1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS 256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
36
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
41
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
48 };
49
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
54 };
55
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
59 };
60
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
77 };
78
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
83 };
84
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
93
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
101 };
102
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
106
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
110
111 struct nvme_rdma_qe async_event_sqe;
112
113 struct delayed_work reconnect_work;
114
115 struct list_head list;
116
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
119
120 u32 max_fr_pages;
121
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
124
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
128 };
129
to_rdma_ctrl(struct nvme_ctrl * ctrl)130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
131 {
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
133 }
134
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
137
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
140
141 /*
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
145 */
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
150
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
155
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
158
nvme_rdma_queue_idx(struct nvme_rdma_queue * queue)159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
160 {
161 return queue - queue->ctrl->queues;
162 }
163
nvme_rdma_poll_queue(struct nvme_rdma_queue * queue)164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
165 {
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
169 }
170
nvme_rdma_inline_data_size(struct nvme_rdma_queue * queue)171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_rdma_free_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
178 {
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
181 }
182
nvme_rdma_alloc_qe(struct ib_device * ibdev,struct nvme_rdma_qe * qe,size_t capsule_size,enum dma_data_direction dir)183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
185 {
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
189
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
195 }
196
197 return 0;
198 }
199
nvme_rdma_free_ring(struct ib_device * ibdev,struct nvme_rdma_qe * ring,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
203 {
204 int i;
205
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
209 }
210
nvme_rdma_alloc_ring(struct ib_device * ibdev,size_t ib_queue_size,size_t capsule_size,enum dma_data_direction dir)211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
214 {
215 struct nvme_rdma_qe *ring;
216 int i;
217
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
221
222 /*
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
226 */
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
230 }
231
232 return ring;
233
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
237 }
238
nvme_rdma_qp_event(struct ib_event * event,void * context)239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
240 {
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
243
244 }
245
nvme_rdma_wait_for_cm(struct nvme_rdma_queue * queue)246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
247 {
248 int ret;
249
250 ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
251 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
252 if (ret < 0)
253 return ret;
254 if (ret == 0)
255 return -ETIMEDOUT;
256 WARN_ON_ONCE(queue->cm_error > 0);
257 return queue->cm_error;
258 }
259
nvme_rdma_create_qp(struct nvme_rdma_queue * queue,const int factor)260 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
261 {
262 struct nvme_rdma_device *dev = queue->device;
263 struct ib_qp_init_attr init_attr;
264 int ret;
265
266 memset(&init_attr, 0, sizeof(init_attr));
267 init_attr.event_handler = nvme_rdma_qp_event;
268 /* +1 for drain */
269 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
270 /* +1 for drain */
271 init_attr.cap.max_recv_wr = queue->queue_size + 1;
272 init_attr.cap.max_recv_sge = 1;
273 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
274 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
275 init_attr.qp_type = IB_QPT_RC;
276 init_attr.send_cq = queue->ib_cq;
277 init_attr.recv_cq = queue->ib_cq;
278 if (queue->pi_support)
279 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
280 init_attr.qp_context = queue;
281
282 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
283
284 queue->qp = queue->cm_id->qp;
285 return ret;
286 }
287
nvme_rdma_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)288 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
289 struct request *rq, unsigned int hctx_idx)
290 {
291 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292
293 kfree(req->sqe.data);
294 }
295
nvme_rdma_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)296 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
297 struct request *rq, unsigned int hctx_idx,
298 unsigned int numa_node)
299 {
300 struct nvme_rdma_ctrl *ctrl = set->driver_data;
301 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
302 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
303 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
304
305 nvme_req(rq)->ctrl = &ctrl->ctrl;
306 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
307 if (!req->sqe.data)
308 return -ENOMEM;
309
310 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
311 if (queue->pi_support)
312 req->metadata_sgl = (void *)nvme_req(rq) +
313 sizeof(struct nvme_rdma_request) +
314 NVME_RDMA_DATA_SGL_SIZE;
315
316 req->queue = queue;
317
318 return 0;
319 }
320
nvme_rdma_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)321 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322 unsigned int hctx_idx)
323 {
324 struct nvme_rdma_ctrl *ctrl = data;
325 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
326
327 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
328
329 hctx->driver_data = queue;
330 return 0;
331 }
332
nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)333 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
334 unsigned int hctx_idx)
335 {
336 struct nvme_rdma_ctrl *ctrl = data;
337 struct nvme_rdma_queue *queue = &ctrl->queues[0];
338
339 BUG_ON(hctx_idx != 0);
340
341 hctx->driver_data = queue;
342 return 0;
343 }
344
nvme_rdma_free_dev(struct kref * ref)345 static void nvme_rdma_free_dev(struct kref *ref)
346 {
347 struct nvme_rdma_device *ndev =
348 container_of(ref, struct nvme_rdma_device, ref);
349
350 mutex_lock(&device_list_mutex);
351 list_del(&ndev->entry);
352 mutex_unlock(&device_list_mutex);
353
354 ib_dealloc_pd(ndev->pd);
355 kfree(ndev);
356 }
357
nvme_rdma_dev_put(struct nvme_rdma_device * dev)358 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
359 {
360 kref_put(&dev->ref, nvme_rdma_free_dev);
361 }
362
nvme_rdma_dev_get(struct nvme_rdma_device * dev)363 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
364 {
365 return kref_get_unless_zero(&dev->ref);
366 }
367
368 static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id * cm_id)369 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
370 {
371 struct nvme_rdma_device *ndev;
372
373 mutex_lock(&device_list_mutex);
374 list_for_each_entry(ndev, &device_list, entry) {
375 if (ndev->dev->node_guid == cm_id->device->node_guid &&
376 nvme_rdma_dev_get(ndev))
377 goto out_unlock;
378 }
379
380 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
381 if (!ndev)
382 goto out_err;
383
384 ndev->dev = cm_id->device;
385 kref_init(&ndev->ref);
386
387 ndev->pd = ib_alloc_pd(ndev->dev,
388 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
389 if (IS_ERR(ndev->pd))
390 goto out_free_dev;
391
392 if (!(ndev->dev->attrs.device_cap_flags &
393 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
394 dev_err(&ndev->dev->dev,
395 "Memory registrations not supported.\n");
396 goto out_free_pd;
397 }
398
399 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
400 ndev->dev->attrs.max_send_sge - 1);
401 list_add(&ndev->entry, &device_list);
402 out_unlock:
403 mutex_unlock(&device_list_mutex);
404 return ndev;
405
406 out_free_pd:
407 ib_dealloc_pd(ndev->pd);
408 out_free_dev:
409 kfree(ndev);
410 out_err:
411 mutex_unlock(&device_list_mutex);
412 return NULL;
413 }
414
nvme_rdma_free_cq(struct nvme_rdma_queue * queue)415 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
416 {
417 if (nvme_rdma_poll_queue(queue))
418 ib_free_cq(queue->ib_cq);
419 else
420 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 }
422
nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue * queue)423 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
424 {
425 struct nvme_rdma_device *dev;
426 struct ib_device *ibdev;
427
428 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
429 return;
430
431 dev = queue->device;
432 ibdev = dev->dev;
433
434 if (queue->pi_support)
435 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
436 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437
438 /*
439 * The cm_id object might have been destroyed during RDMA connection
440 * establishment error flow to avoid getting other cma events, thus
441 * the destruction of the QP shouldn't use rdma_cm API.
442 */
443 ib_destroy_qp(queue->qp);
444 nvme_rdma_free_cq(queue);
445
446 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
447 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
448
449 nvme_rdma_dev_put(dev);
450 }
451
nvme_rdma_get_max_fr_pages(struct ib_device * ibdev,bool pi_support)452 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
453 {
454 u32 max_page_list_len;
455
456 if (pi_support)
457 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
458 else
459 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
460
461 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 }
463
nvme_rdma_create_cq(struct ib_device * ibdev,struct nvme_rdma_queue * queue)464 static int nvme_rdma_create_cq(struct ib_device *ibdev,
465 struct nvme_rdma_queue *queue)
466 {
467 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 enum ib_poll_context poll_ctx;
469
470 /*
471 * Spread I/O queues completion vectors according their queue index.
472 * Admin queues can always go on completion vector 0.
473 */
474 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
475
476 /* Polling queues need direct cq polling context */
477 if (nvme_rdma_poll_queue(queue)) {
478 poll_ctx = IB_POLL_DIRECT;
479 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
480 comp_vector, poll_ctx);
481 } else {
482 poll_ctx = IB_POLL_SOFTIRQ;
483 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
484 comp_vector, poll_ctx);
485 }
486
487 if (IS_ERR(queue->ib_cq)) {
488 ret = PTR_ERR(queue->ib_cq);
489 return ret;
490 }
491
492 return 0;
493 }
494
nvme_rdma_create_queue_ib(struct nvme_rdma_queue * queue)495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
496 {
497 struct ib_device *ibdev;
498 const int send_wr_factor = 3; /* MR, SEND, INV */
499 const int cq_factor = send_wr_factor + 1; /* + RECV */
500 int ret, pages_per_mr;
501
502 queue->device = nvme_rdma_find_get_device(queue->cm_id);
503 if (!queue->device) {
504 dev_err(queue->cm_id->device->dev.parent,
505 "no client data found!\n");
506 return -ECONNREFUSED;
507 }
508 ibdev = queue->device->dev;
509
510 /* +1 for ib_stop_cq */
511 queue->cq_size = cq_factor * queue->queue_size + 1;
512
513 ret = nvme_rdma_create_cq(ibdev, queue);
514 if (ret)
515 goto out_put_dev;
516
517 ret = nvme_rdma_create_qp(queue, send_wr_factor);
518 if (ret)
519 goto out_destroy_ib_cq;
520
521 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
522 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
523 if (!queue->rsp_ring) {
524 ret = -ENOMEM;
525 goto out_destroy_qp;
526 }
527
528 /*
529 * Currently we don't use SG_GAPS MR's so if the first entry is
530 * misaligned we'll end up using two entries for a single data page,
531 * so one additional entry is required.
532 */
533 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
534 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
535 queue->queue_size,
536 IB_MR_TYPE_MEM_REG,
537 pages_per_mr, 0);
538 if (ret) {
539 dev_err(queue->ctrl->ctrl.device,
540 "failed to initialize MR pool sized %d for QID %d\n",
541 queue->queue_size, nvme_rdma_queue_idx(queue));
542 goto out_destroy_ring;
543 }
544
545 if (queue->pi_support) {
546 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
547 queue->queue_size, IB_MR_TYPE_INTEGRITY,
548 pages_per_mr, pages_per_mr);
549 if (ret) {
550 dev_err(queue->ctrl->ctrl.device,
551 "failed to initialize PI MR pool sized %d for QID %d\n",
552 queue->queue_size, nvme_rdma_queue_idx(queue));
553 goto out_destroy_mr_pool;
554 }
555 }
556
557 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
558
559 return 0;
560
561 out_destroy_mr_pool:
562 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
563 out_destroy_ring:
564 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
565 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
566 out_destroy_qp:
567 rdma_destroy_qp(queue->cm_id);
568 out_destroy_ib_cq:
569 nvme_rdma_free_cq(queue);
570 out_put_dev:
571 nvme_rdma_dev_put(queue->device);
572 return ret;
573 }
574
nvme_rdma_alloc_queue(struct nvme_rdma_ctrl * ctrl,int idx,size_t queue_size)575 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
576 int idx, size_t queue_size)
577 {
578 struct nvme_rdma_queue *queue;
579 struct sockaddr *src_addr = NULL;
580 int ret;
581
582 queue = &ctrl->queues[idx];
583 mutex_init(&queue->queue_lock);
584 queue->ctrl = ctrl;
585 if (idx && ctrl->ctrl.max_integrity_segments)
586 queue->pi_support = true;
587 else
588 queue->pi_support = false;
589 init_completion(&queue->cm_done);
590
591 if (idx > 0)
592 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
593 else
594 queue->cmnd_capsule_len = sizeof(struct nvme_command);
595
596 queue->queue_size = queue_size;
597
598 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
599 RDMA_PS_TCP, IB_QPT_RC);
600 if (IS_ERR(queue->cm_id)) {
601 dev_info(ctrl->ctrl.device,
602 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
603 ret = PTR_ERR(queue->cm_id);
604 goto out_destroy_mutex;
605 }
606
607 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
608 src_addr = (struct sockaddr *)&ctrl->src_addr;
609
610 queue->cm_error = -ETIMEDOUT;
611 ret = rdma_resolve_addr(queue->cm_id, src_addr,
612 (struct sockaddr *)&ctrl->addr,
613 NVME_RDMA_CONNECT_TIMEOUT_MS);
614 if (ret) {
615 dev_info(ctrl->ctrl.device,
616 "rdma_resolve_addr failed (%d).\n", ret);
617 goto out_destroy_cm_id;
618 }
619
620 ret = nvme_rdma_wait_for_cm(queue);
621 if (ret) {
622 dev_info(ctrl->ctrl.device,
623 "rdma connection establishment failed (%d)\n", ret);
624 goto out_destroy_cm_id;
625 }
626
627 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
628
629 return 0;
630
631 out_destroy_cm_id:
632 rdma_destroy_id(queue->cm_id);
633 nvme_rdma_destroy_queue_ib(queue);
634 out_destroy_mutex:
635 mutex_destroy(&queue->queue_lock);
636 return ret;
637 }
638
__nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)639 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
640 {
641 rdma_disconnect(queue->cm_id);
642 ib_drain_qp(queue->qp);
643 }
644
nvme_rdma_stop_queue(struct nvme_rdma_queue * queue)645 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
646 {
647 mutex_lock(&queue->queue_lock);
648 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
649 __nvme_rdma_stop_queue(queue);
650 mutex_unlock(&queue->queue_lock);
651 }
652
nvme_rdma_free_queue(struct nvme_rdma_queue * queue)653 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
654 {
655 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
656 return;
657
658 rdma_destroy_id(queue->cm_id);
659 nvme_rdma_destroy_queue_ib(queue);
660 mutex_destroy(&queue->queue_lock);
661 }
662
nvme_rdma_free_io_queues(struct nvme_rdma_ctrl * ctrl)663 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
664 {
665 int i;
666
667 for (i = 1; i < ctrl->ctrl.queue_count; i++)
668 nvme_rdma_free_queue(&ctrl->queues[i]);
669 }
670
nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl * ctrl)671 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
672 {
673 int i;
674
675 for (i = 1; i < ctrl->ctrl.queue_count; i++)
676 nvme_rdma_stop_queue(&ctrl->queues[i]);
677 }
678
nvme_rdma_start_queue(struct nvme_rdma_ctrl * ctrl,int idx)679 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
680 {
681 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
682 bool poll = nvme_rdma_poll_queue(queue);
683 int ret;
684
685 if (idx)
686 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
687 else
688 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
689
690 if (!ret) {
691 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
692 } else {
693 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
694 __nvme_rdma_stop_queue(queue);
695 dev_info(ctrl->ctrl.device,
696 "failed to connect queue: %d ret=%d\n", idx, ret);
697 }
698 return ret;
699 }
700
nvme_rdma_start_io_queues(struct nvme_rdma_ctrl * ctrl)701 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
702 {
703 int i, ret = 0;
704
705 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
706 ret = nvme_rdma_start_queue(ctrl, i);
707 if (ret)
708 goto out_stop_queues;
709 }
710
711 return 0;
712
713 out_stop_queues:
714 for (i--; i >= 1; i--)
715 nvme_rdma_stop_queue(&ctrl->queues[i]);
716 return ret;
717 }
718
nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl * ctrl)719 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
720 {
721 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
722 struct ib_device *ibdev = ctrl->device->dev;
723 unsigned int nr_io_queues, nr_default_queues;
724 unsigned int nr_read_queues, nr_poll_queues;
725 int i, ret;
726
727 nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
728 min(opts->nr_io_queues, num_online_cpus()));
729 nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
730 min(opts->nr_write_queues, num_online_cpus()));
731 nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
732 nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
733
734 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
735 if (ret)
736 return ret;
737
738 if (nr_io_queues == 0) {
739 dev_err(ctrl->ctrl.device,
740 "unable to set any I/O queues\n");
741 return -ENOMEM;
742 }
743
744 ctrl->ctrl.queue_count = nr_io_queues + 1;
745 dev_info(ctrl->ctrl.device,
746 "creating %d I/O queues.\n", nr_io_queues);
747
748 if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
749 /*
750 * separate read/write queues
751 * hand out dedicated default queues only after we have
752 * sufficient read queues.
753 */
754 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
755 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
756 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
757 min(nr_default_queues, nr_io_queues);
758 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
759 } else {
760 /*
761 * shared read/write queues
762 * either no write queues were requested, or we don't have
763 * sufficient queue count to have dedicated default queues.
764 */
765 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
766 min(nr_read_queues, nr_io_queues);
767 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
768 }
769
770 if (opts->nr_poll_queues && nr_io_queues) {
771 /* map dedicated poll queues only if we have queues left */
772 ctrl->io_queues[HCTX_TYPE_POLL] =
773 min(nr_poll_queues, nr_io_queues);
774 }
775
776 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
777 ret = nvme_rdma_alloc_queue(ctrl, i,
778 ctrl->ctrl.sqsize + 1);
779 if (ret)
780 goto out_free_queues;
781 }
782
783 return 0;
784
785 out_free_queues:
786 for (i--; i >= 1; i--)
787 nvme_rdma_free_queue(&ctrl->queues[i]);
788
789 return ret;
790 }
791
nvme_rdma_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)792 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
793 bool admin)
794 {
795 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
796 struct blk_mq_tag_set *set;
797 int ret;
798
799 if (admin) {
800 set = &ctrl->admin_tag_set;
801 memset(set, 0, sizeof(*set));
802 set->ops = &nvme_rdma_admin_mq_ops;
803 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
804 set->reserved_tags = 2; /* connect + keep-alive */
805 set->numa_node = nctrl->numa_node;
806 set->cmd_size = sizeof(struct nvme_rdma_request) +
807 NVME_RDMA_DATA_SGL_SIZE;
808 set->driver_data = ctrl;
809 set->nr_hw_queues = 1;
810 set->timeout = ADMIN_TIMEOUT;
811 set->flags = BLK_MQ_F_NO_SCHED;
812 } else {
813 set = &ctrl->tag_set;
814 memset(set, 0, sizeof(*set));
815 set->ops = &nvme_rdma_mq_ops;
816 set->queue_depth = nctrl->sqsize + 1;
817 set->reserved_tags = 1; /* fabric connect */
818 set->numa_node = nctrl->numa_node;
819 set->flags = BLK_MQ_F_SHOULD_MERGE;
820 set->cmd_size = sizeof(struct nvme_rdma_request) +
821 NVME_RDMA_DATA_SGL_SIZE;
822 if (nctrl->max_integrity_segments)
823 set->cmd_size += sizeof(struct nvme_rdma_sgl) +
824 NVME_RDMA_METADATA_SGL_SIZE;
825 set->driver_data = ctrl;
826 set->nr_hw_queues = nctrl->queue_count - 1;
827 set->timeout = NVME_IO_TIMEOUT;
828 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
829 }
830
831 ret = blk_mq_alloc_tag_set(set);
832 if (ret)
833 return ERR_PTR(ret);
834
835 return set;
836 }
837
nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)838 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
839 bool remove)
840 {
841 if (remove) {
842 blk_cleanup_queue(ctrl->ctrl.admin_q);
843 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
844 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
845 }
846 if (ctrl->async_event_sqe.data) {
847 cancel_work_sync(&ctrl->ctrl.async_event_work);
848 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
849 sizeof(struct nvme_command), DMA_TO_DEVICE);
850 ctrl->async_event_sqe.data = NULL;
851 }
852 nvme_rdma_free_queue(&ctrl->queues[0]);
853 }
854
nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl * ctrl,bool new)855 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
856 bool new)
857 {
858 bool pi_capable = false;
859 int error;
860
861 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
862 if (error)
863 return error;
864
865 ctrl->device = ctrl->queues[0].device;
866 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
867
868 /* T10-PI support */
869 if (ctrl->device->dev->attrs.device_cap_flags &
870 IB_DEVICE_INTEGRITY_HANDOVER)
871 pi_capable = true;
872
873 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
874 pi_capable);
875
876 /*
877 * Bind the async event SQE DMA mapping to the admin queue lifetime.
878 * It's safe, since any chage in the underlying RDMA device will issue
879 * error recovery and queue re-creation.
880 */
881 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
882 sizeof(struct nvme_command), DMA_TO_DEVICE);
883 if (error)
884 goto out_free_queue;
885
886 if (new) {
887 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
888 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
889 error = PTR_ERR(ctrl->ctrl.admin_tagset);
890 goto out_free_async_qe;
891 }
892
893 ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
894 if (IS_ERR(ctrl->ctrl.fabrics_q)) {
895 error = PTR_ERR(ctrl->ctrl.fabrics_q);
896 goto out_free_tagset;
897 }
898
899 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
900 if (IS_ERR(ctrl->ctrl.admin_q)) {
901 error = PTR_ERR(ctrl->ctrl.admin_q);
902 goto out_cleanup_fabrics_q;
903 }
904 }
905
906 error = nvme_rdma_start_queue(ctrl, 0);
907 if (error)
908 goto out_cleanup_queue;
909
910 error = nvme_enable_ctrl(&ctrl->ctrl);
911 if (error)
912 goto out_stop_queue;
913
914 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
915 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
916 if (pi_capable)
917 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
918 else
919 ctrl->ctrl.max_integrity_segments = 0;
920
921 nvme_start_admin_queue(&ctrl->ctrl);
922
923 error = nvme_init_identify(&ctrl->ctrl);
924 if (error)
925 goto out_quiesce_queue;
926
927 return 0;
928
929 out_quiesce_queue:
930 nvme_stop_admin_queue(&ctrl->ctrl);
931 blk_sync_queue(ctrl->ctrl.admin_q);
932 out_stop_queue:
933 nvme_rdma_stop_queue(&ctrl->queues[0]);
934 nvme_cancel_admin_tagset(&ctrl->ctrl);
935 out_cleanup_queue:
936 if (new)
937 blk_cleanup_queue(ctrl->ctrl.admin_q);
938 out_cleanup_fabrics_q:
939 if (new)
940 blk_cleanup_queue(ctrl->ctrl.fabrics_q);
941 out_free_tagset:
942 if (new)
943 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
944 out_free_async_qe:
945 if (ctrl->async_event_sqe.data) {
946 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
947 sizeof(struct nvme_command), DMA_TO_DEVICE);
948 ctrl->async_event_sqe.data = NULL;
949 }
950 out_free_queue:
951 nvme_rdma_free_queue(&ctrl->queues[0]);
952 return error;
953 }
954
nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)955 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
956 bool remove)
957 {
958 if (remove) {
959 blk_cleanup_queue(ctrl->ctrl.connect_q);
960 blk_mq_free_tag_set(ctrl->ctrl.tagset);
961 }
962 nvme_rdma_free_io_queues(ctrl);
963 }
964
nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl * ctrl,bool new)965 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
966 {
967 int ret;
968
969 ret = nvme_rdma_alloc_io_queues(ctrl);
970 if (ret)
971 return ret;
972
973 if (new) {
974 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
975 if (IS_ERR(ctrl->ctrl.tagset)) {
976 ret = PTR_ERR(ctrl->ctrl.tagset);
977 goto out_free_io_queues;
978 }
979
980 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
981 if (IS_ERR(ctrl->ctrl.connect_q)) {
982 ret = PTR_ERR(ctrl->ctrl.connect_q);
983 goto out_free_tag_set;
984 }
985 }
986
987 ret = nvme_rdma_start_io_queues(ctrl);
988 if (ret)
989 goto out_cleanup_connect_q;
990
991 if (!new) {
992 nvme_start_queues(&ctrl->ctrl);
993 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
994 /*
995 * If we timed out waiting for freeze we are likely to
996 * be stuck. Fail the controller initialization just
997 * to be safe.
998 */
999 ret = -ENODEV;
1000 goto out_wait_freeze_timed_out;
1001 }
1002 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
1003 ctrl->ctrl.queue_count - 1);
1004 nvme_unfreeze(&ctrl->ctrl);
1005 }
1006
1007 return 0;
1008
1009 out_wait_freeze_timed_out:
1010 nvme_stop_queues(&ctrl->ctrl);
1011 nvme_sync_io_queues(&ctrl->ctrl);
1012 nvme_rdma_stop_io_queues(ctrl);
1013 out_cleanup_connect_q:
1014 nvme_cancel_tagset(&ctrl->ctrl);
1015 if (new)
1016 blk_cleanup_queue(ctrl->ctrl.connect_q);
1017 out_free_tag_set:
1018 if (new)
1019 blk_mq_free_tag_set(ctrl->ctrl.tagset);
1020 out_free_io_queues:
1021 nvme_rdma_free_io_queues(ctrl);
1022 return ret;
1023 }
1024
nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl * ctrl,bool remove)1025 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
1026 bool remove)
1027 {
1028 nvme_stop_admin_queue(&ctrl->ctrl);
1029 blk_sync_queue(ctrl->ctrl.admin_q);
1030 nvme_rdma_stop_queue(&ctrl->queues[0]);
1031 if (ctrl->ctrl.admin_tagset) {
1032 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
1033 nvme_cancel_request, &ctrl->ctrl);
1034 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
1035 }
1036 if (remove)
1037 nvme_start_admin_queue(&ctrl->ctrl);
1038 nvme_rdma_destroy_admin_queue(ctrl, remove);
1039 }
1040
nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl * ctrl,bool remove)1041 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
1042 bool remove)
1043 {
1044 if (ctrl->ctrl.queue_count > 1) {
1045 nvme_start_freeze(&ctrl->ctrl);
1046 nvme_stop_queues(&ctrl->ctrl);
1047 nvme_sync_io_queues(&ctrl->ctrl);
1048 nvme_rdma_stop_io_queues(ctrl);
1049 if (ctrl->ctrl.tagset) {
1050 blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
1051 nvme_cancel_request, &ctrl->ctrl);
1052 blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
1053 }
1054 if (remove)
1055 nvme_start_queues(&ctrl->ctrl);
1056 nvme_rdma_destroy_io_queues(ctrl, remove);
1057 }
1058 }
1059
nvme_rdma_free_ctrl(struct nvme_ctrl * nctrl)1060 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
1061 {
1062 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1063
1064 if (list_empty(&ctrl->list))
1065 goto free_ctrl;
1066
1067 mutex_lock(&nvme_rdma_ctrl_mutex);
1068 list_del(&ctrl->list);
1069 mutex_unlock(&nvme_rdma_ctrl_mutex);
1070
1071 nvmf_free_options(nctrl->opts);
1072 free_ctrl:
1073 kfree(ctrl->queues);
1074 kfree(ctrl);
1075 }
1076
nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl * ctrl)1077 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
1078 {
1079 /* If we are resetting/deleting then do nothing */
1080 if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
1081 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
1082 ctrl->ctrl.state == NVME_CTRL_LIVE);
1083 return;
1084 }
1085
1086 if (nvmf_should_reconnect(&ctrl->ctrl)) {
1087 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
1088 ctrl->ctrl.opts->reconnect_delay);
1089 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1090 ctrl->ctrl.opts->reconnect_delay * HZ);
1091 } else {
1092 nvme_delete_ctrl(&ctrl->ctrl);
1093 }
1094 }
1095
nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl * ctrl,bool new)1096 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1097 {
1098 int ret = -EINVAL;
1099 bool changed;
1100
1101 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1102 if (ret)
1103 return ret;
1104
1105 if (ctrl->ctrl.icdoff) {
1106 ret = -EOPNOTSUPP;
1107 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1108 goto destroy_admin;
1109 }
1110
1111 if (!(ctrl->ctrl.sgls & (1 << 2))) {
1112 ret = -EOPNOTSUPP;
1113 dev_err(ctrl->ctrl.device,
1114 "Mandatory keyed sgls are not supported!\n");
1115 goto destroy_admin;
1116 }
1117
1118 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1119 dev_warn(ctrl->ctrl.device,
1120 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1121 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1122 }
1123
1124 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1125 dev_warn(ctrl->ctrl.device,
1126 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1127 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1128 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1129 }
1130
1131 if (ctrl->ctrl.sgls & (1 << 20))
1132 ctrl->use_inline_data = true;
1133
1134 if (ctrl->ctrl.queue_count > 1) {
1135 ret = nvme_rdma_configure_io_queues(ctrl, new);
1136 if (ret)
1137 goto destroy_admin;
1138 }
1139
1140 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1141 if (!changed) {
1142 /*
1143 * state change failure is ok if we started ctrl delete,
1144 * unless we're during creation of a new controller to
1145 * avoid races with teardown flow.
1146 */
1147 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1148 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1149 WARN_ON_ONCE(new);
1150 ret = -EINVAL;
1151 goto destroy_io;
1152 }
1153
1154 nvme_start_ctrl(&ctrl->ctrl);
1155 return 0;
1156
1157 destroy_io:
1158 if (ctrl->ctrl.queue_count > 1) {
1159 nvme_stop_queues(&ctrl->ctrl);
1160 nvme_sync_io_queues(&ctrl->ctrl);
1161 nvme_rdma_stop_io_queues(ctrl);
1162 nvme_cancel_tagset(&ctrl->ctrl);
1163 nvme_rdma_destroy_io_queues(ctrl, new);
1164 }
1165 destroy_admin:
1166 nvme_stop_admin_queue(&ctrl->ctrl);
1167 blk_sync_queue(ctrl->ctrl.admin_q);
1168 nvme_rdma_stop_queue(&ctrl->queues[0]);
1169 nvme_cancel_admin_tagset(&ctrl->ctrl);
1170 nvme_rdma_destroy_admin_queue(ctrl, new);
1171 return ret;
1172 }
1173
nvme_rdma_reconnect_ctrl_work(struct work_struct * work)1174 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1175 {
1176 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1177 struct nvme_rdma_ctrl, reconnect_work);
1178
1179 ++ctrl->ctrl.nr_reconnects;
1180
1181 if (nvme_rdma_setup_ctrl(ctrl, false))
1182 goto requeue;
1183
1184 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1185 ctrl->ctrl.nr_reconnects);
1186
1187 ctrl->ctrl.nr_reconnects = 0;
1188
1189 return;
1190
1191 requeue:
1192 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1193 ctrl->ctrl.nr_reconnects);
1194 nvme_rdma_reconnect_or_remove(ctrl);
1195 }
1196
nvme_rdma_error_recovery_work(struct work_struct * work)1197 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1198 {
1199 struct nvme_rdma_ctrl *ctrl = container_of(work,
1200 struct nvme_rdma_ctrl, err_work);
1201
1202 nvme_stop_keep_alive(&ctrl->ctrl);
1203 nvme_rdma_teardown_io_queues(ctrl, false);
1204 nvme_start_queues(&ctrl->ctrl);
1205 nvme_rdma_teardown_admin_queue(ctrl, false);
1206 nvme_start_admin_queue(&ctrl->ctrl);
1207
1208 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1209 /* state change failure is ok if we started ctrl delete */
1210 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING &&
1211 ctrl->ctrl.state != NVME_CTRL_DELETING_NOIO);
1212 return;
1213 }
1214
1215 nvme_rdma_reconnect_or_remove(ctrl);
1216 }
1217
nvme_rdma_error_recovery(struct nvme_rdma_ctrl * ctrl)1218 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1219 {
1220 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1221 return;
1222
1223 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1224 queue_work(nvme_reset_wq, &ctrl->err_work);
1225 }
1226
nvme_rdma_end_request(struct nvme_rdma_request * req)1227 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1228 {
1229 struct request *rq = blk_mq_rq_from_pdu(req);
1230
1231 if (!refcount_dec_and_test(&req->ref))
1232 return;
1233 if (!nvme_try_complete_req(rq, req->status, req->result))
1234 nvme_rdma_complete_rq(rq);
1235 }
1236
nvme_rdma_wr_error(struct ib_cq * cq,struct ib_wc * wc,const char * op)1237 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1238 const char *op)
1239 {
1240 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1241 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1242
1243 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1244 dev_info(ctrl->ctrl.device,
1245 "%s for CQE 0x%p failed with status %s (%d)\n",
1246 op, wc->wr_cqe,
1247 ib_wc_status_msg(wc->status), wc->status);
1248 nvme_rdma_error_recovery(ctrl);
1249 }
1250
nvme_rdma_memreg_done(struct ib_cq * cq,struct ib_wc * wc)1251 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1252 {
1253 if (unlikely(wc->status != IB_WC_SUCCESS))
1254 nvme_rdma_wr_error(cq, wc, "MEMREG");
1255 }
1256
nvme_rdma_inv_rkey_done(struct ib_cq * cq,struct ib_wc * wc)1257 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1258 {
1259 struct nvme_rdma_request *req =
1260 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1261
1262 if (unlikely(wc->status != IB_WC_SUCCESS))
1263 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1264 else
1265 nvme_rdma_end_request(req);
1266 }
1267
nvme_rdma_inv_rkey(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req)1268 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1269 struct nvme_rdma_request *req)
1270 {
1271 struct ib_send_wr wr = {
1272 .opcode = IB_WR_LOCAL_INV,
1273 .next = NULL,
1274 .num_sge = 0,
1275 .send_flags = IB_SEND_SIGNALED,
1276 .ex.invalidate_rkey = req->mr->rkey,
1277 };
1278
1279 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1280 wr.wr_cqe = &req->reg_cqe;
1281
1282 return ib_post_send(queue->qp, &wr, NULL);
1283 }
1284
nvme_rdma_unmap_data(struct nvme_rdma_queue * queue,struct request * rq)1285 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1286 struct request *rq)
1287 {
1288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1289 struct nvme_rdma_device *dev = queue->device;
1290 struct ib_device *ibdev = dev->dev;
1291 struct list_head *pool = &queue->qp->rdma_mrs;
1292
1293 if (!blk_rq_nr_phys_segments(rq))
1294 return;
1295
1296 if (blk_integrity_rq(rq)) {
1297 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1298 req->metadata_sgl->nents, rq_dma_dir(rq));
1299 sg_free_table_chained(&req->metadata_sgl->sg_table,
1300 NVME_INLINE_METADATA_SG_CNT);
1301 }
1302
1303 if (req->use_sig_mr)
1304 pool = &queue->qp->sig_mrs;
1305
1306 if (req->mr) {
1307 ib_mr_pool_put(queue->qp, pool, req->mr);
1308 req->mr = NULL;
1309 }
1310
1311 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1312 rq_dma_dir(rq));
1313 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1314 }
1315
nvme_rdma_set_sg_null(struct nvme_command * c)1316 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1317 {
1318 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1319
1320 sg->addr = 0;
1321 put_unaligned_le24(0, sg->length);
1322 put_unaligned_le32(0, sg->key);
1323 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1324 return 0;
1325 }
1326
nvme_rdma_map_sg_inline(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1327 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1328 struct nvme_rdma_request *req, struct nvme_command *c,
1329 int count)
1330 {
1331 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1332 struct ib_sge *sge = &req->sge[1];
1333 struct scatterlist *sgl;
1334 u32 len = 0;
1335 int i;
1336
1337 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1338 sge->addr = sg_dma_address(sgl);
1339 sge->length = sg_dma_len(sgl);
1340 sge->lkey = queue->device->pd->local_dma_lkey;
1341 len += sge->length;
1342 sge++;
1343 }
1344
1345 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1346 sg->length = cpu_to_le32(len);
1347 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1348
1349 req->num_sge += count;
1350 return 0;
1351 }
1352
nvme_rdma_map_sg_single(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c)1353 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1354 struct nvme_rdma_request *req, struct nvme_command *c)
1355 {
1356 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1357
1358 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1359 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1360 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1361 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1362 return 0;
1363 }
1364
nvme_rdma_map_sg_fr(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count)1365 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1366 struct nvme_rdma_request *req, struct nvme_command *c,
1367 int count)
1368 {
1369 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1370 int nr;
1371
1372 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1373 if (WARN_ON_ONCE(!req->mr))
1374 return -EAGAIN;
1375
1376 /*
1377 * Align the MR to a 4K page size to match the ctrl page size and
1378 * the block virtual boundary.
1379 */
1380 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1381 SZ_4K);
1382 if (unlikely(nr < count)) {
1383 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1384 req->mr = NULL;
1385 if (nr < 0)
1386 return nr;
1387 return -EINVAL;
1388 }
1389
1390 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1391
1392 req->reg_cqe.done = nvme_rdma_memreg_done;
1393 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1394 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1395 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1396 req->reg_wr.wr.num_sge = 0;
1397 req->reg_wr.mr = req->mr;
1398 req->reg_wr.key = req->mr->rkey;
1399 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1400 IB_ACCESS_REMOTE_READ |
1401 IB_ACCESS_REMOTE_WRITE;
1402
1403 sg->addr = cpu_to_le64(req->mr->iova);
1404 put_unaligned_le24(req->mr->length, sg->length);
1405 put_unaligned_le32(req->mr->rkey, sg->key);
1406 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1407 NVME_SGL_FMT_INVALIDATE;
1408
1409 return 0;
1410 }
1411
nvme_rdma_set_sig_domain(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_domain * domain,u16 control,u8 pi_type)1412 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1413 struct nvme_command *cmd, struct ib_sig_domain *domain,
1414 u16 control, u8 pi_type)
1415 {
1416 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1417 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1418 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1419 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1420 if (control & NVME_RW_PRINFO_PRCHK_REF)
1421 domain->sig.dif.ref_remap = true;
1422
1423 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.apptag);
1424 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.appmask);
1425 domain->sig.dif.app_escape = true;
1426 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1427 domain->sig.dif.ref_escape = true;
1428 }
1429
nvme_rdma_set_sig_attrs(struct blk_integrity * bi,struct nvme_command * cmd,struct ib_sig_attrs * sig_attrs,u8 pi_type)1430 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1431 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1432 u8 pi_type)
1433 {
1434 u16 control = le16_to_cpu(cmd->rw.control);
1435
1436 memset(sig_attrs, 0, sizeof(*sig_attrs));
1437 if (control & NVME_RW_PRINFO_PRACT) {
1438 /* for WRITE_INSERT/READ_STRIP no memory domain */
1439 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1440 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1441 pi_type);
1442 /* Clear the PRACT bit since HCA will generate/verify the PI */
1443 control &= ~NVME_RW_PRINFO_PRACT;
1444 cmd->rw.control = cpu_to_le16(control);
1445 } else {
1446 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1447 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1448 pi_type);
1449 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1450 pi_type);
1451 }
1452 }
1453
nvme_rdma_set_prot_checks(struct nvme_command * cmd,u8 * mask)1454 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1455 {
1456 *mask = 0;
1457 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1458 *mask |= IB_SIG_CHECK_REFTAG;
1459 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1460 *mask |= IB_SIG_CHECK_GUARD;
1461 }
1462
nvme_rdma_sig_done(struct ib_cq * cq,struct ib_wc * wc)1463 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1464 {
1465 if (unlikely(wc->status != IB_WC_SUCCESS))
1466 nvme_rdma_wr_error(cq, wc, "SIG");
1467 }
1468
nvme_rdma_map_sg_pi(struct nvme_rdma_queue * queue,struct nvme_rdma_request * req,struct nvme_command * c,int count,int pi_count)1469 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1470 struct nvme_rdma_request *req, struct nvme_command *c,
1471 int count, int pi_count)
1472 {
1473 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1474 struct ib_reg_wr *wr = &req->reg_wr;
1475 struct request *rq = blk_mq_rq_from_pdu(req);
1476 struct nvme_ns *ns = rq->q->queuedata;
1477 struct bio *bio = rq->bio;
1478 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1479 int nr;
1480
1481 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1482 if (WARN_ON_ONCE(!req->mr))
1483 return -EAGAIN;
1484
1485 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1486 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1487 SZ_4K);
1488 if (unlikely(nr))
1489 goto mr_put;
1490
1491 nvme_rdma_set_sig_attrs(blk_get_integrity(bio->bi_disk), c,
1492 req->mr->sig_attrs, ns->pi_type);
1493 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1494
1495 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1496
1497 req->reg_cqe.done = nvme_rdma_sig_done;
1498 memset(wr, 0, sizeof(*wr));
1499 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1500 wr->wr.wr_cqe = &req->reg_cqe;
1501 wr->wr.num_sge = 0;
1502 wr->wr.send_flags = 0;
1503 wr->mr = req->mr;
1504 wr->key = req->mr->rkey;
1505 wr->access = IB_ACCESS_LOCAL_WRITE |
1506 IB_ACCESS_REMOTE_READ |
1507 IB_ACCESS_REMOTE_WRITE;
1508
1509 sg->addr = cpu_to_le64(req->mr->iova);
1510 put_unaligned_le24(req->mr->length, sg->length);
1511 put_unaligned_le32(req->mr->rkey, sg->key);
1512 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1513
1514 return 0;
1515
1516 mr_put:
1517 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1518 req->mr = NULL;
1519 if (nr < 0)
1520 return nr;
1521 return -EINVAL;
1522 }
1523
nvme_rdma_map_data(struct nvme_rdma_queue * queue,struct request * rq,struct nvme_command * c)1524 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1525 struct request *rq, struct nvme_command *c)
1526 {
1527 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1528 struct nvme_rdma_device *dev = queue->device;
1529 struct ib_device *ibdev = dev->dev;
1530 int pi_count = 0;
1531 int count, ret;
1532
1533 req->num_sge = 1;
1534 refcount_set(&req->ref, 2); /* send and recv completions */
1535
1536 c->common.flags |= NVME_CMD_SGL_METABUF;
1537
1538 if (!blk_rq_nr_phys_segments(rq))
1539 return nvme_rdma_set_sg_null(c);
1540
1541 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1542 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1543 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1544 NVME_INLINE_SG_CNT);
1545 if (ret)
1546 return -ENOMEM;
1547
1548 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1549 req->data_sgl.sg_table.sgl);
1550
1551 count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1552 req->data_sgl.nents, rq_dma_dir(rq));
1553 if (unlikely(count <= 0)) {
1554 ret = -EIO;
1555 goto out_free_table;
1556 }
1557
1558 if (blk_integrity_rq(rq)) {
1559 req->metadata_sgl->sg_table.sgl =
1560 (struct scatterlist *)(req->metadata_sgl + 1);
1561 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1562 blk_rq_count_integrity_sg(rq->q, rq->bio),
1563 req->metadata_sgl->sg_table.sgl,
1564 NVME_INLINE_METADATA_SG_CNT);
1565 if (unlikely(ret)) {
1566 ret = -ENOMEM;
1567 goto out_unmap_sg;
1568 }
1569
1570 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq->q,
1571 rq->bio, req->metadata_sgl->sg_table.sgl);
1572 pi_count = ib_dma_map_sg(ibdev,
1573 req->metadata_sgl->sg_table.sgl,
1574 req->metadata_sgl->nents,
1575 rq_dma_dir(rq));
1576 if (unlikely(pi_count <= 0)) {
1577 ret = -EIO;
1578 goto out_free_pi_table;
1579 }
1580 }
1581
1582 if (req->use_sig_mr) {
1583 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1584 goto out;
1585 }
1586
1587 if (count <= dev->num_inline_segments) {
1588 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1589 queue->ctrl->use_inline_data &&
1590 blk_rq_payload_bytes(rq) <=
1591 nvme_rdma_inline_data_size(queue)) {
1592 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1593 goto out;
1594 }
1595
1596 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1597 ret = nvme_rdma_map_sg_single(queue, req, c);
1598 goto out;
1599 }
1600 }
1601
1602 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1603 out:
1604 if (unlikely(ret))
1605 goto out_unmap_pi_sg;
1606
1607 return 0;
1608
1609 out_unmap_pi_sg:
1610 if (blk_integrity_rq(rq))
1611 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1612 req->metadata_sgl->nents, rq_dma_dir(rq));
1613 out_free_pi_table:
1614 if (blk_integrity_rq(rq))
1615 sg_free_table_chained(&req->metadata_sgl->sg_table,
1616 NVME_INLINE_METADATA_SG_CNT);
1617 out_unmap_sg:
1618 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1619 rq_dma_dir(rq));
1620 out_free_table:
1621 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1622 return ret;
1623 }
1624
nvme_rdma_send_done(struct ib_cq * cq,struct ib_wc * wc)1625 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1626 {
1627 struct nvme_rdma_qe *qe =
1628 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1629 struct nvme_rdma_request *req =
1630 container_of(qe, struct nvme_rdma_request, sqe);
1631
1632 if (unlikely(wc->status != IB_WC_SUCCESS))
1633 nvme_rdma_wr_error(cq, wc, "SEND");
1634 else
1635 nvme_rdma_end_request(req);
1636 }
1637
nvme_rdma_post_send(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe,struct ib_sge * sge,u32 num_sge,struct ib_send_wr * first)1638 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1639 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1640 struct ib_send_wr *first)
1641 {
1642 struct ib_send_wr wr;
1643 int ret;
1644
1645 sge->addr = qe->dma;
1646 sge->length = sizeof(struct nvme_command);
1647 sge->lkey = queue->device->pd->local_dma_lkey;
1648
1649 wr.next = NULL;
1650 wr.wr_cqe = &qe->cqe;
1651 wr.sg_list = sge;
1652 wr.num_sge = num_sge;
1653 wr.opcode = IB_WR_SEND;
1654 wr.send_flags = IB_SEND_SIGNALED;
1655
1656 if (first)
1657 first->next = ≀
1658 else
1659 first = ≀
1660
1661 ret = ib_post_send(queue->qp, first, NULL);
1662 if (unlikely(ret)) {
1663 dev_err(queue->ctrl->ctrl.device,
1664 "%s failed with error code %d\n", __func__, ret);
1665 }
1666 return ret;
1667 }
1668
nvme_rdma_post_recv(struct nvme_rdma_queue * queue,struct nvme_rdma_qe * qe)1669 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1670 struct nvme_rdma_qe *qe)
1671 {
1672 struct ib_recv_wr wr;
1673 struct ib_sge list;
1674 int ret;
1675
1676 list.addr = qe->dma;
1677 list.length = sizeof(struct nvme_completion);
1678 list.lkey = queue->device->pd->local_dma_lkey;
1679
1680 qe->cqe.done = nvme_rdma_recv_done;
1681
1682 wr.next = NULL;
1683 wr.wr_cqe = &qe->cqe;
1684 wr.sg_list = &list;
1685 wr.num_sge = 1;
1686
1687 ret = ib_post_recv(queue->qp, &wr, NULL);
1688 if (unlikely(ret)) {
1689 dev_err(queue->ctrl->ctrl.device,
1690 "%s failed with error code %d\n", __func__, ret);
1691 }
1692 return ret;
1693 }
1694
nvme_rdma_tagset(struct nvme_rdma_queue * queue)1695 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1696 {
1697 u32 queue_idx = nvme_rdma_queue_idx(queue);
1698
1699 if (queue_idx == 0)
1700 return queue->ctrl->admin_tag_set.tags[queue_idx];
1701 return queue->ctrl->tag_set.tags[queue_idx - 1];
1702 }
1703
nvme_rdma_async_done(struct ib_cq * cq,struct ib_wc * wc)1704 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1705 {
1706 if (unlikely(wc->status != IB_WC_SUCCESS))
1707 nvme_rdma_wr_error(cq, wc, "ASYNC");
1708 }
1709
nvme_rdma_submit_async_event(struct nvme_ctrl * arg)1710 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1711 {
1712 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1713 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1714 struct ib_device *dev = queue->device->dev;
1715 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1716 struct nvme_command *cmd = sqe->data;
1717 struct ib_sge sge;
1718 int ret;
1719
1720 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1721
1722 memset(cmd, 0, sizeof(*cmd));
1723 cmd->common.opcode = nvme_admin_async_event;
1724 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1725 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1726 nvme_rdma_set_sg_null(cmd);
1727
1728 sqe->cqe.done = nvme_rdma_async_done;
1729
1730 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1731 DMA_TO_DEVICE);
1732
1733 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1734 WARN_ON_ONCE(ret);
1735 }
1736
nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue * queue,struct nvme_completion * cqe,struct ib_wc * wc)1737 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1738 struct nvme_completion *cqe, struct ib_wc *wc)
1739 {
1740 struct request *rq;
1741 struct nvme_rdma_request *req;
1742
1743 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1744 if (!rq) {
1745 dev_err(queue->ctrl->ctrl.device,
1746 "got bad command_id %#x on QP %#x\n",
1747 cqe->command_id, queue->qp->qp_num);
1748 nvme_rdma_error_recovery(queue->ctrl);
1749 return;
1750 }
1751 req = blk_mq_rq_to_pdu(rq);
1752
1753 req->status = cqe->status;
1754 req->result = cqe->result;
1755
1756 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1757 if (unlikely(!req->mr ||
1758 wc->ex.invalidate_rkey != req->mr->rkey)) {
1759 dev_err(queue->ctrl->ctrl.device,
1760 "Bogus remote invalidation for rkey %#x\n",
1761 req->mr ? req->mr->rkey : 0);
1762 nvme_rdma_error_recovery(queue->ctrl);
1763 }
1764 } else if (req->mr) {
1765 int ret;
1766
1767 ret = nvme_rdma_inv_rkey(queue, req);
1768 if (unlikely(ret < 0)) {
1769 dev_err(queue->ctrl->ctrl.device,
1770 "Queueing INV WR for rkey %#x failed (%d)\n",
1771 req->mr->rkey, ret);
1772 nvme_rdma_error_recovery(queue->ctrl);
1773 }
1774 /* the local invalidation completion will end the request */
1775 return;
1776 }
1777
1778 nvme_rdma_end_request(req);
1779 }
1780
nvme_rdma_recv_done(struct ib_cq * cq,struct ib_wc * wc)1781 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1782 {
1783 struct nvme_rdma_qe *qe =
1784 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1785 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1786 struct ib_device *ibdev = queue->device->dev;
1787 struct nvme_completion *cqe = qe->data;
1788 const size_t len = sizeof(struct nvme_completion);
1789
1790 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1791 nvme_rdma_wr_error(cq, wc, "RECV");
1792 return;
1793 }
1794
1795 /* sanity checking for received data length */
1796 if (unlikely(wc->byte_len < len)) {
1797 dev_err(queue->ctrl->ctrl.device,
1798 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1799 nvme_rdma_error_recovery(queue->ctrl);
1800 return;
1801 }
1802
1803 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1804 /*
1805 * AEN requests are special as they don't time out and can
1806 * survive any kind of queue freeze and often don't respond to
1807 * aborts. We don't even bother to allocate a struct request
1808 * for them but rather special case them here.
1809 */
1810 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1811 cqe->command_id)))
1812 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1813 &cqe->result);
1814 else
1815 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1816 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1817
1818 nvme_rdma_post_recv(queue, qe);
1819 }
1820
nvme_rdma_conn_established(struct nvme_rdma_queue * queue)1821 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1822 {
1823 int ret, i;
1824
1825 for (i = 0; i < queue->queue_size; i++) {
1826 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1827 if (ret)
1828 return ret;
1829 }
1830
1831 return 0;
1832 }
1833
nvme_rdma_conn_rejected(struct nvme_rdma_queue * queue,struct rdma_cm_event * ev)1834 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1835 struct rdma_cm_event *ev)
1836 {
1837 struct rdma_cm_id *cm_id = queue->cm_id;
1838 int status = ev->status;
1839 const char *rej_msg;
1840 const struct nvme_rdma_cm_rej *rej_data;
1841 u8 rej_data_len;
1842
1843 rej_msg = rdma_reject_msg(cm_id, status);
1844 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1845
1846 if (rej_data && rej_data_len >= sizeof(u16)) {
1847 u16 sts = le16_to_cpu(rej_data->sts);
1848
1849 dev_err(queue->ctrl->ctrl.device,
1850 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1851 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1852 } else {
1853 dev_err(queue->ctrl->ctrl.device,
1854 "Connect rejected: status %d (%s).\n", status, rej_msg);
1855 }
1856
1857 return -ECONNRESET;
1858 }
1859
nvme_rdma_addr_resolved(struct nvme_rdma_queue * queue)1860 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1861 {
1862 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1863 int ret;
1864
1865 ret = nvme_rdma_create_queue_ib(queue);
1866 if (ret)
1867 return ret;
1868
1869 if (ctrl->opts->tos >= 0)
1870 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1871 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1872 if (ret) {
1873 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1874 queue->cm_error);
1875 goto out_destroy_queue;
1876 }
1877
1878 return 0;
1879
1880 out_destroy_queue:
1881 nvme_rdma_destroy_queue_ib(queue);
1882 return ret;
1883 }
1884
nvme_rdma_route_resolved(struct nvme_rdma_queue * queue)1885 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1886 {
1887 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1888 struct rdma_conn_param param = { };
1889 struct nvme_rdma_cm_req priv = { };
1890 int ret;
1891
1892 param.qp_num = queue->qp->qp_num;
1893 param.flow_control = 1;
1894
1895 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1896 /* maximum retry count */
1897 param.retry_count = 7;
1898 param.rnr_retry_count = 7;
1899 param.private_data = &priv;
1900 param.private_data_len = sizeof(priv);
1901
1902 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1903 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1904 /*
1905 * set the admin queue depth to the minimum size
1906 * specified by the Fabrics standard.
1907 */
1908 if (priv.qid == 0) {
1909 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1910 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1911 } else {
1912 /*
1913 * current interpretation of the fabrics spec
1914 * is at minimum you make hrqsize sqsize+1, or a
1915 * 1's based representation of sqsize.
1916 */
1917 priv.hrqsize = cpu_to_le16(queue->queue_size);
1918 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1919 }
1920
1921 ret = rdma_connect_locked(queue->cm_id, ¶m);
1922 if (ret) {
1923 dev_err(ctrl->ctrl.device,
1924 "rdma_connect_locked failed (%d).\n", ret);
1925 return ret;
1926 }
1927
1928 return 0;
1929 }
1930
nvme_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * ev)1931 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1932 struct rdma_cm_event *ev)
1933 {
1934 struct nvme_rdma_queue *queue = cm_id->context;
1935 int cm_error = 0;
1936
1937 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1938 rdma_event_msg(ev->event), ev->event,
1939 ev->status, cm_id);
1940
1941 switch (ev->event) {
1942 case RDMA_CM_EVENT_ADDR_RESOLVED:
1943 cm_error = nvme_rdma_addr_resolved(queue);
1944 break;
1945 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1946 cm_error = nvme_rdma_route_resolved(queue);
1947 break;
1948 case RDMA_CM_EVENT_ESTABLISHED:
1949 queue->cm_error = nvme_rdma_conn_established(queue);
1950 /* complete cm_done regardless of success/failure */
1951 complete(&queue->cm_done);
1952 return 0;
1953 case RDMA_CM_EVENT_REJECTED:
1954 cm_error = nvme_rdma_conn_rejected(queue, ev);
1955 break;
1956 case RDMA_CM_EVENT_ROUTE_ERROR:
1957 case RDMA_CM_EVENT_CONNECT_ERROR:
1958 case RDMA_CM_EVENT_UNREACHABLE:
1959 case RDMA_CM_EVENT_ADDR_ERROR:
1960 dev_dbg(queue->ctrl->ctrl.device,
1961 "CM error event %d\n", ev->event);
1962 cm_error = -ECONNRESET;
1963 break;
1964 case RDMA_CM_EVENT_DISCONNECTED:
1965 case RDMA_CM_EVENT_ADDR_CHANGE:
1966 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1967 dev_dbg(queue->ctrl->ctrl.device,
1968 "disconnect received - connection closed\n");
1969 nvme_rdma_error_recovery(queue->ctrl);
1970 break;
1971 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1972 /* device removal is handled via the ib_client API */
1973 break;
1974 default:
1975 dev_err(queue->ctrl->ctrl.device,
1976 "Unexpected RDMA CM event (%d)\n", ev->event);
1977 nvme_rdma_error_recovery(queue->ctrl);
1978 break;
1979 }
1980
1981 if (cm_error) {
1982 queue->cm_error = cm_error;
1983 complete(&queue->cm_done);
1984 }
1985
1986 return 0;
1987 }
1988
nvme_rdma_complete_timed_out(struct request * rq)1989 static void nvme_rdma_complete_timed_out(struct request *rq)
1990 {
1991 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1992 struct nvme_rdma_queue *queue = req->queue;
1993
1994 nvme_rdma_stop_queue(queue);
1995 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
1996 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
1997 blk_mq_complete_request(rq);
1998 }
1999 }
2000
2001 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request * rq,bool reserved)2002 nvme_rdma_timeout(struct request *rq, bool reserved)
2003 {
2004 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2005 struct nvme_rdma_queue *queue = req->queue;
2006 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
2007
2008 dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
2009 rq->tag, nvme_rdma_queue_idx(queue));
2010
2011 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2012 /*
2013 * If we are resetting, connecting or deleting we should
2014 * complete immediately because we may block controller
2015 * teardown or setup sequence
2016 * - ctrl disable/shutdown fabrics requests
2017 * - connect requests
2018 * - initialization admin requests
2019 * - I/O requests that entered after unquiescing and
2020 * the controller stopped responding
2021 *
2022 * All other requests should be cancelled by the error
2023 * recovery work, so it's fine that we fail it here.
2024 */
2025 nvme_rdma_complete_timed_out(rq);
2026 return BLK_EH_DONE;
2027 }
2028
2029 /*
2030 * LIVE state should trigger the normal error recovery which will
2031 * handle completing this request.
2032 */
2033 nvme_rdma_error_recovery(ctrl);
2034 return BLK_EH_RESET_TIMER;
2035 }
2036
nvme_rdma_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2037 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2038 const struct blk_mq_queue_data *bd)
2039 {
2040 struct nvme_ns *ns = hctx->queue->queuedata;
2041 struct nvme_rdma_queue *queue = hctx->driver_data;
2042 struct request *rq = bd->rq;
2043 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2044 struct nvme_rdma_qe *sqe = &req->sqe;
2045 struct nvme_command *c = sqe->data;
2046 struct ib_device *dev;
2047 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2048 blk_status_t ret;
2049 int err;
2050
2051 WARN_ON_ONCE(rq->tag < 0);
2052
2053 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2054 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2055
2056 dev = queue->device->dev;
2057
2058 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2059 sizeof(struct nvme_command),
2060 DMA_TO_DEVICE);
2061 err = ib_dma_mapping_error(dev, req->sqe.dma);
2062 if (unlikely(err))
2063 return BLK_STS_RESOURCE;
2064
2065 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2066 sizeof(struct nvme_command), DMA_TO_DEVICE);
2067
2068 ret = nvme_setup_cmd(ns, rq, c);
2069 if (ret)
2070 goto unmap_qe;
2071
2072 blk_mq_start_request(rq);
2073
2074 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2075 queue->pi_support &&
2076 (c->common.opcode == nvme_cmd_write ||
2077 c->common.opcode == nvme_cmd_read) &&
2078 nvme_ns_has_pi(ns))
2079 req->use_sig_mr = true;
2080 else
2081 req->use_sig_mr = false;
2082
2083 err = nvme_rdma_map_data(queue, rq, c);
2084 if (unlikely(err < 0)) {
2085 dev_err(queue->ctrl->ctrl.device,
2086 "Failed to map data (%d)\n", err);
2087 goto err;
2088 }
2089
2090 sqe->cqe.done = nvme_rdma_send_done;
2091
2092 ib_dma_sync_single_for_device(dev, sqe->dma,
2093 sizeof(struct nvme_command), DMA_TO_DEVICE);
2094
2095 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2096 req->mr ? &req->reg_wr.wr : NULL);
2097 if (unlikely(err))
2098 goto err_unmap;
2099
2100 return BLK_STS_OK;
2101
2102 err_unmap:
2103 nvme_rdma_unmap_data(queue, rq);
2104 err:
2105 if (err == -ENOMEM || err == -EAGAIN)
2106 ret = BLK_STS_RESOURCE;
2107 else
2108 ret = BLK_STS_IOERR;
2109 nvme_cleanup_cmd(rq);
2110 unmap_qe:
2111 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2112 DMA_TO_DEVICE);
2113 return ret;
2114 }
2115
nvme_rdma_poll(struct blk_mq_hw_ctx * hctx)2116 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
2117 {
2118 struct nvme_rdma_queue *queue = hctx->driver_data;
2119
2120 return ib_process_cq_direct(queue->ib_cq, -1);
2121 }
2122
nvme_rdma_check_pi_status(struct nvme_rdma_request * req)2123 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2124 {
2125 struct request *rq = blk_mq_rq_from_pdu(req);
2126 struct ib_mr_status mr_status;
2127 int ret;
2128
2129 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2130 if (ret) {
2131 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2132 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2133 return;
2134 }
2135
2136 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2137 switch (mr_status.sig_err.err_type) {
2138 case IB_SIG_BAD_GUARD:
2139 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2140 break;
2141 case IB_SIG_BAD_REFTAG:
2142 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2143 break;
2144 case IB_SIG_BAD_APPTAG:
2145 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2146 break;
2147 }
2148 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2149 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2150 mr_status.sig_err.actual);
2151 }
2152 }
2153
nvme_rdma_complete_rq(struct request * rq)2154 static void nvme_rdma_complete_rq(struct request *rq)
2155 {
2156 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2157 struct nvme_rdma_queue *queue = req->queue;
2158 struct ib_device *ibdev = queue->device->dev;
2159
2160 if (req->use_sig_mr)
2161 nvme_rdma_check_pi_status(req);
2162
2163 nvme_rdma_unmap_data(queue, rq);
2164 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2165 DMA_TO_DEVICE);
2166 nvme_complete_rq(rq);
2167 }
2168
nvme_rdma_map_queues(struct blk_mq_tag_set * set)2169 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2170 {
2171 struct nvme_rdma_ctrl *ctrl = set->driver_data;
2172 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2173
2174 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2175 /* separate read/write queues */
2176 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2177 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2178 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2179 set->map[HCTX_TYPE_READ].nr_queues =
2180 ctrl->io_queues[HCTX_TYPE_READ];
2181 set->map[HCTX_TYPE_READ].queue_offset =
2182 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2183 } else {
2184 /* shared read/write queues */
2185 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2186 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2187 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2188 set->map[HCTX_TYPE_READ].nr_queues =
2189 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2190 set->map[HCTX_TYPE_READ].queue_offset = 0;
2191 }
2192 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
2193 ctrl->device->dev, 0);
2194 blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
2195 ctrl->device->dev, 0);
2196
2197 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2198 /* map dedicated poll queues only if we have queues left */
2199 set->map[HCTX_TYPE_POLL].nr_queues =
2200 ctrl->io_queues[HCTX_TYPE_POLL];
2201 set->map[HCTX_TYPE_POLL].queue_offset =
2202 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2203 ctrl->io_queues[HCTX_TYPE_READ];
2204 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2205 }
2206
2207 dev_info(ctrl->ctrl.device,
2208 "mapped %d/%d/%d default/read/poll queues.\n",
2209 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2210 ctrl->io_queues[HCTX_TYPE_READ],
2211 ctrl->io_queues[HCTX_TYPE_POLL]);
2212
2213 return 0;
2214 }
2215
2216 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2217 .queue_rq = nvme_rdma_queue_rq,
2218 .complete = nvme_rdma_complete_rq,
2219 .init_request = nvme_rdma_init_request,
2220 .exit_request = nvme_rdma_exit_request,
2221 .init_hctx = nvme_rdma_init_hctx,
2222 .timeout = nvme_rdma_timeout,
2223 .map_queues = nvme_rdma_map_queues,
2224 .poll = nvme_rdma_poll,
2225 };
2226
2227 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2228 .queue_rq = nvme_rdma_queue_rq,
2229 .complete = nvme_rdma_complete_rq,
2230 .init_request = nvme_rdma_init_request,
2231 .exit_request = nvme_rdma_exit_request,
2232 .init_hctx = nvme_rdma_init_admin_hctx,
2233 .timeout = nvme_rdma_timeout,
2234 };
2235
nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl * ctrl,bool shutdown)2236 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2237 {
2238 cancel_work_sync(&ctrl->err_work);
2239 cancel_delayed_work_sync(&ctrl->reconnect_work);
2240
2241 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2242 nvme_stop_admin_queue(&ctrl->ctrl);
2243 if (shutdown)
2244 nvme_shutdown_ctrl(&ctrl->ctrl);
2245 else
2246 nvme_disable_ctrl(&ctrl->ctrl);
2247 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2248 }
2249
nvme_rdma_delete_ctrl(struct nvme_ctrl * ctrl)2250 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2251 {
2252 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2253 }
2254
nvme_rdma_reset_ctrl_work(struct work_struct * work)2255 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2256 {
2257 struct nvme_rdma_ctrl *ctrl =
2258 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2259
2260 nvme_stop_ctrl(&ctrl->ctrl);
2261 nvme_rdma_shutdown_ctrl(ctrl, false);
2262
2263 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2264 /* state change failure should never happen */
2265 WARN_ON_ONCE(1);
2266 return;
2267 }
2268
2269 if (nvme_rdma_setup_ctrl(ctrl, false))
2270 goto out_fail;
2271
2272 return;
2273
2274 out_fail:
2275 ++ctrl->ctrl.nr_reconnects;
2276 nvme_rdma_reconnect_or_remove(ctrl);
2277 }
2278
2279 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2280 .name = "rdma",
2281 .module = THIS_MODULE,
2282 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2283 .reg_read32 = nvmf_reg_read32,
2284 .reg_read64 = nvmf_reg_read64,
2285 .reg_write32 = nvmf_reg_write32,
2286 .free_ctrl = nvme_rdma_free_ctrl,
2287 .submit_async_event = nvme_rdma_submit_async_event,
2288 .delete_ctrl = nvme_rdma_delete_ctrl,
2289 .get_address = nvmf_get_address,
2290 };
2291
2292 /*
2293 * Fails a connection request if it matches an existing controller
2294 * (association) with the same tuple:
2295 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2296 *
2297 * if local address is not specified in the request, it will match an
2298 * existing controller with all the other parameters the same and no
2299 * local port address specified as well.
2300 *
2301 * The ports don't need to be compared as they are intrinsically
2302 * already matched by the port pointers supplied.
2303 */
2304 static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options * opts)2305 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2306 {
2307 struct nvme_rdma_ctrl *ctrl;
2308 bool found = false;
2309
2310 mutex_lock(&nvme_rdma_ctrl_mutex);
2311 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2312 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2313 if (found)
2314 break;
2315 }
2316 mutex_unlock(&nvme_rdma_ctrl_mutex);
2317
2318 return found;
2319 }
2320
nvme_rdma_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2321 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2322 struct nvmf_ctrl_options *opts)
2323 {
2324 struct nvme_rdma_ctrl *ctrl;
2325 int ret;
2326 bool changed;
2327
2328 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2329 if (!ctrl)
2330 return ERR_PTR(-ENOMEM);
2331 ctrl->ctrl.opts = opts;
2332 INIT_LIST_HEAD(&ctrl->list);
2333
2334 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2335 opts->trsvcid =
2336 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2337 if (!opts->trsvcid) {
2338 ret = -ENOMEM;
2339 goto out_free_ctrl;
2340 }
2341 opts->mask |= NVMF_OPT_TRSVCID;
2342 }
2343
2344 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2345 opts->traddr, opts->trsvcid, &ctrl->addr);
2346 if (ret) {
2347 pr_err("malformed address passed: %s:%s\n",
2348 opts->traddr, opts->trsvcid);
2349 goto out_free_ctrl;
2350 }
2351
2352 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2353 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2354 opts->host_traddr, NULL, &ctrl->src_addr);
2355 if (ret) {
2356 pr_err("malformed src address passed: %s\n",
2357 opts->host_traddr);
2358 goto out_free_ctrl;
2359 }
2360 }
2361
2362 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2363 ret = -EALREADY;
2364 goto out_free_ctrl;
2365 }
2366
2367 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2368 nvme_rdma_reconnect_ctrl_work);
2369 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2370 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2371
2372 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2373 opts->nr_poll_queues + 1;
2374 ctrl->ctrl.sqsize = opts->queue_size - 1;
2375 ctrl->ctrl.kato = opts->kato;
2376
2377 ret = -ENOMEM;
2378 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2379 GFP_KERNEL);
2380 if (!ctrl->queues)
2381 goto out_free_ctrl;
2382
2383 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2384 0 /* no quirks, we're perfect! */);
2385 if (ret)
2386 goto out_kfree_queues;
2387
2388 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2389 WARN_ON_ONCE(!changed);
2390
2391 ret = nvme_rdma_setup_ctrl(ctrl, true);
2392 if (ret)
2393 goto out_uninit_ctrl;
2394
2395 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2396 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2397
2398 mutex_lock(&nvme_rdma_ctrl_mutex);
2399 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2400 mutex_unlock(&nvme_rdma_ctrl_mutex);
2401
2402 return &ctrl->ctrl;
2403
2404 out_uninit_ctrl:
2405 nvme_uninit_ctrl(&ctrl->ctrl);
2406 nvme_put_ctrl(&ctrl->ctrl);
2407 if (ret > 0)
2408 ret = -EIO;
2409 return ERR_PTR(ret);
2410 out_kfree_queues:
2411 kfree(ctrl->queues);
2412 out_free_ctrl:
2413 kfree(ctrl);
2414 return ERR_PTR(ret);
2415 }
2416
2417 static struct nvmf_transport_ops nvme_rdma_transport = {
2418 .name = "rdma",
2419 .module = THIS_MODULE,
2420 .required_opts = NVMF_OPT_TRADDR,
2421 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2422 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2423 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2424 NVMF_OPT_TOS,
2425 .create_ctrl = nvme_rdma_create_ctrl,
2426 };
2427
nvme_rdma_remove_one(struct ib_device * ib_device,void * client_data)2428 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2429 {
2430 struct nvme_rdma_ctrl *ctrl;
2431 struct nvme_rdma_device *ndev;
2432 bool found = false;
2433
2434 mutex_lock(&device_list_mutex);
2435 list_for_each_entry(ndev, &device_list, entry) {
2436 if (ndev->dev == ib_device) {
2437 found = true;
2438 break;
2439 }
2440 }
2441 mutex_unlock(&device_list_mutex);
2442
2443 if (!found)
2444 return;
2445
2446 /* Delete all controllers using this device */
2447 mutex_lock(&nvme_rdma_ctrl_mutex);
2448 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2449 if (ctrl->device->dev != ib_device)
2450 continue;
2451 nvme_delete_ctrl(&ctrl->ctrl);
2452 }
2453 mutex_unlock(&nvme_rdma_ctrl_mutex);
2454
2455 flush_workqueue(nvme_delete_wq);
2456 }
2457
2458 static struct ib_client nvme_rdma_ib_client = {
2459 .name = "nvme_rdma",
2460 .remove = nvme_rdma_remove_one
2461 };
2462
nvme_rdma_init_module(void)2463 static int __init nvme_rdma_init_module(void)
2464 {
2465 int ret;
2466
2467 ret = ib_register_client(&nvme_rdma_ib_client);
2468 if (ret)
2469 return ret;
2470
2471 ret = nvmf_register_transport(&nvme_rdma_transport);
2472 if (ret)
2473 goto err_unreg_client;
2474
2475 return 0;
2476
2477 err_unreg_client:
2478 ib_unregister_client(&nvme_rdma_ib_client);
2479 return ret;
2480 }
2481
nvme_rdma_cleanup_module(void)2482 static void __exit nvme_rdma_cleanup_module(void)
2483 {
2484 struct nvme_rdma_ctrl *ctrl;
2485
2486 nvmf_unregister_transport(&nvme_rdma_transport);
2487 ib_unregister_client(&nvme_rdma_ib_client);
2488
2489 mutex_lock(&nvme_rdma_ctrl_mutex);
2490 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2491 nvme_delete_ctrl(&ctrl->ctrl);
2492 mutex_unlock(&nvme_rdma_ctrl_mutex);
2493 flush_workqueue(nvme_delete_wq);
2494 }
2495
2496 module_init(nvme_rdma_init_module);
2497 module_exit(nvme_rdma_cleanup_module);
2498
2499 MODULE_LICENSE("GPL v2");
2500