1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34 NVME_TCP_SEND_CMD_PDU = 0,
35 NVME_TCP_SEND_H2C_PDU,
36 NVME_TCP_SEND_DATA,
37 NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41 struct nvme_request req;
42 void *pdu;
43 struct nvme_tcp_queue *queue;
44 u32 data_len;
45 u32 pdu_len;
46 u32 pdu_sent;
47 u16 ttag;
48 struct list_head entry;
49 struct llist_node lentry;
50 __le32 ddgst;
51
52 struct bio *curr_bio;
53 struct iov_iter iter;
54
55 /* send state */
56 size_t offset;
57 size_t data_sent;
58 enum nvme_tcp_send_state state;
59 };
60
61 enum nvme_tcp_queue_flags {
62 NVME_TCP_Q_ALLOCATED = 0,
63 NVME_TCP_Q_LIVE = 1,
64 NVME_TCP_Q_POLLING = 2,
65 };
66
67 enum nvme_tcp_recv_state {
68 NVME_TCP_RECV_PDU = 0,
69 NVME_TCP_RECV_DATA,
70 NVME_TCP_RECV_DDGST,
71 };
72
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 struct socket *sock;
76 struct work_struct io_work;
77 int io_cpu;
78
79 struct mutex queue_lock;
80 struct mutex send_mutex;
81 struct llist_head req_list;
82 struct list_head send_list;
83 bool more_requests;
84
85 /* recv state */
86 void *pdu;
87 int pdu_remaining;
88 int pdu_offset;
89 size_t data_remaining;
90 size_t ddgst_remaining;
91 unsigned int nr_cqe;
92
93 /* send state */
94 struct nvme_tcp_request *request;
95
96 int queue_size;
97 size_t cmnd_capsule_len;
98 struct nvme_tcp_ctrl *ctrl;
99 unsigned long flags;
100 bool rd_enabled;
101
102 bool hdr_digest;
103 bool data_digest;
104 struct ahash_request *rcv_hash;
105 struct ahash_request *snd_hash;
106 __le32 exp_ddgst;
107 __le32 recv_ddgst;
108
109 struct page_frag_cache pf_cache;
110
111 void (*state_change)(struct sock *);
112 void (*data_ready)(struct sock *);
113 void (*write_space)(struct sock *);
114 };
115
116 struct nvme_tcp_ctrl {
117 /* read only in the hot path */
118 struct nvme_tcp_queue *queues;
119 struct blk_mq_tag_set tag_set;
120
121 /* other member variables */
122 struct list_head list;
123 struct blk_mq_tag_set admin_tag_set;
124 struct sockaddr_storage addr;
125 struct sockaddr_storage src_addr;
126 struct nvme_ctrl ctrl;
127
128 struct work_struct err_work;
129 struct delayed_work connect_work;
130 struct nvme_tcp_request async_req;
131 u32 io_queues[HCTX_MAX_TYPES];
132 };
133
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140
to_tcp_ctrl(struct nvme_ctrl * ctrl)141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 return queue - queue->ctrl->queues;
149 }
150
nvme_tcp_tagset(struct nvme_tcp_queue * queue)151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 u32 queue_idx = nvme_tcp_queue_id(queue);
154
155 if (queue_idx == 0)
156 return queue->ctrl->admin_tag_set.tags[queue_idx];
157 return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174
nvme_tcp_async_req(struct nvme_tcp_request * req)175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 return req == &req->queue->ctrl->async_req;
178 }
179
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 struct request *rq;
183
184 if (unlikely(nvme_tcp_async_req(req)))
185 return false; /* async events don't have a request */
186
187 rq = blk_mq_rq_from_pdu(req);
188
189 return rq_data_dir(rq) == WRITE && req->data_len &&
190 req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 return req->iter.bvec->bv_page;
196 }
197
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 req->pdu_len - req->pdu_sent);
207 }
208
nvme_tcp_req_offset(struct nvme_tcp_request * req)209 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
210 {
211 return req->iter.iov_offset;
212 }
213
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)214 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
215 {
216 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
217 req->pdu_len - req->pdu_sent : 0;
218 }
219
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)220 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
221 int len)
222 {
223 return nvme_tcp_pdu_data_left(req) <= len;
224 }
225
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)226 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
227 unsigned int dir)
228 {
229 struct request *rq = blk_mq_rq_from_pdu(req);
230 struct bio_vec *vec;
231 unsigned int size;
232 int nsegs;
233 size_t offset;
234
235 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
236 vec = &rq->special_vec;
237 nsegs = 1;
238 size = blk_rq_payload_bytes(rq);
239 offset = 0;
240 } else {
241 struct bio *bio = req->curr_bio;
242
243 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
244 nsegs = bio_segments(bio);
245 size = bio->bi_iter.bi_size;
246 offset = bio->bi_iter.bi_bvec_done;
247 }
248
249 iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
250 req->iter.iov_offset = offset;
251 }
252
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 int len)
255 {
256 req->data_sent += len;
257 req->pdu_sent += len;
258 iov_iter_advance(&req->iter, len);
259 if (!iov_iter_count(&req->iter) &&
260 req->data_sent < req->data_len) {
261 req->curr_bio = req->curr_bio->bi_next;
262 nvme_tcp_init_iter(req, WRITE);
263 }
264 }
265
nvme_tcp_send_all(struct nvme_tcp_queue * queue)266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 int ret;
269
270 /* drain the send queue as much as we can... */
271 do {
272 ret = nvme_tcp_try_send(queue);
273 } while (ret > 0);
274 }
275
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)276 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
277 {
278 return !list_empty(&queue->send_list) ||
279 !llist_empty(&queue->req_list) || queue->more_requests;
280 }
281
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)282 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
283 bool sync, bool last)
284 {
285 struct nvme_tcp_queue *queue = req->queue;
286 bool empty;
287
288 empty = llist_add(&req->lentry, &queue->req_list) &&
289 list_empty(&queue->send_list) && !queue->request;
290
291 /*
292 * if we're the first on the send_list and we can try to send
293 * directly, otherwise queue io_work. Also, only do that if we
294 * are on the same cpu, so we don't introduce contention.
295 */
296 if (queue->io_cpu == raw_smp_processor_id() &&
297 sync && empty && mutex_trylock(&queue->send_mutex)) {
298 queue->more_requests = !last;
299 nvme_tcp_send_all(queue);
300 queue->more_requests = false;
301 mutex_unlock(&queue->send_mutex);
302 }
303
304 if (last && nvme_tcp_queue_more(queue))
305 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
306 }
307
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)308 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
309 {
310 struct nvme_tcp_request *req;
311 struct llist_node *node;
312
313 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
314 req = llist_entry(node, struct nvme_tcp_request, lentry);
315 list_add(&req->entry, &queue->send_list);
316 }
317 }
318
319 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)320 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
321 {
322 struct nvme_tcp_request *req;
323
324 req = list_first_entry_or_null(&queue->send_list,
325 struct nvme_tcp_request, entry);
326 if (!req) {
327 nvme_tcp_process_req_list(queue);
328 req = list_first_entry_or_null(&queue->send_list,
329 struct nvme_tcp_request, entry);
330 if (unlikely(!req))
331 return NULL;
332 }
333
334 list_del(&req->entry);
335 return req;
336 }
337
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)338 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
339 __le32 *dgst)
340 {
341 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
342 crypto_ahash_final(hash);
343 }
344
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)345 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
346 struct page *page, off_t off, size_t len)
347 {
348 struct scatterlist sg;
349
350 sg_init_marker(&sg, 1);
351 sg_set_page(&sg, page, len, off);
352 ahash_request_set_crypt(hash, &sg, NULL, len);
353 crypto_ahash_update(hash);
354 }
355
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)356 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
357 void *pdu, size_t len)
358 {
359 struct scatterlist sg;
360
361 sg_init_one(&sg, pdu, len);
362 ahash_request_set_crypt(hash, &sg, pdu + len, len);
363 crypto_ahash_digest(hash);
364 }
365
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)366 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
367 void *pdu, size_t pdu_len)
368 {
369 struct nvme_tcp_hdr *hdr = pdu;
370 __le32 recv_digest;
371 __le32 exp_digest;
372
373 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
374 dev_err(queue->ctrl->ctrl.device,
375 "queue %d: header digest flag is cleared\n",
376 nvme_tcp_queue_id(queue));
377 return -EPROTO;
378 }
379
380 recv_digest = *(__le32 *)(pdu + hdr->hlen);
381 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
382 exp_digest = *(__le32 *)(pdu + hdr->hlen);
383 if (recv_digest != exp_digest) {
384 dev_err(queue->ctrl->ctrl.device,
385 "header digest error: recv %#x expected %#x\n",
386 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
387 return -EIO;
388 }
389
390 return 0;
391 }
392
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)393 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
394 {
395 struct nvme_tcp_hdr *hdr = pdu;
396 u8 digest_len = nvme_tcp_hdgst_len(queue);
397 u32 len;
398
399 len = le32_to_cpu(hdr->plen) - hdr->hlen -
400 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
401
402 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
403 dev_err(queue->ctrl->ctrl.device,
404 "queue %d: data digest flag is cleared\n",
405 nvme_tcp_queue_id(queue));
406 return -EPROTO;
407 }
408 crypto_ahash_init(queue->rcv_hash);
409
410 return 0;
411 }
412
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)413 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
414 struct request *rq, unsigned int hctx_idx)
415 {
416 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
417
418 page_frag_free(req->pdu);
419 }
420
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)421 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
422 struct request *rq, unsigned int hctx_idx,
423 unsigned int numa_node)
424 {
425 struct nvme_tcp_ctrl *ctrl = set->driver_data;
426 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
427 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
428 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
429 u8 hdgst = nvme_tcp_hdgst_len(queue);
430
431 req->pdu = page_frag_alloc(&queue->pf_cache,
432 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
433 GFP_KERNEL | __GFP_ZERO);
434 if (!req->pdu)
435 return -ENOMEM;
436
437 req->queue = queue;
438 nvme_req(rq)->ctrl = &ctrl->ctrl;
439
440 return 0;
441 }
442
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)443 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
444 unsigned int hctx_idx)
445 {
446 struct nvme_tcp_ctrl *ctrl = data;
447 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
448
449 hctx->driver_data = queue;
450 return 0;
451 }
452
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)453 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
454 unsigned int hctx_idx)
455 {
456 struct nvme_tcp_ctrl *ctrl = data;
457 struct nvme_tcp_queue *queue = &ctrl->queues[0];
458
459 hctx->driver_data = queue;
460 return 0;
461 }
462
463 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)464 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
465 {
466 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
467 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
468 NVME_TCP_RECV_DATA;
469 }
470
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)471 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
472 {
473 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
474 nvme_tcp_hdgst_len(queue);
475 queue->pdu_offset = 0;
476 queue->data_remaining = -1;
477 queue->ddgst_remaining = 0;
478 }
479
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)480 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
481 {
482 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
483 return;
484
485 dev_warn(ctrl->device, "starting error recovery\n");
486 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
487 }
488
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)489 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
490 struct nvme_completion *cqe)
491 {
492 struct request *rq;
493
494 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
495 if (!rq) {
496 dev_err(queue->ctrl->ctrl.device,
497 "got bad cqe.command_id %#x on queue %d\n",
498 cqe->command_id, nvme_tcp_queue_id(queue));
499 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
500 return -EINVAL;
501 }
502
503 if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
504 nvme_complete_rq(rq);
505 queue->nr_cqe++;
506
507 return 0;
508 }
509
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)510 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
511 struct nvme_tcp_data_pdu *pdu)
512 {
513 struct request *rq;
514
515 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
516 if (!rq) {
517 dev_err(queue->ctrl->ctrl.device,
518 "got bad c2hdata.command_id %#x on queue %d\n",
519 pdu->command_id, nvme_tcp_queue_id(queue));
520 return -ENOENT;
521 }
522
523 if (!blk_rq_payload_bytes(rq)) {
524 dev_err(queue->ctrl->ctrl.device,
525 "queue %d tag %#x unexpected data\n",
526 nvme_tcp_queue_id(queue), rq->tag);
527 return -EIO;
528 }
529
530 queue->data_remaining = le32_to_cpu(pdu->data_length);
531
532 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
533 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
534 dev_err(queue->ctrl->ctrl.device,
535 "queue %d tag %#x SUCCESS set but not last PDU\n",
536 nvme_tcp_queue_id(queue), rq->tag);
537 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
538 return -EPROTO;
539 }
540
541 return 0;
542 }
543
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)544 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
545 struct nvme_tcp_rsp_pdu *pdu)
546 {
547 struct nvme_completion *cqe = &pdu->cqe;
548 int ret = 0;
549
550 /*
551 * AEN requests are special as they don't time out and can
552 * survive any kind of queue freeze and often don't respond to
553 * aborts. We don't even bother to allocate a struct request
554 * for them but rather special case them here.
555 */
556 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
557 cqe->command_id)))
558 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
559 &cqe->result);
560 else
561 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
562
563 return ret;
564 }
565
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)566 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
567 struct nvme_tcp_r2t_pdu *pdu)
568 {
569 struct nvme_tcp_data_pdu *data = req->pdu;
570 struct nvme_tcp_queue *queue = req->queue;
571 struct request *rq = blk_mq_rq_from_pdu(req);
572 u8 hdgst = nvme_tcp_hdgst_len(queue);
573 u8 ddgst = nvme_tcp_ddgst_len(queue);
574
575 req->pdu_len = le32_to_cpu(pdu->r2t_length);
576 req->pdu_sent = 0;
577
578 if (unlikely(!req->pdu_len)) {
579 dev_err(queue->ctrl->ctrl.device,
580 "req %d r2t len is %u, probably a bug...\n",
581 rq->tag, req->pdu_len);
582 return -EPROTO;
583 }
584
585 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
586 dev_err(queue->ctrl->ctrl.device,
587 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
588 rq->tag, req->pdu_len, req->data_len,
589 req->data_sent);
590 return -EPROTO;
591 }
592
593 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
594 dev_err(queue->ctrl->ctrl.device,
595 "req %d unexpected r2t offset %u (expected %zu)\n",
596 rq->tag, le32_to_cpu(pdu->r2t_offset),
597 req->data_sent);
598 return -EPROTO;
599 }
600
601 memset(data, 0, sizeof(*data));
602 data->hdr.type = nvme_tcp_h2c_data;
603 data->hdr.flags = NVME_TCP_F_DATA_LAST;
604 if (queue->hdr_digest)
605 data->hdr.flags |= NVME_TCP_F_HDGST;
606 if (queue->data_digest)
607 data->hdr.flags |= NVME_TCP_F_DDGST;
608 data->hdr.hlen = sizeof(*data);
609 data->hdr.pdo = data->hdr.hlen + hdgst;
610 data->hdr.plen =
611 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
612 data->ttag = pdu->ttag;
613 data->command_id = nvme_cid(rq);
614 data->data_offset = pdu->r2t_offset;
615 data->data_length = cpu_to_le32(req->pdu_len);
616 return 0;
617 }
618
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)619 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
620 struct nvme_tcp_r2t_pdu *pdu)
621 {
622 struct nvme_tcp_request *req;
623 struct request *rq;
624 int ret;
625
626 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
627 if (!rq) {
628 dev_err(queue->ctrl->ctrl.device,
629 "got bad r2t.command_id %#x on queue %d\n",
630 pdu->command_id, nvme_tcp_queue_id(queue));
631 return -ENOENT;
632 }
633 req = blk_mq_rq_to_pdu(rq);
634
635 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
636 if (unlikely(ret))
637 return ret;
638
639 req->state = NVME_TCP_SEND_H2C_PDU;
640 req->offset = 0;
641
642 nvme_tcp_queue_request(req, false, true);
643
644 return 0;
645 }
646
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)647 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
648 unsigned int *offset, size_t *len)
649 {
650 struct nvme_tcp_hdr *hdr;
651 char *pdu = queue->pdu;
652 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
653 int ret;
654
655 ret = skb_copy_bits(skb, *offset,
656 &pdu[queue->pdu_offset], rcv_len);
657 if (unlikely(ret))
658 return ret;
659
660 queue->pdu_remaining -= rcv_len;
661 queue->pdu_offset += rcv_len;
662 *offset += rcv_len;
663 *len -= rcv_len;
664 if (queue->pdu_remaining)
665 return 0;
666
667 hdr = queue->pdu;
668 if (queue->hdr_digest) {
669 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
670 if (unlikely(ret))
671 return ret;
672 }
673
674
675 if (queue->data_digest) {
676 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
677 if (unlikely(ret))
678 return ret;
679 }
680
681 switch (hdr->type) {
682 case nvme_tcp_c2h_data:
683 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
684 case nvme_tcp_rsp:
685 nvme_tcp_init_recv_ctx(queue);
686 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
687 case nvme_tcp_r2t:
688 nvme_tcp_init_recv_ctx(queue);
689 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
690 default:
691 dev_err(queue->ctrl->ctrl.device,
692 "unsupported pdu type (%d)\n", hdr->type);
693 return -EINVAL;
694 }
695 }
696
nvme_tcp_end_request(struct request * rq,u16 status)697 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
698 {
699 union nvme_result res = {};
700
701 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
702 nvme_complete_rq(rq);
703 }
704
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)705 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
706 unsigned int *offset, size_t *len)
707 {
708 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
709 struct request *rq =
710 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
711 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
712
713 while (true) {
714 int recv_len, ret;
715
716 recv_len = min_t(size_t, *len, queue->data_remaining);
717 if (!recv_len)
718 break;
719
720 if (!iov_iter_count(&req->iter)) {
721 req->curr_bio = req->curr_bio->bi_next;
722
723 /*
724 * If we don`t have any bios it means that controller
725 * sent more data than we requested, hence error
726 */
727 if (!req->curr_bio) {
728 dev_err(queue->ctrl->ctrl.device,
729 "queue %d no space in request %#x",
730 nvme_tcp_queue_id(queue), rq->tag);
731 nvme_tcp_init_recv_ctx(queue);
732 return -EIO;
733 }
734 nvme_tcp_init_iter(req, READ);
735 }
736
737 /* we can read only from what is left in this bio */
738 recv_len = min_t(size_t, recv_len,
739 iov_iter_count(&req->iter));
740
741 if (queue->data_digest)
742 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
743 &req->iter, recv_len, queue->rcv_hash);
744 else
745 ret = skb_copy_datagram_iter(skb, *offset,
746 &req->iter, recv_len);
747 if (ret) {
748 dev_err(queue->ctrl->ctrl.device,
749 "queue %d failed to copy request %#x data",
750 nvme_tcp_queue_id(queue), rq->tag);
751 return ret;
752 }
753
754 *len -= recv_len;
755 *offset += recv_len;
756 queue->data_remaining -= recv_len;
757 }
758
759 if (!queue->data_remaining) {
760 if (queue->data_digest) {
761 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
762 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
763 } else {
764 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
765 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
766 queue->nr_cqe++;
767 }
768 nvme_tcp_init_recv_ctx(queue);
769 }
770 }
771
772 return 0;
773 }
774
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)775 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
776 struct sk_buff *skb, unsigned int *offset, size_t *len)
777 {
778 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
779 char *ddgst = (char *)&queue->recv_ddgst;
780 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
781 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
782 int ret;
783
784 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
785 if (unlikely(ret))
786 return ret;
787
788 queue->ddgst_remaining -= recv_len;
789 *offset += recv_len;
790 *len -= recv_len;
791 if (queue->ddgst_remaining)
792 return 0;
793
794 if (queue->recv_ddgst != queue->exp_ddgst) {
795 dev_err(queue->ctrl->ctrl.device,
796 "data digest error: recv %#x expected %#x\n",
797 le32_to_cpu(queue->recv_ddgst),
798 le32_to_cpu(queue->exp_ddgst));
799 return -EIO;
800 }
801
802 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
803 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
804 pdu->command_id);
805
806 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
807 queue->nr_cqe++;
808 }
809
810 nvme_tcp_init_recv_ctx(queue);
811 return 0;
812 }
813
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)814 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
815 unsigned int offset, size_t len)
816 {
817 struct nvme_tcp_queue *queue = desc->arg.data;
818 size_t consumed = len;
819 int result;
820
821 while (len) {
822 switch (nvme_tcp_recv_state(queue)) {
823 case NVME_TCP_RECV_PDU:
824 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
825 break;
826 case NVME_TCP_RECV_DATA:
827 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
828 break;
829 case NVME_TCP_RECV_DDGST:
830 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
831 break;
832 default:
833 result = -EFAULT;
834 }
835 if (result) {
836 dev_err(queue->ctrl->ctrl.device,
837 "receive failed: %d\n", result);
838 queue->rd_enabled = false;
839 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
840 return result;
841 }
842 }
843
844 return consumed;
845 }
846
nvme_tcp_data_ready(struct sock * sk)847 static void nvme_tcp_data_ready(struct sock *sk)
848 {
849 struct nvme_tcp_queue *queue;
850
851 read_lock_bh(&sk->sk_callback_lock);
852 queue = sk->sk_user_data;
853 if (likely(queue && queue->rd_enabled) &&
854 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
855 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
856 read_unlock_bh(&sk->sk_callback_lock);
857 }
858
nvme_tcp_write_space(struct sock * sk)859 static void nvme_tcp_write_space(struct sock *sk)
860 {
861 struct nvme_tcp_queue *queue;
862
863 read_lock_bh(&sk->sk_callback_lock);
864 queue = sk->sk_user_data;
865 if (likely(queue && sk_stream_is_writeable(sk))) {
866 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
867 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
868 }
869 read_unlock_bh(&sk->sk_callback_lock);
870 }
871
nvme_tcp_state_change(struct sock * sk)872 static void nvme_tcp_state_change(struct sock *sk)
873 {
874 struct nvme_tcp_queue *queue;
875
876 read_lock_bh(&sk->sk_callback_lock);
877 queue = sk->sk_user_data;
878 if (!queue)
879 goto done;
880
881 switch (sk->sk_state) {
882 case TCP_CLOSE:
883 case TCP_CLOSE_WAIT:
884 case TCP_LAST_ACK:
885 case TCP_FIN_WAIT1:
886 case TCP_FIN_WAIT2:
887 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
888 break;
889 default:
890 dev_info(queue->ctrl->ctrl.device,
891 "queue %d socket state %d\n",
892 nvme_tcp_queue_id(queue), sk->sk_state);
893 }
894
895 queue->state_change(sk);
896 done:
897 read_unlock_bh(&sk->sk_callback_lock);
898 }
899
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)900 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
901 {
902 queue->request = NULL;
903 }
904
nvme_tcp_fail_request(struct nvme_tcp_request * req)905 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
906 {
907 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
908 }
909
nvme_tcp_try_send_data(struct nvme_tcp_request * req)910 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
911 {
912 struct nvme_tcp_queue *queue = req->queue;
913 int req_data_len = req->data_len;
914
915 while (true) {
916 struct page *page = nvme_tcp_req_cur_page(req);
917 size_t offset = nvme_tcp_req_cur_offset(req);
918 size_t len = nvme_tcp_req_cur_length(req);
919 bool last = nvme_tcp_pdu_last_send(req, len);
920 int req_data_sent = req->data_sent;
921 int ret, flags = MSG_DONTWAIT;
922
923 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
924 flags |= MSG_EOR;
925 else
926 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
927
928 if (sendpage_ok(page)) {
929 ret = kernel_sendpage(queue->sock, page, offset, len,
930 flags);
931 } else {
932 ret = sock_no_sendpage(queue->sock, page, offset, len,
933 flags);
934 }
935 if (ret <= 0)
936 return ret;
937
938 if (queue->data_digest)
939 nvme_tcp_ddgst_update(queue->snd_hash, page,
940 offset, ret);
941
942 /*
943 * update the request iterator except for the last payload send
944 * in the request where we don't want to modify it as we may
945 * compete with the RX path completing the request.
946 */
947 if (req_data_sent + ret < req_data_len)
948 nvme_tcp_advance_req(req, ret);
949
950 /* fully successful last send in current PDU */
951 if (last && ret == len) {
952 if (queue->data_digest) {
953 nvme_tcp_ddgst_final(queue->snd_hash,
954 &req->ddgst);
955 req->state = NVME_TCP_SEND_DDGST;
956 req->offset = 0;
957 } else {
958 nvme_tcp_done_send_req(queue);
959 }
960 return 1;
961 }
962 }
963 return -EAGAIN;
964 }
965
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)966 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
967 {
968 struct nvme_tcp_queue *queue = req->queue;
969 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
970 bool inline_data = nvme_tcp_has_inline_data(req);
971 u8 hdgst = nvme_tcp_hdgst_len(queue);
972 int len = sizeof(*pdu) + hdgst - req->offset;
973 int flags = MSG_DONTWAIT;
974 int ret;
975
976 if (inline_data || nvme_tcp_queue_more(queue))
977 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
978 else
979 flags |= MSG_EOR;
980
981 if (queue->hdr_digest && !req->offset)
982 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
983
984 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
985 offset_in_page(pdu) + req->offset, len, flags);
986 if (unlikely(ret <= 0))
987 return ret;
988
989 len -= ret;
990 if (!len) {
991 if (inline_data) {
992 req->state = NVME_TCP_SEND_DATA;
993 if (queue->data_digest)
994 crypto_ahash_init(queue->snd_hash);
995 nvme_tcp_init_iter(req, WRITE);
996 } else {
997 nvme_tcp_done_send_req(queue);
998 }
999 return 1;
1000 }
1001 req->offset += ret;
1002
1003 return -EAGAIN;
1004 }
1005
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1006 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1007 {
1008 struct nvme_tcp_queue *queue = req->queue;
1009 struct nvme_tcp_data_pdu *pdu = req->pdu;
1010 u8 hdgst = nvme_tcp_hdgst_len(queue);
1011 int len = sizeof(*pdu) - req->offset + hdgst;
1012 int ret;
1013
1014 if (queue->hdr_digest && !req->offset)
1015 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1016
1017 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1018 offset_in_page(pdu) + req->offset, len,
1019 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1020 if (unlikely(ret <= 0))
1021 return ret;
1022
1023 len -= ret;
1024 if (!len) {
1025 req->state = NVME_TCP_SEND_DATA;
1026 if (queue->data_digest)
1027 crypto_ahash_init(queue->snd_hash);
1028 if (!req->data_sent)
1029 nvme_tcp_init_iter(req, WRITE);
1030 return 1;
1031 }
1032 req->offset += ret;
1033
1034 return -EAGAIN;
1035 }
1036
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1037 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1038 {
1039 struct nvme_tcp_queue *queue = req->queue;
1040 size_t offset = req->offset;
1041 int ret;
1042 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1043 struct kvec iov = {
1044 .iov_base = (u8 *)&req->ddgst + req->offset,
1045 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1046 };
1047
1048 if (nvme_tcp_queue_more(queue))
1049 msg.msg_flags |= MSG_MORE;
1050 else
1051 msg.msg_flags |= MSG_EOR;
1052
1053 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1054 if (unlikely(ret <= 0))
1055 return ret;
1056
1057 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1058 nvme_tcp_done_send_req(queue);
1059 return 1;
1060 }
1061
1062 req->offset += ret;
1063 return -EAGAIN;
1064 }
1065
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1066 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1067 {
1068 struct nvme_tcp_request *req;
1069 int ret = 1;
1070
1071 if (!queue->request) {
1072 queue->request = nvme_tcp_fetch_request(queue);
1073 if (!queue->request)
1074 return 0;
1075 }
1076 req = queue->request;
1077
1078 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1079 ret = nvme_tcp_try_send_cmd_pdu(req);
1080 if (ret <= 0)
1081 goto done;
1082 if (!nvme_tcp_has_inline_data(req))
1083 return ret;
1084 }
1085
1086 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1087 ret = nvme_tcp_try_send_data_pdu(req);
1088 if (ret <= 0)
1089 goto done;
1090 }
1091
1092 if (req->state == NVME_TCP_SEND_DATA) {
1093 ret = nvme_tcp_try_send_data(req);
1094 if (ret <= 0)
1095 goto done;
1096 }
1097
1098 if (req->state == NVME_TCP_SEND_DDGST)
1099 ret = nvme_tcp_try_send_ddgst(req);
1100 done:
1101 if (ret == -EAGAIN) {
1102 ret = 0;
1103 } else if (ret < 0) {
1104 dev_err(queue->ctrl->ctrl.device,
1105 "failed to send request %d\n", ret);
1106 if (ret != -EPIPE && ret != -ECONNRESET)
1107 nvme_tcp_fail_request(queue->request);
1108 nvme_tcp_done_send_req(queue);
1109 }
1110 return ret;
1111 }
1112
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1113 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1114 {
1115 struct socket *sock = queue->sock;
1116 struct sock *sk = sock->sk;
1117 read_descriptor_t rd_desc;
1118 int consumed;
1119
1120 rd_desc.arg.data = queue;
1121 rd_desc.count = 1;
1122 lock_sock(sk);
1123 queue->nr_cqe = 0;
1124 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1125 release_sock(sk);
1126 return consumed;
1127 }
1128
nvme_tcp_io_work(struct work_struct * w)1129 static void nvme_tcp_io_work(struct work_struct *w)
1130 {
1131 struct nvme_tcp_queue *queue =
1132 container_of(w, struct nvme_tcp_queue, io_work);
1133 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1134
1135 do {
1136 bool pending = false;
1137 int result;
1138
1139 if (mutex_trylock(&queue->send_mutex)) {
1140 result = nvme_tcp_try_send(queue);
1141 mutex_unlock(&queue->send_mutex);
1142 if (result > 0)
1143 pending = true;
1144 else if (unlikely(result < 0))
1145 break;
1146 }
1147
1148 result = nvme_tcp_try_recv(queue);
1149 if (result > 0)
1150 pending = true;
1151 else if (unlikely(result < 0))
1152 return;
1153
1154 if (!pending)
1155 return;
1156
1157 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1158
1159 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1160 }
1161
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1162 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1163 {
1164 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1165
1166 ahash_request_free(queue->rcv_hash);
1167 ahash_request_free(queue->snd_hash);
1168 crypto_free_ahash(tfm);
1169 }
1170
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1171 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1172 {
1173 struct crypto_ahash *tfm;
1174
1175 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1176 if (IS_ERR(tfm))
1177 return PTR_ERR(tfm);
1178
1179 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1180 if (!queue->snd_hash)
1181 goto free_tfm;
1182 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1183
1184 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1185 if (!queue->rcv_hash)
1186 goto free_snd_hash;
1187 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1188
1189 return 0;
1190 free_snd_hash:
1191 ahash_request_free(queue->snd_hash);
1192 free_tfm:
1193 crypto_free_ahash(tfm);
1194 return -ENOMEM;
1195 }
1196
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1197 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1198 {
1199 struct nvme_tcp_request *async = &ctrl->async_req;
1200
1201 page_frag_free(async->pdu);
1202 }
1203
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1204 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1205 {
1206 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1207 struct nvme_tcp_request *async = &ctrl->async_req;
1208 u8 hdgst = nvme_tcp_hdgst_len(queue);
1209
1210 async->pdu = page_frag_alloc(&queue->pf_cache,
1211 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1212 GFP_KERNEL | __GFP_ZERO);
1213 if (!async->pdu)
1214 return -ENOMEM;
1215
1216 async->queue = &ctrl->queues[0];
1217 return 0;
1218 }
1219
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1220 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1221 {
1222 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1223 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1224
1225 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1226 return;
1227
1228 if (queue->hdr_digest || queue->data_digest)
1229 nvme_tcp_free_crypto(queue);
1230
1231 sock_release(queue->sock);
1232 kfree(queue->pdu);
1233 mutex_destroy(&queue->queue_lock);
1234 }
1235
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1236 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1237 {
1238 struct nvme_tcp_icreq_pdu *icreq;
1239 struct nvme_tcp_icresp_pdu *icresp;
1240 struct msghdr msg = {};
1241 struct kvec iov;
1242 bool ctrl_hdgst, ctrl_ddgst;
1243 int ret;
1244
1245 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1246 if (!icreq)
1247 return -ENOMEM;
1248
1249 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1250 if (!icresp) {
1251 ret = -ENOMEM;
1252 goto free_icreq;
1253 }
1254
1255 icreq->hdr.type = nvme_tcp_icreq;
1256 icreq->hdr.hlen = sizeof(*icreq);
1257 icreq->hdr.pdo = 0;
1258 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1259 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1260 icreq->maxr2t = 0; /* single inflight r2t supported */
1261 icreq->hpda = 0; /* no alignment constraint */
1262 if (queue->hdr_digest)
1263 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1264 if (queue->data_digest)
1265 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1266
1267 iov.iov_base = icreq;
1268 iov.iov_len = sizeof(*icreq);
1269 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1270 if (ret < 0)
1271 goto free_icresp;
1272
1273 memset(&msg, 0, sizeof(msg));
1274 iov.iov_base = icresp;
1275 iov.iov_len = sizeof(*icresp);
1276 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1277 iov.iov_len, msg.msg_flags);
1278 if (ret < 0)
1279 goto free_icresp;
1280
1281 ret = -EINVAL;
1282 if (icresp->hdr.type != nvme_tcp_icresp) {
1283 pr_err("queue %d: bad type returned %d\n",
1284 nvme_tcp_queue_id(queue), icresp->hdr.type);
1285 goto free_icresp;
1286 }
1287
1288 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1289 pr_err("queue %d: bad pdu length returned %d\n",
1290 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1291 goto free_icresp;
1292 }
1293
1294 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1295 pr_err("queue %d: bad pfv returned %d\n",
1296 nvme_tcp_queue_id(queue), icresp->pfv);
1297 goto free_icresp;
1298 }
1299
1300 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1301 if ((queue->data_digest && !ctrl_ddgst) ||
1302 (!queue->data_digest && ctrl_ddgst)) {
1303 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1304 nvme_tcp_queue_id(queue),
1305 queue->data_digest ? "enabled" : "disabled",
1306 ctrl_ddgst ? "enabled" : "disabled");
1307 goto free_icresp;
1308 }
1309
1310 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1311 if ((queue->hdr_digest && !ctrl_hdgst) ||
1312 (!queue->hdr_digest && ctrl_hdgst)) {
1313 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1314 nvme_tcp_queue_id(queue),
1315 queue->hdr_digest ? "enabled" : "disabled",
1316 ctrl_hdgst ? "enabled" : "disabled");
1317 goto free_icresp;
1318 }
1319
1320 if (icresp->cpda != 0) {
1321 pr_err("queue %d: unsupported cpda returned %d\n",
1322 nvme_tcp_queue_id(queue), icresp->cpda);
1323 goto free_icresp;
1324 }
1325
1326 ret = 0;
1327 free_icresp:
1328 kfree(icresp);
1329 free_icreq:
1330 kfree(icreq);
1331 return ret;
1332 }
1333
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1334 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1335 {
1336 return nvme_tcp_queue_id(queue) == 0;
1337 }
1338
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1339 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1340 {
1341 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1342 int qid = nvme_tcp_queue_id(queue);
1343
1344 return !nvme_tcp_admin_queue(queue) &&
1345 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1346 }
1347
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1348 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1349 {
1350 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1351 int qid = nvme_tcp_queue_id(queue);
1352
1353 return !nvme_tcp_admin_queue(queue) &&
1354 !nvme_tcp_default_queue(queue) &&
1355 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1356 ctrl->io_queues[HCTX_TYPE_READ];
1357 }
1358
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1359 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1360 {
1361 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1362 int qid = nvme_tcp_queue_id(queue);
1363
1364 return !nvme_tcp_admin_queue(queue) &&
1365 !nvme_tcp_default_queue(queue) &&
1366 !nvme_tcp_read_queue(queue) &&
1367 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1368 ctrl->io_queues[HCTX_TYPE_READ] +
1369 ctrl->io_queues[HCTX_TYPE_POLL];
1370 }
1371
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1372 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1373 {
1374 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1375 int qid = nvme_tcp_queue_id(queue);
1376 int n = 0;
1377
1378 if (nvme_tcp_default_queue(queue))
1379 n = qid - 1;
1380 else if (nvme_tcp_read_queue(queue))
1381 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1382 else if (nvme_tcp_poll_queue(queue))
1383 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1384 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1385 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1386 }
1387
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1388 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1389 int qid, size_t queue_size)
1390 {
1391 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1392 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1393 int ret, rcv_pdu_size;
1394
1395 mutex_init(&queue->queue_lock);
1396 queue->ctrl = ctrl;
1397 init_llist_head(&queue->req_list);
1398 INIT_LIST_HEAD(&queue->send_list);
1399 mutex_init(&queue->send_mutex);
1400 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1401 queue->queue_size = queue_size;
1402
1403 if (qid > 0)
1404 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1405 else
1406 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1407 NVME_TCP_ADMIN_CCSZ;
1408
1409 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1410 IPPROTO_TCP, &queue->sock);
1411 if (ret) {
1412 dev_err(nctrl->device,
1413 "failed to create socket: %d\n", ret);
1414 goto err_destroy_mutex;
1415 }
1416
1417 /* Single syn retry */
1418 tcp_sock_set_syncnt(queue->sock->sk, 1);
1419
1420 /* Set TCP no delay */
1421 tcp_sock_set_nodelay(queue->sock->sk);
1422
1423 /*
1424 * Cleanup whatever is sitting in the TCP transmit queue on socket
1425 * close. This is done to prevent stale data from being sent should
1426 * the network connection be restored before TCP times out.
1427 */
1428 sock_no_linger(queue->sock->sk);
1429
1430 if (so_priority > 0)
1431 sock_set_priority(queue->sock->sk, so_priority);
1432
1433 /* Set socket type of service */
1434 if (nctrl->opts->tos >= 0)
1435 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1436
1437 /* Set 10 seconds timeout for icresp recvmsg */
1438 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1439
1440 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1441 nvme_tcp_set_queue_io_cpu(queue);
1442 queue->request = NULL;
1443 queue->data_remaining = 0;
1444 queue->ddgst_remaining = 0;
1445 queue->pdu_remaining = 0;
1446 queue->pdu_offset = 0;
1447 sk_set_memalloc(queue->sock->sk);
1448
1449 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1450 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1451 sizeof(ctrl->src_addr));
1452 if (ret) {
1453 dev_err(nctrl->device,
1454 "failed to bind queue %d socket %d\n",
1455 qid, ret);
1456 goto err_sock;
1457 }
1458 }
1459
1460 queue->hdr_digest = nctrl->opts->hdr_digest;
1461 queue->data_digest = nctrl->opts->data_digest;
1462 if (queue->hdr_digest || queue->data_digest) {
1463 ret = nvme_tcp_alloc_crypto(queue);
1464 if (ret) {
1465 dev_err(nctrl->device,
1466 "failed to allocate queue %d crypto\n", qid);
1467 goto err_sock;
1468 }
1469 }
1470
1471 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1472 nvme_tcp_hdgst_len(queue);
1473 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1474 if (!queue->pdu) {
1475 ret = -ENOMEM;
1476 goto err_crypto;
1477 }
1478
1479 dev_dbg(nctrl->device, "connecting queue %d\n",
1480 nvme_tcp_queue_id(queue));
1481
1482 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1483 sizeof(ctrl->addr), 0);
1484 if (ret) {
1485 dev_err(nctrl->device,
1486 "failed to connect socket: %d\n", ret);
1487 goto err_rcv_pdu;
1488 }
1489
1490 ret = nvme_tcp_init_connection(queue);
1491 if (ret)
1492 goto err_init_connect;
1493
1494 queue->rd_enabled = true;
1495 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1496 nvme_tcp_init_recv_ctx(queue);
1497
1498 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1499 queue->sock->sk->sk_user_data = queue;
1500 queue->state_change = queue->sock->sk->sk_state_change;
1501 queue->data_ready = queue->sock->sk->sk_data_ready;
1502 queue->write_space = queue->sock->sk->sk_write_space;
1503 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1504 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1505 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1506 #ifdef CONFIG_NET_RX_BUSY_POLL
1507 queue->sock->sk->sk_ll_usec = 1;
1508 #endif
1509 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1510
1511 return 0;
1512
1513 err_init_connect:
1514 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1515 err_rcv_pdu:
1516 kfree(queue->pdu);
1517 err_crypto:
1518 if (queue->hdr_digest || queue->data_digest)
1519 nvme_tcp_free_crypto(queue);
1520 err_sock:
1521 sock_release(queue->sock);
1522 queue->sock = NULL;
1523 err_destroy_mutex:
1524 mutex_destroy(&queue->queue_lock);
1525 return ret;
1526 }
1527
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1528 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1529 {
1530 struct socket *sock = queue->sock;
1531
1532 write_lock_bh(&sock->sk->sk_callback_lock);
1533 sock->sk->sk_user_data = NULL;
1534 sock->sk->sk_data_ready = queue->data_ready;
1535 sock->sk->sk_state_change = queue->state_change;
1536 sock->sk->sk_write_space = queue->write_space;
1537 write_unlock_bh(&sock->sk->sk_callback_lock);
1538 }
1539
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1540 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1541 {
1542 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1543 nvme_tcp_restore_sock_calls(queue);
1544 cancel_work_sync(&queue->io_work);
1545 }
1546
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1547 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1548 {
1549 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1550 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1551
1552 mutex_lock(&queue->queue_lock);
1553 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1554 __nvme_tcp_stop_queue(queue);
1555 mutex_unlock(&queue->queue_lock);
1556 }
1557
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1558 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1559 {
1560 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1561 int ret;
1562
1563 if (idx)
1564 ret = nvmf_connect_io_queue(nctrl, idx, false);
1565 else
1566 ret = nvmf_connect_admin_queue(nctrl);
1567
1568 if (!ret) {
1569 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1570 } else {
1571 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1572 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1573 dev_err(nctrl->device,
1574 "failed to connect queue: %d ret=%d\n", idx, ret);
1575 }
1576 return ret;
1577 }
1578
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1579 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1580 bool admin)
1581 {
1582 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1583 struct blk_mq_tag_set *set;
1584 int ret;
1585
1586 if (admin) {
1587 set = &ctrl->admin_tag_set;
1588 memset(set, 0, sizeof(*set));
1589 set->ops = &nvme_tcp_admin_mq_ops;
1590 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1591 set->reserved_tags = 2; /* connect + keep-alive */
1592 set->numa_node = nctrl->numa_node;
1593 set->flags = BLK_MQ_F_BLOCKING;
1594 set->cmd_size = sizeof(struct nvme_tcp_request);
1595 set->driver_data = ctrl;
1596 set->nr_hw_queues = 1;
1597 set->timeout = ADMIN_TIMEOUT;
1598 } else {
1599 set = &ctrl->tag_set;
1600 memset(set, 0, sizeof(*set));
1601 set->ops = &nvme_tcp_mq_ops;
1602 set->queue_depth = nctrl->sqsize + 1;
1603 set->reserved_tags = 1; /* fabric connect */
1604 set->numa_node = nctrl->numa_node;
1605 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1606 set->cmd_size = sizeof(struct nvme_tcp_request);
1607 set->driver_data = ctrl;
1608 set->nr_hw_queues = nctrl->queue_count - 1;
1609 set->timeout = NVME_IO_TIMEOUT;
1610 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1611 }
1612
1613 ret = blk_mq_alloc_tag_set(set);
1614 if (ret)
1615 return ERR_PTR(ret);
1616
1617 return set;
1618 }
1619
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1620 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1621 {
1622 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1623 cancel_work_sync(&ctrl->async_event_work);
1624 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1625 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1626 }
1627
1628 nvme_tcp_free_queue(ctrl, 0);
1629 }
1630
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1631 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1632 {
1633 int i;
1634
1635 for (i = 1; i < ctrl->queue_count; i++)
1636 nvme_tcp_free_queue(ctrl, i);
1637 }
1638
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1639 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1640 {
1641 int i;
1642
1643 for (i = 1; i < ctrl->queue_count; i++)
1644 nvme_tcp_stop_queue(ctrl, i);
1645 }
1646
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1647 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1648 {
1649 int i, ret = 0;
1650
1651 for (i = 1; i < ctrl->queue_count; i++) {
1652 ret = nvme_tcp_start_queue(ctrl, i);
1653 if (ret)
1654 goto out_stop_queues;
1655 }
1656
1657 return 0;
1658
1659 out_stop_queues:
1660 for (i--; i >= 1; i--)
1661 nvme_tcp_stop_queue(ctrl, i);
1662 return ret;
1663 }
1664
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1665 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1666 {
1667 int ret;
1668
1669 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1670 if (ret)
1671 return ret;
1672
1673 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1674 if (ret)
1675 goto out_free_queue;
1676
1677 return 0;
1678
1679 out_free_queue:
1680 nvme_tcp_free_queue(ctrl, 0);
1681 return ret;
1682 }
1683
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1684 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1685 {
1686 int i, ret;
1687
1688 for (i = 1; i < ctrl->queue_count; i++) {
1689 ret = nvme_tcp_alloc_queue(ctrl, i,
1690 ctrl->sqsize + 1);
1691 if (ret)
1692 goto out_free_queues;
1693 }
1694
1695 return 0;
1696
1697 out_free_queues:
1698 for (i--; i >= 1; i--)
1699 nvme_tcp_free_queue(ctrl, i);
1700
1701 return ret;
1702 }
1703
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1704 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1705 {
1706 unsigned int nr_io_queues;
1707
1708 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1709 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1710 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1711
1712 return nr_io_queues;
1713 }
1714
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1715 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1716 unsigned int nr_io_queues)
1717 {
1718 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1719 struct nvmf_ctrl_options *opts = nctrl->opts;
1720
1721 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1722 /*
1723 * separate read/write queues
1724 * hand out dedicated default queues only after we have
1725 * sufficient read queues.
1726 */
1727 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1728 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1729 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1730 min(opts->nr_write_queues, nr_io_queues);
1731 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1732 } else {
1733 /*
1734 * shared read/write queues
1735 * either no write queues were requested, or we don't have
1736 * sufficient queue count to have dedicated default queues.
1737 */
1738 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1739 min(opts->nr_io_queues, nr_io_queues);
1740 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1741 }
1742
1743 if (opts->nr_poll_queues && nr_io_queues) {
1744 /* map dedicated poll queues only if we have queues left */
1745 ctrl->io_queues[HCTX_TYPE_POLL] =
1746 min(opts->nr_poll_queues, nr_io_queues);
1747 }
1748 }
1749
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1750 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1751 {
1752 unsigned int nr_io_queues;
1753 int ret;
1754
1755 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1756 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1757 if (ret)
1758 return ret;
1759
1760 if (nr_io_queues == 0) {
1761 dev_err(ctrl->device,
1762 "unable to set any I/O queues\n");
1763 return -ENOMEM;
1764 }
1765
1766 ctrl->queue_count = nr_io_queues + 1;
1767 dev_info(ctrl->device,
1768 "creating %d I/O queues.\n", nr_io_queues);
1769
1770 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1771
1772 return __nvme_tcp_alloc_io_queues(ctrl);
1773 }
1774
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1775 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1776 {
1777 nvme_tcp_stop_io_queues(ctrl);
1778 if (remove) {
1779 blk_cleanup_queue(ctrl->connect_q);
1780 blk_mq_free_tag_set(ctrl->tagset);
1781 }
1782 nvme_tcp_free_io_queues(ctrl);
1783 }
1784
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1785 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1786 {
1787 int ret;
1788
1789 ret = nvme_tcp_alloc_io_queues(ctrl);
1790 if (ret)
1791 return ret;
1792
1793 if (new) {
1794 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1795 if (IS_ERR(ctrl->tagset)) {
1796 ret = PTR_ERR(ctrl->tagset);
1797 goto out_free_io_queues;
1798 }
1799
1800 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1801 if (IS_ERR(ctrl->connect_q)) {
1802 ret = PTR_ERR(ctrl->connect_q);
1803 goto out_free_tag_set;
1804 }
1805 }
1806
1807 ret = nvme_tcp_start_io_queues(ctrl);
1808 if (ret)
1809 goto out_cleanup_connect_q;
1810
1811 if (!new) {
1812 nvme_start_queues(ctrl);
1813 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1814 /*
1815 * If we timed out waiting for freeze we are likely to
1816 * be stuck. Fail the controller initialization just
1817 * to be safe.
1818 */
1819 ret = -ENODEV;
1820 goto out_wait_freeze_timed_out;
1821 }
1822 blk_mq_update_nr_hw_queues(ctrl->tagset,
1823 ctrl->queue_count - 1);
1824 nvme_unfreeze(ctrl);
1825 }
1826
1827 return 0;
1828
1829 out_wait_freeze_timed_out:
1830 nvme_stop_queues(ctrl);
1831 nvme_sync_io_queues(ctrl);
1832 nvme_tcp_stop_io_queues(ctrl);
1833 out_cleanup_connect_q:
1834 nvme_cancel_tagset(ctrl);
1835 if (new)
1836 blk_cleanup_queue(ctrl->connect_q);
1837 out_free_tag_set:
1838 if (new)
1839 blk_mq_free_tag_set(ctrl->tagset);
1840 out_free_io_queues:
1841 nvme_tcp_free_io_queues(ctrl);
1842 return ret;
1843 }
1844
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1845 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1846 {
1847 nvme_tcp_stop_queue(ctrl, 0);
1848 if (remove) {
1849 blk_cleanup_queue(ctrl->admin_q);
1850 blk_cleanup_queue(ctrl->fabrics_q);
1851 blk_mq_free_tag_set(ctrl->admin_tagset);
1852 }
1853 nvme_tcp_free_admin_queue(ctrl);
1854 }
1855
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1856 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1857 {
1858 int error;
1859
1860 error = nvme_tcp_alloc_admin_queue(ctrl);
1861 if (error)
1862 return error;
1863
1864 if (new) {
1865 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1866 if (IS_ERR(ctrl->admin_tagset)) {
1867 error = PTR_ERR(ctrl->admin_tagset);
1868 goto out_free_queue;
1869 }
1870
1871 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1872 if (IS_ERR(ctrl->fabrics_q)) {
1873 error = PTR_ERR(ctrl->fabrics_q);
1874 goto out_free_tagset;
1875 }
1876
1877 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1878 if (IS_ERR(ctrl->admin_q)) {
1879 error = PTR_ERR(ctrl->admin_q);
1880 goto out_cleanup_fabrics_q;
1881 }
1882 }
1883
1884 error = nvme_tcp_start_queue(ctrl, 0);
1885 if (error)
1886 goto out_cleanup_queue;
1887
1888 error = nvme_enable_ctrl(ctrl);
1889 if (error)
1890 goto out_stop_queue;
1891
1892 nvme_start_admin_queue(ctrl);
1893
1894 error = nvme_init_identify(ctrl);
1895 if (error)
1896 goto out_quiesce_queue;
1897
1898 return 0;
1899
1900 out_quiesce_queue:
1901 nvme_stop_admin_queue(ctrl);
1902 blk_sync_queue(ctrl->admin_q);
1903 out_stop_queue:
1904 nvme_tcp_stop_queue(ctrl, 0);
1905 nvme_cancel_admin_tagset(ctrl);
1906 out_cleanup_queue:
1907 if (new)
1908 blk_cleanup_queue(ctrl->admin_q);
1909 out_cleanup_fabrics_q:
1910 if (new)
1911 blk_cleanup_queue(ctrl->fabrics_q);
1912 out_free_tagset:
1913 if (new)
1914 blk_mq_free_tag_set(ctrl->admin_tagset);
1915 out_free_queue:
1916 nvme_tcp_free_admin_queue(ctrl);
1917 return error;
1918 }
1919
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1920 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1921 bool remove)
1922 {
1923 nvme_stop_admin_queue(ctrl);
1924 blk_sync_queue(ctrl->admin_q);
1925 nvme_tcp_stop_queue(ctrl, 0);
1926 if (ctrl->admin_tagset) {
1927 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1928 nvme_cancel_request, ctrl);
1929 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1930 }
1931 if (remove)
1932 nvme_start_admin_queue(ctrl);
1933 nvme_tcp_destroy_admin_queue(ctrl, remove);
1934 }
1935
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1936 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1937 bool remove)
1938 {
1939 if (ctrl->queue_count <= 1)
1940 return;
1941 nvme_stop_admin_queue(ctrl);
1942 nvme_start_freeze(ctrl);
1943 nvme_stop_queues(ctrl);
1944 nvme_sync_io_queues(ctrl);
1945 nvme_tcp_stop_io_queues(ctrl);
1946 if (ctrl->tagset) {
1947 blk_mq_tagset_busy_iter(ctrl->tagset,
1948 nvme_cancel_request, ctrl);
1949 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1950 }
1951 if (remove)
1952 nvme_start_queues(ctrl);
1953 nvme_tcp_destroy_io_queues(ctrl, remove);
1954 }
1955
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)1956 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1957 {
1958 /* If we are resetting/deleting then do nothing */
1959 if (ctrl->state != NVME_CTRL_CONNECTING) {
1960 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1961 ctrl->state == NVME_CTRL_LIVE);
1962 return;
1963 }
1964
1965 if (nvmf_should_reconnect(ctrl)) {
1966 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1967 ctrl->opts->reconnect_delay);
1968 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1969 ctrl->opts->reconnect_delay * HZ);
1970 } else {
1971 dev_info(ctrl->device, "Removing controller...\n");
1972 nvme_delete_ctrl(ctrl);
1973 }
1974 }
1975
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)1976 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1977 {
1978 struct nvmf_ctrl_options *opts = ctrl->opts;
1979 int ret;
1980
1981 ret = nvme_tcp_configure_admin_queue(ctrl, new);
1982 if (ret)
1983 return ret;
1984
1985 if (ctrl->icdoff) {
1986 dev_err(ctrl->device, "icdoff is not supported!\n");
1987 goto destroy_admin;
1988 }
1989
1990 if (opts->queue_size > ctrl->sqsize + 1)
1991 dev_warn(ctrl->device,
1992 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1993 opts->queue_size, ctrl->sqsize + 1);
1994
1995 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1996 dev_warn(ctrl->device,
1997 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1998 ctrl->sqsize + 1, ctrl->maxcmd);
1999 ctrl->sqsize = ctrl->maxcmd - 1;
2000 }
2001
2002 if (ctrl->queue_count > 1) {
2003 ret = nvme_tcp_configure_io_queues(ctrl, new);
2004 if (ret)
2005 goto destroy_admin;
2006 }
2007
2008 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2009 /*
2010 * state change failure is ok if we started ctrl delete,
2011 * unless we're during creation of a new controller to
2012 * avoid races with teardown flow.
2013 */
2014 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2015 ctrl->state != NVME_CTRL_DELETING_NOIO);
2016 WARN_ON_ONCE(new);
2017 ret = -EINVAL;
2018 goto destroy_io;
2019 }
2020
2021 nvme_start_ctrl(ctrl);
2022 return 0;
2023
2024 destroy_io:
2025 if (ctrl->queue_count > 1) {
2026 nvme_stop_queues(ctrl);
2027 nvme_sync_io_queues(ctrl);
2028 nvme_tcp_stop_io_queues(ctrl);
2029 nvme_cancel_tagset(ctrl);
2030 nvme_tcp_destroy_io_queues(ctrl, new);
2031 }
2032 destroy_admin:
2033 nvme_stop_admin_queue(ctrl);
2034 blk_sync_queue(ctrl->admin_q);
2035 nvme_tcp_stop_queue(ctrl, 0);
2036 nvme_cancel_admin_tagset(ctrl);
2037 nvme_tcp_destroy_admin_queue(ctrl, new);
2038 return ret;
2039 }
2040
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2041 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2042 {
2043 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2044 struct nvme_tcp_ctrl, connect_work);
2045 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2046
2047 ++ctrl->nr_reconnects;
2048
2049 if (nvme_tcp_setup_ctrl(ctrl, false))
2050 goto requeue;
2051
2052 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2053 ctrl->nr_reconnects);
2054
2055 ctrl->nr_reconnects = 0;
2056
2057 return;
2058
2059 requeue:
2060 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2061 ctrl->nr_reconnects);
2062 nvme_tcp_reconnect_or_remove(ctrl);
2063 }
2064
nvme_tcp_error_recovery_work(struct work_struct * work)2065 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2066 {
2067 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2068 struct nvme_tcp_ctrl, err_work);
2069 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2070
2071 nvme_stop_keep_alive(ctrl);
2072 nvme_tcp_teardown_io_queues(ctrl, false);
2073 /* unquiesce to fail fast pending requests */
2074 nvme_start_queues(ctrl);
2075 nvme_tcp_teardown_admin_queue(ctrl, false);
2076 nvme_start_admin_queue(ctrl);
2077
2078 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2079 /* state change failure is ok if we started ctrl delete */
2080 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2081 ctrl->state != NVME_CTRL_DELETING_NOIO);
2082 return;
2083 }
2084
2085 nvme_tcp_reconnect_or_remove(ctrl);
2086 }
2087
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2088 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2089 {
2090 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2091 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2092
2093 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2094 nvme_stop_admin_queue(ctrl);
2095 if (shutdown)
2096 nvme_shutdown_ctrl(ctrl);
2097 else
2098 nvme_disable_ctrl(ctrl);
2099 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2100 }
2101
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2102 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2103 {
2104 nvme_tcp_teardown_ctrl(ctrl, true);
2105 }
2106
nvme_reset_ctrl_work(struct work_struct * work)2107 static void nvme_reset_ctrl_work(struct work_struct *work)
2108 {
2109 struct nvme_ctrl *ctrl =
2110 container_of(work, struct nvme_ctrl, reset_work);
2111
2112 nvme_stop_ctrl(ctrl);
2113 nvme_tcp_teardown_ctrl(ctrl, false);
2114
2115 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2116 /* state change failure is ok if we started ctrl delete */
2117 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2118 ctrl->state != NVME_CTRL_DELETING_NOIO);
2119 return;
2120 }
2121
2122 if (nvme_tcp_setup_ctrl(ctrl, false))
2123 goto out_fail;
2124
2125 return;
2126
2127 out_fail:
2128 ++ctrl->nr_reconnects;
2129 nvme_tcp_reconnect_or_remove(ctrl);
2130 }
2131
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2132 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2133 {
2134 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2135
2136 if (list_empty(&ctrl->list))
2137 goto free_ctrl;
2138
2139 mutex_lock(&nvme_tcp_ctrl_mutex);
2140 list_del(&ctrl->list);
2141 mutex_unlock(&nvme_tcp_ctrl_mutex);
2142
2143 nvmf_free_options(nctrl->opts);
2144 free_ctrl:
2145 kfree(ctrl->queues);
2146 kfree(ctrl);
2147 }
2148
nvme_tcp_set_sg_null(struct nvme_command * c)2149 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2150 {
2151 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2152
2153 sg->addr = 0;
2154 sg->length = 0;
2155 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2156 NVME_SGL_FMT_TRANSPORT_A;
2157 }
2158
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2159 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2160 struct nvme_command *c, u32 data_len)
2161 {
2162 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2163
2164 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2165 sg->length = cpu_to_le32(data_len);
2166 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2167 }
2168
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2169 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2170 u32 data_len)
2171 {
2172 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2173
2174 sg->addr = 0;
2175 sg->length = cpu_to_le32(data_len);
2176 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2177 NVME_SGL_FMT_TRANSPORT_A;
2178 }
2179
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2180 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2181 {
2182 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2183 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2184 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2185 struct nvme_command *cmd = &pdu->cmd;
2186 u8 hdgst = nvme_tcp_hdgst_len(queue);
2187
2188 memset(pdu, 0, sizeof(*pdu));
2189 pdu->hdr.type = nvme_tcp_cmd;
2190 if (queue->hdr_digest)
2191 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2192 pdu->hdr.hlen = sizeof(*pdu);
2193 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2194
2195 cmd->common.opcode = nvme_admin_async_event;
2196 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2197 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2198 nvme_tcp_set_sg_null(cmd);
2199
2200 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2201 ctrl->async_req.offset = 0;
2202 ctrl->async_req.curr_bio = NULL;
2203 ctrl->async_req.data_len = 0;
2204
2205 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2206 }
2207
nvme_tcp_complete_timed_out(struct request * rq)2208 static void nvme_tcp_complete_timed_out(struct request *rq)
2209 {
2210 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2211 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2212
2213 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2214 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2215 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2216 blk_mq_complete_request(rq);
2217 }
2218 }
2219
2220 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2221 nvme_tcp_timeout(struct request *rq, bool reserved)
2222 {
2223 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2224 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2225 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2226
2227 dev_warn(ctrl->device,
2228 "queue %d: timeout request %#x type %d\n",
2229 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2230
2231 if (ctrl->state != NVME_CTRL_LIVE) {
2232 /*
2233 * If we are resetting, connecting or deleting we should
2234 * complete immediately because we may block controller
2235 * teardown or setup sequence
2236 * - ctrl disable/shutdown fabrics requests
2237 * - connect requests
2238 * - initialization admin requests
2239 * - I/O requests that entered after unquiescing and
2240 * the controller stopped responding
2241 *
2242 * All other requests should be cancelled by the error
2243 * recovery work, so it's fine that we fail it here.
2244 */
2245 nvme_tcp_complete_timed_out(rq);
2246 return BLK_EH_DONE;
2247 }
2248
2249 /*
2250 * LIVE state should trigger the normal error recovery which will
2251 * handle completing this request.
2252 */
2253 nvme_tcp_error_recovery(ctrl);
2254 return BLK_EH_RESET_TIMER;
2255 }
2256
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2257 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2258 struct request *rq)
2259 {
2260 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2261 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2262 struct nvme_command *c = &pdu->cmd;
2263
2264 c->common.flags |= NVME_CMD_SGL_METABUF;
2265
2266 if (!blk_rq_nr_phys_segments(rq))
2267 nvme_tcp_set_sg_null(c);
2268 else if (rq_data_dir(rq) == WRITE &&
2269 req->data_len <= nvme_tcp_inline_data_size(queue))
2270 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2271 else
2272 nvme_tcp_set_sg_host_data(c, req->data_len);
2273
2274 return 0;
2275 }
2276
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2277 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2278 struct request *rq)
2279 {
2280 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2281 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2282 struct nvme_tcp_queue *queue = req->queue;
2283 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2284 blk_status_t ret;
2285
2286 ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2287 if (ret)
2288 return ret;
2289
2290 req->state = NVME_TCP_SEND_CMD_PDU;
2291 req->offset = 0;
2292 req->data_sent = 0;
2293 req->pdu_len = 0;
2294 req->pdu_sent = 0;
2295 req->data_len = blk_rq_nr_phys_segments(rq) ?
2296 blk_rq_payload_bytes(rq) : 0;
2297 req->curr_bio = rq->bio;
2298
2299 if (rq_data_dir(rq) == WRITE &&
2300 req->data_len <= nvme_tcp_inline_data_size(queue))
2301 req->pdu_len = req->data_len;
2302 else if (req->curr_bio)
2303 nvme_tcp_init_iter(req, READ);
2304
2305 pdu->hdr.type = nvme_tcp_cmd;
2306 pdu->hdr.flags = 0;
2307 if (queue->hdr_digest)
2308 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2309 if (queue->data_digest && req->pdu_len) {
2310 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2311 ddgst = nvme_tcp_ddgst_len(queue);
2312 }
2313 pdu->hdr.hlen = sizeof(*pdu);
2314 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2315 pdu->hdr.plen =
2316 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2317
2318 ret = nvme_tcp_map_data(queue, rq);
2319 if (unlikely(ret)) {
2320 nvme_cleanup_cmd(rq);
2321 dev_err(queue->ctrl->ctrl.device,
2322 "Failed to map data (%d)\n", ret);
2323 return ret;
2324 }
2325
2326 return 0;
2327 }
2328
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2329 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2330 {
2331 struct nvme_tcp_queue *queue = hctx->driver_data;
2332
2333 if (!llist_empty(&queue->req_list))
2334 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2335 }
2336
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2337 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2338 const struct blk_mq_queue_data *bd)
2339 {
2340 struct nvme_ns *ns = hctx->queue->queuedata;
2341 struct nvme_tcp_queue *queue = hctx->driver_data;
2342 struct request *rq = bd->rq;
2343 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2344 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2345 blk_status_t ret;
2346
2347 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2348 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2349
2350 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2351 if (unlikely(ret))
2352 return ret;
2353
2354 blk_mq_start_request(rq);
2355
2356 nvme_tcp_queue_request(req, true, bd->last);
2357
2358 return BLK_STS_OK;
2359 }
2360
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2361 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2362 {
2363 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2364 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2365
2366 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2367 /* separate read/write queues */
2368 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2369 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2370 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2371 set->map[HCTX_TYPE_READ].nr_queues =
2372 ctrl->io_queues[HCTX_TYPE_READ];
2373 set->map[HCTX_TYPE_READ].queue_offset =
2374 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2375 } else {
2376 /* shared read/write queues */
2377 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2378 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2379 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2380 set->map[HCTX_TYPE_READ].nr_queues =
2381 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2382 set->map[HCTX_TYPE_READ].queue_offset = 0;
2383 }
2384 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2385 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2386
2387 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2388 /* map dedicated poll queues only if we have queues left */
2389 set->map[HCTX_TYPE_POLL].nr_queues =
2390 ctrl->io_queues[HCTX_TYPE_POLL];
2391 set->map[HCTX_TYPE_POLL].queue_offset =
2392 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2393 ctrl->io_queues[HCTX_TYPE_READ];
2394 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2395 }
2396
2397 dev_info(ctrl->ctrl.device,
2398 "mapped %d/%d/%d default/read/poll queues.\n",
2399 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2400 ctrl->io_queues[HCTX_TYPE_READ],
2401 ctrl->io_queues[HCTX_TYPE_POLL]);
2402
2403 return 0;
2404 }
2405
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2406 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2407 {
2408 struct nvme_tcp_queue *queue = hctx->driver_data;
2409 struct sock *sk = queue->sock->sk;
2410
2411 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2412 return 0;
2413
2414 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2415 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2416 sk_busy_loop(sk, true);
2417 nvme_tcp_try_recv(queue);
2418 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2419 return queue->nr_cqe;
2420 }
2421
2422 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2423 .queue_rq = nvme_tcp_queue_rq,
2424 .commit_rqs = nvme_tcp_commit_rqs,
2425 .complete = nvme_complete_rq,
2426 .init_request = nvme_tcp_init_request,
2427 .exit_request = nvme_tcp_exit_request,
2428 .init_hctx = nvme_tcp_init_hctx,
2429 .timeout = nvme_tcp_timeout,
2430 .map_queues = nvme_tcp_map_queues,
2431 .poll = nvme_tcp_poll,
2432 };
2433
2434 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2435 .queue_rq = nvme_tcp_queue_rq,
2436 .complete = nvme_complete_rq,
2437 .init_request = nvme_tcp_init_request,
2438 .exit_request = nvme_tcp_exit_request,
2439 .init_hctx = nvme_tcp_init_admin_hctx,
2440 .timeout = nvme_tcp_timeout,
2441 };
2442
2443 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2444 .name = "tcp",
2445 .module = THIS_MODULE,
2446 .flags = NVME_F_FABRICS,
2447 .reg_read32 = nvmf_reg_read32,
2448 .reg_read64 = nvmf_reg_read64,
2449 .reg_write32 = nvmf_reg_write32,
2450 .free_ctrl = nvme_tcp_free_ctrl,
2451 .submit_async_event = nvme_tcp_submit_async_event,
2452 .delete_ctrl = nvme_tcp_delete_ctrl,
2453 .get_address = nvmf_get_address,
2454 };
2455
2456 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2457 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2458 {
2459 struct nvme_tcp_ctrl *ctrl;
2460 bool found = false;
2461
2462 mutex_lock(&nvme_tcp_ctrl_mutex);
2463 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2464 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2465 if (found)
2466 break;
2467 }
2468 mutex_unlock(&nvme_tcp_ctrl_mutex);
2469
2470 return found;
2471 }
2472
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2473 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2474 struct nvmf_ctrl_options *opts)
2475 {
2476 struct nvme_tcp_ctrl *ctrl;
2477 int ret;
2478
2479 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2480 if (!ctrl)
2481 return ERR_PTR(-ENOMEM);
2482
2483 INIT_LIST_HEAD(&ctrl->list);
2484 ctrl->ctrl.opts = opts;
2485 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2486 opts->nr_poll_queues + 1;
2487 ctrl->ctrl.sqsize = opts->queue_size - 1;
2488 ctrl->ctrl.kato = opts->kato;
2489
2490 INIT_DELAYED_WORK(&ctrl->connect_work,
2491 nvme_tcp_reconnect_ctrl_work);
2492 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2493 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2494
2495 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2496 opts->trsvcid =
2497 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2498 if (!opts->trsvcid) {
2499 ret = -ENOMEM;
2500 goto out_free_ctrl;
2501 }
2502 opts->mask |= NVMF_OPT_TRSVCID;
2503 }
2504
2505 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2506 opts->traddr, opts->trsvcid, &ctrl->addr);
2507 if (ret) {
2508 pr_err("malformed address passed: %s:%s\n",
2509 opts->traddr, opts->trsvcid);
2510 goto out_free_ctrl;
2511 }
2512
2513 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2514 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2515 opts->host_traddr, NULL, &ctrl->src_addr);
2516 if (ret) {
2517 pr_err("malformed src address passed: %s\n",
2518 opts->host_traddr);
2519 goto out_free_ctrl;
2520 }
2521 }
2522
2523 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2524 ret = -EALREADY;
2525 goto out_free_ctrl;
2526 }
2527
2528 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2529 GFP_KERNEL);
2530 if (!ctrl->queues) {
2531 ret = -ENOMEM;
2532 goto out_free_ctrl;
2533 }
2534
2535 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2536 if (ret)
2537 goto out_kfree_queues;
2538
2539 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2540 WARN_ON_ONCE(1);
2541 ret = -EINTR;
2542 goto out_uninit_ctrl;
2543 }
2544
2545 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2546 if (ret)
2547 goto out_uninit_ctrl;
2548
2549 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2550 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2551
2552 mutex_lock(&nvme_tcp_ctrl_mutex);
2553 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2554 mutex_unlock(&nvme_tcp_ctrl_mutex);
2555
2556 return &ctrl->ctrl;
2557
2558 out_uninit_ctrl:
2559 nvme_uninit_ctrl(&ctrl->ctrl);
2560 nvme_put_ctrl(&ctrl->ctrl);
2561 if (ret > 0)
2562 ret = -EIO;
2563 return ERR_PTR(ret);
2564 out_kfree_queues:
2565 kfree(ctrl->queues);
2566 out_free_ctrl:
2567 kfree(ctrl);
2568 return ERR_PTR(ret);
2569 }
2570
2571 static struct nvmf_transport_ops nvme_tcp_transport = {
2572 .name = "tcp",
2573 .module = THIS_MODULE,
2574 .required_opts = NVMF_OPT_TRADDR,
2575 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2576 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2577 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2578 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2579 NVMF_OPT_TOS,
2580 .create_ctrl = nvme_tcp_create_ctrl,
2581 };
2582
nvme_tcp_init_module(void)2583 static int __init nvme_tcp_init_module(void)
2584 {
2585 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2586 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2587 if (!nvme_tcp_wq)
2588 return -ENOMEM;
2589
2590 nvmf_register_transport(&nvme_tcp_transport);
2591 return 0;
2592 }
2593
nvme_tcp_cleanup_module(void)2594 static void __exit nvme_tcp_cleanup_module(void)
2595 {
2596 struct nvme_tcp_ctrl *ctrl;
2597
2598 nvmf_unregister_transport(&nvme_tcp_transport);
2599
2600 mutex_lock(&nvme_tcp_ctrl_mutex);
2601 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2602 nvme_delete_ctrl(&ctrl->ctrl);
2603 mutex_unlock(&nvme_tcp_ctrl_mutex);
2604 flush_workqueue(nvme_delete_wq);
2605
2606 destroy_workqueue(nvme_tcp_wq);
2607 }
2608
2609 module_init(nvme_tcp_init_module);
2610 module_exit(nvme_tcp_cleanup_module);
2611
2612 MODULE_LICENSE("GPL v2");
2613