• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP target.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
17 
18 #include "nvmet.h"
19 
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE	(4 * PAGE_SIZE)
21 
22 /* Define the socket priority to use for connections were it is desirable
23  * that the NIC consider performing optimized packet processing or filtering.
24  * A non-zero value being sufficient to indicate general consideration of any
25  * possible optimization.  Making it a module param allows for alternative
26  * values that may be unique for some NIC implementations.
27  */
28 static int so_priority;
29 module_param(so_priority, int, 0644);
30 MODULE_PARM_DESC(so_priority, "nvmet tcp socket optimize priority");
31 
32 #define NVMET_TCP_RECV_BUDGET		8
33 #define NVMET_TCP_SEND_BUDGET		8
34 #define NVMET_TCP_IO_WORK_BUDGET	64
35 
36 enum nvmet_tcp_send_state {
37 	NVMET_TCP_SEND_DATA_PDU,
38 	NVMET_TCP_SEND_DATA,
39 	NVMET_TCP_SEND_R2T,
40 	NVMET_TCP_SEND_DDGST,
41 	NVMET_TCP_SEND_RESPONSE
42 };
43 
44 enum nvmet_tcp_recv_state {
45 	NVMET_TCP_RECV_PDU,
46 	NVMET_TCP_RECV_DATA,
47 	NVMET_TCP_RECV_DDGST,
48 	NVMET_TCP_RECV_ERR,
49 };
50 
51 enum {
52 	NVMET_TCP_F_INIT_FAILED = (1 << 0),
53 };
54 
55 struct nvmet_tcp_cmd {
56 	struct nvmet_tcp_queue		*queue;
57 	struct nvmet_req		req;
58 
59 	struct nvme_tcp_cmd_pdu		*cmd_pdu;
60 	struct nvme_tcp_rsp_pdu		*rsp_pdu;
61 	struct nvme_tcp_data_pdu	*data_pdu;
62 	struct nvme_tcp_r2t_pdu		*r2t_pdu;
63 
64 	u32				rbytes_done;
65 	u32				wbytes_done;
66 
67 	u32				pdu_len;
68 	u32				pdu_recv;
69 	int				sg_idx;
70 	int				nr_mapped;
71 	struct msghdr			recv_msg;
72 	struct kvec			*iov;
73 	u32				flags;
74 
75 	struct list_head		entry;
76 	struct llist_node		lentry;
77 
78 	/* send state */
79 	u32				offset;
80 	struct scatterlist		*cur_sg;
81 	enum nvmet_tcp_send_state	state;
82 
83 	__le32				exp_ddgst;
84 	__le32				recv_ddgst;
85 };
86 
87 enum nvmet_tcp_queue_state {
88 	NVMET_TCP_Q_CONNECTING,
89 	NVMET_TCP_Q_LIVE,
90 	NVMET_TCP_Q_DISCONNECTING,
91 };
92 
93 struct nvmet_tcp_queue {
94 	struct socket		*sock;
95 	struct nvmet_tcp_port	*port;
96 	struct work_struct	io_work;
97 	struct nvmet_cq		nvme_cq;
98 	struct nvmet_sq		nvme_sq;
99 
100 	/* send state */
101 	struct nvmet_tcp_cmd	*cmds;
102 	unsigned int		nr_cmds;
103 	struct list_head	free_list;
104 	struct llist_head	resp_list;
105 	struct list_head	resp_send_list;
106 	int			send_list_len;
107 	struct nvmet_tcp_cmd	*snd_cmd;
108 
109 	/* recv state */
110 	int			offset;
111 	int			left;
112 	enum nvmet_tcp_recv_state rcv_state;
113 	struct nvmet_tcp_cmd	*cmd;
114 	union nvme_tcp_pdu	pdu;
115 
116 	/* digest state */
117 	bool			hdr_digest;
118 	bool			data_digest;
119 	struct ahash_request	*snd_hash;
120 	struct ahash_request	*rcv_hash;
121 
122 	spinlock_t		state_lock;
123 	enum nvmet_tcp_queue_state state;
124 
125 	struct sockaddr_storage	sockaddr;
126 	struct sockaddr_storage	sockaddr_peer;
127 	struct work_struct	release_work;
128 
129 	int			idx;
130 	struct list_head	queue_list;
131 
132 	struct nvmet_tcp_cmd	connect;
133 
134 	struct page_frag_cache	pf_cache;
135 
136 	void (*data_ready)(struct sock *);
137 	void (*state_change)(struct sock *);
138 	void (*write_space)(struct sock *);
139 };
140 
141 struct nvmet_tcp_port {
142 	struct socket		*sock;
143 	struct work_struct	accept_work;
144 	struct nvmet_port	*nport;
145 	struct sockaddr_storage addr;
146 	void (*data_ready)(struct sock *);
147 };
148 
149 static DEFINE_IDA(nvmet_tcp_queue_ida);
150 static LIST_HEAD(nvmet_tcp_queue_list);
151 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
152 
153 static struct workqueue_struct *nvmet_tcp_wq;
154 static const struct nvmet_fabrics_ops nvmet_tcp_ops;
155 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
156 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
157 
nvmet_tcp_cmd_tag(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd)158 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
159 		struct nvmet_tcp_cmd *cmd)
160 {
161 	if (unlikely(!queue->nr_cmds)) {
162 		/* We didn't allocate cmds yet, send 0xffff */
163 		return USHRT_MAX;
164 	}
165 
166 	return cmd - queue->cmds;
167 }
168 
nvmet_tcp_has_data_in(struct nvmet_tcp_cmd * cmd)169 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
170 {
171 	return nvme_is_write(cmd->req.cmd) &&
172 		cmd->rbytes_done < cmd->req.transfer_len;
173 }
174 
nvmet_tcp_need_data_in(struct nvmet_tcp_cmd * cmd)175 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
176 {
177 	return nvmet_tcp_has_data_in(cmd) && !cmd->req.cqe->status;
178 }
179 
nvmet_tcp_need_data_out(struct nvmet_tcp_cmd * cmd)180 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
181 {
182 	return !nvme_is_write(cmd->req.cmd) &&
183 		cmd->req.transfer_len > 0 &&
184 		!cmd->req.cqe->status;
185 }
186 
nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd * cmd)187 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
188 {
189 	return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
190 		!cmd->rbytes_done;
191 }
192 
193 static inline struct nvmet_tcp_cmd *
nvmet_tcp_get_cmd(struct nvmet_tcp_queue * queue)194 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
195 {
196 	struct nvmet_tcp_cmd *cmd;
197 
198 	cmd = list_first_entry_or_null(&queue->free_list,
199 				struct nvmet_tcp_cmd, entry);
200 	if (!cmd)
201 		return NULL;
202 	list_del_init(&cmd->entry);
203 
204 	cmd->rbytes_done = cmd->wbytes_done = 0;
205 	cmd->pdu_len = 0;
206 	cmd->pdu_recv = 0;
207 	cmd->iov = NULL;
208 	cmd->flags = 0;
209 	return cmd;
210 }
211 
nvmet_tcp_put_cmd(struct nvmet_tcp_cmd * cmd)212 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
213 {
214 	if (unlikely(cmd == &cmd->queue->connect))
215 		return;
216 
217 	list_add_tail(&cmd->entry, &cmd->queue->free_list);
218 }
219 
queue_cpu(struct nvmet_tcp_queue * queue)220 static inline int queue_cpu(struct nvmet_tcp_queue *queue)
221 {
222 	return queue->sock->sk->sk_incoming_cpu;
223 }
224 
nvmet_tcp_hdgst_len(struct nvmet_tcp_queue * queue)225 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
226 {
227 	return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
228 }
229 
nvmet_tcp_ddgst_len(struct nvmet_tcp_queue * queue)230 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
231 {
232 	return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
233 }
234 
nvmet_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)235 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
236 		void *pdu, size_t len)
237 {
238 	struct scatterlist sg;
239 
240 	sg_init_one(&sg, pdu, len);
241 	ahash_request_set_crypt(hash, &sg, pdu + len, len);
242 	crypto_ahash_digest(hash);
243 }
244 
nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue * queue,void * pdu,size_t len)245 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
246 	void *pdu, size_t len)
247 {
248 	struct nvme_tcp_hdr *hdr = pdu;
249 	__le32 recv_digest;
250 	__le32 exp_digest;
251 
252 	if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
253 		pr_err("queue %d: header digest enabled but no header digest\n",
254 			queue->idx);
255 		return -EPROTO;
256 	}
257 
258 	recv_digest = *(__le32 *)(pdu + hdr->hlen);
259 	nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
260 	exp_digest = *(__le32 *)(pdu + hdr->hlen);
261 	if (recv_digest != exp_digest) {
262 		pr_err("queue %d: header digest error: recv %#x expected %#x\n",
263 			queue->idx, le32_to_cpu(recv_digest),
264 			le32_to_cpu(exp_digest));
265 		return -EPROTO;
266 	}
267 
268 	return 0;
269 }
270 
nvmet_tcp_check_ddgst(struct nvmet_tcp_queue * queue,void * pdu)271 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
272 {
273 	struct nvme_tcp_hdr *hdr = pdu;
274 	u8 digest_len = nvmet_tcp_hdgst_len(queue);
275 	u32 len;
276 
277 	len = le32_to_cpu(hdr->plen) - hdr->hlen -
278 		(hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
279 
280 	if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
281 		pr_err("queue %d: data digest flag is cleared\n", queue->idx);
282 		return -EPROTO;
283 	}
284 
285 	return 0;
286 }
287 
nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd * cmd)288 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
289 {
290 	struct scatterlist *sg;
291 	int i;
292 
293 	sg = &cmd->req.sg[cmd->sg_idx];
294 
295 	for (i = 0; i < cmd->nr_mapped; i++)
296 		kunmap(sg_page(&sg[i]));
297 }
298 
nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd * cmd)299 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
300 {
301 	struct kvec *iov = cmd->iov;
302 	struct scatterlist *sg;
303 	u32 length, offset, sg_offset;
304 
305 	length = cmd->pdu_len;
306 	cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
307 	offset = cmd->rbytes_done;
308 	cmd->sg_idx = offset / PAGE_SIZE;
309 	sg_offset = offset % PAGE_SIZE;
310 	sg = &cmd->req.sg[cmd->sg_idx];
311 
312 	while (length) {
313 		u32 iov_len = min_t(u32, length, sg->length - sg_offset);
314 
315 		iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
316 		iov->iov_len = iov_len;
317 
318 		length -= iov_len;
319 		sg = sg_next(sg);
320 		iov++;
321 		sg_offset = 0;
322 	}
323 
324 	iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
325 		cmd->nr_mapped, cmd->pdu_len);
326 }
327 
nvmet_tcp_fatal_error(struct nvmet_tcp_queue * queue)328 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
329 {
330 	queue->rcv_state = NVMET_TCP_RECV_ERR;
331 	if (queue->nvme_sq.ctrl)
332 		nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
333 	else
334 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
335 }
336 
nvmet_tcp_socket_error(struct nvmet_tcp_queue * queue,int status)337 static void nvmet_tcp_socket_error(struct nvmet_tcp_queue *queue, int status)
338 {
339 	if (status == -EPIPE || status == -ECONNRESET)
340 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
341 	else
342 		nvmet_tcp_fatal_error(queue);
343 }
344 
nvmet_tcp_map_data(struct nvmet_tcp_cmd * cmd)345 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
346 {
347 	struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
348 	u32 len = le32_to_cpu(sgl->length);
349 
350 	if (!len)
351 		return 0;
352 
353 	if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
354 			  NVME_SGL_FMT_OFFSET)) {
355 		if (!nvme_is_write(cmd->req.cmd))
356 			return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
357 
358 		if (len > cmd->req.port->inline_data_size)
359 			return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
360 		cmd->pdu_len = len;
361 	}
362 	cmd->req.transfer_len += len;
363 
364 	cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
365 	if (!cmd->req.sg)
366 		return NVME_SC_INTERNAL;
367 	cmd->cur_sg = cmd->req.sg;
368 
369 	if (nvmet_tcp_has_data_in(cmd)) {
370 		cmd->iov = kmalloc_array(cmd->req.sg_cnt,
371 				sizeof(*cmd->iov), GFP_KERNEL);
372 		if (!cmd->iov)
373 			goto err;
374 	}
375 
376 	return 0;
377 err:
378 	sgl_free(cmd->req.sg);
379 	return NVME_SC_INTERNAL;
380 }
381 
nvmet_tcp_send_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)382 static void nvmet_tcp_send_ddgst(struct ahash_request *hash,
383 		struct nvmet_tcp_cmd *cmd)
384 {
385 	ahash_request_set_crypt(hash, cmd->req.sg,
386 		(void *)&cmd->exp_ddgst, cmd->req.transfer_len);
387 	crypto_ahash_digest(hash);
388 }
389 
nvmet_tcp_recv_ddgst(struct ahash_request * hash,struct nvmet_tcp_cmd * cmd)390 static void nvmet_tcp_recv_ddgst(struct ahash_request *hash,
391 		struct nvmet_tcp_cmd *cmd)
392 {
393 	struct scatterlist sg;
394 	struct kvec *iov;
395 	int i;
396 
397 	crypto_ahash_init(hash);
398 	for (i = 0, iov = cmd->iov; i < cmd->nr_mapped; i++, iov++) {
399 		sg_init_one(&sg, iov->iov_base, iov->iov_len);
400 		ahash_request_set_crypt(hash, &sg, NULL, iov->iov_len);
401 		crypto_ahash_update(hash);
402 	}
403 	ahash_request_set_crypt(hash, NULL, (void *)&cmd->exp_ddgst, 0);
404 	crypto_ahash_final(hash);
405 }
406 
nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd * cmd)407 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
408 {
409 	struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
410 	struct nvmet_tcp_queue *queue = cmd->queue;
411 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
412 	u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
413 
414 	cmd->offset = 0;
415 	cmd->state = NVMET_TCP_SEND_DATA_PDU;
416 
417 	pdu->hdr.type = nvme_tcp_c2h_data;
418 	pdu->hdr.flags = NVME_TCP_F_DATA_LAST | (queue->nvme_sq.sqhd_disabled ?
419 						NVME_TCP_F_DATA_SUCCESS : 0);
420 	pdu->hdr.hlen = sizeof(*pdu);
421 	pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
422 	pdu->hdr.plen =
423 		cpu_to_le32(pdu->hdr.hlen + hdgst +
424 				cmd->req.transfer_len + ddgst);
425 	pdu->command_id = cmd->req.cqe->command_id;
426 	pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
427 	pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
428 
429 	if (queue->data_digest) {
430 		pdu->hdr.flags |= NVME_TCP_F_DDGST;
431 		nvmet_tcp_send_ddgst(queue->snd_hash, cmd);
432 	}
433 
434 	if (cmd->queue->hdr_digest) {
435 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
436 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
437 	}
438 }
439 
nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd * cmd)440 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
441 {
442 	struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
443 	struct nvmet_tcp_queue *queue = cmd->queue;
444 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
445 
446 	cmd->offset = 0;
447 	cmd->state = NVMET_TCP_SEND_R2T;
448 
449 	pdu->hdr.type = nvme_tcp_r2t;
450 	pdu->hdr.flags = 0;
451 	pdu->hdr.hlen = sizeof(*pdu);
452 	pdu->hdr.pdo = 0;
453 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
454 
455 	pdu->command_id = cmd->req.cmd->common.command_id;
456 	pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
457 	pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
458 	pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
459 	if (cmd->queue->hdr_digest) {
460 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
461 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
462 	}
463 }
464 
nvmet_setup_response_pdu(struct nvmet_tcp_cmd * cmd)465 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
466 {
467 	struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
468 	struct nvmet_tcp_queue *queue = cmd->queue;
469 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
470 
471 	cmd->offset = 0;
472 	cmd->state = NVMET_TCP_SEND_RESPONSE;
473 
474 	pdu->hdr.type = nvme_tcp_rsp;
475 	pdu->hdr.flags = 0;
476 	pdu->hdr.hlen = sizeof(*pdu);
477 	pdu->hdr.pdo = 0;
478 	pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
479 	if (cmd->queue->hdr_digest) {
480 		pdu->hdr.flags |= NVME_TCP_F_HDGST;
481 		nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
482 	}
483 }
484 
nvmet_tcp_process_resp_list(struct nvmet_tcp_queue * queue)485 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
486 {
487 	struct llist_node *node;
488 	struct nvmet_tcp_cmd *cmd;
489 
490 	for (node = llist_del_all(&queue->resp_list); node; node = node->next) {
491 		cmd = llist_entry(node, struct nvmet_tcp_cmd, lentry);
492 		list_add(&cmd->entry, &queue->resp_send_list);
493 		queue->send_list_len++;
494 	}
495 }
496 
nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue * queue)497 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
498 {
499 	queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
500 				struct nvmet_tcp_cmd, entry);
501 	if (!queue->snd_cmd) {
502 		nvmet_tcp_process_resp_list(queue);
503 		queue->snd_cmd =
504 			list_first_entry_or_null(&queue->resp_send_list,
505 					struct nvmet_tcp_cmd, entry);
506 		if (unlikely(!queue->snd_cmd))
507 			return NULL;
508 	}
509 
510 	list_del_init(&queue->snd_cmd->entry);
511 	queue->send_list_len--;
512 
513 	if (nvmet_tcp_need_data_out(queue->snd_cmd))
514 		nvmet_setup_c2h_data_pdu(queue->snd_cmd);
515 	else if (nvmet_tcp_need_data_in(queue->snd_cmd))
516 		nvmet_setup_r2t_pdu(queue->snd_cmd);
517 	else
518 		nvmet_setup_response_pdu(queue->snd_cmd);
519 
520 	return queue->snd_cmd;
521 }
522 
nvmet_tcp_queue_response(struct nvmet_req * req)523 static void nvmet_tcp_queue_response(struct nvmet_req *req)
524 {
525 	struct nvmet_tcp_cmd *cmd =
526 		container_of(req, struct nvmet_tcp_cmd, req);
527 	struct nvmet_tcp_queue	*queue = cmd->queue;
528 	struct nvme_sgl_desc *sgl;
529 	u32 len;
530 
531 	if (unlikely(cmd == queue->cmd)) {
532 		sgl = &cmd->req.cmd->common.dptr.sgl;
533 		len = le32_to_cpu(sgl->length);
534 
535 		/*
536 		 * Wait for inline data before processing the response.
537 		 * Avoid using helpers, this might happen before
538 		 * nvmet_req_init is completed.
539 		 */
540 		if (queue->rcv_state == NVMET_TCP_RECV_PDU &&
541 		    len && len <= cmd->req.port->inline_data_size &&
542 		    nvme_is_write(cmd->req.cmd))
543 			return;
544 	}
545 
546 	llist_add(&cmd->lentry, &queue->resp_list);
547 	queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &cmd->queue->io_work);
548 }
549 
nvmet_tcp_execute_request(struct nvmet_tcp_cmd * cmd)550 static void nvmet_tcp_execute_request(struct nvmet_tcp_cmd *cmd)
551 {
552 	if (unlikely(cmd->flags & NVMET_TCP_F_INIT_FAILED))
553 		nvmet_tcp_queue_response(&cmd->req);
554 	else
555 		cmd->req.execute(&cmd->req);
556 }
557 
nvmet_try_send_data_pdu(struct nvmet_tcp_cmd * cmd)558 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
559 {
560 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
561 	int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
562 	int ret;
563 
564 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
565 			offset_in_page(cmd->data_pdu) + cmd->offset,
566 			left, MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
567 	if (ret <= 0)
568 		return ret;
569 
570 	cmd->offset += ret;
571 	left -= ret;
572 
573 	if (left)
574 		return -EAGAIN;
575 
576 	cmd->state = NVMET_TCP_SEND_DATA;
577 	cmd->offset  = 0;
578 	return 1;
579 }
580 
nvmet_try_send_data(struct nvmet_tcp_cmd * cmd,bool last_in_batch)581 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
582 {
583 	struct nvmet_tcp_queue *queue = cmd->queue;
584 	int ret;
585 
586 	while (cmd->cur_sg) {
587 		struct page *page = sg_page(cmd->cur_sg);
588 		u32 left = cmd->cur_sg->length - cmd->offset;
589 		int flags = MSG_DONTWAIT;
590 
591 		if ((!last_in_batch && cmd->queue->send_list_len) ||
592 		    cmd->wbytes_done + left < cmd->req.transfer_len ||
593 		    queue->data_digest || !queue->nvme_sq.sqhd_disabled)
594 			flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
595 
596 		ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
597 					left, flags);
598 		if (ret <= 0)
599 			return ret;
600 
601 		cmd->offset += ret;
602 		cmd->wbytes_done += ret;
603 
604 		/* Done with sg?*/
605 		if (cmd->offset == cmd->cur_sg->length) {
606 			cmd->cur_sg = sg_next(cmd->cur_sg);
607 			cmd->offset = 0;
608 		}
609 	}
610 
611 	if (queue->data_digest) {
612 		cmd->state = NVMET_TCP_SEND_DDGST;
613 		cmd->offset = 0;
614 	} else {
615 		if (queue->nvme_sq.sqhd_disabled) {
616 			cmd->queue->snd_cmd = NULL;
617 			nvmet_tcp_put_cmd(cmd);
618 		} else {
619 			nvmet_setup_response_pdu(cmd);
620 		}
621 	}
622 
623 	if (queue->nvme_sq.sqhd_disabled) {
624 		kfree(cmd->iov);
625 		sgl_free(cmd->req.sg);
626 	}
627 
628 	return 1;
629 
630 }
631 
nvmet_try_send_response(struct nvmet_tcp_cmd * cmd,bool last_in_batch)632 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
633 		bool last_in_batch)
634 {
635 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
636 	int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
637 	int flags = MSG_DONTWAIT;
638 	int ret;
639 
640 	if (!last_in_batch && cmd->queue->send_list_len)
641 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
642 	else
643 		flags |= MSG_EOR;
644 
645 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
646 		offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
647 	if (ret <= 0)
648 		return ret;
649 	cmd->offset += ret;
650 	left -= ret;
651 
652 	if (left)
653 		return -EAGAIN;
654 
655 	kfree(cmd->iov);
656 	sgl_free(cmd->req.sg);
657 	cmd->queue->snd_cmd = NULL;
658 	nvmet_tcp_put_cmd(cmd);
659 	return 1;
660 }
661 
nvmet_try_send_r2t(struct nvmet_tcp_cmd * cmd,bool last_in_batch)662 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
663 {
664 	u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
665 	int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
666 	int flags = MSG_DONTWAIT;
667 	int ret;
668 
669 	if (!last_in_batch && cmd->queue->send_list_len)
670 		flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
671 	else
672 		flags |= MSG_EOR;
673 
674 	ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
675 		offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
676 	if (ret <= 0)
677 		return ret;
678 	cmd->offset += ret;
679 	left -= ret;
680 
681 	if (left)
682 		return -EAGAIN;
683 
684 	cmd->queue->snd_cmd = NULL;
685 	return 1;
686 }
687 
nvmet_try_send_ddgst(struct nvmet_tcp_cmd * cmd,bool last_in_batch)688 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
689 {
690 	struct nvmet_tcp_queue *queue = cmd->queue;
691 	int left = NVME_TCP_DIGEST_LENGTH - cmd->offset;
692 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
693 	struct kvec iov = {
694 		.iov_base = (u8 *)&cmd->exp_ddgst + cmd->offset,
695 		.iov_len = left
696 	};
697 	int ret;
698 
699 	if (!last_in_batch && cmd->queue->send_list_len)
700 		msg.msg_flags |= MSG_MORE;
701 	else
702 		msg.msg_flags |= MSG_EOR;
703 
704 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
705 	if (unlikely(ret <= 0))
706 		return ret;
707 
708 	cmd->offset += ret;
709 	left -= ret;
710 
711 	if (left)
712 		return -EAGAIN;
713 
714 	if (queue->nvme_sq.sqhd_disabled) {
715 		cmd->queue->snd_cmd = NULL;
716 		nvmet_tcp_put_cmd(cmd);
717 	} else {
718 		nvmet_setup_response_pdu(cmd);
719 	}
720 	return 1;
721 }
722 
nvmet_tcp_try_send_one(struct nvmet_tcp_queue * queue,bool last_in_batch)723 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
724 		bool last_in_batch)
725 {
726 	struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
727 	int ret = 0;
728 
729 	if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
730 		cmd = nvmet_tcp_fetch_cmd(queue);
731 		if (unlikely(!cmd))
732 			return 0;
733 	}
734 
735 	if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
736 		ret = nvmet_try_send_data_pdu(cmd);
737 		if (ret <= 0)
738 			goto done_send;
739 	}
740 
741 	if (cmd->state == NVMET_TCP_SEND_DATA) {
742 		ret = nvmet_try_send_data(cmd, last_in_batch);
743 		if (ret <= 0)
744 			goto done_send;
745 	}
746 
747 	if (cmd->state == NVMET_TCP_SEND_DDGST) {
748 		ret = nvmet_try_send_ddgst(cmd, last_in_batch);
749 		if (ret <= 0)
750 			goto done_send;
751 	}
752 
753 	if (cmd->state == NVMET_TCP_SEND_R2T) {
754 		ret = nvmet_try_send_r2t(cmd, last_in_batch);
755 		if (ret <= 0)
756 			goto done_send;
757 	}
758 
759 	if (cmd->state == NVMET_TCP_SEND_RESPONSE)
760 		ret = nvmet_try_send_response(cmd, last_in_batch);
761 
762 done_send:
763 	if (ret < 0) {
764 		if (ret == -EAGAIN)
765 			return 0;
766 		return ret;
767 	}
768 
769 	return 1;
770 }
771 
nvmet_tcp_try_send(struct nvmet_tcp_queue * queue,int budget,int * sends)772 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
773 		int budget, int *sends)
774 {
775 	int i, ret = 0;
776 
777 	for (i = 0; i < budget; i++) {
778 		ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
779 		if (unlikely(ret < 0)) {
780 			nvmet_tcp_socket_error(queue, ret);
781 			goto done;
782 		} else if (ret == 0) {
783 			break;
784 		}
785 		(*sends)++;
786 	}
787 done:
788 	return ret;
789 }
790 
nvmet_prepare_receive_pdu(struct nvmet_tcp_queue * queue)791 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
792 {
793 	queue->offset = 0;
794 	queue->left = sizeof(struct nvme_tcp_hdr);
795 	queue->cmd = NULL;
796 	queue->rcv_state = NVMET_TCP_RECV_PDU;
797 }
798 
nvmet_tcp_free_crypto(struct nvmet_tcp_queue * queue)799 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
800 {
801 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
802 
803 	ahash_request_free(queue->rcv_hash);
804 	ahash_request_free(queue->snd_hash);
805 	crypto_free_ahash(tfm);
806 }
807 
nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue * queue)808 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
809 {
810 	struct crypto_ahash *tfm;
811 
812 	tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
813 	if (IS_ERR(tfm))
814 		return PTR_ERR(tfm);
815 
816 	queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
817 	if (!queue->snd_hash)
818 		goto free_tfm;
819 	ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
820 
821 	queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
822 	if (!queue->rcv_hash)
823 		goto free_snd_hash;
824 	ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
825 
826 	return 0;
827 free_snd_hash:
828 	ahash_request_free(queue->snd_hash);
829 free_tfm:
830 	crypto_free_ahash(tfm);
831 	return -ENOMEM;
832 }
833 
834 
nvmet_tcp_handle_icreq(struct nvmet_tcp_queue * queue)835 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
836 {
837 	struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
838 	struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
839 	struct msghdr msg = {};
840 	struct kvec iov;
841 	int ret;
842 
843 	if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
844 		pr_err("bad nvme-tcp pdu length (%d)\n",
845 			le32_to_cpu(icreq->hdr.plen));
846 		nvmet_tcp_fatal_error(queue);
847 	}
848 
849 	if (icreq->pfv != NVME_TCP_PFV_1_0) {
850 		pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
851 		return -EPROTO;
852 	}
853 
854 	if (icreq->hpda != 0) {
855 		pr_err("queue %d: unsupported hpda %d\n", queue->idx,
856 			icreq->hpda);
857 		return -EPROTO;
858 	}
859 
860 	queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
861 	queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
862 	if (queue->hdr_digest || queue->data_digest) {
863 		ret = nvmet_tcp_alloc_crypto(queue);
864 		if (ret)
865 			return ret;
866 	}
867 
868 	memset(icresp, 0, sizeof(*icresp));
869 	icresp->hdr.type = nvme_tcp_icresp;
870 	icresp->hdr.hlen = sizeof(*icresp);
871 	icresp->hdr.pdo = 0;
872 	icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
873 	icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
874 	icresp->maxdata = cpu_to_le32(0x400000); /* 16M arbitrary limit */
875 	icresp->cpda = 0;
876 	if (queue->hdr_digest)
877 		icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
878 	if (queue->data_digest)
879 		icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
880 
881 	iov.iov_base = icresp;
882 	iov.iov_len = sizeof(*icresp);
883 	ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
884 	if (ret < 0)
885 		goto free_crypto;
886 
887 	queue->state = NVMET_TCP_Q_LIVE;
888 	nvmet_prepare_receive_pdu(queue);
889 	return 0;
890 free_crypto:
891 	if (queue->hdr_digest || queue->data_digest)
892 		nvmet_tcp_free_crypto(queue);
893 	return ret;
894 }
895 
nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * cmd,struct nvmet_req * req)896 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
897 		struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
898 {
899 	size_t data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
900 	int ret;
901 
902 	if (!nvme_is_write(cmd->req.cmd) ||
903 	    data_len > cmd->req.port->inline_data_size) {
904 		nvmet_prepare_receive_pdu(queue);
905 		return;
906 	}
907 
908 	ret = nvmet_tcp_map_data(cmd);
909 	if (unlikely(ret)) {
910 		pr_err("queue %d: failed to map data\n", queue->idx);
911 		nvmet_tcp_fatal_error(queue);
912 		return;
913 	}
914 
915 	queue->rcv_state = NVMET_TCP_RECV_DATA;
916 	nvmet_tcp_map_pdu_iovec(cmd);
917 	cmd->flags |= NVMET_TCP_F_INIT_FAILED;
918 }
919 
nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue * queue)920 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
921 {
922 	struct nvme_tcp_data_pdu *data = &queue->pdu.data;
923 	struct nvmet_tcp_cmd *cmd;
924 
925 	if (likely(queue->nr_cmds))
926 		cmd = &queue->cmds[data->ttag];
927 	else
928 		cmd = &queue->connect;
929 
930 	if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
931 		pr_err("ttag %u unexpected data offset %u (expected %u)\n",
932 			data->ttag, le32_to_cpu(data->data_offset),
933 			cmd->rbytes_done);
934 		/* FIXME: use path and transport errors */
935 		nvmet_req_complete(&cmd->req,
936 			NVME_SC_INVALID_FIELD | NVME_SC_DNR);
937 		return -EPROTO;
938 	}
939 
940 	cmd->pdu_len = le32_to_cpu(data->data_length);
941 	cmd->pdu_recv = 0;
942 	nvmet_tcp_map_pdu_iovec(cmd);
943 	queue->cmd = cmd;
944 	queue->rcv_state = NVMET_TCP_RECV_DATA;
945 
946 	return 0;
947 }
948 
nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue * queue)949 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
950 {
951 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
952 	struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
953 	struct nvmet_req *req;
954 	int ret;
955 
956 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
957 		if (hdr->type != nvme_tcp_icreq) {
958 			pr_err("unexpected pdu type (%d) before icreq\n",
959 				hdr->type);
960 			nvmet_tcp_fatal_error(queue);
961 			return -EPROTO;
962 		}
963 		return nvmet_tcp_handle_icreq(queue);
964 	}
965 
966 	if (hdr->type == nvme_tcp_h2c_data) {
967 		ret = nvmet_tcp_handle_h2c_data_pdu(queue);
968 		if (unlikely(ret))
969 			return ret;
970 		return 0;
971 	}
972 
973 	queue->cmd = nvmet_tcp_get_cmd(queue);
974 	if (unlikely(!queue->cmd)) {
975 		/* This should never happen */
976 		pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
977 			queue->idx, queue->nr_cmds, queue->send_list_len,
978 			nvme_cmd->common.opcode);
979 		nvmet_tcp_fatal_error(queue);
980 		return -ENOMEM;
981 	}
982 
983 	req = &queue->cmd->req;
984 	memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
985 
986 	if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
987 			&queue->nvme_sq, &nvmet_tcp_ops))) {
988 		pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
989 			req->cmd, req->cmd->common.command_id,
990 			req->cmd->common.opcode,
991 			le32_to_cpu(req->cmd->common.dptr.sgl.length));
992 
993 		nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
994 		return 0;
995 	}
996 
997 	ret = nvmet_tcp_map_data(queue->cmd);
998 	if (unlikely(ret)) {
999 		pr_err("queue %d: failed to map data\n", queue->idx);
1000 		if (nvmet_tcp_has_inline_data(queue->cmd))
1001 			nvmet_tcp_fatal_error(queue);
1002 		else
1003 			nvmet_req_complete(req, ret);
1004 		ret = -EAGAIN;
1005 		goto out;
1006 	}
1007 
1008 	if (nvmet_tcp_need_data_in(queue->cmd)) {
1009 		if (nvmet_tcp_has_inline_data(queue->cmd)) {
1010 			queue->rcv_state = NVMET_TCP_RECV_DATA;
1011 			nvmet_tcp_map_pdu_iovec(queue->cmd);
1012 			return 0;
1013 		}
1014 		/* send back R2T */
1015 		nvmet_tcp_queue_response(&queue->cmd->req);
1016 		goto out;
1017 	}
1018 
1019 	queue->cmd->req.execute(&queue->cmd->req);
1020 out:
1021 	nvmet_prepare_receive_pdu(queue);
1022 	return ret;
1023 }
1024 
1025 static const u8 nvme_tcp_pdu_sizes[] = {
1026 	[nvme_tcp_icreq]	= sizeof(struct nvme_tcp_icreq_pdu),
1027 	[nvme_tcp_cmd]		= sizeof(struct nvme_tcp_cmd_pdu),
1028 	[nvme_tcp_h2c_data]	= sizeof(struct nvme_tcp_data_pdu),
1029 };
1030 
nvmet_tcp_pdu_size(u8 type)1031 static inline u8 nvmet_tcp_pdu_size(u8 type)
1032 {
1033 	size_t idx = type;
1034 
1035 	return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
1036 		nvme_tcp_pdu_sizes[idx]) ?
1037 			nvme_tcp_pdu_sizes[idx] : 0;
1038 }
1039 
nvmet_tcp_pdu_valid(u8 type)1040 static inline bool nvmet_tcp_pdu_valid(u8 type)
1041 {
1042 	switch (type) {
1043 	case nvme_tcp_icreq:
1044 	case nvme_tcp_cmd:
1045 	case nvme_tcp_h2c_data:
1046 		/* fallthru */
1047 		return true;
1048 	}
1049 
1050 	return false;
1051 }
1052 
nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue * queue)1053 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
1054 {
1055 	struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
1056 	int len;
1057 	struct kvec iov;
1058 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1059 
1060 recv:
1061 	iov.iov_base = (void *)&queue->pdu + queue->offset;
1062 	iov.iov_len = queue->left;
1063 	len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1064 			iov.iov_len, msg.msg_flags);
1065 	if (unlikely(len < 0))
1066 		return len;
1067 
1068 	queue->offset += len;
1069 	queue->left -= len;
1070 	if (queue->left)
1071 		return -EAGAIN;
1072 
1073 	if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
1074 		u8 hdgst = nvmet_tcp_hdgst_len(queue);
1075 
1076 		if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
1077 			pr_err("unexpected pdu type %d\n", hdr->type);
1078 			nvmet_tcp_fatal_error(queue);
1079 			return -EIO;
1080 		}
1081 
1082 		if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
1083 			pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
1084 			return -EIO;
1085 		}
1086 
1087 		queue->left = hdr->hlen - queue->offset + hdgst;
1088 		goto recv;
1089 	}
1090 
1091 	if (queue->hdr_digest &&
1092 	    nvmet_tcp_verify_hdgst(queue, &queue->pdu, hdr->hlen)) {
1093 		nvmet_tcp_fatal_error(queue); /* fatal */
1094 		return -EPROTO;
1095 	}
1096 
1097 	if (queue->data_digest &&
1098 	    nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1099 		nvmet_tcp_fatal_error(queue); /* fatal */
1100 		return -EPROTO;
1101 	}
1102 
1103 	return nvmet_tcp_done_recv_pdu(queue);
1104 }
1105 
nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd * cmd)1106 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1107 {
1108 	struct nvmet_tcp_queue *queue = cmd->queue;
1109 
1110 	nvmet_tcp_recv_ddgst(queue->rcv_hash, cmd);
1111 	queue->offset = 0;
1112 	queue->left = NVME_TCP_DIGEST_LENGTH;
1113 	queue->rcv_state = NVMET_TCP_RECV_DDGST;
1114 }
1115 
nvmet_tcp_try_recv_data(struct nvmet_tcp_queue * queue)1116 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1117 {
1118 	struct nvmet_tcp_cmd  *cmd = queue->cmd;
1119 	int ret;
1120 
1121 	while (msg_data_left(&cmd->recv_msg)) {
1122 		ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1123 			cmd->recv_msg.msg_flags);
1124 		if (ret <= 0)
1125 			return ret;
1126 
1127 		cmd->pdu_recv += ret;
1128 		cmd->rbytes_done += ret;
1129 	}
1130 
1131 	nvmet_tcp_unmap_pdu_iovec(cmd);
1132 	if (queue->data_digest) {
1133 		nvmet_tcp_prep_recv_ddgst(cmd);
1134 		return 0;
1135 	}
1136 
1137 	if (cmd->rbytes_done == cmd->req.transfer_len)
1138 		nvmet_tcp_execute_request(cmd);
1139 
1140 	nvmet_prepare_receive_pdu(queue);
1141 	return 0;
1142 }
1143 
nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue * queue)1144 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1145 {
1146 	struct nvmet_tcp_cmd *cmd = queue->cmd;
1147 	int ret;
1148 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1149 	struct kvec iov = {
1150 		.iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1151 		.iov_len = queue->left
1152 	};
1153 
1154 	ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1155 			iov.iov_len, msg.msg_flags);
1156 	if (unlikely(ret < 0))
1157 		return ret;
1158 
1159 	queue->offset += ret;
1160 	queue->left -= ret;
1161 	if (queue->left)
1162 		return -EAGAIN;
1163 
1164 	if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1165 		pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1166 			queue->idx, cmd->req.cmd->common.command_id,
1167 			queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1168 			le32_to_cpu(cmd->exp_ddgst));
1169 		nvmet_tcp_finish_cmd(cmd);
1170 		nvmet_tcp_fatal_error(queue);
1171 		ret = -EPROTO;
1172 		goto out;
1173 	}
1174 
1175 	if (cmd->rbytes_done == cmd->req.transfer_len)
1176 		nvmet_tcp_execute_request(cmd);
1177 
1178 	ret = 0;
1179 out:
1180 	nvmet_prepare_receive_pdu(queue);
1181 	return ret;
1182 }
1183 
nvmet_tcp_try_recv_one(struct nvmet_tcp_queue * queue)1184 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1185 {
1186 	int result = 0;
1187 
1188 	if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1189 		return 0;
1190 
1191 	if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1192 		result = nvmet_tcp_try_recv_pdu(queue);
1193 		if (result != 0)
1194 			goto done_recv;
1195 	}
1196 
1197 	if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1198 		result = nvmet_tcp_try_recv_data(queue);
1199 		if (result != 0)
1200 			goto done_recv;
1201 	}
1202 
1203 	if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1204 		result = nvmet_tcp_try_recv_ddgst(queue);
1205 		if (result != 0)
1206 			goto done_recv;
1207 	}
1208 
1209 done_recv:
1210 	if (result < 0) {
1211 		if (result == -EAGAIN)
1212 			return 0;
1213 		return result;
1214 	}
1215 	return 1;
1216 }
1217 
nvmet_tcp_try_recv(struct nvmet_tcp_queue * queue,int budget,int * recvs)1218 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1219 		int budget, int *recvs)
1220 {
1221 	int i, ret = 0;
1222 
1223 	for (i = 0; i < budget; i++) {
1224 		ret = nvmet_tcp_try_recv_one(queue);
1225 		if (unlikely(ret < 0)) {
1226 			nvmet_tcp_socket_error(queue, ret);
1227 			goto done;
1228 		} else if (ret == 0) {
1229 			break;
1230 		}
1231 		(*recvs)++;
1232 	}
1233 done:
1234 	return ret;
1235 }
1236 
nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue * queue)1237 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1238 {
1239 	spin_lock(&queue->state_lock);
1240 	if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1241 		queue->state = NVMET_TCP_Q_DISCONNECTING;
1242 		schedule_work(&queue->release_work);
1243 	}
1244 	spin_unlock(&queue->state_lock);
1245 }
1246 
nvmet_tcp_io_work(struct work_struct * w)1247 static void nvmet_tcp_io_work(struct work_struct *w)
1248 {
1249 	struct nvmet_tcp_queue *queue =
1250 		container_of(w, struct nvmet_tcp_queue, io_work);
1251 	bool pending;
1252 	int ret, ops = 0;
1253 
1254 	do {
1255 		pending = false;
1256 
1257 		ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1258 		if (ret > 0)
1259 			pending = true;
1260 		else if (ret < 0)
1261 			return;
1262 
1263 		ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1264 		if (ret > 0)
1265 			pending = true;
1266 		else if (ret < 0)
1267 			return;
1268 
1269 	} while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1270 
1271 	/*
1272 	 * We exahusted our budget, requeue our selves
1273 	 */
1274 	if (pending)
1275 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1276 }
1277 
nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue * queue,struct nvmet_tcp_cmd * c)1278 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1279 		struct nvmet_tcp_cmd *c)
1280 {
1281 	u8 hdgst = nvmet_tcp_hdgst_len(queue);
1282 
1283 	c->queue = queue;
1284 	c->req.port = queue->port->nport;
1285 
1286 	c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1287 			sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1288 	if (!c->cmd_pdu)
1289 		return -ENOMEM;
1290 	c->req.cmd = &c->cmd_pdu->cmd;
1291 
1292 	c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1293 			sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1294 	if (!c->rsp_pdu)
1295 		goto out_free_cmd;
1296 	c->req.cqe = &c->rsp_pdu->cqe;
1297 
1298 	c->data_pdu = page_frag_alloc(&queue->pf_cache,
1299 			sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1300 	if (!c->data_pdu)
1301 		goto out_free_rsp;
1302 
1303 	c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1304 			sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1305 	if (!c->r2t_pdu)
1306 		goto out_free_data;
1307 
1308 	c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1309 
1310 	list_add_tail(&c->entry, &queue->free_list);
1311 
1312 	return 0;
1313 out_free_data:
1314 	page_frag_free(c->data_pdu);
1315 out_free_rsp:
1316 	page_frag_free(c->rsp_pdu);
1317 out_free_cmd:
1318 	page_frag_free(c->cmd_pdu);
1319 	return -ENOMEM;
1320 }
1321 
nvmet_tcp_free_cmd(struct nvmet_tcp_cmd * c)1322 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1323 {
1324 	page_frag_free(c->r2t_pdu);
1325 	page_frag_free(c->data_pdu);
1326 	page_frag_free(c->rsp_pdu);
1327 	page_frag_free(c->cmd_pdu);
1328 }
1329 
nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue * queue)1330 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1331 {
1332 	struct nvmet_tcp_cmd *cmds;
1333 	int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1334 
1335 	cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1336 	if (!cmds)
1337 		goto out;
1338 
1339 	for (i = 0; i < nr_cmds; i++) {
1340 		ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1341 		if (ret)
1342 			goto out_free;
1343 	}
1344 
1345 	queue->cmds = cmds;
1346 
1347 	return 0;
1348 out_free:
1349 	while (--i >= 0)
1350 		nvmet_tcp_free_cmd(cmds + i);
1351 	kfree(cmds);
1352 out:
1353 	return ret;
1354 }
1355 
nvmet_tcp_free_cmds(struct nvmet_tcp_queue * queue)1356 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1357 {
1358 	struct nvmet_tcp_cmd *cmds = queue->cmds;
1359 	int i;
1360 
1361 	for (i = 0; i < queue->nr_cmds; i++)
1362 		nvmet_tcp_free_cmd(cmds + i);
1363 
1364 	nvmet_tcp_free_cmd(&queue->connect);
1365 	kfree(cmds);
1366 }
1367 
nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue * queue)1368 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1369 {
1370 	struct socket *sock = queue->sock;
1371 
1372 	write_lock_bh(&sock->sk->sk_callback_lock);
1373 	sock->sk->sk_data_ready =  queue->data_ready;
1374 	sock->sk->sk_state_change = queue->state_change;
1375 	sock->sk->sk_write_space = queue->write_space;
1376 	sock->sk->sk_user_data = NULL;
1377 	write_unlock_bh(&sock->sk->sk_callback_lock);
1378 }
1379 
nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd * cmd)1380 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1381 {
1382 	nvmet_req_uninit(&cmd->req);
1383 	nvmet_tcp_unmap_pdu_iovec(cmd);
1384 	kfree(cmd->iov);
1385 	sgl_free(cmd->req.sg);
1386 }
1387 
nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue * queue)1388 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1389 {
1390 	struct nvmet_tcp_cmd *cmd = queue->cmds;
1391 	int i;
1392 
1393 	for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1394 		if (nvmet_tcp_need_data_in(cmd))
1395 			nvmet_tcp_finish_cmd(cmd);
1396 	}
1397 
1398 	if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1399 		/* failed in connect */
1400 		nvmet_tcp_finish_cmd(&queue->connect);
1401 	}
1402 }
1403 
nvmet_tcp_release_queue_work(struct work_struct * w)1404 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1405 {
1406 	struct page *page;
1407 	struct nvmet_tcp_queue *queue =
1408 		container_of(w, struct nvmet_tcp_queue, release_work);
1409 
1410 	mutex_lock(&nvmet_tcp_queue_mutex);
1411 	list_del_init(&queue->queue_list);
1412 	mutex_unlock(&nvmet_tcp_queue_mutex);
1413 
1414 	nvmet_tcp_restore_socket_callbacks(queue);
1415 	flush_work(&queue->io_work);
1416 
1417 	nvmet_tcp_uninit_data_in_cmds(queue);
1418 	nvmet_sq_destroy(&queue->nvme_sq);
1419 	cancel_work_sync(&queue->io_work);
1420 	sock_release(queue->sock);
1421 	nvmet_tcp_free_cmds(queue);
1422 	if (queue->hdr_digest || queue->data_digest)
1423 		nvmet_tcp_free_crypto(queue);
1424 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1425 
1426 	page = virt_to_head_page(queue->pf_cache.va);
1427 	__page_frag_cache_drain(page, queue->pf_cache.pagecnt_bias);
1428 	kfree(queue);
1429 }
1430 
nvmet_tcp_data_ready(struct sock * sk)1431 static void nvmet_tcp_data_ready(struct sock *sk)
1432 {
1433 	struct nvmet_tcp_queue *queue;
1434 
1435 	read_lock_bh(&sk->sk_callback_lock);
1436 	queue = sk->sk_user_data;
1437 	if (likely(queue))
1438 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1439 	read_unlock_bh(&sk->sk_callback_lock);
1440 }
1441 
nvmet_tcp_write_space(struct sock * sk)1442 static void nvmet_tcp_write_space(struct sock *sk)
1443 {
1444 	struct nvmet_tcp_queue *queue;
1445 
1446 	read_lock_bh(&sk->sk_callback_lock);
1447 	queue = sk->sk_user_data;
1448 	if (unlikely(!queue))
1449 		goto out;
1450 
1451 	if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1452 		queue->write_space(sk);
1453 		goto out;
1454 	}
1455 
1456 	if (sk_stream_is_writeable(sk)) {
1457 		clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1458 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1459 	}
1460 out:
1461 	read_unlock_bh(&sk->sk_callback_lock);
1462 }
1463 
nvmet_tcp_state_change(struct sock * sk)1464 static void nvmet_tcp_state_change(struct sock *sk)
1465 {
1466 	struct nvmet_tcp_queue *queue;
1467 
1468 	read_lock_bh(&sk->sk_callback_lock);
1469 	queue = sk->sk_user_data;
1470 	if (!queue)
1471 		goto done;
1472 
1473 	switch (sk->sk_state) {
1474 	case TCP_FIN_WAIT1:
1475 	case TCP_CLOSE_WAIT:
1476 	case TCP_CLOSE:
1477 		/* FALLTHRU */
1478 		nvmet_tcp_schedule_release_queue(queue);
1479 		break;
1480 	default:
1481 		pr_warn("queue %d unhandled state %d\n",
1482 			queue->idx, sk->sk_state);
1483 	}
1484 done:
1485 	read_unlock_bh(&sk->sk_callback_lock);
1486 }
1487 
nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue * queue)1488 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1489 {
1490 	struct socket *sock = queue->sock;
1491 	struct inet_sock *inet = inet_sk(sock->sk);
1492 	int ret;
1493 
1494 	ret = kernel_getsockname(sock,
1495 		(struct sockaddr *)&queue->sockaddr);
1496 	if (ret < 0)
1497 		return ret;
1498 
1499 	ret = kernel_getpeername(sock,
1500 		(struct sockaddr *)&queue->sockaddr_peer);
1501 	if (ret < 0)
1502 		return ret;
1503 
1504 	/*
1505 	 * Cleanup whatever is sitting in the TCP transmit queue on socket
1506 	 * close. This is done to prevent stale data from being sent should
1507 	 * the network connection be restored before TCP times out.
1508 	 */
1509 	sock_no_linger(sock->sk);
1510 
1511 	if (so_priority > 0)
1512 		sock_set_priority(sock->sk, so_priority);
1513 
1514 	/* Set socket type of service */
1515 	if (inet->rcv_tos > 0)
1516 		ip_sock_set_tos(sock->sk, inet->rcv_tos);
1517 
1518 	ret = 0;
1519 	write_lock_bh(&sock->sk->sk_callback_lock);
1520 	if (sock->sk->sk_state != TCP_ESTABLISHED) {
1521 		/*
1522 		 * If the socket is already closing, don't even start
1523 		 * consuming it
1524 		 */
1525 		ret = -ENOTCONN;
1526 	} else {
1527 		sock->sk->sk_user_data = queue;
1528 		queue->data_ready = sock->sk->sk_data_ready;
1529 		sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1530 		queue->state_change = sock->sk->sk_state_change;
1531 		sock->sk->sk_state_change = nvmet_tcp_state_change;
1532 		queue->write_space = sock->sk->sk_write_space;
1533 		sock->sk->sk_write_space = nvmet_tcp_write_space;
1534 		queue_work_on(queue_cpu(queue), nvmet_tcp_wq, &queue->io_work);
1535 	}
1536 	write_unlock_bh(&sock->sk->sk_callback_lock);
1537 
1538 	return ret;
1539 }
1540 
nvmet_tcp_alloc_queue(struct nvmet_tcp_port * port,struct socket * newsock)1541 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1542 		struct socket *newsock)
1543 {
1544 	struct nvmet_tcp_queue *queue;
1545 	int ret;
1546 
1547 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1548 	if (!queue)
1549 		return -ENOMEM;
1550 
1551 	INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1552 	INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1553 	queue->sock = newsock;
1554 	queue->port = port;
1555 	queue->nr_cmds = 0;
1556 	spin_lock_init(&queue->state_lock);
1557 	queue->state = NVMET_TCP_Q_CONNECTING;
1558 	INIT_LIST_HEAD(&queue->free_list);
1559 	init_llist_head(&queue->resp_list);
1560 	INIT_LIST_HEAD(&queue->resp_send_list);
1561 
1562 	queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1563 	if (queue->idx < 0) {
1564 		ret = queue->idx;
1565 		goto out_free_queue;
1566 	}
1567 
1568 	ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1569 	if (ret)
1570 		goto out_ida_remove;
1571 
1572 	ret = nvmet_sq_init(&queue->nvme_sq);
1573 	if (ret)
1574 		goto out_free_connect;
1575 
1576 	nvmet_prepare_receive_pdu(queue);
1577 
1578 	mutex_lock(&nvmet_tcp_queue_mutex);
1579 	list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1580 	mutex_unlock(&nvmet_tcp_queue_mutex);
1581 
1582 	ret = nvmet_tcp_set_queue_sock(queue);
1583 	if (ret)
1584 		goto out_destroy_sq;
1585 
1586 	return 0;
1587 out_destroy_sq:
1588 	mutex_lock(&nvmet_tcp_queue_mutex);
1589 	list_del_init(&queue->queue_list);
1590 	mutex_unlock(&nvmet_tcp_queue_mutex);
1591 	nvmet_sq_destroy(&queue->nvme_sq);
1592 out_free_connect:
1593 	nvmet_tcp_free_cmd(&queue->connect);
1594 out_ida_remove:
1595 	ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1596 out_free_queue:
1597 	kfree(queue);
1598 	return ret;
1599 }
1600 
nvmet_tcp_accept_work(struct work_struct * w)1601 static void nvmet_tcp_accept_work(struct work_struct *w)
1602 {
1603 	struct nvmet_tcp_port *port =
1604 		container_of(w, struct nvmet_tcp_port, accept_work);
1605 	struct socket *newsock;
1606 	int ret;
1607 
1608 	while (true) {
1609 		ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1610 		if (ret < 0) {
1611 			if (ret != -EAGAIN)
1612 				pr_warn("failed to accept err=%d\n", ret);
1613 			return;
1614 		}
1615 		ret = nvmet_tcp_alloc_queue(port, newsock);
1616 		if (ret) {
1617 			pr_err("failed to allocate queue\n");
1618 			sock_release(newsock);
1619 		}
1620 	}
1621 }
1622 
nvmet_tcp_listen_data_ready(struct sock * sk)1623 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1624 {
1625 	struct nvmet_tcp_port *port;
1626 
1627 	read_lock_bh(&sk->sk_callback_lock);
1628 	port = sk->sk_user_data;
1629 	if (!port)
1630 		goto out;
1631 
1632 	if (sk->sk_state == TCP_LISTEN)
1633 		schedule_work(&port->accept_work);
1634 out:
1635 	read_unlock_bh(&sk->sk_callback_lock);
1636 }
1637 
nvmet_tcp_add_port(struct nvmet_port * nport)1638 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1639 {
1640 	struct nvmet_tcp_port *port;
1641 	__kernel_sa_family_t af;
1642 	int ret;
1643 
1644 	port = kzalloc(sizeof(*port), GFP_KERNEL);
1645 	if (!port)
1646 		return -ENOMEM;
1647 
1648 	switch (nport->disc_addr.adrfam) {
1649 	case NVMF_ADDR_FAMILY_IP4:
1650 		af = AF_INET;
1651 		break;
1652 	case NVMF_ADDR_FAMILY_IP6:
1653 		af = AF_INET6;
1654 		break;
1655 	default:
1656 		pr_err("address family %d not supported\n",
1657 				nport->disc_addr.adrfam);
1658 		ret = -EINVAL;
1659 		goto err_port;
1660 	}
1661 
1662 	ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1663 			nport->disc_addr.trsvcid, &port->addr);
1664 	if (ret) {
1665 		pr_err("malformed ip/port passed: %s:%s\n",
1666 			nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1667 		goto err_port;
1668 	}
1669 
1670 	port->nport = nport;
1671 	INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1672 	if (port->nport->inline_data_size < 0)
1673 		port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1674 
1675 	ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1676 				IPPROTO_TCP, &port->sock);
1677 	if (ret) {
1678 		pr_err("failed to create a socket\n");
1679 		goto err_port;
1680 	}
1681 
1682 	port->sock->sk->sk_user_data = port;
1683 	port->data_ready = port->sock->sk->sk_data_ready;
1684 	port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1685 	sock_set_reuseaddr(port->sock->sk);
1686 	tcp_sock_set_nodelay(port->sock->sk);
1687 	if (so_priority > 0)
1688 		sock_set_priority(port->sock->sk, so_priority);
1689 
1690 	ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1691 			sizeof(port->addr));
1692 	if (ret) {
1693 		pr_err("failed to bind port socket %d\n", ret);
1694 		goto err_sock;
1695 	}
1696 
1697 	ret = kernel_listen(port->sock, 128);
1698 	if (ret) {
1699 		pr_err("failed to listen %d on port sock\n", ret);
1700 		goto err_sock;
1701 	}
1702 
1703 	nport->priv = port;
1704 	pr_info("enabling port %d (%pISpc)\n",
1705 		le16_to_cpu(nport->disc_addr.portid), &port->addr);
1706 
1707 	return 0;
1708 
1709 err_sock:
1710 	sock_release(port->sock);
1711 err_port:
1712 	kfree(port);
1713 	return ret;
1714 }
1715 
nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port * port)1716 static void nvmet_tcp_destroy_port_queues(struct nvmet_tcp_port *port)
1717 {
1718 	struct nvmet_tcp_queue *queue;
1719 
1720 	mutex_lock(&nvmet_tcp_queue_mutex);
1721 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1722 		if (queue->port == port)
1723 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1724 	mutex_unlock(&nvmet_tcp_queue_mutex);
1725 }
1726 
nvmet_tcp_remove_port(struct nvmet_port * nport)1727 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1728 {
1729 	struct nvmet_tcp_port *port = nport->priv;
1730 
1731 	write_lock_bh(&port->sock->sk->sk_callback_lock);
1732 	port->sock->sk->sk_data_ready = port->data_ready;
1733 	port->sock->sk->sk_user_data = NULL;
1734 	write_unlock_bh(&port->sock->sk->sk_callback_lock);
1735 	cancel_work_sync(&port->accept_work);
1736 	/*
1737 	 * Destroy the remaining queues, which are not belong to any
1738 	 * controller yet.
1739 	 */
1740 	nvmet_tcp_destroy_port_queues(port);
1741 
1742 	sock_release(port->sock);
1743 	kfree(port);
1744 }
1745 
nvmet_tcp_delete_ctrl(struct nvmet_ctrl * ctrl)1746 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1747 {
1748 	struct nvmet_tcp_queue *queue;
1749 
1750 	mutex_lock(&nvmet_tcp_queue_mutex);
1751 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1752 		if (queue->nvme_sq.ctrl == ctrl)
1753 			kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1754 	mutex_unlock(&nvmet_tcp_queue_mutex);
1755 }
1756 
nvmet_tcp_install_queue(struct nvmet_sq * sq)1757 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1758 {
1759 	struct nvmet_tcp_queue *queue =
1760 		container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1761 
1762 	if (sq->qid == 0) {
1763 		/* Let inflight controller teardown complete */
1764 		flush_scheduled_work();
1765 	}
1766 
1767 	queue->nr_cmds = sq->size * 2;
1768 	if (nvmet_tcp_alloc_cmds(queue))
1769 		return NVME_SC_INTERNAL;
1770 	return 0;
1771 }
1772 
nvmet_tcp_disc_port_addr(struct nvmet_req * req,struct nvmet_port * nport,char * traddr)1773 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1774 		struct nvmet_port *nport, char *traddr)
1775 {
1776 	struct nvmet_tcp_port *port = nport->priv;
1777 
1778 	if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1779 		struct nvmet_tcp_cmd *cmd =
1780 			container_of(req, struct nvmet_tcp_cmd, req);
1781 		struct nvmet_tcp_queue *queue = cmd->queue;
1782 
1783 		sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1784 	} else {
1785 		memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1786 	}
1787 }
1788 
1789 static const struct nvmet_fabrics_ops nvmet_tcp_ops = {
1790 	.owner			= THIS_MODULE,
1791 	.type			= NVMF_TRTYPE_TCP,
1792 	.msdbd			= 1,
1793 	.add_port		= nvmet_tcp_add_port,
1794 	.remove_port		= nvmet_tcp_remove_port,
1795 	.queue_response		= nvmet_tcp_queue_response,
1796 	.delete_ctrl		= nvmet_tcp_delete_ctrl,
1797 	.install_queue		= nvmet_tcp_install_queue,
1798 	.disc_traddr		= nvmet_tcp_disc_port_addr,
1799 };
1800 
nvmet_tcp_init(void)1801 static int __init nvmet_tcp_init(void)
1802 {
1803 	int ret;
1804 
1805 	nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1806 	if (!nvmet_tcp_wq)
1807 		return -ENOMEM;
1808 
1809 	ret = nvmet_register_transport(&nvmet_tcp_ops);
1810 	if (ret)
1811 		goto err;
1812 
1813 	return 0;
1814 err:
1815 	destroy_workqueue(nvmet_tcp_wq);
1816 	return ret;
1817 }
1818 
nvmet_tcp_exit(void)1819 static void __exit nvmet_tcp_exit(void)
1820 {
1821 	struct nvmet_tcp_queue *queue;
1822 
1823 	nvmet_unregister_transport(&nvmet_tcp_ops);
1824 
1825 	flush_scheduled_work();
1826 	mutex_lock(&nvmet_tcp_queue_mutex);
1827 	list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1828 		kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1829 	mutex_unlock(&nvmet_tcp_queue_mutex);
1830 	flush_scheduled_work();
1831 
1832 	destroy_workqueue(nvmet_tcp_wq);
1833 }
1834 
1835 module_init(nvmet_tcp_init);
1836 module_exit(nvmet_tcp_exit);
1837 
1838 MODULE_LICENSE("GPL v2");
1839 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */
1840