.ndo_open = stmmac_open,
4719 	.ndo_start_xmit = stmmac_xmit,
4720 	.ndo_stop = stmmac_release,
4721 	.ndo_change_mtu = stmmac_change_mtu,
4722 	.ndo_fix_features = stmmac_fix_features,
4723 	.ndo_set_features = stmmac_set_features,
4724 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4725 	.ndo_tx_timeout = stmmac_tx_timeout,
4726 	.ndo_do_ioctl = stmmac_ioctl,
4727 	.ndo_setup_tc = stmmac_setup_tc,
4728 	.ndo_select_queue = stmmac_select_queue,
4729 #ifdef CONFIG_NET_POLL_CONTROLLER
4730 	.ndo_poll_controller = stmmac_poll_controller,
4731 #endif
4732 	.ndo_set_mac_address = stmmac_set_mac_address,
4733 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4734 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4735 };
4736 
stmmac_reset_subtask(struct stmmac_priv * priv)4737 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4738 {
4739 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4740 		return;
4741 	if (test_bit(STMMAC_DOWN, &priv->state))
4742 		return;
4743 
4744 	netdev_err(priv->dev, "Reset adapter.\n");
4745 
4746 	rtnl_lock();
4747 	netif_trans_update(priv->dev);
4748 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4749 		usleep_range(1000, 2000);
4750 
4751 	set_bit(STMMAC_DOWN, &priv->state);
4752 	dev_close(priv->dev);
4753 	dev_open(priv->dev, NULL);
4754 	clear_bit(STMMAC_DOWN, &priv->state);
4755 	clear_bit(STMMAC_RESETING, &priv->state);
4756 	rtnl_unlock();
4757 }
4758 
stmmac_service_task(struct work_struct * work)4759 static void stmmac_service_task(struct work_struct *work)
4760 {
4761 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4762 			service_task);
4763 
4764 	stmmac_reset_subtask(priv);
4765 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4766 }
4767 
4768 /**
4769  *  stmmac_hw_init - Init the MAC device
4770  *  @priv: driver private structure
4771  *  Description: this function is to configure the MAC device according to
4772  *  some platform parameters or the HW capability register. It prepares the
4773  *  driver to use either ring or chain modes and to setup either enhanced or
4774  *  normal descriptors.
4775  */
stmmac_hw_init(struct stmmac_priv * priv)4776 static int stmmac_hw_init(struct stmmac_priv *priv)
4777 {
4778 	int ret;
4779 
4780 	/* dwmac-sun8i only work in chain mode */
4781 	if (priv->plat->has_sun8i)
4782 		chain_mode = 1;
4783 	priv->chain_mode = chain_mode;
4784 
4785 	/* Initialize HW Interface */
4786 	ret = stmmac_hwif_init(priv);
4787 	if (ret)
4788 		return ret;
4789 
4790 	/* Get the HW capability (new GMAC newer than 3.50a) */
4791 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4792 	if (priv->hw_cap_support) {
4793 		dev_info(priv->device, "DMA HW capability register supported\n");
4794 
4795 		/* We can override some gmac/dma configuration fields: e.g.
4796 		 * enh_desc, tx_coe (e.g. that are passed through the
4797 		 * platform) with the values from the HW capability
4798 		 * register (if supported).
4799 		 */
4800 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4801 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4802 		priv->hw->pmt = priv->plat->pmt;
4803 		if (priv->dma_cap.hash_tb_sz) {
4804 			priv->hw->multicast_filter_bins =
4805 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4806 			priv->hw->mcast_bits_log2 =
4807 					ilog2(priv->hw->multicast_filter_bins);
4808 		}
4809 
4810 		/* TXCOE doesn't work in thresh DMA mode */
4811 		if (priv->plat->force_thresh_dma_mode)
4812 			priv->plat->tx_coe = 0;
4813 		else
4814 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4815 
4816 		/* In case of GMAC4 rx_coe is from HW cap register. */
4817 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4818 
4819 		if (priv->dma_cap.rx_coe_type2)
4820 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4821 		else if (priv->dma_cap.rx_coe_type1)
4822 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4823 
4824 	} else {
4825 		dev_info(priv->device, "No HW DMA feature register supported\n");
4826 	}
4827 
4828 	if (priv->plat->rx_coe) {
4829 		priv->hw->rx_csum = priv->plat->rx_coe;
4830 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4831 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4832 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4833 	}
4834 	if (priv->plat->tx_coe)
4835 		dev_info(priv->device, "TX Checksum insertion supported\n");
4836 
4837 	if (priv->plat->pmt) {
4838 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4839 		device_set_wakeup_capable(priv->device, 1);
4840 	}
4841 
4842 	if (priv->dma_cap.tsoen)
4843 		dev_info(priv->device, "TSO supported\n");
4844 
4845 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4846 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4847 
4848 	/* Run HW quirks, if any */
4849 	if (priv->hwif_quirks) {
4850 		ret = priv->hwif_quirks(priv);
4851 		if (ret)
4852 			return ret;
4853 	}
4854 
4855 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4856 	 * In some case, for example on bugged HW this feature
4857 	 * has to be disable and this can be done by passing the
4858 	 * riwt_off field from the platform.
4859 	 */
4860 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4861 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4862 		priv->use_riwt = 1;
4863 		dev_info(priv->device,
4864 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4865 	}
4866 
4867 	return 0;
4868 }
4869 
stmmac_napi_add(struct net_device * dev)4870 static void stmmac_napi_add(struct net_device *dev)
4871 {
4872 	struct stmmac_priv *priv = netdev_priv(dev);
4873 	u32 queue, maxq;
4874 
4875 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4876 
4877 	for (queue = 0; queue < maxq; queue++) {
4878 		struct stmmac_channel *ch = &priv->channel[queue];
4879 
4880 		ch->priv_data = priv;
4881 		ch->index = queue;
4882 		spin_lock_init(&ch->lock);
4883 
4884 		if (queue < priv->plat->rx_queues_to_use) {
4885 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4886 				       NAPI_POLL_WEIGHT);
4887 		}
4888 		if (queue < priv->plat->tx_queues_to_use) {
4889 			netif_tx_napi_add(dev, &ch->tx_napi,
4890 					  stmmac_napi_poll_tx,
4891 					  NAPI_POLL_WEIGHT);
4892 		}
4893 	}
4894 }
4895 
stmmac_napi_del(struct net_device * dev)4896 static void stmmac_napi_del(struct net_device *dev)
4897 {
4898 	struct stmmac_priv *priv = netdev_priv(dev);
4899 	u32 queue, maxq;
4900 
4901 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4902 
4903 	for (queue = 0; queue < maxq; queue++) {
4904 		struct stmmac_channel *ch = &priv->channel[queue];
4905 
4906 		if (queue < priv->plat->rx_queues_to_use)
4907 			netif_napi_del(&ch->rx_napi);
4908 		if (queue < priv->plat->tx_queues_to_use)
4909 			netif_napi_del(&ch->tx_napi);
4910 	}
4911 }
4912 
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4913 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4914 {
4915 	struct stmmac_priv *priv = netdev_priv(dev);
4916 	int ret = 0;
4917 
4918 	if (netif_running(dev))
4919 		stmmac_release(dev);
4920 
4921 	stmmac_napi_del(dev);
4922 
4923 	priv->plat->rx_queues_to_use = rx_cnt;
4924 	priv->plat->tx_queues_to_use = tx_cnt;
4925 
4926 	stmmac_napi_add(dev);
4927 
4928 	if (netif_running(dev))
4929 		ret = stmmac_open(dev);
4930 
4931 	return ret;
4932 }
4933 
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4934 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4935 {
4936 	struct stmmac_priv *priv = netdev_priv(dev);
4937 	int ret = 0;
4938 
4939 	if (netif_running(dev))
4940 		stmmac_release(dev);
4941 
4942 	priv->dma_rx_size = rx_size;
4943 	priv->dma_tx_size = tx_size;
4944 
4945 	if (netif_running(dev))
4946 		ret = stmmac_open(dev);
4947 
4948 	return ret;
4949 }
4950 
4951 /**
4952  * stmmac_dvr_probe
4953  * @device: device pointer
4954  * @plat_dat: platform data pointer
4955  * @res: stmmac resource pointer
4956  * Description: this is the main probe function used to
4957  * call the alloc_etherdev, allocate the priv structure.
4958  * Return:
4959  * returns 0 on success, otherwise errno.
4960  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4961 int stmmac_dvr_probe(struct device *device,
4962 		     struct plat_stmmacenet_data *plat_dat,
4963 		     struct stmmac_resources *res)
4964 {
4965 	struct net_device *ndev = NULL;
4966 	struct stmmac_priv *priv;
4967 	u32 rxq;
4968 	int i, ret = 0;
4969 
4970 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4971 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4972 	if (!ndev)
4973 		return -ENOMEM;
4974 
4975 	SET_NETDEV_DEV(ndev, device);
4976 
4977 	priv = netdev_priv(ndev);
4978 	priv->device = device;
4979 	priv->dev = ndev;
4980 
4981 	stmmac_set_ethtool_ops(ndev);
4982 	priv->pause = pause;
4983 	priv->plat = plat_dat;
4984 	priv->ioaddr = res->addr;
4985 	priv->dev->base_addr = (unsigned long)res->addr;
4986 
4987 	priv->dev->irq = res->irq;
4988 	priv->wol_irq = res->wol_irq;
4989 	priv->lpi_irq = res->lpi_irq;
4990 
4991 	if (!IS_ERR_OR_NULL(res->mac))
4992 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4993 
4994 	dev_set_drvdata(device, priv->dev);
4995 
4996 	/* Verify driver arguments */
4997 	stmmac_verify_args();
4998 
4999 	/* Allocate workqueue */
5000 	priv->wq = create_singlethread_workqueue("stmmac_wq");
5001 	if (!priv->wq) {
5002 		dev_err(priv->device, "failed to create workqueue\n");
5003 		return -ENOMEM;
5004 	}
5005 
5006 	INIT_WORK(&priv->service_task, stmmac_service_task);
5007 
5008 	/* Override with kernel parameters if supplied XXX CRS XXX
5009 	 * this needs to have multiple instances
5010 	 */
5011 	if ((phyaddr >= 0) && (phyaddr <= 31))
5012 		priv->plat->phy_addr = phyaddr;
5013 
5014 	if (priv->plat->stmmac_rst) {
5015 		ret = reset_control_assert(priv->plat->stmmac_rst);
5016 		reset_control_deassert(priv->plat->stmmac_rst);
5017 		/* Some reset controllers have only reset callback instead of
5018 		 * assert + deassert callbacks pair.
5019 		 */
5020 		if (ret == -ENOTSUPP)
5021 			reset_control_reset(priv->plat->stmmac_rst);
5022 	}
5023 
5024 	/* Init MAC and get the capabilities */
5025 	ret = stmmac_hw_init(priv);
5026 	if (ret)
5027 		goto error_hw_init;
5028 
5029 	stmmac_check_ether_addr(priv);
5030 
5031 	ndev->netdev_ops = &stmmac_netdev_ops;
5032 
5033 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5034 			    NETIF_F_RXCSUM;
5035 
5036 	ret = stmmac_tc_init(priv, priv);
5037 	if (!ret) {
5038 		ndev->hw_features |= NETIF_F_HW_TC;
5039 	}
5040 
5041 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5042 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5043 		if (priv->plat->has_gmac4)
5044 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5045 		priv->tso = true;
5046 		dev_info(priv->device, "TSO feature enabled\n");
5047 	}
5048 
5049 	if (priv->dma_cap.sphen) {
5050 		ndev->hw_features |= NETIF_F_GRO;
5051 		priv->sph = true;
5052 		dev_info(priv->device, "SPH feature enabled\n");
5053 	}
5054 
5055 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
5056 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5057 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5058 	 * So overwrite dma_cap.addr64 according to HW real design.
5059 	 */
5060 	if (priv->plat->addr64)
5061 		priv->dma_cap.addr64 = priv->plat->addr64;
5062 
5063 	if (priv->dma_cap.addr64) {
5064 		ret = dma_set_mask_and_coherent(device,
5065 				DMA_BIT_MASK(priv->dma_cap.addr64));
5066 		if (!ret) {
5067 			dev_info(priv->device, "Using %d bits DMA width\n",
5068 				 priv->dma_cap.addr64);
5069 
5070 			/*
5071 			 * If more than 32 bits can be addressed, make sure to
5072 			 * enable enhanced addressing mode.
5073 			 */
5074 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5075 				priv->plat->dma_cfg->eame = true;
5076 		} else {
5077 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5078 			if (ret) {
5079 				dev_err(priv->device, "Failed to set DMA Mask\n");
5080 				goto error_hw_init;
5081 			}
5082 
5083 			priv->dma_cap.addr64 = 32;
5084 		}
5085 	}
5086 
5087 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5088 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5089 #ifdef STMMAC_VLAN_TAG_USED
5090 	/* Both mac100 and gmac support receive VLAN tag detection */
5091 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5092 	if (priv->dma_cap.vlhash) {
5093 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5094 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5095 	}
5096 	if (priv->dma_cap.vlins) {
5097 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5098 		if (priv->dma_cap.dvlan)
5099 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5100 	}
5101 #endif
5102 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
5103 
5104 	/* Initialize RSS */
5105 	rxq = priv->plat->rx_queues_to_use;
5106 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5107 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5108 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5109 
5110 	if (priv->dma_cap.rssen && priv->plat->rss_en)
5111 		ndev->features |= NETIF_F_RXHASH;
5112 
5113 	/* MTU range: 46 - hw-specific max */
5114 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5115 	if (priv->plat->has_xgmac)
5116 		ndev->max_mtu = XGMAC_JUMBO_LEN;
5117 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5118 		ndev->max_mtu = JUMBO_LEN;
5119 	else
5120 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5121 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5122 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5123 	 */
5124 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
5125 	    (priv->plat->maxmtu >= ndev->min_mtu))
5126 		ndev->max_mtu = priv->plat->maxmtu;
5127 	else if (priv->plat->maxmtu < ndev->min_mtu)
5128 		dev_warn(priv->device,
5129 			 "%s: warning: maxmtu having invalid value (%d)\n",
5130 			 __func__, priv->plat->maxmtu);
5131 
5132 	if (flow_ctrl)
5133 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
5134 
5135 	/* Setup channels NAPI */
5136 	stmmac_napi_add(ndev);
5137 
5138 	mutex_init(&priv->lock);
5139 
5140 	/* If a specific clk_csr value is passed from the platform
5141 	 * this means that the CSR Clock Range selection cannot be
5142 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5143 	 * set the MDC clock dynamically according to the csr actual
5144 	 * clock input.
5145 	 */
5146 	if (priv->plat->clk_csr >= 0)
5147 		priv->clk_csr = priv->plat->clk_csr;
5148 	else
5149 		stmmac_clk_csr_set(priv);
5150 
5151 	stmmac_check_pcs_mode(priv);
5152 
5153 	pm_runtime_get_noresume(device);
5154 	pm_runtime_set_active(device);
5155 	pm_runtime_enable(device);
5156 
5157 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5158 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5159 		/* MDIO bus Registration */
5160 		ret = stmmac_mdio_register(ndev);
5161 		if (ret < 0) {
5162 			dev_err(priv->device,
5163 				"%s: MDIO bus (id: %d) registration failed",
5164 				__func__, priv->plat->bus_id);
5165 			goto error_mdio_register;
5166 		}
5167 	}
5168 
5169 	ret = stmmac_phy_setup(priv);
5170 	if (ret) {
5171 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5172 		goto error_phy_setup;
5173 	}
5174 
5175 	ret = register_netdev(ndev);
5176 	if (ret) {
5177 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5178 			__func__, ret);
5179 		goto error_netdev_register;
5180 	}
5181 
5182 	if (priv->plat->serdes_powerup) {
5183 		ret = priv->plat->serdes_powerup(ndev,
5184 						 priv->plat->bsp_priv);
5185 
5186 		if (ret < 0)
5187 			goto error_serdes_powerup;
5188 	}
5189 
5190 #ifdef CONFIG_DEBUG_FS
5191 	stmmac_init_fs(ndev);
5192 #endif
5193 
5194 	/* Let pm_runtime_put() disable the clocks.
5195 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
5196 	 */
5197 	pm_runtime_put(device);
5198 
5199 	return ret;
5200 
5201 error_serdes_powerup:
5202 	unregister_netdev(ndev);
5203 error_netdev_register:
5204 	phylink_destroy(priv->phylink);
5205 error_phy_setup:
5206 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5207 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5208 		stmmac_mdio_unregister(ndev);
5209 error_mdio_register:
5210 	stmmac_napi_del(ndev);
5211 error_hw_init:
5212 	destroy_workqueue(priv->wq);
5213 
5214 	return ret;
5215 }
5216 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5217 
5218 /**
5219  * stmmac_dvr_remove
5220  * @dev: device pointer
5221  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5222  * changes the link status, releases the DMA descriptor rings.
5223  */
stmmac_dvr_remove(struct device * dev)5224 int stmmac_dvr_remove(struct device *dev)
5225 {
5226 	struct net_device *ndev = dev_get_drvdata(dev);
5227 	struct stmmac_priv *priv = netdev_priv(ndev);
5228 
5229 	netdev_info(priv->dev, "%s: removing driver", __func__);
5230 
5231 	stmmac_stop_all_dma(priv);
5232 	stmmac_mac_set(priv, priv->ioaddr, false);
5233 	netif_carrier_off(ndev);
5234 	unregister_netdev(ndev);
5235 
5236 	/* Serdes power down needs to happen after VLAN filter
5237 	 * is deleted that is triggered by unregister_netdev().
5238 	 */
5239 	if (priv->plat->serdes_powerdown)
5240 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5241 
5242 #ifdef CONFIG_DEBUG_FS
5243 	stmmac_exit_fs(ndev);
5244 #endif
5245 	phylink_destroy(priv->phylink);
5246 	if (priv->plat->stmmac_rst)
5247 		reset_control_assert(priv->plat->stmmac_rst);
5248 	pm_runtime_put(dev);
5249 	pm_runtime_disable(dev);
5250 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5251 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5252 		stmmac_mdio_unregister(ndev);
5253 	destroy_workqueue(priv->wq);
5254 	mutex_destroy(&priv->lock);
5255 
5256 	return 0;
5257 }
5258 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5259 
5260 /**
5261  * stmmac_suspend - suspend callback
5262  * @dev: device pointer
5263  * Description: this is the function to suspend the device and it is called
5264  * by the platform driver to stop the network queue, release the resources,
5265  * program the PMT register (for WoL), clean and release driver resources.
5266  */
stmmac_suspend(struct device * dev)5267 int stmmac_suspend(struct device *dev)
5268 {
5269 	struct net_device *ndev = dev_get_drvdata(dev);
5270 	struct stmmac_priv *priv = netdev_priv(ndev);
5271 	u32 chan;
5272 
5273 	if (!ndev || !netif_running(ndev))
5274 		return 0;
5275 
5276 	phylink_mac_change(priv->phylink, false);
5277 
5278 	mutex_lock(&priv->lock);
5279 
5280 	netif_device_detach(ndev);
5281 
5282 	stmmac_disable_all_queues(priv);
5283 
5284 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5285 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5286 
5287 	if (priv->eee_enabled) {
5288 		priv->tx_path_in_lpi_mode = false;
5289 		del_timer_sync(&priv->eee_ctrl_timer);
5290 	}
5291 
5292 	/* Stop TX/RX DMA */
5293 	stmmac_stop_all_dma(priv);
5294 
5295 	if (priv->plat->serdes_powerdown)
5296 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5297 
5298 	/* Enable Power down mode by programming the PMT regs */
5299 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5300 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5301 		priv->irq_wake = 1;
5302 	} else {
5303 		mutex_unlock(&priv->lock);
5304 		rtnl_lock();
5305 		if (device_may_wakeup(priv->device))
5306 			phylink_speed_down(priv->phylink, false);
5307 		phylink_stop(priv->phylink);
5308 		rtnl_unlock();
5309 		mutex_lock(&priv->lock);
5310 
5311 		stmmac_mac_set(priv, priv->ioaddr, false);
5312 		pinctrl_pm_select_sleep_state(priv->device);
5313 	}
5314 	mutex_unlock(&priv->lock);
5315 
5316 	priv->speed = SPEED_UNKNOWN;
5317 	return 0;
5318 }
5319 EXPORT_SYMBOL_GPL(stmmac_suspend);
5320 
5321 /**
5322  * stmmac_reset_queues_param - reset queue parameters
5323  * @priv: device pointer
5324  */
stmmac_reset_queues_param(struct stmmac_priv * priv)5325 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5326 {
5327 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5328 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5329 	u32 queue;
5330 
5331 	for (queue = 0; queue < rx_cnt; queue++) {
5332 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5333 
5334 		rx_q->cur_rx = 0;
5335 		rx_q->dirty_rx = 0;
5336 	}
5337 
5338 	for (queue = 0; queue < tx_cnt; queue++) {
5339 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5340 
5341 		tx_q->cur_tx = 0;
5342 		tx_q->dirty_tx = 0;
5343 		tx_q->mss = 0;
5344 
5345 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5346 	}
5347 }
5348 
5349 /**
5350  * stmmac_resume - resume callback
5351  * @dev: device pointer
5352  * Description: when resume this function is invoked to setup the DMA and CORE
5353  * in a usable state.
5354  */
stmmac_resume(struct device * dev)5355 int stmmac_resume(struct device *dev)
5356 {
5357 	struct net_device *ndev = dev_get_drvdata(dev);
5358 	struct stmmac_priv *priv = netdev_priv(ndev);
5359 	int ret;
5360 
5361 	if (!netif_running(ndev))
5362 		return 0;
5363 
5364 	/* Power Down bit, into the PM register, is cleared
5365 	 * automatically as soon as a magic packet or a Wake-up frame
5366 	 * is received. Anyway, it's better to manually clear
5367 	 * this bit because it can generate problems while resuming
5368 	 * from another devices (e.g. serial console).
5369 	 */
5370 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5371 		mutex_lock(&priv->lock);
5372 		stmmac_pmt(priv, priv->hw, 0);
5373 		mutex_unlock(&priv->lock);
5374 		priv->irq_wake = 0;
5375 	} else {
5376 		pinctrl_pm_select_default_state(priv->device);
5377 		/* reset the phy so that it's ready */
5378 		if (priv->mii)
5379 			stmmac_mdio_reset(priv->mii);
5380 	}
5381 
5382 	if (priv->plat->serdes_powerup) {
5383 		ret = priv->plat->serdes_powerup(ndev,
5384 						 priv->plat->bsp_priv);
5385 
5386 		if (ret < 0)
5387 			return ret;
5388 	}
5389 
5390 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5391 		rtnl_lock();
5392 		phylink_start(priv->phylink);
5393 		/* We may have called phylink_speed_down before */
5394 		phylink_speed_up(priv->phylink);
5395 		rtnl_unlock();
5396 	}
5397 
5398 	rtnl_lock();
5399 	mutex_lock(&priv->lock);
5400 
5401 	stmmac_reset_queues_param(priv);
5402 
5403 	stmmac_free_tx_skbufs(priv);
5404 	stmmac_clear_descriptors(priv);
5405 
5406 	stmmac_hw_setup(ndev, false);
5407 	stmmac_init_coalesce(priv);
5408 	stmmac_set_rx_mode(ndev);
5409 
5410 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5411 
5412 	stmmac_enable_all_queues(priv);
5413 
5414 	mutex_unlock(&priv->lock);
5415 	rtnl_unlock();
5416 
5417 	phylink_mac_change(priv->phylink, true);
5418 
5419 	netif_device_attach(ndev);
5420 
5421 	return 0;
5422 }
5423 EXPORT_SYMBOL_GPL(stmmac_resume);
5424 
5425 #ifndef MODULE
stmmac_cmdline_opt(char * str)5426 static int __init stmmac_cmdline_opt(char *str)
5427 {
5428 	char *opt;
5429 
5430 	if (!str || !*str)
5431 		return -EINVAL;
5432 	while ((opt = strsep(&str, ",")) != NULL) {
5433 		if (!strncmp(opt, "debug:", 6)) {
5434 			if (kstrtoint(opt + 6, 0, &debug))
5435 				goto err;
5436 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5437 			if (kstrtoint(opt + 8, 0, &phyaddr))
5438 				goto err;
5439 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5440 			if (kstrtoint(opt + 7, 0, &buf_sz))
5441 				goto err;
5442 		} else if (!strncmp(opt, "tc:", 3)) {
5443 			if (kstrtoint(opt + 3, 0, &tc))
5444 				goto err;
5445 		} else if (!strncmp(opt, "watchdog:", 9)) {
5446 			if (kstrtoint(opt + 9, 0, &watchdog))
5447 				goto err;
5448 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5449 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5450 				goto err;
5451 		} else if (!strncmp(opt, "pause:", 6)) {
5452 			if (kstrtoint(opt + 6, 0, &pause))
5453 				goto err;
5454 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5455 			if (kstrtoint(opt + 10, 0, &eee_timer))
5456 				goto err;
5457 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5458 			if (kstrtoint(opt + 11, 0, &chain_mode))
5459 				goto err;
5460 		}
5461 	}
5462 	return 0;
5463 
5464 err:
5465 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5466 	return -EINVAL;
5467 }
5468 
5469 __setup("stmmaceth=", stmmac_cmdline_opt);
5470 #endif /* MODULE */
5471 
stmmac_init(void)5472 static int __init stmmac_init(void)
5473 {
5474 #ifdef CONFIG_DEBUG_FS
5475 	/* Create debugfs main directory if it doesn't exist yet */
5476 	if (!stmmac_fs_dir)
5477 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5478 	register_netdevice_notifier(&stmmac_notifier);
5479 #endif
5480 
5481 	return 0;
5482 }
5483 
stmmac_exit(void)5484 static void __exit stmmac_exit(void)
5485 {
5486 #ifdef CONFIG_DEBUG_FS
5487 	unregister_netdevice_notifier(&stmmac_notifier);
5488 	debugfs_remove_recursive(stmmac_fs_dir);
5489 #endif
5490 }
5491 
5492 module_init(stmmac_init)
5493 module_exit(stmmac_exit)
5494 
5495 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5496 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5497 MODULE_LICENSE("GPL");
5498