• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17 
18 #include "nvme.h"
19 #include "fabrics.h"
20 
21 struct nvme_tcp_queue;
22 
23 /* Define the socket priority to use for connections were it is desirable
24  * that the NIC consider performing optimized packet processing or filtering.
25  * A non-zero value being sufficient to indicate general consideration of any
26  * possible optimization.  Making it a module param allows for alternative
27  * values that may be unique for some NIC implementations.
28  */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32 
33 enum nvme_tcp_send_state {
34 	NVME_TCP_SEND_CMD_PDU = 0,
35 	NVME_TCP_SEND_H2C_PDU,
36 	NVME_TCP_SEND_DATA,
37 	NVME_TCP_SEND_DDGST,
38 };
39 
40 struct nvme_tcp_request {
41 	struct nvme_request	req;
42 	void			*pdu;
43 	struct nvme_tcp_queue	*queue;
44 	u32			data_len;
45 	u32			pdu_len;
46 	u32			pdu_sent;
47 	u16			ttag;
48 	struct list_head	entry;
49 	struct llist_node	lentry;
50 	__le32			ddgst;
51 
52 	struct bio		*curr_bio;
53 	struct iov_iter		iter;
54 
55 	/* send state */
56 	size_t			offset;
57 	size_t			data_sent;
58 	enum nvme_tcp_send_state state;
59 };
60 
61 enum nvme_tcp_queue_flags {
62 	NVME_TCP_Q_ALLOCATED	= 0,
63 	NVME_TCP_Q_LIVE		= 1,
64 	NVME_TCP_Q_POLLING	= 2,
65 };
66 
67 enum nvme_tcp_recv_state {
68 	NVME_TCP_RECV_PDU = 0,
69 	NVME_TCP_RECV_DATA,
70 	NVME_TCP_RECV_DDGST,
71 };
72 
73 struct nvme_tcp_ctrl;
74 struct nvme_tcp_queue {
75 	struct socket		*sock;
76 	struct work_struct	io_work;
77 	int			io_cpu;
78 
79 	struct mutex		queue_lock;
80 	struct mutex		send_mutex;
81 	struct llist_head	req_list;
82 	struct list_head	send_list;
83 	bool			more_requests;
84 
85 	/* recv state */
86 	void			*pdu;
87 	int			pdu_remaining;
88 	int			pdu_offset;
89 	size_t			data_remaining;
90 	size_t			ddgst_remaining;
91 	unsigned int		nr_cqe;
92 
93 	/* send state */
94 	struct nvme_tcp_request *request;
95 
96 	int			queue_size;
97 	size_t			cmnd_capsule_len;
98 	struct nvme_tcp_ctrl	*ctrl;
99 	unsigned long		flags;
100 	bool			rd_enabled;
101 
102 	bool			hdr_digest;
103 	bool			data_digest;
104 	struct ahash_request	*rcv_hash;
105 	struct ahash_request	*snd_hash;
106 	__le32			exp_ddgst;
107 	__le32			recv_ddgst;
108 
109 	struct page_frag_cache	pf_cache;
110 
111 	void (*state_change)(struct sock *);
112 	void (*data_ready)(struct sock *);
113 	void (*write_space)(struct sock *);
114 };
115 
116 struct nvme_tcp_ctrl {
117 	/* read only in the hot path */
118 	struct nvme_tcp_queue	*queues;
119 	struct blk_mq_tag_set	tag_set;
120 
121 	/* other member variables */
122 	struct list_head	list;
123 	struct blk_mq_tag_set	admin_tag_set;
124 	struct sockaddr_storage addr;
125 	struct sockaddr_storage src_addr;
126 	struct nvme_ctrl	ctrl;
127 
128 	struct work_struct	err_work;
129 	struct delayed_work	connect_work;
130 	struct nvme_tcp_request async_req;
131 	u32			io_queues[HCTX_MAX_TYPES];
132 };
133 
134 static LIST_HEAD(nvme_tcp_ctrl_list);
135 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
136 static struct workqueue_struct *nvme_tcp_wq;
137 static const struct blk_mq_ops nvme_tcp_mq_ops;
138 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
139 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
140 
to_tcp_ctrl(struct nvme_ctrl * ctrl)141 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
142 {
143 	return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
144 }
145 
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)146 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
147 {
148 	return queue - queue->ctrl->queues;
149 }
150 
nvme_tcp_tagset(struct nvme_tcp_queue * queue)151 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
152 {
153 	u32 queue_idx = nvme_tcp_queue_id(queue);
154 
155 	if (queue_idx == 0)
156 		return queue->ctrl->admin_tag_set.tags[queue_idx];
157 	return queue->ctrl->tag_set.tags[queue_idx - 1];
158 }
159 
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)160 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
161 {
162 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
163 }
164 
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)165 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
166 {
167 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
168 }
169 
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)170 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
171 {
172 	return queue->cmnd_capsule_len - sizeof(struct nvme_command);
173 }
174 
nvme_tcp_async_req(struct nvme_tcp_request * req)175 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
176 {
177 	return req == &req->queue->ctrl->async_req;
178 }
179 
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)180 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
181 {
182 	struct request *rq;
183 
184 	if (unlikely(nvme_tcp_async_req(req)))
185 		return false; /* async events don't have a request */
186 
187 	rq = blk_mq_rq_from_pdu(req);
188 
189 	return rq_data_dir(rq) == WRITE && req->data_len &&
190 		req->data_len <= nvme_tcp_inline_data_size(req->queue);
191 }
192 
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)193 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
194 {
195 	return req->iter.bvec->bv_page;
196 }
197 
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)198 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
199 {
200 	return req->iter.bvec->bv_offset + req->iter.iov_offset;
201 }
202 
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)203 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
204 {
205 	return min_t(size_t, iov_iter_single_seg_count(&req->iter),
206 			req->pdu_len - req->pdu_sent);
207 }
208 
nvme_tcp_req_offset(struct nvme_tcp_request * req)209 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
210 {
211 	return req->iter.iov_offset;
212 }
213 
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)214 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
215 {
216 	return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
217 			req->pdu_len - req->pdu_sent : 0;
218 }
219 
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)220 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
221 		int len)
222 {
223 	return nvme_tcp_pdu_data_left(req) <= len;
224 }
225 
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)226 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
227 		unsigned int dir)
228 {
229 	struct request *rq = blk_mq_rq_from_pdu(req);
230 	struct bio_vec *vec;
231 	unsigned int size;
232 	int nsegs;
233 	size_t offset;
234 
235 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
236 		vec = &rq->special_vec;
237 		nsegs = 1;
238 		size = blk_rq_payload_bytes(rq);
239 		offset = 0;
240 	} else {
241 		struct bio *bio = req->curr_bio;
242 
243 		vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
244 		nsegs = bio_segments(bio);
245 		size = bio->bi_iter.bi_size;
246 		offset = bio->bi_iter.bi_bvec_done;
247 	}
248 
249 	iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
250 	req->iter.iov_offset = offset;
251 }
252 
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)253 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
254 		int len)
255 {
256 	req->data_sent += len;
257 	req->pdu_sent += len;
258 	iov_iter_advance(&req->iter, len);
259 	if (!iov_iter_count(&req->iter) &&
260 	    req->data_sent < req->data_len) {
261 		req->curr_bio = req->curr_bio->bi_next;
262 		nvme_tcp_init_iter(req, WRITE);
263 	}
264 }
265 
nvme_tcp_send_all(struct nvme_tcp_queue * queue)266 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
267 {
268 	int ret;
269 
270 	/* drain the send queue as much as we can... */
271 	do {
272 		ret = nvme_tcp_try_send(queue);
273 	} while (ret > 0);
274 }
275 
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)276 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
277 {
278 	return !list_empty(&queue->send_list) ||
279 		!llist_empty(&queue->req_list) || queue->more_requests;
280 }
281 
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)282 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
283 		bool sync, bool last)
284 {
285 	struct nvme_tcp_queue *queue = req->queue;
286 	bool empty;
287 
288 	empty = llist_add(&req->lentry, &queue->req_list) &&
289 		list_empty(&queue->send_list) && !queue->request;
290 
291 	/*
292 	 * if we're the first on the send_list and we can try to send
293 	 * directly, otherwise queue io_work. Also, only do that if we
294 	 * are on the same cpu, so we don't introduce contention.
295 	 */
296 	if (queue->io_cpu == raw_smp_processor_id() &&
297 	    sync && empty && mutex_trylock(&queue->send_mutex)) {
298 		queue->more_requests = !last;
299 		nvme_tcp_send_all(queue);
300 		queue->more_requests = false;
301 		mutex_unlock(&queue->send_mutex);
302 	}
303 
304 	if (last && nvme_tcp_queue_more(queue))
305 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
306 }
307 
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)308 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
309 {
310 	struct nvme_tcp_request *req;
311 	struct llist_node *node;
312 
313 	for (node = llist_del_all(&queue->req_list); node; node = node->next) {
314 		req = llist_entry(node, struct nvme_tcp_request, lentry);
315 		list_add(&req->entry, &queue->send_list);
316 	}
317 }
318 
319 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)320 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
321 {
322 	struct nvme_tcp_request *req;
323 
324 	req = list_first_entry_or_null(&queue->send_list,
325 			struct nvme_tcp_request, entry);
326 	if (!req) {
327 		nvme_tcp_process_req_list(queue);
328 		req = list_first_entry_or_null(&queue->send_list,
329 				struct nvme_tcp_request, entry);
330 		if (unlikely(!req))
331 			return NULL;
332 	}
333 
334 	list_del(&req->entry);
335 	return req;
336 }
337 
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)338 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
339 		__le32 *dgst)
340 {
341 	ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
342 	crypto_ahash_final(hash);
343 }
344 
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)345 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
346 		struct page *page, off_t off, size_t len)
347 {
348 	struct scatterlist sg;
349 
350 	sg_init_marker(&sg, 1);
351 	sg_set_page(&sg, page, len, off);
352 	ahash_request_set_crypt(hash, &sg, NULL, len);
353 	crypto_ahash_update(hash);
354 }
355 
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)356 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
357 		void *pdu, size_t len)
358 {
359 	struct scatterlist sg;
360 
361 	sg_init_one(&sg, pdu, len);
362 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
363 	crypto_ahash_digest(hash);
364 }
365 
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)366 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
367 		void *pdu, size_t pdu_len)
368 {
369 	struct nvme_tcp_hdr *hdr = pdu;
370 	__le32 recv_digest;
371 	__le32 exp_digest;
372 
373 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
374 		dev_err(queue->ctrl->ctrl.device,
375 			"queue %d: header digest flag is cleared\n",
376 			nvme_tcp_queue_id(queue));
377 		return -EPROTO;
378 	}
379 
380 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
381 	nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
382 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
383 	if (recv_digest != exp_digest) {
384 		dev_err(queue->ctrl->ctrl.device,
385 			"header digest error: recv %#x expected %#x\n",
386 			le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
387 		return -EIO;
388 	}
389 
390 	return 0;
391 }
392 
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)393 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
394 {
395 	struct nvme_tcp_hdr *hdr = pdu;
396 	u8 digest_len = nvme_tcp_hdgst_len(queue);
397 	u32 len;
398 
399 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
400 		((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
401 
402 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
403 		dev_err(queue->ctrl->ctrl.device,
404 			"queue %d: data digest flag is cleared\n",
405 		nvme_tcp_queue_id(queue));
406 		return -EPROTO;
407 	}
408 	crypto_ahash_init(queue->rcv_hash);
409 
410 	return 0;
411 }
412 
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)413 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
414 		struct request *rq, unsigned int hctx_idx)
415 {
416 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
417 
418 	page_frag_free(req->pdu);
419 }
420 
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)421 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
422 		struct request *rq, unsigned int hctx_idx,
423 		unsigned int numa_node)
424 {
425 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
426 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
427 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
428 	struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
429 	u8 hdgst = nvme_tcp_hdgst_len(queue);
430 
431 	req->pdu = page_frag_alloc(&queue->pf_cache,
432 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
433 		GFP_KERNEL | __GFP_ZERO);
434 	if (!req->pdu)
435 		return -ENOMEM;
436 
437 	req->queue = queue;
438 	nvme_req(rq)->ctrl = &ctrl->ctrl;
439 
440 	return 0;
441 }
442 
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)443 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
444 		unsigned int hctx_idx)
445 {
446 	struct nvme_tcp_ctrl *ctrl = data;
447 	struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
448 
449 	hctx->driver_data = queue;
450 	return 0;
451 }
452 
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)453 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
454 		unsigned int hctx_idx)
455 {
456 	struct nvme_tcp_ctrl *ctrl = data;
457 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
458 
459 	hctx->driver_data = queue;
460 	return 0;
461 }
462 
463 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)464 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
465 {
466 	return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
467 		(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
468 		NVME_TCP_RECV_DATA;
469 }
470 
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)471 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
472 {
473 	queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
474 				nvme_tcp_hdgst_len(queue);
475 	queue->pdu_offset = 0;
476 	queue->data_remaining = -1;
477 	queue->ddgst_remaining = 0;
478 }
479 
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)480 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
481 {
482 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
483 		return;
484 
485 	dev_warn(ctrl->device, "starting error recovery\n");
486 	queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
487 }
488 
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)489 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
490 		struct nvme_completion *cqe)
491 {
492 	struct request *rq;
493 
494 	rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
495 	if (!rq) {
496 		dev_err(queue->ctrl->ctrl.device,
497 			"got bad cqe.command_id %#x on queue %d\n",
498 			cqe->command_id, nvme_tcp_queue_id(queue));
499 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
500 		return -EINVAL;
501 	}
502 
503 	if (!nvme_try_complete_req(rq, cqe->status, cqe->result))
504 		nvme_complete_rq(rq);
505 	queue->nr_cqe++;
506 
507 	return 0;
508 }
509 
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)510 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
511 		struct nvme_tcp_data_pdu *pdu)
512 {
513 	struct request *rq;
514 
515 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
516 	if (!rq) {
517 		dev_err(queue->ctrl->ctrl.device,
518 			"got bad c2hdata.command_id %#x on queue %d\n",
519 			pdu->command_id, nvme_tcp_queue_id(queue));
520 		return -ENOENT;
521 	}
522 
523 	if (!blk_rq_payload_bytes(rq)) {
524 		dev_err(queue->ctrl->ctrl.device,
525 			"queue %d tag %#x unexpected data\n",
526 			nvme_tcp_queue_id(queue), rq->tag);
527 		return -EIO;
528 	}
529 
530 	queue->data_remaining = le32_to_cpu(pdu->data_length);
531 
532 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
533 	    unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
534 		dev_err(queue->ctrl->ctrl.device,
535 			"queue %d tag %#x SUCCESS set but not last PDU\n",
536 			nvme_tcp_queue_id(queue), rq->tag);
537 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
538 		return -EPROTO;
539 	}
540 
541 	return 0;
542 }
543 
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)544 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
545 		struct nvme_tcp_rsp_pdu *pdu)
546 {
547 	struct nvme_completion *cqe = &pdu->cqe;
548 	int ret = 0;
549 
550 	/*
551 	 * AEN requests are special as they don't time out and can
552 	 * survive any kind of queue freeze and often don't respond to
553 	 * aborts.  We don't even bother to allocate a struct request
554 	 * for them but rather special case them here.
555 	 */
556 	if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
557 				     cqe->command_id)))
558 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
559 				&cqe->result);
560 	else
561 		ret = nvme_tcp_process_nvme_cqe(queue, cqe);
562 
563 	return ret;
564 }
565 
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)566 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
567 		struct nvme_tcp_r2t_pdu *pdu)
568 {
569 	struct nvme_tcp_data_pdu *data = req->pdu;
570 	struct nvme_tcp_queue *queue = req->queue;
571 	struct request *rq = blk_mq_rq_from_pdu(req);
572 	u8 hdgst = nvme_tcp_hdgst_len(queue);
573 	u8 ddgst = nvme_tcp_ddgst_len(queue);
574 
575 	req->pdu_len = le32_to_cpu(pdu->r2t_length);
576 	req->pdu_sent = 0;
577 
578 	if (unlikely(!req->pdu_len)) {
579 		dev_err(queue->ctrl->ctrl.device,
580 			"req %d r2t len is %u, probably a bug...\n",
581 			rq->tag, req->pdu_len);
582 		return -EPROTO;
583 	}
584 
585 	if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
586 		dev_err(queue->ctrl->ctrl.device,
587 			"req %d r2t len %u exceeded data len %u (%zu sent)\n",
588 			rq->tag, req->pdu_len, req->data_len,
589 			req->data_sent);
590 		return -EPROTO;
591 	}
592 
593 	if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
594 		dev_err(queue->ctrl->ctrl.device,
595 			"req %d unexpected r2t offset %u (expected %zu)\n",
596 			rq->tag, le32_to_cpu(pdu->r2t_offset),
597 			req->data_sent);
598 		return -EPROTO;
599 	}
600 
601 	memset(data, 0, sizeof(*data));
602 	data->hdr.type = nvme_tcp_h2c_data;
603 	data->hdr.flags = NVME_TCP_F_DATA_LAST;
604 	if (queue->hdr_digest)
605 		data->hdr.flags |= NVME_TCP_F_HDGST;
606 	if (queue->data_digest)
607 		data->hdr.flags |= NVME_TCP_F_DDGST;
608 	data->hdr.hlen = sizeof(*data);
609 	data->hdr.pdo = data->hdr.hlen + hdgst;
610 	data->hdr.plen =
611 		cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
612 	data->ttag = pdu->ttag;
613 	data->command_id = nvme_cid(rq);
614 	data->data_offset = pdu->r2t_offset;
615 	data->data_length = cpu_to_le32(req->pdu_len);
616 	return 0;
617 }
618 
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)619 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
620 		struct nvme_tcp_r2t_pdu *pdu)
621 {
622 	struct nvme_tcp_request *req;
623 	struct request *rq;
624 	int ret;
625 
626 	rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
627 	if (!rq) {
628 		dev_err(queue->ctrl->ctrl.device,
629 			"got bad r2t.command_id %#x on queue %d\n",
630 			pdu->command_id, nvme_tcp_queue_id(queue));
631 		return -ENOENT;
632 	}
633 	req = blk_mq_rq_to_pdu(rq);
634 
635 	ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
636 	if (unlikely(ret))
637 		return ret;
638 
639 	req->state = NVME_TCP_SEND_H2C_PDU;
640 	req->offset = 0;
641 
642 	nvme_tcp_queue_request(req, false, true);
643 
644 	return 0;
645 }
646 
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)647 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
648 		unsigned int *offset, size_t *len)
649 {
650 	struct nvme_tcp_hdr *hdr;
651 	char *pdu = queue->pdu;
652 	size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
653 	int ret;
654 
655 	ret = skb_copy_bits(skb, *offset,
656 		&pdu[queue->pdu_offset], rcv_len);
657 	if (unlikely(ret))
658 		return ret;
659 
660 	queue->pdu_remaining -= rcv_len;
661 	queue->pdu_offset += rcv_len;
662 	*offset += rcv_len;
663 	*len -= rcv_len;
664 	if (queue->pdu_remaining)
665 		return 0;
666 
667 	hdr = queue->pdu;
668 	if (queue->hdr_digest) {
669 		ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
670 		if (unlikely(ret))
671 			return ret;
672 	}
673 
674 
675 	if (queue->data_digest) {
676 		ret = nvme_tcp_check_ddgst(queue, queue->pdu);
677 		if (unlikely(ret))
678 			return ret;
679 	}
680 
681 	switch (hdr->type) {
682 	case nvme_tcp_c2h_data:
683 		return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
684 	case nvme_tcp_rsp:
685 		nvme_tcp_init_recv_ctx(queue);
686 		return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
687 	case nvme_tcp_r2t:
688 		nvme_tcp_init_recv_ctx(queue);
689 		return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
690 	default:
691 		dev_err(queue->ctrl->ctrl.device,
692 			"unsupported pdu type (%d)\n", hdr->type);
693 		return -EINVAL;
694 	}
695 }
696 
nvme_tcp_end_request(struct request * rq,u16 status)697 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
698 {
699 	union nvme_result res = {};
700 
701 	if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
702 		nvme_complete_rq(rq);
703 }
704 
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)705 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
706 			      unsigned int *offset, size_t *len)
707 {
708 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
709 	struct request *rq =
710 		nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
711 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
712 
713 	while (true) {
714 		int recv_len, ret;
715 
716 		recv_len = min_t(size_t, *len, queue->data_remaining);
717 		if (!recv_len)
718 			break;
719 
720 		if (!iov_iter_count(&req->iter)) {
721 			req->curr_bio = req->curr_bio->bi_next;
722 
723 			/*
724 			 * If we don`t have any bios it means that controller
725 			 * sent more data than we requested, hence error
726 			 */
727 			if (!req->curr_bio) {
728 				dev_err(queue->ctrl->ctrl.device,
729 					"queue %d no space in request %#x",
730 					nvme_tcp_queue_id(queue), rq->tag);
731 				nvme_tcp_init_recv_ctx(queue);
732 				return -EIO;
733 			}
734 			nvme_tcp_init_iter(req, READ);
735 		}
736 
737 		/* we can read only from what is left in this bio */
738 		recv_len = min_t(size_t, recv_len,
739 				iov_iter_count(&req->iter));
740 
741 		if (queue->data_digest)
742 			ret = skb_copy_and_hash_datagram_iter(skb, *offset,
743 				&req->iter, recv_len, queue->rcv_hash);
744 		else
745 			ret = skb_copy_datagram_iter(skb, *offset,
746 					&req->iter, recv_len);
747 		if (ret) {
748 			dev_err(queue->ctrl->ctrl.device,
749 				"queue %d failed to copy request %#x data",
750 				nvme_tcp_queue_id(queue), rq->tag);
751 			return ret;
752 		}
753 
754 		*len -= recv_len;
755 		*offset += recv_len;
756 		queue->data_remaining -= recv_len;
757 	}
758 
759 	if (!queue->data_remaining) {
760 		if (queue->data_digest) {
761 			nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
762 			queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
763 		} else {
764 			if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
765 				nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
766 				queue->nr_cqe++;
767 			}
768 			nvme_tcp_init_recv_ctx(queue);
769 		}
770 	}
771 
772 	return 0;
773 }
774 
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)775 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
776 		struct sk_buff *skb, unsigned int *offset, size_t *len)
777 {
778 	struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
779 	char *ddgst = (char *)&queue->recv_ddgst;
780 	size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
781 	off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
782 	int ret;
783 
784 	ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
785 	if (unlikely(ret))
786 		return ret;
787 
788 	queue->ddgst_remaining -= recv_len;
789 	*offset += recv_len;
790 	*len -= recv_len;
791 	if (queue->ddgst_remaining)
792 		return 0;
793 
794 	if (queue->recv_ddgst != queue->exp_ddgst) {
795 		dev_err(queue->ctrl->ctrl.device,
796 			"data digest error: recv %#x expected %#x\n",
797 			le32_to_cpu(queue->recv_ddgst),
798 			le32_to_cpu(queue->exp_ddgst));
799 		return -EIO;
800 	}
801 
802 	if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
803 		struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
804 					pdu->command_id);
805 
806 		nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
807 		queue->nr_cqe++;
808 	}
809 
810 	nvme_tcp_init_recv_ctx(queue);
811 	return 0;
812 }
813 
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)814 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
815 			     unsigned int offset, size_t len)
816 {
817 	struct nvme_tcp_queue *queue = desc->arg.data;
818 	size_t consumed = len;
819 	int result;
820 
821 	while (len) {
822 		switch (nvme_tcp_recv_state(queue)) {
823 		case NVME_TCP_RECV_PDU:
824 			result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
825 			break;
826 		case NVME_TCP_RECV_DATA:
827 			result = nvme_tcp_recv_data(queue, skb, &offset, &len);
828 			break;
829 		case NVME_TCP_RECV_DDGST:
830 			result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
831 			break;
832 		default:
833 			result = -EFAULT;
834 		}
835 		if (result) {
836 			dev_err(queue->ctrl->ctrl.device,
837 				"receive failed:  %d\n", result);
838 			queue->rd_enabled = false;
839 			nvme_tcp_error_recovery(&queue->ctrl->ctrl);
840 			return result;
841 		}
842 	}
843 
844 	return consumed;
845 }
846 
nvme_tcp_data_ready(struct sock * sk)847 static void nvme_tcp_data_ready(struct sock *sk)
848 {
849 	struct nvme_tcp_queue *queue;
850 
851 	read_lock_bh(&sk->sk_callback_lock);
852 	queue = sk->sk_user_data;
853 	if (likely(queue && queue->rd_enabled) &&
854 	    !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
855 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
856 	read_unlock_bh(&sk->sk_callback_lock);
857 }
858 
nvme_tcp_write_space(struct sock * sk)859 static void nvme_tcp_write_space(struct sock *sk)
860 {
861 	struct nvme_tcp_queue *queue;
862 
863 	read_lock_bh(&sk->sk_callback_lock);
864 	queue = sk->sk_user_data;
865 	if (likely(queue && sk_stream_is_writeable(sk))) {
866 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
867 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
868 	}
869 	read_unlock_bh(&sk->sk_callback_lock);
870 }
871 
nvme_tcp_state_change(struct sock * sk)872 static void nvme_tcp_state_change(struct sock *sk)
873 {
874 	struct nvme_tcp_queue *queue;
875 
876 	read_lock_bh(&sk->sk_callback_lock);
877 	queue = sk->sk_user_data;
878 	if (!queue)
879 		goto done;
880 
881 	switch (sk->sk_state) {
882 	case TCP_CLOSE:
883 	case TCP_CLOSE_WAIT:
884 	case TCP_LAST_ACK:
885 	case TCP_FIN_WAIT1:
886 	case TCP_FIN_WAIT2:
887 		nvme_tcp_error_recovery(&queue->ctrl->ctrl);
888 		break;
889 	default:
890 		dev_info(queue->ctrl->ctrl.device,
891 			"queue %d socket state %d\n",
892 			nvme_tcp_queue_id(queue), sk->sk_state);
893 	}
894 
895 	queue->state_change(sk);
896 done:
897 	read_unlock_bh(&sk->sk_callback_lock);
898 }
899 
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)900 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
901 {
902 	queue->request = NULL;
903 }
904 
nvme_tcp_fail_request(struct nvme_tcp_request * req)905 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
906 {
907 	nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
908 }
909 
nvme_tcp_try_send_data(struct nvme_tcp_request * req)910 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
911 {
912 	struct nvme_tcp_queue *queue = req->queue;
913 	int req_data_len = req->data_len;
914 
915 	while (true) {
916 		struct page *page = nvme_tcp_req_cur_page(req);
917 		size_t offset = nvme_tcp_req_cur_offset(req);
918 		size_t len = nvme_tcp_req_cur_length(req);
919 		bool last = nvme_tcp_pdu_last_send(req, len);
920 		int req_data_sent = req->data_sent;
921 		int ret, flags = MSG_DONTWAIT;
922 
923 		if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
924 			flags |= MSG_EOR;
925 		else
926 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
927 
928 		if (sendpage_ok(page)) {
929 			ret = kernel_sendpage(queue->sock, page, offset, len,
930 					flags);
931 		} else {
932 			ret = sock_no_sendpage(queue->sock, page, offset, len,
933 					flags);
934 		}
935 		if (ret <= 0)
936 			return ret;
937 
938 		if (queue->data_digest)
939 			nvme_tcp_ddgst_update(queue->snd_hash, page,
940 					offset, ret);
941 
942 		/*
943 		 * update the request iterator except for the last payload send
944 		 * in the request where we don't want to modify it as we may
945 		 * compete with the RX path completing the request.
946 		 */
947 		if (req_data_sent + ret < req_data_len)
948 			nvme_tcp_advance_req(req, ret);
949 
950 		/* fully successful last send in current PDU */
951 		if (last && ret == len) {
952 			if (queue->data_digest) {
953 				nvme_tcp_ddgst_final(queue->snd_hash,
954 					&req->ddgst);
955 				req->state = NVME_TCP_SEND_DDGST;
956 				req->offset = 0;
957 			} else {
958 				nvme_tcp_done_send_req(queue);
959 			}
960 			return 1;
961 		}
962 	}
963 	return -EAGAIN;
964 }
965 
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)966 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
967 {
968 	struct nvme_tcp_queue *queue = req->queue;
969 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
970 	bool inline_data = nvme_tcp_has_inline_data(req);
971 	u8 hdgst = nvme_tcp_hdgst_len(queue);
972 	int len = sizeof(*pdu) + hdgst - req->offset;
973 	int flags = MSG_DONTWAIT;
974 	int ret;
975 
976 	if (inline_data || nvme_tcp_queue_more(queue))
977 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
978 	else
979 		flags |= MSG_EOR;
980 
981 	if (queue->hdr_digest && !req->offset)
982 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
983 
984 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
985 			offset_in_page(pdu) + req->offset, len,  flags);
986 	if (unlikely(ret <= 0))
987 		return ret;
988 
989 	len -= ret;
990 	if (!len) {
991 		if (inline_data) {
992 			req->state = NVME_TCP_SEND_DATA;
993 			if (queue->data_digest)
994 				crypto_ahash_init(queue->snd_hash);
995 			nvme_tcp_init_iter(req, WRITE);
996 		} else {
997 			nvme_tcp_done_send_req(queue);
998 		}
999 		return 1;
1000 	}
1001 	req->offset += ret;
1002 
1003 	return -EAGAIN;
1004 }
1005 
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1006 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1007 {
1008 	struct nvme_tcp_queue *queue = req->queue;
1009 	struct nvme_tcp_data_pdu *pdu = req->pdu;
1010 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1011 	int len = sizeof(*pdu) - req->offset + hdgst;
1012 	int ret;
1013 
1014 	if (queue->hdr_digest && !req->offset)
1015 		nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1016 
1017 	ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1018 			offset_in_page(pdu) + req->offset, len,
1019 			MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1020 	if (unlikely(ret <= 0))
1021 		return ret;
1022 
1023 	len -= ret;
1024 	if (!len) {
1025 		req->state = NVME_TCP_SEND_DATA;
1026 		if (queue->data_digest)
1027 			crypto_ahash_init(queue->snd_hash);
1028 		if (!req->data_sent)
1029 			nvme_tcp_init_iter(req, WRITE);
1030 		return 1;
1031 	}
1032 	req->offset += ret;
1033 
1034 	return -EAGAIN;
1035 }
1036 
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1037 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1038 {
1039 	struct nvme_tcp_queue *queue = req->queue;
1040 	size_t offset = req->offset;
1041 	int ret;
1042 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1043 	struct kvec iov = {
1044 		.iov_base = (u8 *)&req->ddgst + req->offset,
1045 		.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1046 	};
1047 
1048 	if (nvme_tcp_queue_more(queue))
1049 		msg.msg_flags |= MSG_MORE;
1050 	else
1051 		msg.msg_flags |= MSG_EOR;
1052 
1053 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1054 	if (unlikely(ret <= 0))
1055 		return ret;
1056 
1057 	if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1058 		nvme_tcp_done_send_req(queue);
1059 		return 1;
1060 	}
1061 
1062 	req->offset += ret;
1063 	return -EAGAIN;
1064 }
1065 
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1066 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1067 {
1068 	struct nvme_tcp_request *req;
1069 	int ret = 1;
1070 
1071 	if (!queue->request) {
1072 		queue->request = nvme_tcp_fetch_request(queue);
1073 		if (!queue->request)
1074 			return 0;
1075 	}
1076 	req = queue->request;
1077 
1078 	if (req->state == NVME_TCP_SEND_CMD_PDU) {
1079 		ret = nvme_tcp_try_send_cmd_pdu(req);
1080 		if (ret <= 0)
1081 			goto done;
1082 		if (!nvme_tcp_has_inline_data(req))
1083 			return ret;
1084 	}
1085 
1086 	if (req->state == NVME_TCP_SEND_H2C_PDU) {
1087 		ret = nvme_tcp_try_send_data_pdu(req);
1088 		if (ret <= 0)
1089 			goto done;
1090 	}
1091 
1092 	if (req->state == NVME_TCP_SEND_DATA) {
1093 		ret = nvme_tcp_try_send_data(req);
1094 		if (ret <= 0)
1095 			goto done;
1096 	}
1097 
1098 	if (req->state == NVME_TCP_SEND_DDGST)
1099 		ret = nvme_tcp_try_send_ddgst(req);
1100 done:
1101 	if (ret == -EAGAIN) {
1102 		ret = 0;
1103 	} else if (ret < 0) {
1104 		dev_err(queue->ctrl->ctrl.device,
1105 			"failed to send request %d\n", ret);
1106 		if (ret != -EPIPE && ret != -ECONNRESET)
1107 			nvme_tcp_fail_request(queue->request);
1108 		nvme_tcp_done_send_req(queue);
1109 	}
1110 	return ret;
1111 }
1112 
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1113 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1114 {
1115 	struct socket *sock = queue->sock;
1116 	struct sock *sk = sock->sk;
1117 	read_descriptor_t rd_desc;
1118 	int consumed;
1119 
1120 	rd_desc.arg.data = queue;
1121 	rd_desc.count = 1;
1122 	lock_sock(sk);
1123 	queue->nr_cqe = 0;
1124 	consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1125 	release_sock(sk);
1126 	return consumed;
1127 }
1128 
nvme_tcp_io_work(struct work_struct * w)1129 static void nvme_tcp_io_work(struct work_struct *w)
1130 {
1131 	struct nvme_tcp_queue *queue =
1132 		container_of(w, struct nvme_tcp_queue, io_work);
1133 	unsigned long deadline = jiffies + msecs_to_jiffies(1);
1134 
1135 	do {
1136 		bool pending = false;
1137 		int result;
1138 
1139 		if (mutex_trylock(&queue->send_mutex)) {
1140 			result = nvme_tcp_try_send(queue);
1141 			mutex_unlock(&queue->send_mutex);
1142 			if (result > 0)
1143 				pending = true;
1144 			else if (unlikely(result < 0))
1145 				break;
1146 		}
1147 
1148 		result = nvme_tcp_try_recv(queue);
1149 		if (result > 0)
1150 			pending = true;
1151 		else if (unlikely(result < 0))
1152 			return;
1153 
1154 		if (!pending)
1155 			return;
1156 
1157 	} while (!time_after(jiffies, deadline)); /* quota is exhausted */
1158 
1159 	queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1160 }
1161 
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1162 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1163 {
1164 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1165 
1166 	ahash_request_free(queue->rcv_hash);
1167 	ahash_request_free(queue->snd_hash);
1168 	crypto_free_ahash(tfm);
1169 }
1170 
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1171 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1172 {
1173 	struct crypto_ahash *tfm;
1174 
1175 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1176 	if (IS_ERR(tfm))
1177 		return PTR_ERR(tfm);
1178 
1179 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1180 	if (!queue->snd_hash)
1181 		goto free_tfm;
1182 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1183 
1184 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1185 	if (!queue->rcv_hash)
1186 		goto free_snd_hash;
1187 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1188 
1189 	return 0;
1190 free_snd_hash:
1191 	ahash_request_free(queue->snd_hash);
1192 free_tfm:
1193 	crypto_free_ahash(tfm);
1194 	return -ENOMEM;
1195 }
1196 
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1197 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1198 {
1199 	struct nvme_tcp_request *async = &ctrl->async_req;
1200 
1201 	page_frag_free(async->pdu);
1202 }
1203 
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1204 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1205 {
1206 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
1207 	struct nvme_tcp_request *async = &ctrl->async_req;
1208 	u8 hdgst = nvme_tcp_hdgst_len(queue);
1209 
1210 	async->pdu = page_frag_alloc(&queue->pf_cache,
1211 		sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1212 		GFP_KERNEL | __GFP_ZERO);
1213 	if (!async->pdu)
1214 		return -ENOMEM;
1215 
1216 	async->queue = &ctrl->queues[0];
1217 	return 0;
1218 }
1219 
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1220 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1221 {
1222 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1223 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1224 
1225 	if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1226 		return;
1227 
1228 	if (queue->hdr_digest || queue->data_digest)
1229 		nvme_tcp_free_crypto(queue);
1230 
1231 	sock_release(queue->sock);
1232 	kfree(queue->pdu);
1233 	mutex_destroy(&queue->queue_lock);
1234 }
1235 
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1236 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1237 {
1238 	struct nvme_tcp_icreq_pdu *icreq;
1239 	struct nvme_tcp_icresp_pdu *icresp;
1240 	struct msghdr msg = {};
1241 	struct kvec iov;
1242 	bool ctrl_hdgst, ctrl_ddgst;
1243 	int ret;
1244 
1245 	icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1246 	if (!icreq)
1247 		return -ENOMEM;
1248 
1249 	icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1250 	if (!icresp) {
1251 		ret = -ENOMEM;
1252 		goto free_icreq;
1253 	}
1254 
1255 	icreq->hdr.type = nvme_tcp_icreq;
1256 	icreq->hdr.hlen = sizeof(*icreq);
1257 	icreq->hdr.pdo = 0;
1258 	icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1259 	icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1260 	icreq->maxr2t = 0; /* single inflight r2t supported */
1261 	icreq->hpda = 0; /* no alignment constraint */
1262 	if (queue->hdr_digest)
1263 		icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1264 	if (queue->data_digest)
1265 		icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1266 
1267 	iov.iov_base = icreq;
1268 	iov.iov_len = sizeof(*icreq);
1269 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1270 	if (ret < 0)
1271 		goto free_icresp;
1272 
1273 	memset(&msg, 0, sizeof(msg));
1274 	iov.iov_base = icresp;
1275 	iov.iov_len = sizeof(*icresp);
1276 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1277 			iov.iov_len, msg.msg_flags);
1278 	if (ret < 0)
1279 		goto free_icresp;
1280 
1281 	ret = -EINVAL;
1282 	if (icresp->hdr.type != nvme_tcp_icresp) {
1283 		pr_err("queue %d: bad type returned %d\n",
1284 			nvme_tcp_queue_id(queue), icresp->hdr.type);
1285 		goto free_icresp;
1286 	}
1287 
1288 	if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1289 		pr_err("queue %d: bad pdu length returned %d\n",
1290 			nvme_tcp_queue_id(queue), icresp->hdr.plen);
1291 		goto free_icresp;
1292 	}
1293 
1294 	if (icresp->pfv != NVME_TCP_PFV_1_0) {
1295 		pr_err("queue %d: bad pfv returned %d\n",
1296 			nvme_tcp_queue_id(queue), icresp->pfv);
1297 		goto free_icresp;
1298 	}
1299 
1300 	ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1301 	if ((queue->data_digest && !ctrl_ddgst) ||
1302 	    (!queue->data_digest && ctrl_ddgst)) {
1303 		pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1304 			nvme_tcp_queue_id(queue),
1305 			queue->data_digest ? "enabled" : "disabled",
1306 			ctrl_ddgst ? "enabled" : "disabled");
1307 		goto free_icresp;
1308 	}
1309 
1310 	ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1311 	if ((queue->hdr_digest && !ctrl_hdgst) ||
1312 	    (!queue->hdr_digest && ctrl_hdgst)) {
1313 		pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1314 			nvme_tcp_queue_id(queue),
1315 			queue->hdr_digest ? "enabled" : "disabled",
1316 			ctrl_hdgst ? "enabled" : "disabled");
1317 		goto free_icresp;
1318 	}
1319 
1320 	if (icresp->cpda != 0) {
1321 		pr_err("queue %d: unsupported cpda returned %d\n",
1322 			nvme_tcp_queue_id(queue), icresp->cpda);
1323 		goto free_icresp;
1324 	}
1325 
1326 	ret = 0;
1327 free_icresp:
1328 	kfree(icresp);
1329 free_icreq:
1330 	kfree(icreq);
1331 	return ret;
1332 }
1333 
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1334 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1335 {
1336 	return nvme_tcp_queue_id(queue) == 0;
1337 }
1338 
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1339 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1340 {
1341 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1342 	int qid = nvme_tcp_queue_id(queue);
1343 
1344 	return !nvme_tcp_admin_queue(queue) &&
1345 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1346 }
1347 
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1348 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1349 {
1350 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1351 	int qid = nvme_tcp_queue_id(queue);
1352 
1353 	return !nvme_tcp_admin_queue(queue) &&
1354 		!nvme_tcp_default_queue(queue) &&
1355 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1356 			  ctrl->io_queues[HCTX_TYPE_READ];
1357 }
1358 
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1359 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1360 {
1361 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1362 	int qid = nvme_tcp_queue_id(queue);
1363 
1364 	return !nvme_tcp_admin_queue(queue) &&
1365 		!nvme_tcp_default_queue(queue) &&
1366 		!nvme_tcp_read_queue(queue) &&
1367 		qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1368 			  ctrl->io_queues[HCTX_TYPE_READ] +
1369 			  ctrl->io_queues[HCTX_TYPE_POLL];
1370 }
1371 
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1372 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1373 {
1374 	struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1375 	int qid = nvme_tcp_queue_id(queue);
1376 	int n = 0;
1377 
1378 	if (nvme_tcp_default_queue(queue))
1379 		n = qid - 1;
1380 	else if (nvme_tcp_read_queue(queue))
1381 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1382 	else if (nvme_tcp_poll_queue(queue))
1383 		n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1384 				ctrl->io_queues[HCTX_TYPE_READ] - 1;
1385 	queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1386 }
1387 
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1388 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1389 		int qid, size_t queue_size)
1390 {
1391 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1392 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1393 	int ret, rcv_pdu_size;
1394 
1395 	mutex_init(&queue->queue_lock);
1396 	queue->ctrl = ctrl;
1397 	init_llist_head(&queue->req_list);
1398 	INIT_LIST_HEAD(&queue->send_list);
1399 	mutex_init(&queue->send_mutex);
1400 	INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1401 	queue->queue_size = queue_size;
1402 
1403 	if (qid > 0)
1404 		queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1405 	else
1406 		queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1407 						NVME_TCP_ADMIN_CCSZ;
1408 
1409 	ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1410 			IPPROTO_TCP, &queue->sock);
1411 	if (ret) {
1412 		dev_err(nctrl->device,
1413 			"failed to create socket: %d\n", ret);
1414 		goto err_destroy_mutex;
1415 	}
1416 
1417 	/* Single syn retry */
1418 	tcp_sock_set_syncnt(queue->sock->sk, 1);
1419 
1420 	/* Set TCP no delay */
1421 	tcp_sock_set_nodelay(queue->sock->sk);
1422 
1423 	/*
1424 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1425 	 * close. This is done to prevent stale data from being sent should
1426 	 * the network connection be restored before TCP times out.
1427 	 */
1428 	sock_no_linger(queue->sock->sk);
1429 
1430 	if (so_priority > 0)
1431 		sock_set_priority(queue->sock->sk, so_priority);
1432 
1433 	/* Set socket type of service */
1434 	if (nctrl->opts->tos >= 0)
1435 		ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1436 
1437 	/* Set 10 seconds timeout for icresp recvmsg */
1438 	queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1439 
1440 	queue->sock->sk->sk_allocation = GFP_ATOMIC;
1441 	nvme_tcp_set_queue_io_cpu(queue);
1442 	queue->request = NULL;
1443 	queue->data_remaining = 0;
1444 	queue->ddgst_remaining = 0;
1445 	queue->pdu_remaining = 0;
1446 	queue->pdu_offset = 0;
1447 	sk_set_memalloc(queue->sock->sk);
1448 
1449 	if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1450 		ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1451 			sizeof(ctrl->src_addr));
1452 		if (ret) {
1453 			dev_err(nctrl->device,
1454 				"failed to bind queue %d socket %d\n",
1455 				qid, ret);
1456 			goto err_sock;
1457 		}
1458 	}
1459 
1460 	queue->hdr_digest = nctrl->opts->hdr_digest;
1461 	queue->data_digest = nctrl->opts->data_digest;
1462 	if (queue->hdr_digest || queue->data_digest) {
1463 		ret = nvme_tcp_alloc_crypto(queue);
1464 		if (ret) {
1465 			dev_err(nctrl->device,
1466 				"failed to allocate queue %d crypto\n", qid);
1467 			goto err_sock;
1468 		}
1469 	}
1470 
1471 	rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1472 			nvme_tcp_hdgst_len(queue);
1473 	queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1474 	if (!queue->pdu) {
1475 		ret = -ENOMEM;
1476 		goto err_crypto;
1477 	}
1478 
1479 	dev_dbg(nctrl->device, "connecting queue %d\n",
1480 			nvme_tcp_queue_id(queue));
1481 
1482 	ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1483 		sizeof(ctrl->addr), 0);
1484 	if (ret) {
1485 		dev_err(nctrl->device,
1486 			"failed to connect socket: %d\n", ret);
1487 		goto err_rcv_pdu;
1488 	}
1489 
1490 	ret = nvme_tcp_init_connection(queue);
1491 	if (ret)
1492 		goto err_init_connect;
1493 
1494 	queue->rd_enabled = true;
1495 	set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1496 	nvme_tcp_init_recv_ctx(queue);
1497 
1498 	write_lock_bh(&queue->sock->sk->sk_callback_lock);
1499 	queue->sock->sk->sk_user_data = queue;
1500 	queue->state_change = queue->sock->sk->sk_state_change;
1501 	queue->data_ready = queue->sock->sk->sk_data_ready;
1502 	queue->write_space = queue->sock->sk->sk_write_space;
1503 	queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1504 	queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1505 	queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1506 #ifdef CONFIG_NET_RX_BUSY_POLL
1507 	queue->sock->sk->sk_ll_usec = 1;
1508 #endif
1509 	write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1510 
1511 	return 0;
1512 
1513 err_init_connect:
1514 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1515 err_rcv_pdu:
1516 	kfree(queue->pdu);
1517 err_crypto:
1518 	if (queue->hdr_digest || queue->data_digest)
1519 		nvme_tcp_free_crypto(queue);
1520 err_sock:
1521 	sock_release(queue->sock);
1522 	queue->sock = NULL;
1523 err_destroy_mutex:
1524 	mutex_destroy(&queue->queue_lock);
1525 	return ret;
1526 }
1527 
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1528 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1529 {
1530 	struct socket *sock = queue->sock;
1531 
1532 	write_lock_bh(&sock->sk->sk_callback_lock);
1533 	sock->sk->sk_user_data  = NULL;
1534 	sock->sk->sk_data_ready = queue->data_ready;
1535 	sock->sk->sk_state_change = queue->state_change;
1536 	sock->sk->sk_write_space  = queue->write_space;
1537 	write_unlock_bh(&sock->sk->sk_callback_lock);
1538 }
1539 
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1540 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1541 {
1542 	kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1543 	nvme_tcp_restore_sock_calls(queue);
1544 	cancel_work_sync(&queue->io_work);
1545 }
1546 
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1547 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1548 {
1549 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1550 	struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1551 
1552 	mutex_lock(&queue->queue_lock);
1553 	if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1554 		__nvme_tcp_stop_queue(queue);
1555 	mutex_unlock(&queue->queue_lock);
1556 }
1557 
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1558 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1559 {
1560 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1561 	int ret;
1562 
1563 	if (idx)
1564 		ret = nvmf_connect_io_queue(nctrl, idx, false);
1565 	else
1566 		ret = nvmf_connect_admin_queue(nctrl);
1567 
1568 	if (!ret) {
1569 		set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1570 	} else {
1571 		if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1572 			__nvme_tcp_stop_queue(&ctrl->queues[idx]);
1573 		dev_err(nctrl->device,
1574 			"failed to connect queue: %d ret=%d\n", idx, ret);
1575 	}
1576 	return ret;
1577 }
1578 
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1579 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1580 		bool admin)
1581 {
1582 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1583 	struct blk_mq_tag_set *set;
1584 	int ret;
1585 
1586 	if (admin) {
1587 		set = &ctrl->admin_tag_set;
1588 		memset(set, 0, sizeof(*set));
1589 		set->ops = &nvme_tcp_admin_mq_ops;
1590 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1591 		set->reserved_tags = 2; /* connect + keep-alive */
1592 		set->numa_node = nctrl->numa_node;
1593 		set->flags = BLK_MQ_F_BLOCKING;
1594 		set->cmd_size = sizeof(struct nvme_tcp_request);
1595 		set->driver_data = ctrl;
1596 		set->nr_hw_queues = 1;
1597 		set->timeout = ADMIN_TIMEOUT;
1598 	} else {
1599 		set = &ctrl->tag_set;
1600 		memset(set, 0, sizeof(*set));
1601 		set->ops = &nvme_tcp_mq_ops;
1602 		set->queue_depth = nctrl->sqsize + 1;
1603 		set->reserved_tags = 1; /* fabric connect */
1604 		set->numa_node = nctrl->numa_node;
1605 		set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1606 		set->cmd_size = sizeof(struct nvme_tcp_request);
1607 		set->driver_data = ctrl;
1608 		set->nr_hw_queues = nctrl->queue_count - 1;
1609 		set->timeout = NVME_IO_TIMEOUT;
1610 		set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1611 	}
1612 
1613 	ret = blk_mq_alloc_tag_set(set);
1614 	if (ret)
1615 		return ERR_PTR(ret);
1616 
1617 	return set;
1618 }
1619 
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1620 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1621 {
1622 	if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1623 		cancel_work_sync(&ctrl->async_event_work);
1624 		nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1625 		to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1626 	}
1627 
1628 	nvme_tcp_free_queue(ctrl, 0);
1629 }
1630 
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1631 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1632 {
1633 	int i;
1634 
1635 	for (i = 1; i < ctrl->queue_count; i++)
1636 		nvme_tcp_free_queue(ctrl, i);
1637 }
1638 
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1639 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1640 {
1641 	int i;
1642 
1643 	for (i = 1; i < ctrl->queue_count; i++)
1644 		nvme_tcp_stop_queue(ctrl, i);
1645 }
1646 
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1647 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1648 {
1649 	int i, ret = 0;
1650 
1651 	for (i = 1; i < ctrl->queue_count; i++) {
1652 		ret = nvme_tcp_start_queue(ctrl, i);
1653 		if (ret)
1654 			goto out_stop_queues;
1655 	}
1656 
1657 	return 0;
1658 
1659 out_stop_queues:
1660 	for (i--; i >= 1; i--)
1661 		nvme_tcp_stop_queue(ctrl, i);
1662 	return ret;
1663 }
1664 
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1665 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1666 {
1667 	int ret;
1668 
1669 	ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1670 	if (ret)
1671 		return ret;
1672 
1673 	ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1674 	if (ret)
1675 		goto out_free_queue;
1676 
1677 	return 0;
1678 
1679 out_free_queue:
1680 	nvme_tcp_free_queue(ctrl, 0);
1681 	return ret;
1682 }
1683 
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1684 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1685 {
1686 	int i, ret;
1687 
1688 	for (i = 1; i < ctrl->queue_count; i++) {
1689 		ret = nvme_tcp_alloc_queue(ctrl, i,
1690 				ctrl->sqsize + 1);
1691 		if (ret)
1692 			goto out_free_queues;
1693 	}
1694 
1695 	return 0;
1696 
1697 out_free_queues:
1698 	for (i--; i >= 1; i--)
1699 		nvme_tcp_free_queue(ctrl, i);
1700 
1701 	return ret;
1702 }
1703 
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1704 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1705 {
1706 	unsigned int nr_io_queues;
1707 
1708 	nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1709 	nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1710 	nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1711 
1712 	return nr_io_queues;
1713 }
1714 
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1715 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1716 		unsigned int nr_io_queues)
1717 {
1718 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1719 	struct nvmf_ctrl_options *opts = nctrl->opts;
1720 
1721 	if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1722 		/*
1723 		 * separate read/write queues
1724 		 * hand out dedicated default queues only after we have
1725 		 * sufficient read queues.
1726 		 */
1727 		ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1728 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1729 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1730 			min(opts->nr_write_queues, nr_io_queues);
1731 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1732 	} else {
1733 		/*
1734 		 * shared read/write queues
1735 		 * either no write queues were requested, or we don't have
1736 		 * sufficient queue count to have dedicated default queues.
1737 		 */
1738 		ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1739 			min(opts->nr_io_queues, nr_io_queues);
1740 		nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1741 	}
1742 
1743 	if (opts->nr_poll_queues && nr_io_queues) {
1744 		/* map dedicated poll queues only if we have queues left */
1745 		ctrl->io_queues[HCTX_TYPE_POLL] =
1746 			min(opts->nr_poll_queues, nr_io_queues);
1747 	}
1748 }
1749 
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1750 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1751 {
1752 	unsigned int nr_io_queues;
1753 	int ret;
1754 
1755 	nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1756 	ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1757 	if (ret)
1758 		return ret;
1759 
1760 	if (nr_io_queues == 0) {
1761 		dev_err(ctrl->device,
1762 			"unable to set any I/O queues\n");
1763 		return -ENOMEM;
1764 	}
1765 
1766 	ctrl->queue_count = nr_io_queues + 1;
1767 	dev_info(ctrl->device,
1768 		"creating %d I/O queues.\n", nr_io_queues);
1769 
1770 	nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1771 
1772 	return __nvme_tcp_alloc_io_queues(ctrl);
1773 }
1774 
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1775 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1776 {
1777 	nvme_tcp_stop_io_queues(ctrl);
1778 	if (remove) {
1779 		blk_cleanup_queue(ctrl->connect_q);
1780 		blk_mq_free_tag_set(ctrl->tagset);
1781 	}
1782 	nvme_tcp_free_io_queues(ctrl);
1783 }
1784 
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1785 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1786 {
1787 	int ret;
1788 
1789 	ret = nvme_tcp_alloc_io_queues(ctrl);
1790 	if (ret)
1791 		return ret;
1792 
1793 	if (new) {
1794 		ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1795 		if (IS_ERR(ctrl->tagset)) {
1796 			ret = PTR_ERR(ctrl->tagset);
1797 			goto out_free_io_queues;
1798 		}
1799 
1800 		ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1801 		if (IS_ERR(ctrl->connect_q)) {
1802 			ret = PTR_ERR(ctrl->connect_q);
1803 			goto out_free_tag_set;
1804 		}
1805 	}
1806 
1807 	ret = nvme_tcp_start_io_queues(ctrl);
1808 	if (ret)
1809 		goto out_cleanup_connect_q;
1810 
1811 	if (!new) {
1812 		nvme_start_queues(ctrl);
1813 		if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1814 			/*
1815 			 * If we timed out waiting for freeze we are likely to
1816 			 * be stuck.  Fail the controller initialization just
1817 			 * to be safe.
1818 			 */
1819 			ret = -ENODEV;
1820 			goto out_wait_freeze_timed_out;
1821 		}
1822 		blk_mq_update_nr_hw_queues(ctrl->tagset,
1823 			ctrl->queue_count - 1);
1824 		nvme_unfreeze(ctrl);
1825 	}
1826 
1827 	return 0;
1828 
1829 out_wait_freeze_timed_out:
1830 	nvme_stop_queues(ctrl);
1831 	nvme_sync_io_queues(ctrl);
1832 	nvme_tcp_stop_io_queues(ctrl);
1833 out_cleanup_connect_q:
1834 	nvme_cancel_tagset(ctrl);
1835 	if (new)
1836 		blk_cleanup_queue(ctrl->connect_q);
1837 out_free_tag_set:
1838 	if (new)
1839 		blk_mq_free_tag_set(ctrl->tagset);
1840 out_free_io_queues:
1841 	nvme_tcp_free_io_queues(ctrl);
1842 	return ret;
1843 }
1844 
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1845 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1846 {
1847 	nvme_tcp_stop_queue(ctrl, 0);
1848 	if (remove) {
1849 		blk_cleanup_queue(ctrl->admin_q);
1850 		blk_cleanup_queue(ctrl->fabrics_q);
1851 		blk_mq_free_tag_set(ctrl->admin_tagset);
1852 	}
1853 	nvme_tcp_free_admin_queue(ctrl);
1854 }
1855 
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1856 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1857 {
1858 	int error;
1859 
1860 	error = nvme_tcp_alloc_admin_queue(ctrl);
1861 	if (error)
1862 		return error;
1863 
1864 	if (new) {
1865 		ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1866 		if (IS_ERR(ctrl->admin_tagset)) {
1867 			error = PTR_ERR(ctrl->admin_tagset);
1868 			goto out_free_queue;
1869 		}
1870 
1871 		ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1872 		if (IS_ERR(ctrl->fabrics_q)) {
1873 			error = PTR_ERR(ctrl->fabrics_q);
1874 			goto out_free_tagset;
1875 		}
1876 
1877 		ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1878 		if (IS_ERR(ctrl->admin_q)) {
1879 			error = PTR_ERR(ctrl->admin_q);
1880 			goto out_cleanup_fabrics_q;
1881 		}
1882 	}
1883 
1884 	error = nvme_tcp_start_queue(ctrl, 0);
1885 	if (error)
1886 		goto out_cleanup_queue;
1887 
1888 	error = nvme_enable_ctrl(ctrl);
1889 	if (error)
1890 		goto out_stop_queue;
1891 
1892 	nvme_start_admin_queue(ctrl);
1893 
1894 	error = nvme_init_identify(ctrl);
1895 	if (error)
1896 		goto out_quiesce_queue;
1897 
1898 	return 0;
1899 
1900 out_quiesce_queue:
1901 	nvme_stop_admin_queue(ctrl);
1902 	blk_sync_queue(ctrl->admin_q);
1903 out_stop_queue:
1904 	nvme_tcp_stop_queue(ctrl, 0);
1905 	nvme_cancel_admin_tagset(ctrl);
1906 out_cleanup_queue:
1907 	if (new)
1908 		blk_cleanup_queue(ctrl->admin_q);
1909 out_cleanup_fabrics_q:
1910 	if (new)
1911 		blk_cleanup_queue(ctrl->fabrics_q);
1912 out_free_tagset:
1913 	if (new)
1914 		blk_mq_free_tag_set(ctrl->admin_tagset);
1915 out_free_queue:
1916 	nvme_tcp_free_admin_queue(ctrl);
1917 	return error;
1918 }
1919 
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1920 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1921 		bool remove)
1922 {
1923 	nvme_stop_admin_queue(ctrl);
1924 	blk_sync_queue(ctrl->admin_q);
1925 	nvme_tcp_stop_queue(ctrl, 0);
1926 	if (ctrl->admin_tagset) {
1927 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1928 			nvme_cancel_request, ctrl);
1929 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1930 	}
1931 	if (remove)
1932 		nvme_start_admin_queue(ctrl);
1933 	nvme_tcp_destroy_admin_queue(ctrl, remove);
1934 }
1935 
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1936 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1937 		bool remove)
1938 {
1939 	if (ctrl->queue_count <= 1)
1940 		return;
1941 	nvme_stop_admin_queue(ctrl);
1942 	nvme_start_freeze(ctrl);
1943 	nvme_stop_queues(ctrl);
1944 	nvme_sync_io_queues(ctrl);
1945 	nvme_tcp_stop_io_queues(ctrl);
1946 	if (ctrl->tagset) {
1947 		blk_mq_tagset_busy_iter(ctrl->tagset,
1948 			nvme_cancel_request, ctrl);
1949 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
1950 	}
1951 	if (remove)
1952 		nvme_start_queues(ctrl);
1953 	nvme_tcp_destroy_io_queues(ctrl, remove);
1954 }
1955 
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)1956 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1957 {
1958 	/* If we are resetting/deleting then do nothing */
1959 	if (ctrl->state != NVME_CTRL_CONNECTING) {
1960 		WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1961 			ctrl->state == NVME_CTRL_LIVE);
1962 		return;
1963 	}
1964 
1965 	if (nvmf_should_reconnect(ctrl)) {
1966 		dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1967 			ctrl->opts->reconnect_delay);
1968 		queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1969 				ctrl->opts->reconnect_delay * HZ);
1970 	} else {
1971 		dev_info(ctrl->device, "Removing controller...\n");
1972 		nvme_delete_ctrl(ctrl);
1973 	}
1974 }
1975 
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)1976 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1977 {
1978 	struct nvmf_ctrl_options *opts = ctrl->opts;
1979 	int ret;
1980 
1981 	ret = nvme_tcp_configure_admin_queue(ctrl, new);
1982 	if (ret)
1983 		return ret;
1984 
1985 	if (ctrl->icdoff) {
1986 		dev_err(ctrl->device, "icdoff is not supported!\n");
1987 		goto destroy_admin;
1988 	}
1989 
1990 	if (opts->queue_size > ctrl->sqsize + 1)
1991 		dev_warn(ctrl->device,
1992 			"queue_size %zu > ctrl sqsize %u, clamping down\n",
1993 			opts->queue_size, ctrl->sqsize + 1);
1994 
1995 	if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1996 		dev_warn(ctrl->device,
1997 			"sqsize %u > ctrl maxcmd %u, clamping down\n",
1998 			ctrl->sqsize + 1, ctrl->maxcmd);
1999 		ctrl->sqsize = ctrl->maxcmd - 1;
2000 	}
2001 
2002 	if (ctrl->queue_count > 1) {
2003 		ret = nvme_tcp_configure_io_queues(ctrl, new);
2004 		if (ret)
2005 			goto destroy_admin;
2006 	}
2007 
2008 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2009 		/*
2010 		 * state change failure is ok if we started ctrl delete,
2011 		 * unless we're during creation of a new controller to
2012 		 * avoid races with teardown flow.
2013 		 */
2014 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2015 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2016 		WARN_ON_ONCE(new);
2017 		ret = -EINVAL;
2018 		goto destroy_io;
2019 	}
2020 
2021 	nvme_start_ctrl(ctrl);
2022 	return 0;
2023 
2024 destroy_io:
2025 	if (ctrl->queue_count > 1) {
2026 		nvme_stop_queues(ctrl);
2027 		nvme_sync_io_queues(ctrl);
2028 		nvme_tcp_stop_io_queues(ctrl);
2029 		nvme_cancel_tagset(ctrl);
2030 		nvme_tcp_destroy_io_queues(ctrl, new);
2031 	}
2032 destroy_admin:
2033 	nvme_stop_admin_queue(ctrl);
2034 	blk_sync_queue(ctrl->admin_q);
2035 	nvme_tcp_stop_queue(ctrl, 0);
2036 	nvme_cancel_admin_tagset(ctrl);
2037 	nvme_tcp_destroy_admin_queue(ctrl, new);
2038 	return ret;
2039 }
2040 
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2041 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2042 {
2043 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2044 			struct nvme_tcp_ctrl, connect_work);
2045 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2046 
2047 	++ctrl->nr_reconnects;
2048 
2049 	if (nvme_tcp_setup_ctrl(ctrl, false))
2050 		goto requeue;
2051 
2052 	dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2053 			ctrl->nr_reconnects);
2054 
2055 	ctrl->nr_reconnects = 0;
2056 
2057 	return;
2058 
2059 requeue:
2060 	dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2061 			ctrl->nr_reconnects);
2062 	nvme_tcp_reconnect_or_remove(ctrl);
2063 }
2064 
nvme_tcp_error_recovery_work(struct work_struct * work)2065 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2066 {
2067 	struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2068 				struct nvme_tcp_ctrl, err_work);
2069 	struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2070 
2071 	nvme_stop_keep_alive(ctrl);
2072 	nvme_tcp_teardown_io_queues(ctrl, false);
2073 	/* unquiesce to fail fast pending requests */
2074 	nvme_start_queues(ctrl);
2075 	nvme_tcp_teardown_admin_queue(ctrl, false);
2076 	nvme_start_admin_queue(ctrl);
2077 
2078 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2079 		/* state change failure is ok if we started ctrl delete */
2080 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2081 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2082 		return;
2083 	}
2084 
2085 	nvme_tcp_reconnect_or_remove(ctrl);
2086 }
2087 
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2088 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2089 {
2090 	cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2091 	cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2092 
2093 	nvme_tcp_teardown_io_queues(ctrl, shutdown);
2094 	nvme_stop_admin_queue(ctrl);
2095 	if (shutdown)
2096 		nvme_shutdown_ctrl(ctrl);
2097 	else
2098 		nvme_disable_ctrl(ctrl);
2099 	nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2100 }
2101 
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2102 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2103 {
2104 	nvme_tcp_teardown_ctrl(ctrl, true);
2105 }
2106 
nvme_reset_ctrl_work(struct work_struct * work)2107 static void nvme_reset_ctrl_work(struct work_struct *work)
2108 {
2109 	struct nvme_ctrl *ctrl =
2110 		container_of(work, struct nvme_ctrl, reset_work);
2111 
2112 	nvme_stop_ctrl(ctrl);
2113 	nvme_tcp_teardown_ctrl(ctrl, false);
2114 
2115 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2116 		/* state change failure is ok if we started ctrl delete */
2117 		WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2118 			     ctrl->state != NVME_CTRL_DELETING_NOIO);
2119 		return;
2120 	}
2121 
2122 	if (nvme_tcp_setup_ctrl(ctrl, false))
2123 		goto out_fail;
2124 
2125 	return;
2126 
2127 out_fail:
2128 	++ctrl->nr_reconnects;
2129 	nvme_tcp_reconnect_or_remove(ctrl);
2130 }
2131 
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2132 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2133 {
2134 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2135 
2136 	if (list_empty(&ctrl->list))
2137 		goto free_ctrl;
2138 
2139 	mutex_lock(&nvme_tcp_ctrl_mutex);
2140 	list_del(&ctrl->list);
2141 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2142 
2143 	nvmf_free_options(nctrl->opts);
2144 free_ctrl:
2145 	kfree(ctrl->queues);
2146 	kfree(ctrl);
2147 }
2148 
nvme_tcp_set_sg_null(struct nvme_command * c)2149 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2150 {
2151 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2152 
2153 	sg->addr = 0;
2154 	sg->length = 0;
2155 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2156 			NVME_SGL_FMT_TRANSPORT_A;
2157 }
2158 
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2159 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2160 		struct nvme_command *c, u32 data_len)
2161 {
2162 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2163 
2164 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2165 	sg->length = cpu_to_le32(data_len);
2166 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2167 }
2168 
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2169 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2170 		u32 data_len)
2171 {
2172 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2173 
2174 	sg->addr = 0;
2175 	sg->length = cpu_to_le32(data_len);
2176 	sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2177 			NVME_SGL_FMT_TRANSPORT_A;
2178 }
2179 
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2180 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2181 {
2182 	struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2183 	struct nvme_tcp_queue *queue = &ctrl->queues[0];
2184 	struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2185 	struct nvme_command *cmd = &pdu->cmd;
2186 	u8 hdgst = nvme_tcp_hdgst_len(queue);
2187 
2188 	memset(pdu, 0, sizeof(*pdu));
2189 	pdu->hdr.type = nvme_tcp_cmd;
2190 	if (queue->hdr_digest)
2191 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2192 	pdu->hdr.hlen = sizeof(*pdu);
2193 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2194 
2195 	cmd->common.opcode = nvme_admin_async_event;
2196 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2197 	cmd->common.flags |= NVME_CMD_SGL_METABUF;
2198 	nvme_tcp_set_sg_null(cmd);
2199 
2200 	ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2201 	ctrl->async_req.offset = 0;
2202 	ctrl->async_req.curr_bio = NULL;
2203 	ctrl->async_req.data_len = 0;
2204 
2205 	nvme_tcp_queue_request(&ctrl->async_req, true, true);
2206 }
2207 
nvme_tcp_complete_timed_out(struct request * rq)2208 static void nvme_tcp_complete_timed_out(struct request *rq)
2209 {
2210 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2211 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2212 
2213 	nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2214 	if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2215 		nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2216 		blk_mq_complete_request(rq);
2217 	}
2218 }
2219 
2220 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2221 nvme_tcp_timeout(struct request *rq, bool reserved)
2222 {
2223 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2224 	struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2225 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2226 
2227 	dev_warn(ctrl->device,
2228 		"queue %d: timeout request %#x type %d\n",
2229 		nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2230 
2231 	if (ctrl->state != NVME_CTRL_LIVE) {
2232 		/*
2233 		 * If we are resetting, connecting or deleting we should
2234 		 * complete immediately because we may block controller
2235 		 * teardown or setup sequence
2236 		 * - ctrl disable/shutdown fabrics requests
2237 		 * - connect requests
2238 		 * - initialization admin requests
2239 		 * - I/O requests that entered after unquiescing and
2240 		 *   the controller stopped responding
2241 		 *
2242 		 * All other requests should be cancelled by the error
2243 		 * recovery work, so it's fine that we fail it here.
2244 		 */
2245 		nvme_tcp_complete_timed_out(rq);
2246 		return BLK_EH_DONE;
2247 	}
2248 
2249 	/*
2250 	 * LIVE state should trigger the normal error recovery which will
2251 	 * handle completing this request.
2252 	 */
2253 	nvme_tcp_error_recovery(ctrl);
2254 	return BLK_EH_RESET_TIMER;
2255 }
2256 
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2257 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2258 			struct request *rq)
2259 {
2260 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2261 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2262 	struct nvme_command *c = &pdu->cmd;
2263 
2264 	c->common.flags |= NVME_CMD_SGL_METABUF;
2265 
2266 	if (!blk_rq_nr_phys_segments(rq))
2267 		nvme_tcp_set_sg_null(c);
2268 	else if (rq_data_dir(rq) == WRITE &&
2269 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2270 		nvme_tcp_set_sg_inline(queue, c, req->data_len);
2271 	else
2272 		nvme_tcp_set_sg_host_data(c, req->data_len);
2273 
2274 	return 0;
2275 }
2276 
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2277 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2278 		struct request *rq)
2279 {
2280 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2281 	struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2282 	struct nvme_tcp_queue *queue = req->queue;
2283 	u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2284 	blk_status_t ret;
2285 
2286 	ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2287 	if (ret)
2288 		return ret;
2289 
2290 	req->state = NVME_TCP_SEND_CMD_PDU;
2291 	req->offset = 0;
2292 	req->data_sent = 0;
2293 	req->pdu_len = 0;
2294 	req->pdu_sent = 0;
2295 	req->data_len = blk_rq_nr_phys_segments(rq) ?
2296 				blk_rq_payload_bytes(rq) : 0;
2297 	req->curr_bio = rq->bio;
2298 
2299 	if (rq_data_dir(rq) == WRITE &&
2300 	    req->data_len <= nvme_tcp_inline_data_size(queue))
2301 		req->pdu_len = req->data_len;
2302 	else if (req->curr_bio)
2303 		nvme_tcp_init_iter(req, READ);
2304 
2305 	pdu->hdr.type = nvme_tcp_cmd;
2306 	pdu->hdr.flags = 0;
2307 	if (queue->hdr_digest)
2308 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
2309 	if (queue->data_digest && req->pdu_len) {
2310 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
2311 		ddgst = nvme_tcp_ddgst_len(queue);
2312 	}
2313 	pdu->hdr.hlen = sizeof(*pdu);
2314 	pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2315 	pdu->hdr.plen =
2316 		cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2317 
2318 	ret = nvme_tcp_map_data(queue, rq);
2319 	if (unlikely(ret)) {
2320 		nvme_cleanup_cmd(rq);
2321 		dev_err(queue->ctrl->ctrl.device,
2322 			"Failed to map data (%d)\n", ret);
2323 		return ret;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2329 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2330 {
2331 	struct nvme_tcp_queue *queue = hctx->driver_data;
2332 
2333 	if (!llist_empty(&queue->req_list))
2334 		queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2335 }
2336 
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2337 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2338 		const struct blk_mq_queue_data *bd)
2339 {
2340 	struct nvme_ns *ns = hctx->queue->queuedata;
2341 	struct nvme_tcp_queue *queue = hctx->driver_data;
2342 	struct request *rq = bd->rq;
2343 	struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2344 	bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2345 	blk_status_t ret;
2346 
2347 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2348 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2349 
2350 	ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2351 	if (unlikely(ret))
2352 		return ret;
2353 
2354 	blk_mq_start_request(rq);
2355 
2356 	nvme_tcp_queue_request(req, true, bd->last);
2357 
2358 	return BLK_STS_OK;
2359 }
2360 
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2361 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2362 {
2363 	struct nvme_tcp_ctrl *ctrl = set->driver_data;
2364 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2365 
2366 	if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2367 		/* separate read/write queues */
2368 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2369 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2370 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2371 		set->map[HCTX_TYPE_READ].nr_queues =
2372 			ctrl->io_queues[HCTX_TYPE_READ];
2373 		set->map[HCTX_TYPE_READ].queue_offset =
2374 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2375 	} else {
2376 		/* shared read/write queues */
2377 		set->map[HCTX_TYPE_DEFAULT].nr_queues =
2378 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2379 		set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2380 		set->map[HCTX_TYPE_READ].nr_queues =
2381 			ctrl->io_queues[HCTX_TYPE_DEFAULT];
2382 		set->map[HCTX_TYPE_READ].queue_offset = 0;
2383 	}
2384 	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2385 	blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2386 
2387 	if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2388 		/* map dedicated poll queues only if we have queues left */
2389 		set->map[HCTX_TYPE_POLL].nr_queues =
2390 				ctrl->io_queues[HCTX_TYPE_POLL];
2391 		set->map[HCTX_TYPE_POLL].queue_offset =
2392 			ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2393 			ctrl->io_queues[HCTX_TYPE_READ];
2394 		blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2395 	}
2396 
2397 	dev_info(ctrl->ctrl.device,
2398 		"mapped %d/%d/%d default/read/poll queues.\n",
2399 		ctrl->io_queues[HCTX_TYPE_DEFAULT],
2400 		ctrl->io_queues[HCTX_TYPE_READ],
2401 		ctrl->io_queues[HCTX_TYPE_POLL]);
2402 
2403 	return 0;
2404 }
2405 
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2406 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2407 {
2408 	struct nvme_tcp_queue *queue = hctx->driver_data;
2409 	struct sock *sk = queue->sock->sk;
2410 
2411 	if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2412 		return 0;
2413 
2414 	set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2415 	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2416 		sk_busy_loop(sk, true);
2417 	nvme_tcp_try_recv(queue);
2418 	clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2419 	return queue->nr_cqe;
2420 }
2421 
2422 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2423 	.queue_rq	= nvme_tcp_queue_rq,
2424 	.commit_rqs	= nvme_tcp_commit_rqs,
2425 	.complete	= nvme_complete_rq,
2426 	.init_request	= nvme_tcp_init_request,
2427 	.exit_request	= nvme_tcp_exit_request,
2428 	.init_hctx	= nvme_tcp_init_hctx,
2429 	.timeout	= nvme_tcp_timeout,
2430 	.map_queues	= nvme_tcp_map_queues,
2431 	.poll		= nvme_tcp_poll,
2432 };
2433 
2434 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2435 	.queue_rq	= nvme_tcp_queue_rq,
2436 	.complete	= nvme_complete_rq,
2437 	.init_request	= nvme_tcp_init_request,
2438 	.exit_request	= nvme_tcp_exit_request,
2439 	.init_hctx	= nvme_tcp_init_admin_hctx,
2440 	.timeout	= nvme_tcp_timeout,
2441 };
2442 
2443 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2444 	.name			= "tcp",
2445 	.module			= THIS_MODULE,
2446 	.flags			= NVME_F_FABRICS,
2447 	.reg_read32		= nvmf_reg_read32,
2448 	.reg_read64		= nvmf_reg_read64,
2449 	.reg_write32		= nvmf_reg_write32,
2450 	.free_ctrl		= nvme_tcp_free_ctrl,
2451 	.submit_async_event	= nvme_tcp_submit_async_event,
2452 	.delete_ctrl		= nvme_tcp_delete_ctrl,
2453 	.get_address		= nvmf_get_address,
2454 };
2455 
2456 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2457 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2458 {
2459 	struct nvme_tcp_ctrl *ctrl;
2460 	bool found = false;
2461 
2462 	mutex_lock(&nvme_tcp_ctrl_mutex);
2463 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2464 		found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2465 		if (found)
2466 			break;
2467 	}
2468 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2469 
2470 	return found;
2471 }
2472 
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2473 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2474 		struct nvmf_ctrl_options *opts)
2475 {
2476 	struct nvme_tcp_ctrl *ctrl;
2477 	int ret;
2478 
2479 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2480 	if (!ctrl)
2481 		return ERR_PTR(-ENOMEM);
2482 
2483 	INIT_LIST_HEAD(&ctrl->list);
2484 	ctrl->ctrl.opts = opts;
2485 	ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2486 				opts->nr_poll_queues + 1;
2487 	ctrl->ctrl.sqsize = opts->queue_size - 1;
2488 	ctrl->ctrl.kato = opts->kato;
2489 
2490 	INIT_DELAYED_WORK(&ctrl->connect_work,
2491 			nvme_tcp_reconnect_ctrl_work);
2492 	INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2493 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2494 
2495 	if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2496 		opts->trsvcid =
2497 			kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2498 		if (!opts->trsvcid) {
2499 			ret = -ENOMEM;
2500 			goto out_free_ctrl;
2501 		}
2502 		opts->mask |= NVMF_OPT_TRSVCID;
2503 	}
2504 
2505 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2506 			opts->traddr, opts->trsvcid, &ctrl->addr);
2507 	if (ret) {
2508 		pr_err("malformed address passed: %s:%s\n",
2509 			opts->traddr, opts->trsvcid);
2510 		goto out_free_ctrl;
2511 	}
2512 
2513 	if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2514 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2515 			opts->host_traddr, NULL, &ctrl->src_addr);
2516 		if (ret) {
2517 			pr_err("malformed src address passed: %s\n",
2518 			       opts->host_traddr);
2519 			goto out_free_ctrl;
2520 		}
2521 	}
2522 
2523 	if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2524 		ret = -EALREADY;
2525 		goto out_free_ctrl;
2526 	}
2527 
2528 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2529 				GFP_KERNEL);
2530 	if (!ctrl->queues) {
2531 		ret = -ENOMEM;
2532 		goto out_free_ctrl;
2533 	}
2534 
2535 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2536 	if (ret)
2537 		goto out_kfree_queues;
2538 
2539 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2540 		WARN_ON_ONCE(1);
2541 		ret = -EINTR;
2542 		goto out_uninit_ctrl;
2543 	}
2544 
2545 	ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2546 	if (ret)
2547 		goto out_uninit_ctrl;
2548 
2549 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2550 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2551 
2552 	mutex_lock(&nvme_tcp_ctrl_mutex);
2553 	list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2554 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2555 
2556 	return &ctrl->ctrl;
2557 
2558 out_uninit_ctrl:
2559 	nvme_uninit_ctrl(&ctrl->ctrl);
2560 	nvme_put_ctrl(&ctrl->ctrl);
2561 	if (ret > 0)
2562 		ret = -EIO;
2563 	return ERR_PTR(ret);
2564 out_kfree_queues:
2565 	kfree(ctrl->queues);
2566 out_free_ctrl:
2567 	kfree(ctrl);
2568 	return ERR_PTR(ret);
2569 }
2570 
2571 static struct nvmf_transport_ops nvme_tcp_transport = {
2572 	.name		= "tcp",
2573 	.module		= THIS_MODULE,
2574 	.required_opts	= NVMF_OPT_TRADDR,
2575 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2576 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2577 			  NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2578 			  NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2579 			  NVMF_OPT_TOS,
2580 	.create_ctrl	= nvme_tcp_create_ctrl,
2581 };
2582 
nvme_tcp_init_module(void)2583 static int __init nvme_tcp_init_module(void)
2584 {
2585 	nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2586 			WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2587 	if (!nvme_tcp_wq)
2588 		return -ENOMEM;
2589 
2590 	nvmf_register_transport(&nvme_tcp_transport);
2591 	return 0;
2592 }
2593 
nvme_tcp_cleanup_module(void)2594 static void __exit nvme_tcp_cleanup_module(void)
2595 {
2596 	struct nvme_tcp_ctrl *ctrl;
2597 
2598 	nvmf_unregister_transport(&nvme_tcp_transport);
2599 
2600 	mutex_lock(&nvme_tcp_ctrl_mutex);
2601 	list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2602 		nvme_delete_ctrl(&ctrl->ctrl);
2603 	mutex_unlock(&nvme_tcp_ctrl_mutex);
2604 	flush_workqueue(nvme_delete_wq);
2605 
2606 	destroy_workqueue(nvme_tcp_wq);
2607 }
2608 
2609 module_init(nvme_tcp_init_module);
2610 module_exit(nvme_tcp_cleanup_module);
2611 
2612 MODULE_LICENSE("GPL v2");
2613