• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx Axi Ethernet device driver
4  *
5  * Copyright (c) 2008 Nissin Systems Co., Ltd.,  Yoshio Kashiwagi
6  * Copyright (c) 2005-2008 DLA Systems,  David H. Lynch Jr. <dhlii@dlasys.net>
7  * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
8  * Copyright (c) 2010 - 2011 Michal Simek <monstr@monstr.eu>
9  * Copyright (c) 2010 - 2011 PetaLogix
10  * Copyright (c) 2019 SED Systems, a division of Calian Ltd.
11  * Copyright (c) 2010 - 2012 Xilinx, Inc. All rights reserved.
12  *
13  * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
14  * and Spartan6.
15  *
16  * TODO:
17  *  - Add Axi Fifo support.
18  *  - Factor out Axi DMA code into separate driver.
19  *  - Test and fix basic multicast filtering.
20  *  - Add support for extended multicast filtering.
21  *  - Test basic VLAN support.
22  *  - Add support for extended VLAN support.
23  */
24 
25 #include <linux/clk.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/module.h>
29 #include <linux/netdevice.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_address.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/phy.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 
41 #include "xilinx_axienet.h"
42 
43 /* Descriptors defines for Tx and Rx DMA */
44 #define TX_BD_NUM_DEFAULT		128
45 #define RX_BD_NUM_DEFAULT		1024
46 #define TX_BD_NUM_MIN			(MAX_SKB_FRAGS + 1)
47 #define TX_BD_NUM_MAX			4096
48 #define RX_BD_NUM_MAX			4096
49 
50 /* Must be shorter than length of ethtool_drvinfo.driver field to fit */
51 #define DRIVER_NAME		"xaxienet"
52 #define DRIVER_DESCRIPTION	"Xilinx Axi Ethernet driver"
53 #define DRIVER_VERSION		"1.00a"
54 
55 #define AXIENET_REGS_N		40
56 
57 /* Match table for of_platform binding */
58 static const struct of_device_id axienet_of_match[] = {
59 	{ .compatible = "xlnx,axi-ethernet-1.00.a", },
60 	{ .compatible = "xlnx,axi-ethernet-1.01.a", },
61 	{ .compatible = "xlnx,axi-ethernet-2.01.a", },
62 	{},
63 };
64 
65 MODULE_DEVICE_TABLE(of, axienet_of_match);
66 
67 /* Option table for setting up Axi Ethernet hardware options */
68 static struct axienet_option axienet_options[] = {
69 	/* Turn on jumbo packet support for both Rx and Tx */
70 	{
71 		.opt = XAE_OPTION_JUMBO,
72 		.reg = XAE_TC_OFFSET,
73 		.m_or = XAE_TC_JUM_MASK,
74 	}, {
75 		.opt = XAE_OPTION_JUMBO,
76 		.reg = XAE_RCW1_OFFSET,
77 		.m_or = XAE_RCW1_JUM_MASK,
78 	}, { /* Turn on VLAN packet support for both Rx and Tx */
79 		.opt = XAE_OPTION_VLAN,
80 		.reg = XAE_TC_OFFSET,
81 		.m_or = XAE_TC_VLAN_MASK,
82 	}, {
83 		.opt = XAE_OPTION_VLAN,
84 		.reg = XAE_RCW1_OFFSET,
85 		.m_or = XAE_RCW1_VLAN_MASK,
86 	}, { /* Turn on FCS stripping on receive packets */
87 		.opt = XAE_OPTION_FCS_STRIP,
88 		.reg = XAE_RCW1_OFFSET,
89 		.m_or = XAE_RCW1_FCS_MASK,
90 	}, { /* Turn on FCS insertion on transmit packets */
91 		.opt = XAE_OPTION_FCS_INSERT,
92 		.reg = XAE_TC_OFFSET,
93 		.m_or = XAE_TC_FCS_MASK,
94 	}, { /* Turn off length/type field checking on receive packets */
95 		.opt = XAE_OPTION_LENTYPE_ERR,
96 		.reg = XAE_RCW1_OFFSET,
97 		.m_or = XAE_RCW1_LT_DIS_MASK,
98 	}, { /* Turn on Rx flow control */
99 		.opt = XAE_OPTION_FLOW_CONTROL,
100 		.reg = XAE_FCC_OFFSET,
101 		.m_or = XAE_FCC_FCRX_MASK,
102 	}, { /* Turn on Tx flow control */
103 		.opt = XAE_OPTION_FLOW_CONTROL,
104 		.reg = XAE_FCC_OFFSET,
105 		.m_or = XAE_FCC_FCTX_MASK,
106 	}, { /* Turn on promiscuous frame filtering */
107 		.opt = XAE_OPTION_PROMISC,
108 		.reg = XAE_FMI_OFFSET,
109 		.m_or = XAE_FMI_PM_MASK,
110 	}, { /* Enable transmitter */
111 		.opt = XAE_OPTION_TXEN,
112 		.reg = XAE_TC_OFFSET,
113 		.m_or = XAE_TC_TX_MASK,
114 	}, { /* Enable receiver */
115 		.opt = XAE_OPTION_RXEN,
116 		.reg = XAE_RCW1_OFFSET,
117 		.m_or = XAE_RCW1_RX_MASK,
118 	},
119 	{}
120 };
121 
122 /**
123  * axienet_dma_in32 - Memory mapped Axi DMA register read
124  * @lp:		Pointer to axienet local structure
125  * @reg:	Address offset from the base address of the Axi DMA core
126  *
127  * Return: The contents of the Axi DMA register
128  *
129  * This function returns the contents of the corresponding Axi DMA register.
130  */
axienet_dma_in32(struct axienet_local * lp,off_t reg)131 static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
132 {
133 	return ioread32(lp->dma_regs + reg);
134 }
135 
136 /**
137  * axienet_dma_out32 - Memory mapped Axi DMA register write.
138  * @lp:		Pointer to axienet local structure
139  * @reg:	Address offset from the base address of the Axi DMA core
140  * @value:	Value to be written into the Axi DMA register
141  *
142  * This function writes the desired value into the corresponding Axi DMA
143  * register.
144  */
axienet_dma_out32(struct axienet_local * lp,off_t reg,u32 value)145 static inline void axienet_dma_out32(struct axienet_local *lp,
146 				     off_t reg, u32 value)
147 {
148 	iowrite32(value, lp->dma_regs + reg);
149 }
150 
axienet_dma_out_addr(struct axienet_local * lp,off_t reg,dma_addr_t addr)151 static void axienet_dma_out_addr(struct axienet_local *lp, off_t reg,
152 				 dma_addr_t addr)
153 {
154 	axienet_dma_out32(lp, reg, lower_32_bits(addr));
155 
156 	if (lp->features & XAE_FEATURE_DMA_64BIT)
157 		axienet_dma_out32(lp, reg + 4, upper_32_bits(addr));
158 }
159 
desc_set_phys_addr(struct axienet_local * lp,dma_addr_t addr,struct axidma_bd * desc)160 static void desc_set_phys_addr(struct axienet_local *lp, dma_addr_t addr,
161 			       struct axidma_bd *desc)
162 {
163 	desc->phys = lower_32_bits(addr);
164 	if (lp->features & XAE_FEATURE_DMA_64BIT)
165 		desc->phys_msb = upper_32_bits(addr);
166 }
167 
desc_get_phys_addr(struct axienet_local * lp,struct axidma_bd * desc)168 static dma_addr_t desc_get_phys_addr(struct axienet_local *lp,
169 				     struct axidma_bd *desc)
170 {
171 	dma_addr_t ret = desc->phys;
172 
173 	if (lp->features & XAE_FEATURE_DMA_64BIT)
174 		ret |= ((dma_addr_t)desc->phys_msb << 16) << 16;
175 
176 	return ret;
177 }
178 
179 /**
180  * axienet_dma_bd_release - Release buffer descriptor rings
181  * @ndev:	Pointer to the net_device structure
182  *
183  * This function is used to release the descriptors allocated in
184  * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
185  * driver stop api is called.
186  */
axienet_dma_bd_release(struct net_device * ndev)187 static void axienet_dma_bd_release(struct net_device *ndev)
188 {
189 	int i;
190 	struct axienet_local *lp = netdev_priv(ndev);
191 
192 	/* If we end up here, tx_bd_v must have been DMA allocated. */
193 	dma_free_coherent(ndev->dev.parent,
194 			  sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
195 			  lp->tx_bd_v,
196 			  lp->tx_bd_p);
197 
198 	if (!lp->rx_bd_v)
199 		return;
200 
201 	for (i = 0; i < lp->rx_bd_num; i++) {
202 		dma_addr_t phys;
203 
204 		/* A NULL skb means this descriptor has not been initialised
205 		 * at all.
206 		 */
207 		if (!lp->rx_bd_v[i].skb)
208 			break;
209 
210 		dev_kfree_skb(lp->rx_bd_v[i].skb);
211 
212 		/* For each descriptor, we programmed cntrl with the (non-zero)
213 		 * descriptor size, after it had been successfully allocated.
214 		 * So a non-zero value in there means we need to unmap it.
215 		 */
216 		if (lp->rx_bd_v[i].cntrl) {
217 			phys = desc_get_phys_addr(lp, &lp->rx_bd_v[i]);
218 			dma_unmap_single(ndev->dev.parent, phys,
219 					 lp->max_frm_size, DMA_FROM_DEVICE);
220 		}
221 	}
222 
223 	dma_free_coherent(ndev->dev.parent,
224 			  sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
225 			  lp->rx_bd_v,
226 			  lp->rx_bd_p);
227 }
228 
229 /**
230  * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
231  * @ndev:	Pointer to the net_device structure
232  *
233  * Return: 0, on success -ENOMEM, on failure
234  *
235  * This function is called to initialize the Rx and Tx DMA descriptor
236  * rings. This initializes the descriptors with required default values
237  * and is called when Axi Ethernet driver reset is called.
238  */
axienet_dma_bd_init(struct net_device * ndev)239 static int axienet_dma_bd_init(struct net_device *ndev)
240 {
241 	u32 cr;
242 	int i;
243 	struct sk_buff *skb;
244 	struct axienet_local *lp = netdev_priv(ndev);
245 
246 	/* Reset the indexes which are used for accessing the BDs */
247 	lp->tx_bd_ci = 0;
248 	lp->tx_bd_tail = 0;
249 	lp->rx_bd_ci = 0;
250 
251 	/* Allocate the Tx and Rx buffer descriptors. */
252 	lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
253 					 sizeof(*lp->tx_bd_v) * lp->tx_bd_num,
254 					 &lp->tx_bd_p, GFP_KERNEL);
255 	if (!lp->tx_bd_v)
256 		return -ENOMEM;
257 
258 	lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
259 					 sizeof(*lp->rx_bd_v) * lp->rx_bd_num,
260 					 &lp->rx_bd_p, GFP_KERNEL);
261 	if (!lp->rx_bd_v)
262 		goto out;
263 
264 	for (i = 0; i < lp->tx_bd_num; i++) {
265 		dma_addr_t addr = lp->tx_bd_p +
266 				  sizeof(*lp->tx_bd_v) *
267 				  ((i + 1) % lp->tx_bd_num);
268 
269 		lp->tx_bd_v[i].next = lower_32_bits(addr);
270 		if (lp->features & XAE_FEATURE_DMA_64BIT)
271 			lp->tx_bd_v[i].next_msb = upper_32_bits(addr);
272 	}
273 
274 	for (i = 0; i < lp->rx_bd_num; i++) {
275 		dma_addr_t addr;
276 
277 		addr = lp->rx_bd_p + sizeof(*lp->rx_bd_v) *
278 			((i + 1) % lp->rx_bd_num);
279 		lp->rx_bd_v[i].next = lower_32_bits(addr);
280 		if (lp->features & XAE_FEATURE_DMA_64BIT)
281 			lp->rx_bd_v[i].next_msb = upper_32_bits(addr);
282 
283 		skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
284 		if (!skb)
285 			goto out;
286 
287 		lp->rx_bd_v[i].skb = skb;
288 		addr = dma_map_single(ndev->dev.parent, skb->data,
289 				      lp->max_frm_size, DMA_FROM_DEVICE);
290 		if (dma_mapping_error(ndev->dev.parent, addr)) {
291 			netdev_err(ndev, "DMA mapping error\n");
292 			goto out;
293 		}
294 		desc_set_phys_addr(lp, addr, &lp->rx_bd_v[i]);
295 
296 		lp->rx_bd_v[i].cntrl = lp->max_frm_size;
297 	}
298 
299 	/* Start updating the Rx channel control register */
300 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
301 	/* Update the interrupt coalesce count */
302 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
303 	      ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
304 	/* Update the delay timer count */
305 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
306 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
307 	/* Enable coalesce, delay timer and error interrupts */
308 	cr |= XAXIDMA_IRQ_ALL_MASK;
309 	/* Write to the Rx channel control register */
310 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
311 
312 	/* Start updating the Tx channel control register */
313 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
314 	/* Update the interrupt coalesce count */
315 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
316 	      ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
317 	/* Update the delay timer count */
318 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
319 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
320 	/* Enable coalesce, delay timer and error interrupts */
321 	cr |= XAXIDMA_IRQ_ALL_MASK;
322 	/* Write to the Tx channel control register */
323 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
324 
325 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
326 	 * halted state. This will make the Rx side ready for reception.
327 	 */
328 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
329 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
330 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
331 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
332 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
333 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
334 
335 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
336 	 * Tx channel is now ready to run. But only after we write to the
337 	 * tail pointer register that the Tx channel will start transmitting.
338 	 */
339 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
340 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
341 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
342 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
343 
344 	return 0;
345 out:
346 	axienet_dma_bd_release(ndev);
347 	return -ENOMEM;
348 }
349 
350 /**
351  * axienet_set_mac_address - Write the MAC address
352  * @ndev:	Pointer to the net_device structure
353  * @address:	6 byte Address to be written as MAC address
354  *
355  * This function is called to initialize the MAC address of the Axi Ethernet
356  * core. It writes to the UAW0 and UAW1 registers of the core.
357  */
axienet_set_mac_address(struct net_device * ndev,const void * address)358 static void axienet_set_mac_address(struct net_device *ndev,
359 				    const void *address)
360 {
361 	struct axienet_local *lp = netdev_priv(ndev);
362 
363 	if (address)
364 		memcpy(ndev->dev_addr, address, ETH_ALEN);
365 	if (!is_valid_ether_addr(ndev->dev_addr))
366 		eth_hw_addr_random(ndev);
367 
368 	/* Set up unicast MAC address filter set its mac address */
369 	axienet_iow(lp, XAE_UAW0_OFFSET,
370 		    (ndev->dev_addr[0]) |
371 		    (ndev->dev_addr[1] << 8) |
372 		    (ndev->dev_addr[2] << 16) |
373 		    (ndev->dev_addr[3] << 24));
374 	axienet_iow(lp, XAE_UAW1_OFFSET,
375 		    (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
376 		      ~XAE_UAW1_UNICASTADDR_MASK) |
377 		     (ndev->dev_addr[4] |
378 		     (ndev->dev_addr[5] << 8))));
379 }
380 
381 /**
382  * netdev_set_mac_address - Write the MAC address (from outside the driver)
383  * @ndev:	Pointer to the net_device structure
384  * @p:		6 byte Address to be written as MAC address
385  *
386  * Return: 0 for all conditions. Presently, there is no failure case.
387  *
388  * This function is called to initialize the MAC address of the Axi Ethernet
389  * core. It calls the core specific axienet_set_mac_address. This is the
390  * function that goes into net_device_ops structure entry ndo_set_mac_address.
391  */
netdev_set_mac_address(struct net_device * ndev,void * p)392 static int netdev_set_mac_address(struct net_device *ndev, void *p)
393 {
394 	struct sockaddr *addr = p;
395 	axienet_set_mac_address(ndev, addr->sa_data);
396 	return 0;
397 }
398 
399 /**
400  * axienet_set_multicast_list - Prepare the multicast table
401  * @ndev:	Pointer to the net_device structure
402  *
403  * This function is called to initialize the multicast table during
404  * initialization. The Axi Ethernet basic multicast support has a four-entry
405  * multicast table which is initialized here. Additionally this function
406  * goes into the net_device_ops structure entry ndo_set_multicast_list. This
407  * means whenever the multicast table entries need to be updated this
408  * function gets called.
409  */
axienet_set_multicast_list(struct net_device * ndev)410 static void axienet_set_multicast_list(struct net_device *ndev)
411 {
412 	int i;
413 	u32 reg, af0reg, af1reg;
414 	struct axienet_local *lp = netdev_priv(ndev);
415 
416 	if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
417 	    netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
418 		/* We must make the kernel realize we had to move into
419 		 * promiscuous mode. If it was a promiscuous mode request
420 		 * the flag is already set. If not we set it.
421 		 */
422 		ndev->flags |= IFF_PROMISC;
423 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
424 		reg |= XAE_FMI_PM_MASK;
425 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
426 		dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
427 	} else if (!netdev_mc_empty(ndev)) {
428 		struct netdev_hw_addr *ha;
429 
430 		i = 0;
431 		netdev_for_each_mc_addr(ha, ndev) {
432 			if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
433 				break;
434 
435 			af0reg = (ha->addr[0]);
436 			af0reg |= (ha->addr[1] << 8);
437 			af0reg |= (ha->addr[2] << 16);
438 			af0reg |= (ha->addr[3] << 24);
439 
440 			af1reg = (ha->addr[4]);
441 			af1reg |= (ha->addr[5] << 8);
442 
443 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
444 			reg |= i;
445 
446 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
447 			axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
448 			axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
449 			i++;
450 		}
451 	} else {
452 		reg = axienet_ior(lp, XAE_FMI_OFFSET);
453 		reg &= ~XAE_FMI_PM_MASK;
454 
455 		axienet_iow(lp, XAE_FMI_OFFSET, reg);
456 
457 		for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
458 			reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
459 			reg |= i;
460 
461 			axienet_iow(lp, XAE_FMI_OFFSET, reg);
462 			axienet_iow(lp, XAE_AF0_OFFSET, 0);
463 			axienet_iow(lp, XAE_AF1_OFFSET, 0);
464 		}
465 
466 		dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
467 	}
468 }
469 
470 /**
471  * axienet_setoptions - Set an Axi Ethernet option
472  * @ndev:	Pointer to the net_device structure
473  * @options:	Option to be enabled/disabled
474  *
475  * The Axi Ethernet core has multiple features which can be selectively turned
476  * on or off. The typical options could be jumbo frame option, basic VLAN
477  * option, promiscuous mode option etc. This function is used to set or clear
478  * these options in the Axi Ethernet hardware. This is done through
479  * axienet_option structure .
480  */
axienet_setoptions(struct net_device * ndev,u32 options)481 static void axienet_setoptions(struct net_device *ndev, u32 options)
482 {
483 	int reg;
484 	struct axienet_local *lp = netdev_priv(ndev);
485 	struct axienet_option *tp = &axienet_options[0];
486 
487 	while (tp->opt) {
488 		reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
489 		if (options & tp->opt)
490 			reg |= tp->m_or;
491 		axienet_iow(lp, tp->reg, reg);
492 		tp++;
493 	}
494 
495 	lp->options |= options;
496 }
497 
__axienet_device_reset(struct axienet_local * lp)498 static int __axienet_device_reset(struct axienet_local *lp)
499 {
500 	u32 value;
501 	int ret;
502 
503 	/* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
504 	 * process of Axi DMA takes a while to complete as all pending
505 	 * commands/transfers will be flushed or completed during this
506 	 * reset process.
507 	 * Note that even though both TX and RX have their own reset register,
508 	 * they both reset the entire DMA core, so only one needs to be used.
509 	 */
510 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, XAXIDMA_CR_RESET_MASK);
511 	ret = read_poll_timeout(axienet_dma_in32, value,
512 				!(value & XAXIDMA_CR_RESET_MASK),
513 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
514 				XAXIDMA_TX_CR_OFFSET);
515 	if (ret) {
516 		dev_err(lp->dev, "%s: DMA reset timeout!\n", __func__);
517 		return ret;
518 	}
519 
520 	/* Wait for PhyRstCmplt bit to be set, indicating the PHY reset has finished */
521 	ret = read_poll_timeout(axienet_ior, value,
522 				value & XAE_INT_PHYRSTCMPLT_MASK,
523 				DELAY_OF_ONE_MILLISEC, 50000, false, lp,
524 				XAE_IS_OFFSET);
525 	if (ret) {
526 		dev_err(lp->dev, "%s: timeout waiting for PhyRstCmplt\n", __func__);
527 		return ret;
528 	}
529 
530 	return 0;
531 }
532 
533 /**
534  * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
535  * @ndev:	Pointer to the net_device structure
536  *
537  * This function is called to reset and initialize the Axi Ethernet core. This
538  * is typically called during initialization. It does a reset of the Axi DMA
539  * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
540  * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
541  * Ethernet core. No separate hardware reset is done for the Axi Ethernet
542  * core.
543  * Returns 0 on success or a negative error number otherwise.
544  */
axienet_device_reset(struct net_device * ndev)545 static int axienet_device_reset(struct net_device *ndev)
546 {
547 	u32 axienet_status;
548 	struct axienet_local *lp = netdev_priv(ndev);
549 	int ret;
550 
551 	ret = __axienet_device_reset(lp);
552 	if (ret)
553 		return ret;
554 
555 	lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
556 	lp->options |= XAE_OPTION_VLAN;
557 	lp->options &= (~XAE_OPTION_JUMBO);
558 
559 	if ((ndev->mtu > XAE_MTU) &&
560 		(ndev->mtu <= XAE_JUMBO_MTU)) {
561 		lp->max_frm_size = ndev->mtu + VLAN_ETH_HLEN +
562 					XAE_TRL_SIZE;
563 
564 		if (lp->max_frm_size <= lp->rxmem)
565 			lp->options |= XAE_OPTION_JUMBO;
566 	}
567 
568 	ret = axienet_dma_bd_init(ndev);
569 	if (ret) {
570 		netdev_err(ndev, "%s: descriptor allocation failed\n",
571 			   __func__);
572 		return ret;
573 	}
574 
575 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
576 	axienet_status &= ~XAE_RCW1_RX_MASK;
577 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
578 
579 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
580 	if (axienet_status & XAE_INT_RXRJECT_MASK)
581 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
582 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
583 		    XAE_INT_RECV_ERROR_MASK : 0);
584 
585 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
586 
587 	/* Sync default options with HW but leave receiver and
588 	 * transmitter disabled.
589 	 */
590 	axienet_setoptions(ndev, lp->options &
591 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
592 	axienet_set_mac_address(ndev, NULL);
593 	axienet_set_multicast_list(ndev);
594 	axienet_setoptions(ndev, lp->options);
595 
596 	netif_trans_update(ndev);
597 
598 	return 0;
599 }
600 
601 /**
602  * axienet_free_tx_chain - Clean up a series of linked TX descriptors.
603  * @ndev:	Pointer to the net_device structure
604  * @first_bd:	Index of first descriptor to clean up
605  * @nr_bds:	Number of descriptors to clean up, can be -1 if unknown.
606  * @sizep:	Pointer to a u32 filled with the total sum of all bytes
607  * 		in all cleaned-up descriptors. Ignored if NULL.
608  *
609  * Would either be called after a successful transmit operation, or after
610  * there was an error when setting up the chain.
611  * Returns the number of descriptors handled.
612  */
axienet_free_tx_chain(struct net_device * ndev,u32 first_bd,int nr_bds,u32 * sizep)613 static int axienet_free_tx_chain(struct net_device *ndev, u32 first_bd,
614 				 int nr_bds, u32 *sizep)
615 {
616 	struct axienet_local *lp = netdev_priv(ndev);
617 	struct axidma_bd *cur_p;
618 	int max_bds = nr_bds;
619 	unsigned int status;
620 	dma_addr_t phys;
621 	int i;
622 
623 	if (max_bds == -1)
624 		max_bds = lp->tx_bd_num;
625 
626 	for (i = 0; i < max_bds; i++) {
627 		cur_p = &lp->tx_bd_v[(first_bd + i) % lp->tx_bd_num];
628 		status = cur_p->status;
629 
630 		/* If no number is given, clean up *all* descriptors that have
631 		 * been completed by the MAC.
632 		 */
633 		if (nr_bds == -1 && !(status & XAXIDMA_BD_STS_COMPLETE_MASK))
634 			break;
635 
636 		/* Ensure we see complete descriptor update */
637 		dma_rmb();
638 		phys = desc_get_phys_addr(lp, cur_p);
639 		dma_unmap_single(ndev->dev.parent, phys,
640 				 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
641 				 DMA_TO_DEVICE);
642 
643 		if (cur_p->skb && (status & XAXIDMA_BD_STS_COMPLETE_MASK))
644 			dev_consume_skb_irq(cur_p->skb);
645 
646 		cur_p->app0 = 0;
647 		cur_p->app1 = 0;
648 		cur_p->app2 = 0;
649 		cur_p->app4 = 0;
650 		cur_p->skb = NULL;
651 		/* ensure our transmit path and device don't prematurely see status cleared */
652 		wmb();
653 		cur_p->cntrl = 0;
654 		cur_p->status = 0;
655 
656 		if (sizep)
657 			*sizep += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
658 	}
659 
660 	return i;
661 }
662 
663 /**
664  * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
665  * @lp:		Pointer to the axienet_local structure
666  * @num_frag:	The number of BDs to check for
667  *
668  * Return: 0, on success
669  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
670  *
671  * This function is invoked before BDs are allocated and transmission starts.
672  * This function returns 0 if a BD or group of BDs can be allocated for
673  * transmission. If the BD or any of the BDs are not free the function
674  * returns a busy status. This is invoked from axienet_start_xmit.
675  */
axienet_check_tx_bd_space(struct axienet_local * lp,int num_frag)676 static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
677 					    int num_frag)
678 {
679 	struct axidma_bd *cur_p;
680 
681 	/* Ensure we see all descriptor updates from device or TX IRQ path */
682 	rmb();
683 	cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % lp->tx_bd_num];
684 	if (cur_p->cntrl)
685 		return NETDEV_TX_BUSY;
686 	return 0;
687 }
688 
689 /**
690  * axienet_start_xmit_done - Invoked once a transmit is completed by the
691  * Axi DMA Tx channel.
692  * @ndev:	Pointer to the net_device structure
693  *
694  * This function is invoked from the Axi DMA Tx isr to notify the completion
695  * of transmit operation. It clears fields in the corresponding Tx BDs and
696  * unmaps the corresponding buffer so that CPU can regain ownership of the
697  * buffer. It finally invokes "netif_wake_queue" to restart transmission if
698  * required.
699  */
axienet_start_xmit_done(struct net_device * ndev)700 static void axienet_start_xmit_done(struct net_device *ndev)
701 {
702 	struct axienet_local *lp = netdev_priv(ndev);
703 	u32 packets = 0;
704 	u32 size = 0;
705 
706 	packets = axienet_free_tx_chain(ndev, lp->tx_bd_ci, -1, &size);
707 
708 	lp->tx_bd_ci += packets;
709 	if (lp->tx_bd_ci >= lp->tx_bd_num)
710 		lp->tx_bd_ci -= lp->tx_bd_num;
711 
712 	ndev->stats.tx_packets += packets;
713 	ndev->stats.tx_bytes += size;
714 
715 	/* Matches barrier in axienet_start_xmit */
716 	smp_mb();
717 
718 	if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
719 		netif_wake_queue(ndev);
720 }
721 
722 /**
723  * axienet_start_xmit - Starts the transmission.
724  * @skb:	sk_buff pointer that contains data to be Txed.
725  * @ndev:	Pointer to net_device structure.
726  *
727  * Return: NETDEV_TX_OK, on success
728  *	    NETDEV_TX_BUSY, if any of the descriptors are not free
729  *
730  * This function is invoked from upper layers to initiate transmission. The
731  * function uses the next available free BDs and populates their fields to
732  * start the transmission. Additionally if checksum offloading is supported,
733  * it populates AXI Stream Control fields with appropriate values.
734  */
735 static netdev_tx_t
axienet_start_xmit(struct sk_buff * skb,struct net_device * ndev)736 axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
737 {
738 	u32 ii;
739 	u32 num_frag;
740 	u32 csum_start_off;
741 	u32 csum_index_off;
742 	skb_frag_t *frag;
743 	dma_addr_t tail_p, phys;
744 	struct axienet_local *lp = netdev_priv(ndev);
745 	struct axidma_bd *cur_p;
746 	u32 orig_tail_ptr = lp->tx_bd_tail;
747 
748 	num_frag = skb_shinfo(skb)->nr_frags;
749 	cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
750 
751 	if (axienet_check_tx_bd_space(lp, num_frag + 1)) {
752 		/* Should not happen as last start_xmit call should have
753 		 * checked for sufficient space and queue should only be
754 		 * woken when sufficient space is available.
755 		 */
756 		netif_stop_queue(ndev);
757 		if (net_ratelimit())
758 			netdev_warn(ndev, "TX ring unexpectedly full\n");
759 		return NETDEV_TX_BUSY;
760 	}
761 
762 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
763 		if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
764 			/* Tx Full Checksum Offload Enabled */
765 			cur_p->app0 |= 2;
766 		} else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
767 			csum_start_off = skb_transport_offset(skb);
768 			csum_index_off = csum_start_off + skb->csum_offset;
769 			/* Tx Partial Checksum Offload Enabled */
770 			cur_p->app0 |= 1;
771 			cur_p->app1 = (csum_start_off << 16) | csum_index_off;
772 		}
773 	} else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
774 		cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
775 	}
776 
777 	phys = dma_map_single(ndev->dev.parent, skb->data,
778 			      skb_headlen(skb), DMA_TO_DEVICE);
779 	if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
780 		if (net_ratelimit())
781 			netdev_err(ndev, "TX DMA mapping error\n");
782 		ndev->stats.tx_dropped++;
783 		return NETDEV_TX_OK;
784 	}
785 	desc_set_phys_addr(lp, phys, cur_p);
786 	cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
787 
788 	for (ii = 0; ii < num_frag; ii++) {
789 		if (++lp->tx_bd_tail >= lp->tx_bd_num)
790 			lp->tx_bd_tail = 0;
791 		cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
792 		frag = &skb_shinfo(skb)->frags[ii];
793 		phys = dma_map_single(ndev->dev.parent,
794 				      skb_frag_address(frag),
795 				      skb_frag_size(frag),
796 				      DMA_TO_DEVICE);
797 		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
798 			if (net_ratelimit())
799 				netdev_err(ndev, "TX DMA mapping error\n");
800 			ndev->stats.tx_dropped++;
801 			axienet_free_tx_chain(ndev, orig_tail_ptr, ii + 1,
802 					      NULL);
803 			lp->tx_bd_tail = orig_tail_ptr;
804 
805 			return NETDEV_TX_OK;
806 		}
807 		desc_set_phys_addr(lp, phys, cur_p);
808 		cur_p->cntrl = skb_frag_size(frag);
809 	}
810 
811 	cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
812 	cur_p->skb = skb;
813 
814 	tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
815 	/* Start the transfer */
816 	axienet_dma_out_addr(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
817 	if (++lp->tx_bd_tail >= lp->tx_bd_num)
818 		lp->tx_bd_tail = 0;
819 
820 	/* Stop queue if next transmit may not have space */
821 	if (axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1)) {
822 		netif_stop_queue(ndev);
823 
824 		/* Matches barrier in axienet_start_xmit_done */
825 		smp_mb();
826 
827 		/* Space might have just been freed - check again */
828 		if (!axienet_check_tx_bd_space(lp, MAX_SKB_FRAGS + 1))
829 			netif_wake_queue(ndev);
830 	}
831 
832 	return NETDEV_TX_OK;
833 }
834 
835 /**
836  * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
837  *		  BD processing.
838  * @ndev:	Pointer to net_device structure.
839  *
840  * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
841  * does minimal processing and invokes "netif_rx" to complete further
842  * processing.
843  */
axienet_recv(struct net_device * ndev)844 static void axienet_recv(struct net_device *ndev)
845 {
846 	u32 length;
847 	u32 csumstatus;
848 	u32 size = 0;
849 	u32 packets = 0;
850 	dma_addr_t tail_p = 0;
851 	struct axienet_local *lp = netdev_priv(ndev);
852 	struct sk_buff *skb, *new_skb;
853 	struct axidma_bd *cur_p;
854 
855 	cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
856 
857 	while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
858 		dma_addr_t phys;
859 
860 		tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
861 
862 		/* Ensure we see complete descriptor update */
863 		dma_rmb();
864 		phys = desc_get_phys_addr(lp, cur_p);
865 		dma_unmap_single(ndev->dev.parent, phys, lp->max_frm_size,
866 				 DMA_FROM_DEVICE);
867 
868 		skb = cur_p->skb;
869 		cur_p->skb = NULL;
870 		length = cur_p->app4 & 0x0000FFFF;
871 
872 		skb_put(skb, length);
873 		skb->protocol = eth_type_trans(skb, ndev);
874 		/*skb_checksum_none_assert(skb);*/
875 		skb->ip_summed = CHECKSUM_NONE;
876 
877 		/* if we're doing Rx csum offload, set it up */
878 		if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
879 			csumstatus = (cur_p->app2 &
880 				      XAE_FULL_CSUM_STATUS_MASK) >> 3;
881 			if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
882 			    (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
883 				skb->ip_summed = CHECKSUM_UNNECESSARY;
884 			}
885 		} else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
886 			   skb->protocol == htons(ETH_P_IP) &&
887 			   skb->len > 64) {
888 			skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
889 			skb->ip_summed = CHECKSUM_COMPLETE;
890 		}
891 
892 		netif_rx(skb);
893 
894 		size += length;
895 		packets++;
896 
897 		new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
898 		if (!new_skb)
899 			return;
900 
901 		phys = dma_map_single(ndev->dev.parent, new_skb->data,
902 				      lp->max_frm_size,
903 				      DMA_FROM_DEVICE);
904 		if (unlikely(dma_mapping_error(ndev->dev.parent, phys))) {
905 			if (net_ratelimit())
906 				netdev_err(ndev, "RX DMA mapping error\n");
907 			dev_kfree_skb(new_skb);
908 			return;
909 		}
910 		desc_set_phys_addr(lp, phys, cur_p);
911 
912 		cur_p->cntrl = lp->max_frm_size;
913 		cur_p->status = 0;
914 		cur_p->skb = new_skb;
915 
916 		if (++lp->rx_bd_ci >= lp->rx_bd_num)
917 			lp->rx_bd_ci = 0;
918 		cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
919 	}
920 
921 	ndev->stats.rx_packets += packets;
922 	ndev->stats.rx_bytes += size;
923 
924 	if (tail_p)
925 		axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
926 }
927 
928 /**
929  * axienet_tx_irq - Tx Done Isr.
930  * @irq:	irq number
931  * @_ndev:	net_device pointer
932  *
933  * Return: IRQ_HANDLED if device generated a TX interrupt, IRQ_NONE otherwise.
934  *
935  * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
936  * to complete the BD processing.
937  */
axienet_tx_irq(int irq,void * _ndev)938 static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
939 {
940 	u32 cr;
941 	unsigned int status;
942 	struct net_device *ndev = _ndev;
943 	struct axienet_local *lp = netdev_priv(ndev);
944 
945 	status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
946 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
947 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
948 		axienet_start_xmit_done(lp->ndev);
949 		goto out;
950 	}
951 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
952 		return IRQ_NONE;
953 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
954 		dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
955 		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
956 			(lp->tx_bd_v[lp->tx_bd_ci]).phys_msb,
957 			(lp->tx_bd_v[lp->tx_bd_ci]).phys);
958 
959 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
960 		/* Disable coalesce, delay timer and error interrupts */
961 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
962 		/* Write to the Tx channel control register */
963 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
964 
965 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
966 		/* Disable coalesce, delay timer and error interrupts */
967 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
968 		/* Write to the Rx channel control register */
969 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
970 
971 		schedule_work(&lp->dma_err_task);
972 		axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
973 	}
974 out:
975 	return IRQ_HANDLED;
976 }
977 
978 /**
979  * axienet_rx_irq - Rx Isr.
980  * @irq:	irq number
981  * @_ndev:	net_device pointer
982  *
983  * Return: IRQ_HANDLED if device generated a RX interrupt, IRQ_NONE otherwise.
984  *
985  * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
986  * processing.
987  */
axienet_rx_irq(int irq,void * _ndev)988 static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
989 {
990 	u32 cr;
991 	unsigned int status;
992 	struct net_device *ndev = _ndev;
993 	struct axienet_local *lp = netdev_priv(ndev);
994 
995 	status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
996 	if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
997 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
998 		axienet_recv(lp->ndev);
999 		goto out;
1000 	}
1001 	if (!(status & XAXIDMA_IRQ_ALL_MASK))
1002 		return IRQ_NONE;
1003 	if (status & XAXIDMA_IRQ_ERROR_MASK) {
1004 		dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
1005 		dev_err(&ndev->dev, "Current BD is at: 0x%x%08x\n",
1006 			(lp->rx_bd_v[lp->rx_bd_ci]).phys_msb,
1007 			(lp->rx_bd_v[lp->rx_bd_ci]).phys);
1008 
1009 		cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1010 		/* Disable coalesce, delay timer and error interrupts */
1011 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
1012 		/* Finally write to the Tx channel control register */
1013 		axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1014 
1015 		cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1016 		/* Disable coalesce, delay timer and error interrupts */
1017 		cr &= (~XAXIDMA_IRQ_ALL_MASK);
1018 		/* write to the Rx channel control register */
1019 		axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1020 
1021 		schedule_work(&lp->dma_err_task);
1022 		axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
1023 	}
1024 out:
1025 	return IRQ_HANDLED;
1026 }
1027 
1028 /**
1029  * axienet_eth_irq - Ethernet core Isr.
1030  * @irq:	irq number
1031  * @_ndev:	net_device pointer
1032  *
1033  * Return: IRQ_HANDLED if device generated a core interrupt, IRQ_NONE otherwise.
1034  *
1035  * Handle miscellaneous conditions indicated by Ethernet core IRQ.
1036  */
axienet_eth_irq(int irq,void * _ndev)1037 static irqreturn_t axienet_eth_irq(int irq, void *_ndev)
1038 {
1039 	struct net_device *ndev = _ndev;
1040 	struct axienet_local *lp = netdev_priv(ndev);
1041 	unsigned int pending;
1042 
1043 	pending = axienet_ior(lp, XAE_IP_OFFSET);
1044 	if (!pending)
1045 		return IRQ_NONE;
1046 
1047 	if (pending & XAE_INT_RXFIFOOVR_MASK)
1048 		ndev->stats.rx_missed_errors++;
1049 
1050 	if (pending & XAE_INT_RXRJECT_MASK)
1051 		ndev->stats.rx_frame_errors++;
1052 
1053 	axienet_iow(lp, XAE_IS_OFFSET, pending);
1054 	return IRQ_HANDLED;
1055 }
1056 
1057 static void axienet_dma_err_handler(struct work_struct *work);
1058 
1059 /**
1060  * axienet_open - Driver open routine.
1061  * @ndev:	Pointer to net_device structure
1062  *
1063  * Return: 0, on success.
1064  *	    non-zero error value on failure
1065  *
1066  * This is the driver open routine. It calls phylink_start to start the
1067  * PHY device.
1068  * It also allocates interrupt service routines, enables the interrupt lines
1069  * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
1070  * descriptors are initialized.
1071  */
axienet_open(struct net_device * ndev)1072 static int axienet_open(struct net_device *ndev)
1073 {
1074 	int ret;
1075 	struct axienet_local *lp = netdev_priv(ndev);
1076 
1077 	dev_dbg(&ndev->dev, "axienet_open()\n");
1078 
1079 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1080 	 * When we do an Axi Ethernet reset, it resets the complete core
1081 	 * including the MDIO. MDIO must be disabled before resetting
1082 	 * and re-enabled afterwards.
1083 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1084 	 */
1085 	mutex_lock(&lp->mii_bus->mdio_lock);
1086 	axienet_mdio_disable(lp);
1087 	ret = axienet_device_reset(ndev);
1088 	if (ret == 0)
1089 		ret = axienet_mdio_enable(lp);
1090 	mutex_unlock(&lp->mii_bus->mdio_lock);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	ret = phylink_of_phy_connect(lp->phylink, lp->dev->of_node, 0);
1095 	if (ret) {
1096 		dev_err(lp->dev, "phylink_of_phy_connect() failed: %d\n", ret);
1097 		return ret;
1098 	}
1099 
1100 	phylink_start(lp->phylink);
1101 
1102 	/* Enable worker thread for Axi DMA error handling */
1103 	INIT_WORK(&lp->dma_err_task, axienet_dma_err_handler);
1104 
1105 	/* Enable interrupts for Axi DMA Tx */
1106 	ret = request_irq(lp->tx_irq, axienet_tx_irq, IRQF_SHARED,
1107 			  ndev->name, ndev);
1108 	if (ret)
1109 		goto err_tx_irq;
1110 	/* Enable interrupts for Axi DMA Rx */
1111 	ret = request_irq(lp->rx_irq, axienet_rx_irq, IRQF_SHARED,
1112 			  ndev->name, ndev);
1113 	if (ret)
1114 		goto err_rx_irq;
1115 	/* Enable interrupts for Axi Ethernet core (if defined) */
1116 	if (lp->eth_irq > 0) {
1117 		ret = request_irq(lp->eth_irq, axienet_eth_irq, IRQF_SHARED,
1118 				  ndev->name, ndev);
1119 		if (ret)
1120 			goto err_eth_irq;
1121 	}
1122 
1123 	return 0;
1124 
1125 err_eth_irq:
1126 	free_irq(lp->rx_irq, ndev);
1127 err_rx_irq:
1128 	free_irq(lp->tx_irq, ndev);
1129 err_tx_irq:
1130 	phylink_stop(lp->phylink);
1131 	phylink_disconnect_phy(lp->phylink);
1132 	cancel_work_sync(&lp->dma_err_task);
1133 	dev_err(lp->dev, "request_irq() failed\n");
1134 	return ret;
1135 }
1136 
1137 /**
1138  * axienet_stop - Driver stop routine.
1139  * @ndev:	Pointer to net_device structure
1140  *
1141  * Return: 0, on success.
1142  *
1143  * This is the driver stop routine. It calls phylink_disconnect to stop the PHY
1144  * device. It also removes the interrupt handlers and disables the interrupts.
1145  * The Axi DMA Tx/Rx BDs are released.
1146  */
axienet_stop(struct net_device * ndev)1147 static int axienet_stop(struct net_device *ndev)
1148 {
1149 	u32 cr, sr;
1150 	int count;
1151 	struct axienet_local *lp = netdev_priv(ndev);
1152 
1153 	dev_dbg(&ndev->dev, "axienet_close()\n");
1154 
1155 	phylink_stop(lp->phylink);
1156 	phylink_disconnect_phy(lp->phylink);
1157 
1158 	axienet_setoptions(ndev, lp->options &
1159 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1160 
1161 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1162 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1163 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1164 
1165 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1166 	cr &= ~(XAXIDMA_CR_RUNSTOP_MASK | XAXIDMA_IRQ_ALL_MASK);
1167 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1168 
1169 	axienet_iow(lp, XAE_IE_OFFSET, 0);
1170 
1171 	/* Give DMAs a chance to halt gracefully */
1172 	sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1173 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1174 		msleep(20);
1175 		sr = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1176 	}
1177 
1178 	sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1179 	for (count = 0; !(sr & XAXIDMA_SR_HALT_MASK) && count < 5; ++count) {
1180 		msleep(20);
1181 		sr = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1182 	}
1183 
1184 	/* Do a reset to ensure DMA is really stopped */
1185 	mutex_lock(&lp->mii_bus->mdio_lock);
1186 	axienet_mdio_disable(lp);
1187 	__axienet_device_reset(lp);
1188 	axienet_mdio_enable(lp);
1189 	mutex_unlock(&lp->mii_bus->mdio_lock);
1190 
1191 	cancel_work_sync(&lp->dma_err_task);
1192 
1193 	if (lp->eth_irq > 0)
1194 		free_irq(lp->eth_irq, ndev);
1195 	free_irq(lp->tx_irq, ndev);
1196 	free_irq(lp->rx_irq, ndev);
1197 
1198 	axienet_dma_bd_release(ndev);
1199 	return 0;
1200 }
1201 
1202 /**
1203  * axienet_change_mtu - Driver change mtu routine.
1204  * @ndev:	Pointer to net_device structure
1205  * @new_mtu:	New mtu value to be applied
1206  *
1207  * Return: Always returns 0 (success).
1208  *
1209  * This is the change mtu driver routine. It checks if the Axi Ethernet
1210  * hardware supports jumbo frames before changing the mtu. This can be
1211  * called only when the device is not up.
1212  */
axienet_change_mtu(struct net_device * ndev,int new_mtu)1213 static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1214 {
1215 	struct axienet_local *lp = netdev_priv(ndev);
1216 
1217 	if (netif_running(ndev))
1218 		return -EBUSY;
1219 
1220 	if ((new_mtu + VLAN_ETH_HLEN +
1221 		XAE_TRL_SIZE) > lp->rxmem)
1222 		return -EINVAL;
1223 
1224 	ndev->mtu = new_mtu;
1225 
1226 	return 0;
1227 }
1228 
1229 #ifdef CONFIG_NET_POLL_CONTROLLER
1230 /**
1231  * axienet_poll_controller - Axi Ethernet poll mechanism.
1232  * @ndev:	Pointer to net_device structure
1233  *
1234  * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1235  * to polling the ISRs and are enabled back after the polling is done.
1236  */
axienet_poll_controller(struct net_device * ndev)1237 static void axienet_poll_controller(struct net_device *ndev)
1238 {
1239 	struct axienet_local *lp = netdev_priv(ndev);
1240 	disable_irq(lp->tx_irq);
1241 	disable_irq(lp->rx_irq);
1242 	axienet_rx_irq(lp->tx_irq, ndev);
1243 	axienet_tx_irq(lp->rx_irq, ndev);
1244 	enable_irq(lp->tx_irq);
1245 	enable_irq(lp->rx_irq);
1246 }
1247 #endif
1248 
axienet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1249 static int axienet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1250 {
1251 	struct axienet_local *lp = netdev_priv(dev);
1252 
1253 	if (!netif_running(dev))
1254 		return -EINVAL;
1255 
1256 	return phylink_mii_ioctl(lp->phylink, rq, cmd);
1257 }
1258 
1259 static const struct net_device_ops axienet_netdev_ops = {
1260 	.ndo_open = axienet_open,
1261 	.ndo_stop = axienet_stop,
1262 	.ndo_start_xmit = axienet_start_xmit,
1263 	.ndo_change_mtu	= axienet_change_mtu,
1264 	.ndo_set_mac_address = netdev_set_mac_address,
1265 	.ndo_validate_addr = eth_validate_addr,
1266 	.ndo_do_ioctl = axienet_ioctl,
1267 	.ndo_set_rx_mode = axienet_set_multicast_list,
1268 #ifdef CONFIG_NET_POLL_CONTROLLER
1269 	.ndo_poll_controller = axienet_poll_controller,
1270 #endif
1271 };
1272 
1273 /**
1274  * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1275  * @ndev:	Pointer to net_device structure
1276  * @ed:		Pointer to ethtool_drvinfo structure
1277  *
1278  * This implements ethtool command for getting the driver information.
1279  * Issue "ethtool -i ethX" under linux prompt to execute this function.
1280  */
axienet_ethtools_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * ed)1281 static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1282 					 struct ethtool_drvinfo *ed)
1283 {
1284 	strlcpy(ed->driver, DRIVER_NAME, sizeof(ed->driver));
1285 	strlcpy(ed->version, DRIVER_VERSION, sizeof(ed->version));
1286 }
1287 
1288 /**
1289  * axienet_ethtools_get_regs_len - Get the total regs length present in the
1290  *				   AxiEthernet core.
1291  * @ndev:	Pointer to net_device structure
1292  *
1293  * This implements ethtool command for getting the total register length
1294  * information.
1295  *
1296  * Return: the total regs length
1297  */
axienet_ethtools_get_regs_len(struct net_device * ndev)1298 static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1299 {
1300 	return sizeof(u32) * AXIENET_REGS_N;
1301 }
1302 
1303 /**
1304  * axienet_ethtools_get_regs - Dump the contents of all registers present
1305  *			       in AxiEthernet core.
1306  * @ndev:	Pointer to net_device structure
1307  * @regs:	Pointer to ethtool_regs structure
1308  * @ret:	Void pointer used to return the contents of the registers.
1309  *
1310  * This implements ethtool command for getting the Axi Ethernet register dump.
1311  * Issue "ethtool -d ethX" to execute this function.
1312  */
axienet_ethtools_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * ret)1313 static void axienet_ethtools_get_regs(struct net_device *ndev,
1314 				      struct ethtool_regs *regs, void *ret)
1315 {
1316 	u32 *data = (u32 *) ret;
1317 	size_t len = sizeof(u32) * AXIENET_REGS_N;
1318 	struct axienet_local *lp = netdev_priv(ndev);
1319 
1320 	regs->version = 0;
1321 	regs->len = len;
1322 
1323 	memset(data, 0, len);
1324 	data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1325 	data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1326 	data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1327 	data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1328 	data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1329 	data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1330 	data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1331 	data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1332 	data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1333 	data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1334 	data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1335 	data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1336 	data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1337 	data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1338 	data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1339 	data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1340 	data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1341 	data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1342 	data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1343 	data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1344 	data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1345 	data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1346 	data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1347 	data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1348 	data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1349 	data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1350 	data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1351 	data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1352 	data[32] = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1353 	data[33] = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
1354 	data[34] = axienet_dma_in32(lp, XAXIDMA_TX_CDESC_OFFSET);
1355 	data[35] = axienet_dma_in32(lp, XAXIDMA_TX_TDESC_OFFSET);
1356 	data[36] = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1357 	data[37] = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
1358 	data[38] = axienet_dma_in32(lp, XAXIDMA_RX_CDESC_OFFSET);
1359 	data[39] = axienet_dma_in32(lp, XAXIDMA_RX_TDESC_OFFSET);
1360 }
1361 
axienet_ethtools_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1362 static void axienet_ethtools_get_ringparam(struct net_device *ndev,
1363 					   struct ethtool_ringparam *ering)
1364 {
1365 	struct axienet_local *lp = netdev_priv(ndev);
1366 
1367 	ering->rx_max_pending = RX_BD_NUM_MAX;
1368 	ering->rx_mini_max_pending = 0;
1369 	ering->rx_jumbo_max_pending = 0;
1370 	ering->tx_max_pending = TX_BD_NUM_MAX;
1371 	ering->rx_pending = lp->rx_bd_num;
1372 	ering->rx_mini_pending = 0;
1373 	ering->rx_jumbo_pending = 0;
1374 	ering->tx_pending = lp->tx_bd_num;
1375 }
1376 
axienet_ethtools_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ering)1377 static int axienet_ethtools_set_ringparam(struct net_device *ndev,
1378 					  struct ethtool_ringparam *ering)
1379 {
1380 	struct axienet_local *lp = netdev_priv(ndev);
1381 
1382 	if (ering->rx_pending > RX_BD_NUM_MAX ||
1383 	    ering->rx_mini_pending ||
1384 	    ering->rx_jumbo_pending ||
1385 	    ering->tx_pending < TX_BD_NUM_MIN ||
1386 	    ering->tx_pending > TX_BD_NUM_MAX)
1387 		return -EINVAL;
1388 
1389 	if (netif_running(ndev))
1390 		return -EBUSY;
1391 
1392 	lp->rx_bd_num = ering->rx_pending;
1393 	lp->tx_bd_num = ering->tx_pending;
1394 	return 0;
1395 }
1396 
1397 /**
1398  * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1399  *				     Tx and Rx paths.
1400  * @ndev:	Pointer to net_device structure
1401  * @epauseparm:	Pointer to ethtool_pauseparam structure.
1402  *
1403  * This implements ethtool command for getting axi ethernet pause frame
1404  * setting. Issue "ethtool -a ethX" to execute this function.
1405  */
1406 static void
axienet_ethtools_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1407 axienet_ethtools_get_pauseparam(struct net_device *ndev,
1408 				struct ethtool_pauseparam *epauseparm)
1409 {
1410 	struct axienet_local *lp = netdev_priv(ndev);
1411 
1412 	phylink_ethtool_get_pauseparam(lp->phylink, epauseparm);
1413 }
1414 
1415 /**
1416  * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1417  *				     settings.
1418  * @ndev:	Pointer to net_device structure
1419  * @epauseparm:Pointer to ethtool_pauseparam structure
1420  *
1421  * This implements ethtool command for enabling flow control on Rx and Tx
1422  * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1423  * function.
1424  *
1425  * Return: 0 on success, -EFAULT if device is running
1426  */
1427 static int
axienet_ethtools_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * epauseparm)1428 axienet_ethtools_set_pauseparam(struct net_device *ndev,
1429 				struct ethtool_pauseparam *epauseparm)
1430 {
1431 	struct axienet_local *lp = netdev_priv(ndev);
1432 
1433 	return phylink_ethtool_set_pauseparam(lp->phylink, epauseparm);
1434 }
1435 
1436 /**
1437  * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1438  * @ndev:	Pointer to net_device structure
1439  * @ecoalesce:	Pointer to ethtool_coalesce structure
1440  *
1441  * This implements ethtool command for getting the DMA interrupt coalescing
1442  * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1443  * execute this function.
1444  *
1445  * Return: 0 always
1446  */
axienet_ethtools_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1447 static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1448 					 struct ethtool_coalesce *ecoalesce)
1449 {
1450 	u32 regval = 0;
1451 	struct axienet_local *lp = netdev_priv(ndev);
1452 	regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1453 	ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1454 					     >> XAXIDMA_COALESCE_SHIFT;
1455 	regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1456 	ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1457 					     >> XAXIDMA_COALESCE_SHIFT;
1458 	return 0;
1459 }
1460 
1461 /**
1462  * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1463  * @ndev:	Pointer to net_device structure
1464  * @ecoalesce:	Pointer to ethtool_coalesce structure
1465  *
1466  * This implements ethtool command for setting the DMA interrupt coalescing
1467  * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1468  * prompt to execute this function.
1469  *
1470  * Return: 0, on success, Non-zero error value on failure.
1471  */
axienet_ethtools_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ecoalesce)1472 static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1473 					 struct ethtool_coalesce *ecoalesce)
1474 {
1475 	struct axienet_local *lp = netdev_priv(ndev);
1476 
1477 	if (netif_running(ndev)) {
1478 		netdev_err(ndev,
1479 			   "Please stop netif before applying configuration\n");
1480 		return -EFAULT;
1481 	}
1482 
1483 	if (ecoalesce->rx_max_coalesced_frames)
1484 		lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1485 	if (ecoalesce->tx_max_coalesced_frames)
1486 		lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1487 
1488 	return 0;
1489 }
1490 
1491 static int
axienet_ethtools_get_link_ksettings(struct net_device * ndev,struct ethtool_link_ksettings * cmd)1492 axienet_ethtools_get_link_ksettings(struct net_device *ndev,
1493 				    struct ethtool_link_ksettings *cmd)
1494 {
1495 	struct axienet_local *lp = netdev_priv(ndev);
1496 
1497 	return phylink_ethtool_ksettings_get(lp->phylink, cmd);
1498 }
1499 
1500 static int
axienet_ethtools_set_link_ksettings(struct net_device * ndev,const struct ethtool_link_ksettings * cmd)1501 axienet_ethtools_set_link_ksettings(struct net_device *ndev,
1502 				    const struct ethtool_link_ksettings *cmd)
1503 {
1504 	struct axienet_local *lp = netdev_priv(ndev);
1505 
1506 	return phylink_ethtool_ksettings_set(lp->phylink, cmd);
1507 }
1508 
1509 static const struct ethtool_ops axienet_ethtool_ops = {
1510 	.supported_coalesce_params = ETHTOOL_COALESCE_MAX_FRAMES,
1511 	.get_drvinfo    = axienet_ethtools_get_drvinfo,
1512 	.get_regs_len   = axienet_ethtools_get_regs_len,
1513 	.get_regs       = axienet_ethtools_get_regs,
1514 	.get_link       = ethtool_op_get_link,
1515 	.get_ringparam	= axienet_ethtools_get_ringparam,
1516 	.set_ringparam	= axienet_ethtools_set_ringparam,
1517 	.get_pauseparam = axienet_ethtools_get_pauseparam,
1518 	.set_pauseparam = axienet_ethtools_set_pauseparam,
1519 	.get_coalesce   = axienet_ethtools_get_coalesce,
1520 	.set_coalesce   = axienet_ethtools_set_coalesce,
1521 	.get_link_ksettings = axienet_ethtools_get_link_ksettings,
1522 	.set_link_ksettings = axienet_ethtools_set_link_ksettings,
1523 };
1524 
axienet_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)1525 static void axienet_validate(struct phylink_config *config,
1526 			     unsigned long *supported,
1527 			     struct phylink_link_state *state)
1528 {
1529 	struct net_device *ndev = to_net_dev(config->dev);
1530 	struct axienet_local *lp = netdev_priv(ndev);
1531 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1532 
1533 	/* Only support the mode we are configured for */
1534 	if (state->interface != PHY_INTERFACE_MODE_NA &&
1535 	    state->interface != lp->phy_mode) {
1536 		netdev_warn(ndev, "Cannot use PHY mode %s, supported: %s\n",
1537 			    phy_modes(state->interface),
1538 			    phy_modes(lp->phy_mode));
1539 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1540 		return;
1541 	}
1542 
1543 	phylink_set(mask, Autoneg);
1544 	phylink_set_port_modes(mask);
1545 
1546 	phylink_set(mask, Asym_Pause);
1547 	phylink_set(mask, Pause);
1548 
1549 	switch (state->interface) {
1550 	case PHY_INTERFACE_MODE_NA:
1551 	case PHY_INTERFACE_MODE_1000BASEX:
1552 	case PHY_INTERFACE_MODE_SGMII:
1553 	case PHY_INTERFACE_MODE_GMII:
1554 	case PHY_INTERFACE_MODE_RGMII:
1555 	case PHY_INTERFACE_MODE_RGMII_ID:
1556 	case PHY_INTERFACE_MODE_RGMII_RXID:
1557 	case PHY_INTERFACE_MODE_RGMII_TXID:
1558 		phylink_set(mask, 1000baseX_Full);
1559 		phylink_set(mask, 1000baseT_Full);
1560 		if (state->interface == PHY_INTERFACE_MODE_1000BASEX)
1561 			break;
1562 		fallthrough;
1563 	case PHY_INTERFACE_MODE_MII:
1564 		phylink_set(mask, 100baseT_Full);
1565 		phylink_set(mask, 10baseT_Full);
1566 	default:
1567 		break;
1568 	}
1569 
1570 	bitmap_and(supported, supported, mask,
1571 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1572 	bitmap_and(state->advertising, state->advertising, mask,
1573 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1574 }
1575 
axienet_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)1576 static void axienet_mac_pcs_get_state(struct phylink_config *config,
1577 				      struct phylink_link_state *state)
1578 {
1579 	struct net_device *ndev = to_net_dev(config->dev);
1580 	struct axienet_local *lp = netdev_priv(ndev);
1581 
1582 	switch (state->interface) {
1583 	case PHY_INTERFACE_MODE_SGMII:
1584 	case PHY_INTERFACE_MODE_1000BASEX:
1585 		phylink_mii_c22_pcs_get_state(lp->pcs_phy, state);
1586 		break;
1587 	default:
1588 		break;
1589 	}
1590 }
1591 
axienet_mac_an_restart(struct phylink_config * config)1592 static void axienet_mac_an_restart(struct phylink_config *config)
1593 {
1594 	struct net_device *ndev = to_net_dev(config->dev);
1595 	struct axienet_local *lp = netdev_priv(ndev);
1596 
1597 	phylink_mii_c22_pcs_an_restart(lp->pcs_phy);
1598 }
1599 
axienet_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)1600 static void axienet_mac_config(struct phylink_config *config, unsigned int mode,
1601 			       const struct phylink_link_state *state)
1602 {
1603 	struct net_device *ndev = to_net_dev(config->dev);
1604 	struct axienet_local *lp = netdev_priv(ndev);
1605 	int ret;
1606 
1607 	switch (state->interface) {
1608 	case PHY_INTERFACE_MODE_SGMII:
1609 	case PHY_INTERFACE_MODE_1000BASEX:
1610 		ret = phylink_mii_c22_pcs_config(lp->pcs_phy, mode,
1611 						 state->interface,
1612 						 state->advertising);
1613 		if (ret < 0)
1614 			netdev_warn(ndev, "Failed to configure PCS: %d\n",
1615 				    ret);
1616 		break;
1617 
1618 	default:
1619 		break;
1620 	}
1621 }
1622 
axienet_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)1623 static void axienet_mac_link_down(struct phylink_config *config,
1624 				  unsigned int mode,
1625 				  phy_interface_t interface)
1626 {
1627 	/* nothing meaningful to do */
1628 }
1629 
axienet_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1630 static void axienet_mac_link_up(struct phylink_config *config,
1631 				struct phy_device *phy,
1632 				unsigned int mode, phy_interface_t interface,
1633 				int speed, int duplex,
1634 				bool tx_pause, bool rx_pause)
1635 {
1636 	struct net_device *ndev = to_net_dev(config->dev);
1637 	struct axienet_local *lp = netdev_priv(ndev);
1638 	u32 emmc_reg, fcc_reg;
1639 
1640 	emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
1641 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
1642 
1643 	switch (speed) {
1644 	case SPEED_1000:
1645 		emmc_reg |= XAE_EMMC_LINKSPD_1000;
1646 		break;
1647 	case SPEED_100:
1648 		emmc_reg |= XAE_EMMC_LINKSPD_100;
1649 		break;
1650 	case SPEED_10:
1651 		emmc_reg |= XAE_EMMC_LINKSPD_10;
1652 		break;
1653 	default:
1654 		dev_err(&ndev->dev,
1655 			"Speed other than 10, 100 or 1Gbps is not supported\n");
1656 		break;
1657 	}
1658 
1659 	axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
1660 
1661 	fcc_reg = axienet_ior(lp, XAE_FCC_OFFSET);
1662 	if (tx_pause)
1663 		fcc_reg |= XAE_FCC_FCTX_MASK;
1664 	else
1665 		fcc_reg &= ~XAE_FCC_FCTX_MASK;
1666 	if (rx_pause)
1667 		fcc_reg |= XAE_FCC_FCRX_MASK;
1668 	else
1669 		fcc_reg &= ~XAE_FCC_FCRX_MASK;
1670 	axienet_iow(lp, XAE_FCC_OFFSET, fcc_reg);
1671 }
1672 
1673 static const struct phylink_mac_ops axienet_phylink_ops = {
1674 	.validate = axienet_validate,
1675 	.mac_pcs_get_state = axienet_mac_pcs_get_state,
1676 	.mac_an_restart = axienet_mac_an_restart,
1677 	.mac_config = axienet_mac_config,
1678 	.mac_link_down = axienet_mac_link_down,
1679 	.mac_link_up = axienet_mac_link_up,
1680 };
1681 
1682 /**
1683  * axienet_dma_err_handler - Work queue task for Axi DMA Error
1684  * @work:	pointer to work_struct
1685  *
1686  * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1687  * Tx/Rx BDs.
1688  */
axienet_dma_err_handler(struct work_struct * work)1689 static void axienet_dma_err_handler(struct work_struct *work)
1690 {
1691 	u32 axienet_status;
1692 	u32 cr, i;
1693 	struct axienet_local *lp = container_of(work, struct axienet_local,
1694 						dma_err_task);
1695 	struct net_device *ndev = lp->ndev;
1696 	struct axidma_bd *cur_p;
1697 
1698 	axienet_setoptions(ndev, lp->options &
1699 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1700 	/* Disable the MDIO interface till Axi Ethernet Reset is completed.
1701 	 * When we do an Axi Ethernet reset, it resets the complete core
1702 	 * including the MDIO. MDIO must be disabled before resetting
1703 	 * and re-enabled afterwards.
1704 	 * Hold MDIO bus lock to avoid MDIO accesses during the reset.
1705 	 */
1706 	mutex_lock(&lp->mii_bus->mdio_lock);
1707 	axienet_mdio_disable(lp);
1708 	__axienet_device_reset(lp);
1709 	axienet_mdio_enable(lp);
1710 	mutex_unlock(&lp->mii_bus->mdio_lock);
1711 
1712 	for (i = 0; i < lp->tx_bd_num; i++) {
1713 		cur_p = &lp->tx_bd_v[i];
1714 		if (cur_p->cntrl) {
1715 			dma_addr_t addr = desc_get_phys_addr(lp, cur_p);
1716 
1717 			dma_unmap_single(ndev->dev.parent, addr,
1718 					 (cur_p->cntrl &
1719 					  XAXIDMA_BD_CTRL_LENGTH_MASK),
1720 					 DMA_TO_DEVICE);
1721 		}
1722 		if (cur_p->skb)
1723 			dev_kfree_skb_irq(cur_p->skb);
1724 		cur_p->phys = 0;
1725 		cur_p->phys_msb = 0;
1726 		cur_p->cntrl = 0;
1727 		cur_p->status = 0;
1728 		cur_p->app0 = 0;
1729 		cur_p->app1 = 0;
1730 		cur_p->app2 = 0;
1731 		cur_p->app3 = 0;
1732 		cur_p->app4 = 0;
1733 		cur_p->skb = NULL;
1734 	}
1735 
1736 	for (i = 0; i < lp->rx_bd_num; i++) {
1737 		cur_p = &lp->rx_bd_v[i];
1738 		cur_p->status = 0;
1739 		cur_p->app0 = 0;
1740 		cur_p->app1 = 0;
1741 		cur_p->app2 = 0;
1742 		cur_p->app3 = 0;
1743 		cur_p->app4 = 0;
1744 	}
1745 
1746 	lp->tx_bd_ci = 0;
1747 	lp->tx_bd_tail = 0;
1748 	lp->rx_bd_ci = 0;
1749 
1750 	/* Start updating the Rx channel control register */
1751 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1752 	/* Update the interrupt coalesce count */
1753 	cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1754 	      (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1755 	/* Update the delay timer count */
1756 	cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1757 	      (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1758 	/* Enable coalesce, delay timer and error interrupts */
1759 	cr |= XAXIDMA_IRQ_ALL_MASK;
1760 	/* Finally write to the Rx channel control register */
1761 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1762 
1763 	/* Start updating the Tx channel control register */
1764 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1765 	/* Update the interrupt coalesce count */
1766 	cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1767 	      (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1768 	/* Update the delay timer count */
1769 	cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1770 	      (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1771 	/* Enable coalesce, delay timer and error interrupts */
1772 	cr |= XAXIDMA_IRQ_ALL_MASK;
1773 	/* Finally write to the Tx channel control register */
1774 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1775 
1776 	/* Populate the tail pointer and bring the Rx Axi DMA engine out of
1777 	 * halted state. This will make the Rx side ready for reception.
1778 	 */
1779 	axienet_dma_out_addr(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1780 	cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1781 	axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1782 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1783 	axienet_dma_out_addr(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1784 			     (sizeof(*lp->rx_bd_v) * (lp->rx_bd_num - 1)));
1785 
1786 	/* Write to the RS (Run-stop) bit in the Tx channel control register.
1787 	 * Tx channel is now ready to run. But only after we write to the
1788 	 * tail pointer register that the Tx channel will start transmitting
1789 	 */
1790 	axienet_dma_out_addr(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1791 	cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1792 	axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1793 			  cr | XAXIDMA_CR_RUNSTOP_MASK);
1794 
1795 	axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1796 	axienet_status &= ~XAE_RCW1_RX_MASK;
1797 	axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1798 
1799 	axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1800 	if (axienet_status & XAE_INT_RXRJECT_MASK)
1801 		axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1802 	axienet_iow(lp, XAE_IE_OFFSET, lp->eth_irq > 0 ?
1803 		    XAE_INT_RECV_ERROR_MASK : 0);
1804 	axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1805 
1806 	/* Sync default options with HW but leave receiver and
1807 	 * transmitter disabled.
1808 	 */
1809 	axienet_setoptions(ndev, lp->options &
1810 			   ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1811 	axienet_set_mac_address(ndev, NULL);
1812 	axienet_set_multicast_list(ndev);
1813 	axienet_setoptions(ndev, lp->options);
1814 }
1815 
1816 /**
1817  * axienet_probe - Axi Ethernet probe function.
1818  * @pdev:	Pointer to platform device structure.
1819  *
1820  * Return: 0, on success
1821  *	    Non-zero error value on failure.
1822  *
1823  * This is the probe routine for Axi Ethernet driver. This is called before
1824  * any other driver routines are invoked. It allocates and sets up the Ethernet
1825  * device. Parses through device tree and populates fields of
1826  * axienet_local. It registers the Ethernet device.
1827  */
axienet_probe(struct platform_device * pdev)1828 static int axienet_probe(struct platform_device *pdev)
1829 {
1830 	int ret;
1831 	struct device_node *np;
1832 	struct axienet_local *lp;
1833 	struct net_device *ndev;
1834 	const void *mac_addr;
1835 	struct resource *ethres;
1836 	int addr_width = 32;
1837 	u32 value;
1838 
1839 	ndev = alloc_etherdev(sizeof(*lp));
1840 	if (!ndev)
1841 		return -ENOMEM;
1842 
1843 	platform_set_drvdata(pdev, ndev);
1844 
1845 	SET_NETDEV_DEV(ndev, &pdev->dev);
1846 	ndev->flags &= ~IFF_MULTICAST;  /* clear multicast */
1847 	ndev->features = NETIF_F_SG;
1848 	ndev->netdev_ops = &axienet_netdev_ops;
1849 	ndev->ethtool_ops = &axienet_ethtool_ops;
1850 
1851 	/* MTU range: 64 - 9000 */
1852 	ndev->min_mtu = 64;
1853 	ndev->max_mtu = XAE_JUMBO_MTU;
1854 
1855 	lp = netdev_priv(ndev);
1856 	lp->ndev = ndev;
1857 	lp->dev = &pdev->dev;
1858 	lp->options = XAE_OPTION_DEFAULTS;
1859 	lp->rx_bd_num = RX_BD_NUM_DEFAULT;
1860 	lp->tx_bd_num = TX_BD_NUM_DEFAULT;
1861 
1862 	lp->clk = devm_clk_get_optional(&pdev->dev, NULL);
1863 	if (IS_ERR(lp->clk)) {
1864 		ret = PTR_ERR(lp->clk);
1865 		goto free_netdev;
1866 	}
1867 	ret = clk_prepare_enable(lp->clk);
1868 	if (ret) {
1869 		dev_err(&pdev->dev, "Unable to enable clock: %d\n", ret);
1870 		goto free_netdev;
1871 	}
1872 
1873 	/* Map device registers */
1874 	ethres = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1875 	lp->regs = devm_ioremap_resource(&pdev->dev, ethres);
1876 	if (IS_ERR(lp->regs)) {
1877 		dev_err(&pdev->dev, "could not map Axi Ethernet regs.\n");
1878 		ret = PTR_ERR(lp->regs);
1879 		goto cleanup_clk;
1880 	}
1881 	lp->regs_start = ethres->start;
1882 
1883 	/* Setup checksum offload, but default to off if not specified */
1884 	lp->features = 0;
1885 
1886 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,txcsum", &value);
1887 	if (!ret) {
1888 		switch (value) {
1889 		case 1:
1890 			lp->csum_offload_on_tx_path =
1891 				XAE_FEATURE_PARTIAL_TX_CSUM;
1892 			lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1893 			/* Can checksum TCP/UDP over IPv4. */
1894 			ndev->features |= NETIF_F_IP_CSUM;
1895 			break;
1896 		case 2:
1897 			lp->csum_offload_on_tx_path =
1898 				XAE_FEATURE_FULL_TX_CSUM;
1899 			lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1900 			/* Can checksum TCP/UDP over IPv4. */
1901 			ndev->features |= NETIF_F_IP_CSUM;
1902 			break;
1903 		default:
1904 			lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1905 		}
1906 	}
1907 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,rxcsum", &value);
1908 	if (!ret) {
1909 		switch (value) {
1910 		case 1:
1911 			lp->csum_offload_on_rx_path =
1912 				XAE_FEATURE_PARTIAL_RX_CSUM;
1913 			lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1914 			break;
1915 		case 2:
1916 			lp->csum_offload_on_rx_path =
1917 				XAE_FEATURE_FULL_RX_CSUM;
1918 			lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1919 			break;
1920 		default:
1921 			lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1922 		}
1923 	}
1924 	/* For supporting jumbo frames, the Axi Ethernet hardware must have
1925 	 * a larger Rx/Tx Memory. Typically, the size must be large so that
1926 	 * we can enable jumbo option and start supporting jumbo frames.
1927 	 * Here we check for memory allocated for Rx/Tx in the hardware from
1928 	 * the device-tree and accordingly set flags.
1929 	 */
1930 	of_property_read_u32(pdev->dev.of_node, "xlnx,rxmem", &lp->rxmem);
1931 
1932 	/* Start with the proprietary, and broken phy_type */
1933 	ret = of_property_read_u32(pdev->dev.of_node, "xlnx,phy-type", &value);
1934 	if (!ret) {
1935 		netdev_warn(ndev, "Please upgrade your device tree binary blob to use phy-mode");
1936 		switch (value) {
1937 		case XAE_PHY_TYPE_MII:
1938 			lp->phy_mode = PHY_INTERFACE_MODE_MII;
1939 			break;
1940 		case XAE_PHY_TYPE_GMII:
1941 			lp->phy_mode = PHY_INTERFACE_MODE_GMII;
1942 			break;
1943 		case XAE_PHY_TYPE_RGMII_2_0:
1944 			lp->phy_mode = PHY_INTERFACE_MODE_RGMII_ID;
1945 			break;
1946 		case XAE_PHY_TYPE_SGMII:
1947 			lp->phy_mode = PHY_INTERFACE_MODE_SGMII;
1948 			break;
1949 		case XAE_PHY_TYPE_1000BASE_X:
1950 			lp->phy_mode = PHY_INTERFACE_MODE_1000BASEX;
1951 			break;
1952 		default:
1953 			ret = -EINVAL;
1954 			goto cleanup_clk;
1955 		}
1956 	} else {
1957 		ret = of_get_phy_mode(pdev->dev.of_node, &lp->phy_mode);
1958 		if (ret)
1959 			goto cleanup_clk;
1960 	}
1961 
1962 	/* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1963 	np = of_parse_phandle(pdev->dev.of_node, "axistream-connected", 0);
1964 	if (np) {
1965 		struct resource dmares;
1966 
1967 		ret = of_address_to_resource(np, 0, &dmares);
1968 		if (ret) {
1969 			dev_err(&pdev->dev,
1970 				"unable to get DMA resource\n");
1971 			of_node_put(np);
1972 			goto cleanup_clk;
1973 		}
1974 		lp->dma_regs = devm_ioremap_resource(&pdev->dev,
1975 						     &dmares);
1976 		lp->rx_irq = irq_of_parse_and_map(np, 1);
1977 		lp->tx_irq = irq_of_parse_and_map(np, 0);
1978 		of_node_put(np);
1979 		lp->eth_irq = platform_get_irq_optional(pdev, 0);
1980 	} else {
1981 		/* Check for these resources directly on the Ethernet node. */
1982 		struct resource *res = platform_get_resource(pdev,
1983 							     IORESOURCE_MEM, 1);
1984 		lp->dma_regs = devm_ioremap_resource(&pdev->dev, res);
1985 		lp->rx_irq = platform_get_irq(pdev, 1);
1986 		lp->tx_irq = platform_get_irq(pdev, 0);
1987 		lp->eth_irq = platform_get_irq_optional(pdev, 2);
1988 	}
1989 	if (IS_ERR(lp->dma_regs)) {
1990 		dev_err(&pdev->dev, "could not map DMA regs\n");
1991 		ret = PTR_ERR(lp->dma_regs);
1992 		goto cleanup_clk;
1993 	}
1994 	if ((lp->rx_irq <= 0) || (lp->tx_irq <= 0)) {
1995 		dev_err(&pdev->dev, "could not determine irqs\n");
1996 		ret = -ENOMEM;
1997 		goto cleanup_clk;
1998 	}
1999 
2000 	/* Autodetect the need for 64-bit DMA pointers.
2001 	 * When the IP is configured for a bus width bigger than 32 bits,
2002 	 * writing the MSB registers is mandatory, even if they are all 0.
2003 	 * We can detect this case by writing all 1's to one such register
2004 	 * and see if that sticks: when the IP is configured for 32 bits
2005 	 * only, those registers are RES0.
2006 	 * Those MSB registers were introduced in IP v7.1, which we check first.
2007 	 */
2008 	if ((axienet_ior(lp, XAE_ID_OFFSET) >> 24) >= 0x9) {
2009 		void __iomem *desc = lp->dma_regs + XAXIDMA_TX_CDESC_OFFSET + 4;
2010 
2011 		iowrite32(0x0, desc);
2012 		if (ioread32(desc) == 0) {	/* sanity check */
2013 			iowrite32(0xffffffff, desc);
2014 			if (ioread32(desc) > 0) {
2015 				lp->features |= XAE_FEATURE_DMA_64BIT;
2016 				addr_width = 64;
2017 				dev_info(&pdev->dev,
2018 					 "autodetected 64-bit DMA range\n");
2019 			}
2020 			iowrite32(0x0, desc);
2021 		}
2022 	}
2023 
2024 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(addr_width));
2025 	if (ret) {
2026 		dev_err(&pdev->dev, "No suitable DMA available\n");
2027 		goto cleanup_clk;
2028 	}
2029 
2030 	/* Check for Ethernet core IRQ (optional) */
2031 	if (lp->eth_irq <= 0)
2032 		dev_info(&pdev->dev, "Ethernet core IRQ not defined\n");
2033 
2034 	/* Retrieve the MAC address */
2035 	mac_addr = of_get_mac_address(pdev->dev.of_node);
2036 	if (IS_ERR(mac_addr)) {
2037 		dev_warn(&pdev->dev, "could not find MAC address property: %ld\n",
2038 			 PTR_ERR(mac_addr));
2039 		mac_addr = NULL;
2040 	}
2041 	axienet_set_mac_address(ndev, mac_addr);
2042 
2043 	lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
2044 	lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
2045 
2046 	/* Reset core now that clocks are enabled, prior to accessing MDIO */
2047 	ret = __axienet_device_reset(lp);
2048 	if (ret)
2049 		goto cleanup_clk;
2050 
2051 	lp->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
2052 	if (lp->phy_node) {
2053 		ret = axienet_mdio_setup(lp);
2054 		if (ret)
2055 			dev_warn(&pdev->dev,
2056 				 "error registering MDIO bus: %d\n", ret);
2057 	}
2058 	if (lp->phy_mode == PHY_INTERFACE_MODE_SGMII ||
2059 	    lp->phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
2060 		if (!lp->phy_node) {
2061 			dev_err(&pdev->dev, "phy-handle required for 1000BaseX/SGMII\n");
2062 			ret = -EINVAL;
2063 			goto cleanup_mdio;
2064 		}
2065 		lp->pcs_phy = of_mdio_find_device(lp->phy_node);
2066 		if (!lp->pcs_phy) {
2067 			ret = -EPROBE_DEFER;
2068 			goto cleanup_mdio;
2069 		}
2070 		lp->phylink_config.pcs_poll = true;
2071 	}
2072 
2073 	lp->phylink_config.dev = &ndev->dev;
2074 	lp->phylink_config.type = PHYLINK_NETDEV;
2075 
2076 	lp->phylink = phylink_create(&lp->phylink_config, pdev->dev.fwnode,
2077 				     lp->phy_mode,
2078 				     &axienet_phylink_ops);
2079 	if (IS_ERR(lp->phylink)) {
2080 		ret = PTR_ERR(lp->phylink);
2081 		dev_err(&pdev->dev, "phylink_create error (%i)\n", ret);
2082 		goto cleanup_mdio;
2083 	}
2084 
2085 	ret = register_netdev(lp->ndev);
2086 	if (ret) {
2087 		dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
2088 		goto cleanup_phylink;
2089 	}
2090 
2091 	return 0;
2092 
2093 cleanup_phylink:
2094 	phylink_destroy(lp->phylink);
2095 
2096 cleanup_mdio:
2097 	if (lp->pcs_phy)
2098 		put_device(&lp->pcs_phy->dev);
2099 	if (lp->mii_bus)
2100 		axienet_mdio_teardown(lp);
2101 	of_node_put(lp->phy_node);
2102 
2103 cleanup_clk:
2104 	clk_disable_unprepare(lp->clk);
2105 
2106 free_netdev:
2107 	free_netdev(ndev);
2108 
2109 	return ret;
2110 }
2111 
axienet_remove(struct platform_device * pdev)2112 static int axienet_remove(struct platform_device *pdev)
2113 {
2114 	struct net_device *ndev = platform_get_drvdata(pdev);
2115 	struct axienet_local *lp = netdev_priv(ndev);
2116 
2117 	unregister_netdev(ndev);
2118 
2119 	if (lp->phylink)
2120 		phylink_destroy(lp->phylink);
2121 
2122 	if (lp->pcs_phy)
2123 		put_device(&lp->pcs_phy->dev);
2124 
2125 	axienet_mdio_teardown(lp);
2126 
2127 	clk_disable_unprepare(lp->clk);
2128 
2129 	of_node_put(lp->phy_node);
2130 	lp->phy_node = NULL;
2131 
2132 	free_netdev(ndev);
2133 
2134 	return 0;
2135 }
2136 
axienet_shutdown(struct platform_device * pdev)2137 static void axienet_shutdown(struct platform_device *pdev)
2138 {
2139 	struct net_device *ndev = platform_get_drvdata(pdev);
2140 
2141 	rtnl_lock();
2142 	netif_device_detach(ndev);
2143 
2144 	if (netif_running(ndev))
2145 		dev_close(ndev);
2146 
2147 	rtnl_unlock();
2148 }
2149 
2150 static struct platform_driver axienet_driver = {
2151 	.probe = axienet_probe,
2152 	.remove = axienet_remove,
2153 	.shutdown = axienet_shutdown,
2154 	.driver = {
2155 		 .name = "xilinx_axienet",
2156 		 .of_match_table = axienet_of_match,
2157 	},
2158 };
2159 
2160 module_platform_driver(axienet_driver);
2161 
2162 MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
2163 MODULE_AUTHOR("Xilinx");
2164 MODULE_LICENSE("GPL");
2165