• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	nvmem_reg_read_t	reg_read;
38 	nvmem_reg_write_t	reg_write;
39 	struct gpio_desc	*wp_gpio;
40 	void *priv;
41 };
42 
43 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
44 
45 #define FLAG_COMPAT		BIT(0)
46 
47 struct nvmem_cell {
48 	const char		*name;
49 	int			offset;
50 	int			bytes;
51 	int			bit_offset;
52 	int			nbits;
53 	struct device_node	*np;
54 	struct nvmem_device	*nvmem;
55 	struct list_head	node;
56 };
57 
58 static DEFINE_MUTEX(nvmem_mutex);
59 static DEFINE_IDA(nvmem_ida);
60 
61 static DEFINE_MUTEX(nvmem_cell_mutex);
62 static LIST_HEAD(nvmem_cell_tables);
63 
64 static DEFINE_MUTEX(nvmem_lookup_mutex);
65 static LIST_HEAD(nvmem_lookup_list);
66 
67 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
68 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)69 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
70 			  void *val, size_t bytes)
71 {
72 	if (nvmem->reg_read)
73 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
74 
75 	return -EINVAL;
76 }
77 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)78 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
79 			   void *val, size_t bytes)
80 {
81 	int ret;
82 
83 	if (nvmem->reg_write) {
84 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
85 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
87 		return ret;
88 	}
89 
90 	return -EINVAL;
91 }
92 
93 #ifdef CONFIG_NVMEM_SYSFS
94 static const char * const nvmem_type_str[] = {
95 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
96 	[NVMEM_TYPE_EEPROM] = "EEPROM",
97 	[NVMEM_TYPE_OTP] = "OTP",
98 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
99 };
100 
101 #ifdef CONFIG_DEBUG_LOCK_ALLOC
102 static struct lock_class_key eeprom_lock_key;
103 #endif
104 
type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t type_show(struct device *dev,
106 			 struct device_attribute *attr, char *buf)
107 {
108 	struct nvmem_device *nvmem = to_nvmem_device(dev);
109 
110 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
111 }
112 
113 static DEVICE_ATTR_RO(type);
114 
115 static struct attribute *nvmem_attrs[] = {
116 	&dev_attr_type.attr,
117 	NULL,
118 };
119 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)120 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
121 				   struct bin_attribute *attr, char *buf,
122 				   loff_t pos, size_t count)
123 {
124 	struct device *dev;
125 	struct nvmem_device *nvmem;
126 	int rc;
127 
128 	if (attr->private)
129 		dev = attr->private;
130 	else
131 		dev = kobj_to_dev(kobj);
132 	nvmem = to_nvmem_device(dev);
133 
134 	/* Stop the user from reading */
135 	if (pos >= nvmem->size)
136 		return 0;
137 
138 	if (!IS_ALIGNED(pos, nvmem->stride))
139 		return -EINVAL;
140 
141 	if (count < nvmem->word_size)
142 		return -EINVAL;
143 
144 	if (pos + count > nvmem->size)
145 		count = nvmem->size - pos;
146 
147 	count = round_down(count, nvmem->word_size);
148 
149 	if (!nvmem->reg_read)
150 		return -EPERM;
151 
152 	rc = nvmem_reg_read(nvmem, pos, buf, count);
153 
154 	if (rc)
155 		return rc;
156 
157 	return count;
158 }
159 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)160 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
161 				    struct bin_attribute *attr, char *buf,
162 				    loff_t pos, size_t count)
163 {
164 	struct device *dev;
165 	struct nvmem_device *nvmem;
166 	int rc;
167 
168 	if (attr->private)
169 		dev = attr->private;
170 	else
171 		dev = kobj_to_dev(kobj);
172 	nvmem = to_nvmem_device(dev);
173 
174 	/* Stop the user from writing */
175 	if (pos >= nvmem->size)
176 		return -EFBIG;
177 
178 	if (!IS_ALIGNED(pos, nvmem->stride))
179 		return -EINVAL;
180 
181 	if (count < nvmem->word_size)
182 		return -EINVAL;
183 
184 	if (pos + count > nvmem->size)
185 		count = nvmem->size - pos;
186 
187 	count = round_down(count, nvmem->word_size);
188 
189 	if (!nvmem->reg_write)
190 		return -EPERM;
191 
192 	rc = nvmem_reg_write(nvmem, pos, buf, count);
193 
194 	if (rc)
195 		return rc;
196 
197 	return count;
198 }
199 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)200 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
201 {
202 	umode_t mode = 0400;
203 
204 	if (!nvmem->root_only)
205 		mode |= 0044;
206 
207 	if (!nvmem->read_only)
208 		mode |= 0200;
209 
210 	if (!nvmem->reg_write)
211 		mode &= ~0200;
212 
213 	if (!nvmem->reg_read)
214 		mode &= ~0444;
215 
216 	return mode;
217 }
218 
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)219 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
220 					 struct bin_attribute *attr, int i)
221 {
222 	struct device *dev = kobj_to_dev(kobj);
223 	struct nvmem_device *nvmem = to_nvmem_device(dev);
224 
225 	attr->size = nvmem->size;
226 
227 	return nvmem_bin_attr_get_umode(nvmem);
228 }
229 
230 /* default read/write permissions */
231 static struct bin_attribute bin_attr_rw_nvmem = {
232 	.attr	= {
233 		.name	= "nvmem",
234 		.mode	= 0644,
235 	},
236 	.read	= bin_attr_nvmem_read,
237 	.write	= bin_attr_nvmem_write,
238 };
239 
240 static struct bin_attribute *nvmem_bin_attributes[] = {
241 	&bin_attr_rw_nvmem,
242 	NULL,
243 };
244 
245 static const struct attribute_group nvmem_bin_group = {
246 	.bin_attrs	= nvmem_bin_attributes,
247 	.attrs		= nvmem_attrs,
248 	.is_bin_visible = nvmem_bin_attr_is_visible,
249 };
250 
251 static const struct attribute_group *nvmem_dev_groups[] = {
252 	&nvmem_bin_group,
253 	NULL,
254 };
255 
256 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
257 	.attr	= {
258 		.name	= "eeprom",
259 	},
260 	.read	= bin_attr_nvmem_read,
261 	.write	= bin_attr_nvmem_write,
262 };
263 
264 /*
265  * nvmem_setup_compat() - Create an additional binary entry in
266  * drivers sys directory, to be backwards compatible with the older
267  * drivers/misc/eeprom drivers.
268  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)269 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
270 				    const struct nvmem_config *config)
271 {
272 	int rval;
273 
274 	if (!config->compat)
275 		return 0;
276 
277 	if (!config->base_dev)
278 		return -EINVAL;
279 
280 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
281 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
282 	nvmem->eeprom.size = nvmem->size;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284 	nvmem->eeprom.attr.key = &eeprom_lock_key;
285 #endif
286 	nvmem->eeprom.private = &nvmem->dev;
287 	nvmem->base_dev = config->base_dev;
288 
289 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
290 	if (rval) {
291 		dev_err(&nvmem->dev,
292 			"Failed to create eeprom binary file %d\n", rval);
293 		return rval;
294 	}
295 
296 	nvmem->flags |= FLAG_COMPAT;
297 
298 	return 0;
299 }
300 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)301 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
302 			      const struct nvmem_config *config)
303 {
304 	if (config->compat)
305 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
306 }
307 
308 #else /* CONFIG_NVMEM_SYSFS */
309 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)310 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
311 				    const struct nvmem_config *config)
312 {
313 	return -ENOSYS;
314 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)315 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
316 				      const struct nvmem_config *config)
317 {
318 }
319 
320 #endif /* CONFIG_NVMEM_SYSFS */
321 
nvmem_release(struct device * dev)322 static void nvmem_release(struct device *dev)
323 {
324 	struct nvmem_device *nvmem = to_nvmem_device(dev);
325 
326 	ida_free(&nvmem_ida, nvmem->id);
327 	gpiod_put(nvmem->wp_gpio);
328 	kfree(nvmem);
329 }
330 
331 static const struct device_type nvmem_provider_type = {
332 	.release	= nvmem_release,
333 };
334 
335 static struct bus_type nvmem_bus_type = {
336 	.name		= "nvmem",
337 };
338 
nvmem_cell_drop(struct nvmem_cell * cell)339 static void nvmem_cell_drop(struct nvmem_cell *cell)
340 {
341 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
342 	mutex_lock(&nvmem_mutex);
343 	list_del(&cell->node);
344 	mutex_unlock(&nvmem_mutex);
345 	of_node_put(cell->np);
346 	kfree_const(cell->name);
347 	kfree(cell);
348 }
349 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)350 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
351 {
352 	struct nvmem_cell *cell, *p;
353 
354 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
355 		nvmem_cell_drop(cell);
356 }
357 
nvmem_cell_add(struct nvmem_cell * cell)358 static void nvmem_cell_add(struct nvmem_cell *cell)
359 {
360 	mutex_lock(&nvmem_mutex);
361 	list_add_tail(&cell->node, &cell->nvmem->cells);
362 	mutex_unlock(&nvmem_mutex);
363 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
364 }
365 
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)366 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
367 					const struct nvmem_cell_info *info,
368 					struct nvmem_cell *cell)
369 {
370 	cell->nvmem = nvmem;
371 	cell->offset = info->offset;
372 	cell->bytes = info->bytes;
373 	cell->name = info->name;
374 
375 	cell->bit_offset = info->bit_offset;
376 	cell->nbits = info->nbits;
377 
378 	if (cell->nbits)
379 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
380 					   BITS_PER_BYTE);
381 
382 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
383 		dev_err(&nvmem->dev,
384 			"cell %s unaligned to nvmem stride %d\n",
385 			cell->name ?: "<unknown>", nvmem->stride);
386 		return -EINVAL;
387 	}
388 
389 	return 0;
390 }
391 
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)392 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
393 				const struct nvmem_cell_info *info,
394 				struct nvmem_cell *cell)
395 {
396 	int err;
397 
398 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
399 	if (err)
400 		return err;
401 
402 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
403 	if (!cell->name)
404 		return -ENOMEM;
405 
406 	return 0;
407 }
408 
409 /**
410  * nvmem_add_cells() - Add cell information to an nvmem device
411  *
412  * @nvmem: nvmem device to add cells to.
413  * @info: nvmem cell info to add to the device
414  * @ncells: number of cells in info
415  *
416  * Return: 0 or negative error code on failure.
417  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)418 static int nvmem_add_cells(struct nvmem_device *nvmem,
419 		    const struct nvmem_cell_info *info,
420 		    int ncells)
421 {
422 	struct nvmem_cell **cells;
423 	int i, rval;
424 
425 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
426 	if (!cells)
427 		return -ENOMEM;
428 
429 	for (i = 0; i < ncells; i++) {
430 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
431 		if (!cells[i]) {
432 			rval = -ENOMEM;
433 			goto err;
434 		}
435 
436 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
437 		if (rval) {
438 			kfree(cells[i]);
439 			goto err;
440 		}
441 
442 		nvmem_cell_add(cells[i]);
443 	}
444 
445 	/* remove tmp array */
446 	kfree(cells);
447 
448 	return 0;
449 err:
450 	while (i--)
451 		nvmem_cell_drop(cells[i]);
452 
453 	kfree(cells);
454 
455 	return rval;
456 }
457 
458 /**
459  * nvmem_register_notifier() - Register a notifier block for nvmem events.
460  *
461  * @nb: notifier block to be called on nvmem events.
462  *
463  * Return: 0 on success, negative error number on failure.
464  */
nvmem_register_notifier(struct notifier_block * nb)465 int nvmem_register_notifier(struct notifier_block *nb)
466 {
467 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
468 }
469 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
470 
471 /**
472  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
473  *
474  * @nb: notifier block to be unregistered.
475  *
476  * Return: 0 on success, negative error number on failure.
477  */
nvmem_unregister_notifier(struct notifier_block * nb)478 int nvmem_unregister_notifier(struct notifier_block *nb)
479 {
480 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
481 }
482 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
483 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)484 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
485 {
486 	const struct nvmem_cell_info *info;
487 	struct nvmem_cell_table *table;
488 	struct nvmem_cell *cell;
489 	int rval = 0, i;
490 
491 	mutex_lock(&nvmem_cell_mutex);
492 	list_for_each_entry(table, &nvmem_cell_tables, node) {
493 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
494 			for (i = 0; i < table->ncells; i++) {
495 				info = &table->cells[i];
496 
497 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
498 				if (!cell) {
499 					rval = -ENOMEM;
500 					goto out;
501 				}
502 
503 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
504 								     info,
505 								     cell);
506 				if (rval) {
507 					kfree(cell);
508 					goto out;
509 				}
510 
511 				nvmem_cell_add(cell);
512 			}
513 		}
514 	}
515 
516 out:
517 	mutex_unlock(&nvmem_cell_mutex);
518 	return rval;
519 }
520 
521 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)522 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
523 {
524 	struct nvmem_cell *iter, *cell = NULL;
525 
526 	mutex_lock(&nvmem_mutex);
527 	list_for_each_entry(iter, &nvmem->cells, node) {
528 		if (strcmp(cell_id, iter->name) == 0) {
529 			cell = iter;
530 			break;
531 		}
532 	}
533 	mutex_unlock(&nvmem_mutex);
534 
535 	return cell;
536 }
537 
nvmem_add_cells_from_of(struct nvmem_device * nvmem)538 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
539 {
540 	struct device_node *parent, *child;
541 	struct device *dev = &nvmem->dev;
542 	struct nvmem_cell *cell;
543 	const __be32 *addr;
544 	int len;
545 
546 	parent = dev->of_node;
547 
548 	for_each_child_of_node(parent, child) {
549 		addr = of_get_property(child, "reg", &len);
550 		if (!addr)
551 			continue;
552 		if (len < 2 * sizeof(u32)) {
553 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
554 			of_node_put(child);
555 			return -EINVAL;
556 		}
557 
558 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
559 		if (!cell) {
560 			of_node_put(child);
561 			return -ENOMEM;
562 		}
563 
564 		cell->nvmem = nvmem;
565 		cell->offset = be32_to_cpup(addr++);
566 		cell->bytes = be32_to_cpup(addr);
567 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
568 
569 		addr = of_get_property(child, "bits", &len);
570 		if (addr && len == (2 * sizeof(u32))) {
571 			cell->bit_offset = be32_to_cpup(addr++);
572 			cell->nbits = be32_to_cpup(addr);
573 		}
574 
575 		if (cell->nbits)
576 			cell->bytes = DIV_ROUND_UP(
577 					cell->nbits + cell->bit_offset,
578 					BITS_PER_BYTE);
579 
580 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
581 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
582 				cell->name, nvmem->stride);
583 			/* Cells already added will be freed later. */
584 			kfree_const(cell->name);
585 			kfree(cell);
586 			of_node_put(child);
587 			return -EINVAL;
588 		}
589 
590 		cell->np = of_node_get(child);
591 		nvmem_cell_add(cell);
592 	}
593 
594 	return 0;
595 }
596 
597 /**
598  * nvmem_register() - Register a nvmem device for given nvmem_config.
599  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
600  *
601  * @config: nvmem device configuration with which nvmem device is created.
602  *
603  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
604  * on success.
605  */
606 
nvmem_register(const struct nvmem_config * config)607 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
608 {
609 	struct nvmem_device *nvmem;
610 	int rval;
611 
612 	if (!config->dev)
613 		return ERR_PTR(-EINVAL);
614 
615 	if (!config->reg_read && !config->reg_write)
616 		return ERR_PTR(-EINVAL);
617 
618 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
619 	if (!nvmem)
620 		return ERR_PTR(-ENOMEM);
621 
622 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
623 	if (rval < 0) {
624 		kfree(nvmem);
625 		return ERR_PTR(rval);
626 	}
627 
628 	if (config->wp_gpio)
629 		nvmem->wp_gpio = config->wp_gpio;
630 	else
631 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
632 						    GPIOD_OUT_HIGH);
633 	if (IS_ERR(nvmem->wp_gpio)) {
634 		ida_free(&nvmem_ida, nvmem->id);
635 		rval = PTR_ERR(nvmem->wp_gpio);
636 		kfree(nvmem);
637 		return ERR_PTR(rval);
638 	}
639 
640 	kref_init(&nvmem->refcnt);
641 	INIT_LIST_HEAD(&nvmem->cells);
642 
643 	nvmem->id = rval;
644 	nvmem->owner = config->owner;
645 	if (!nvmem->owner && config->dev->driver)
646 		nvmem->owner = config->dev->driver->owner;
647 	nvmem->stride = config->stride ?: 1;
648 	nvmem->word_size = config->word_size ?: 1;
649 	nvmem->size = config->size;
650 	nvmem->dev.type = &nvmem_provider_type;
651 	nvmem->dev.bus = &nvmem_bus_type;
652 	nvmem->dev.parent = config->dev;
653 	nvmem->root_only = config->root_only;
654 	nvmem->priv = config->priv;
655 	nvmem->type = config->type;
656 	nvmem->reg_read = config->reg_read;
657 	nvmem->reg_write = config->reg_write;
658 	if (!config->no_of_node)
659 		nvmem->dev.of_node = config->dev->of_node;
660 
661 	switch (config->id) {
662 	case NVMEM_DEVID_NONE:
663 		dev_set_name(&nvmem->dev, "%s", config->name);
664 		break;
665 	case NVMEM_DEVID_AUTO:
666 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
667 		break;
668 	default:
669 		dev_set_name(&nvmem->dev, "%s%d",
670 			     config->name ? : "nvmem",
671 			     config->name ? config->id : nvmem->id);
672 		break;
673 	}
674 
675 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
676 			   config->read_only || !nvmem->reg_write;
677 
678 #ifdef CONFIG_NVMEM_SYSFS
679 	nvmem->dev.groups = nvmem_dev_groups;
680 #endif
681 
682 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
683 
684 	rval = device_register(&nvmem->dev);
685 	if (rval)
686 		goto err_put_device;
687 
688 	if (config->compat) {
689 		rval = nvmem_sysfs_setup_compat(nvmem, config);
690 		if (rval)
691 			goto err_device_del;
692 	}
693 
694 	if (config->cells) {
695 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
696 		if (rval)
697 			goto err_teardown_compat;
698 	}
699 
700 	rval = nvmem_add_cells_from_table(nvmem);
701 	if (rval)
702 		goto err_remove_cells;
703 
704 	rval = nvmem_add_cells_from_of(nvmem);
705 	if (rval)
706 		goto err_remove_cells;
707 
708 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
709 
710 	return nvmem;
711 
712 err_remove_cells:
713 	nvmem_device_remove_all_cells(nvmem);
714 err_teardown_compat:
715 	if (config->compat)
716 		nvmem_sysfs_remove_compat(nvmem, config);
717 err_device_del:
718 	device_del(&nvmem->dev);
719 err_put_device:
720 	put_device(&nvmem->dev);
721 
722 	return ERR_PTR(rval);
723 }
724 EXPORT_SYMBOL_GPL(nvmem_register);
725 
nvmem_device_release(struct kref * kref)726 static void nvmem_device_release(struct kref *kref)
727 {
728 	struct nvmem_device *nvmem;
729 
730 	nvmem = container_of(kref, struct nvmem_device, refcnt);
731 
732 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
733 
734 	if (nvmem->flags & FLAG_COMPAT)
735 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
736 
737 	nvmem_device_remove_all_cells(nvmem);
738 	device_unregister(&nvmem->dev);
739 }
740 
741 /**
742  * nvmem_unregister() - Unregister previously registered nvmem device
743  *
744  * @nvmem: Pointer to previously registered nvmem device.
745  */
nvmem_unregister(struct nvmem_device * nvmem)746 void nvmem_unregister(struct nvmem_device *nvmem)
747 {
748 	kref_put(&nvmem->refcnt, nvmem_device_release);
749 }
750 EXPORT_SYMBOL_GPL(nvmem_unregister);
751 
devm_nvmem_release(struct device * dev,void * res)752 static void devm_nvmem_release(struct device *dev, void *res)
753 {
754 	nvmem_unregister(*(struct nvmem_device **)res);
755 }
756 
757 /**
758  * devm_nvmem_register() - Register a managed nvmem device for given
759  * nvmem_config.
760  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
761  *
762  * @dev: Device that uses the nvmem device.
763  * @config: nvmem device configuration with which nvmem device is created.
764  *
765  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
766  * on success.
767  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)768 struct nvmem_device *devm_nvmem_register(struct device *dev,
769 					 const struct nvmem_config *config)
770 {
771 	struct nvmem_device **ptr, *nvmem;
772 
773 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
774 	if (!ptr)
775 		return ERR_PTR(-ENOMEM);
776 
777 	nvmem = nvmem_register(config);
778 
779 	if (!IS_ERR(nvmem)) {
780 		*ptr = nvmem;
781 		devres_add(dev, ptr);
782 	} else {
783 		devres_free(ptr);
784 	}
785 
786 	return nvmem;
787 }
788 EXPORT_SYMBOL_GPL(devm_nvmem_register);
789 
devm_nvmem_match(struct device * dev,void * res,void * data)790 static int devm_nvmem_match(struct device *dev, void *res, void *data)
791 {
792 	struct nvmem_device **r = res;
793 
794 	return *r == data;
795 }
796 
797 /**
798  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
799  * device.
800  *
801  * @dev: Device that uses the nvmem device.
802  * @nvmem: Pointer to previously registered nvmem device.
803  *
804  * Return: Will be negative on error or zero on success.
805  */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)806 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
807 {
808 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
809 }
810 EXPORT_SYMBOL(devm_nvmem_unregister);
811 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))812 static struct nvmem_device *__nvmem_device_get(void *data,
813 			int (*match)(struct device *dev, const void *data))
814 {
815 	struct nvmem_device *nvmem = NULL;
816 	struct device *dev;
817 
818 	mutex_lock(&nvmem_mutex);
819 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
820 	if (dev)
821 		nvmem = to_nvmem_device(dev);
822 	mutex_unlock(&nvmem_mutex);
823 	if (!nvmem)
824 		return ERR_PTR(-EPROBE_DEFER);
825 
826 	if (!try_module_get(nvmem->owner)) {
827 		dev_err(&nvmem->dev,
828 			"could not increase module refcount for cell %s\n",
829 			nvmem_dev_name(nvmem));
830 
831 		put_device(&nvmem->dev);
832 		return ERR_PTR(-EINVAL);
833 	}
834 
835 	kref_get(&nvmem->refcnt);
836 
837 	return nvmem;
838 }
839 
__nvmem_device_put(struct nvmem_device * nvmem)840 static void __nvmem_device_put(struct nvmem_device *nvmem)
841 {
842 	put_device(&nvmem->dev);
843 	module_put(nvmem->owner);
844 	kref_put(&nvmem->refcnt, nvmem_device_release);
845 }
846 
847 #if IS_ENABLED(CONFIG_OF)
848 /**
849  * of_nvmem_device_get() - Get nvmem device from a given id
850  *
851  * @np: Device tree node that uses the nvmem device.
852  * @id: nvmem name from nvmem-names property.
853  *
854  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
855  * on success.
856  */
of_nvmem_device_get(struct device_node * np,const char * id)857 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
858 {
859 
860 	struct device_node *nvmem_np;
861 	struct nvmem_device *nvmem;
862 	int index = 0;
863 
864 	if (id)
865 		index = of_property_match_string(np, "nvmem-names", id);
866 
867 	nvmem_np = of_parse_phandle(np, "nvmem", index);
868 	if (!nvmem_np)
869 		return ERR_PTR(-ENOENT);
870 
871 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
872 	of_node_put(nvmem_np);
873 	return nvmem;
874 }
875 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
876 #endif
877 
878 /**
879  * nvmem_device_get() - Get nvmem device from a given id
880  *
881  * @dev: Device that uses the nvmem device.
882  * @dev_name: name of the requested nvmem device.
883  *
884  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
885  * on success.
886  */
nvmem_device_get(struct device * dev,const char * dev_name)887 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
888 {
889 	if (dev->of_node) { /* try dt first */
890 		struct nvmem_device *nvmem;
891 
892 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
893 
894 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
895 			return nvmem;
896 
897 	}
898 
899 	return __nvmem_device_get((void *)dev_name, device_match_name);
900 }
901 EXPORT_SYMBOL_GPL(nvmem_device_get);
902 
903 /**
904  * nvmem_device_find() - Find nvmem device with matching function
905  *
906  * @data: Data to pass to match function
907  * @match: Callback function to check device
908  *
909  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
910  * on success.
911  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))912 struct nvmem_device *nvmem_device_find(void *data,
913 			int (*match)(struct device *dev, const void *data))
914 {
915 	return __nvmem_device_get(data, match);
916 }
917 EXPORT_SYMBOL_GPL(nvmem_device_find);
918 
devm_nvmem_device_match(struct device * dev,void * res,void * data)919 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
920 {
921 	struct nvmem_device **nvmem = res;
922 
923 	if (WARN_ON(!nvmem || !*nvmem))
924 		return 0;
925 
926 	return *nvmem == data;
927 }
928 
devm_nvmem_device_release(struct device * dev,void * res)929 static void devm_nvmem_device_release(struct device *dev, void *res)
930 {
931 	nvmem_device_put(*(struct nvmem_device **)res);
932 }
933 
934 /**
935  * devm_nvmem_device_put() - put alredy got nvmem device
936  *
937  * @dev: Device that uses the nvmem device.
938  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
939  * that needs to be released.
940  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)941 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
942 {
943 	int ret;
944 
945 	ret = devres_release(dev, devm_nvmem_device_release,
946 			     devm_nvmem_device_match, nvmem);
947 
948 	WARN_ON(ret);
949 }
950 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
951 
952 /**
953  * nvmem_device_put() - put alredy got nvmem device
954  *
955  * @nvmem: pointer to nvmem device that needs to be released.
956  */
nvmem_device_put(struct nvmem_device * nvmem)957 void nvmem_device_put(struct nvmem_device *nvmem)
958 {
959 	__nvmem_device_put(nvmem);
960 }
961 EXPORT_SYMBOL_GPL(nvmem_device_put);
962 
963 /**
964  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
965  *
966  * @dev: Device that requests the nvmem device.
967  * @id: name id for the requested nvmem device.
968  *
969  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
970  * on success.  The nvmem_cell will be freed by the automatically once the
971  * device is freed.
972  */
devm_nvmem_device_get(struct device * dev,const char * id)973 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
974 {
975 	struct nvmem_device **ptr, *nvmem;
976 
977 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
978 	if (!ptr)
979 		return ERR_PTR(-ENOMEM);
980 
981 	nvmem = nvmem_device_get(dev, id);
982 	if (!IS_ERR(nvmem)) {
983 		*ptr = nvmem;
984 		devres_add(dev, ptr);
985 	} else {
986 		devres_free(ptr);
987 	}
988 
989 	return nvmem;
990 }
991 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
992 
993 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)994 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
995 {
996 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
997 	struct nvmem_cell_lookup *lookup;
998 	struct nvmem_device *nvmem;
999 	const char *dev_id;
1000 
1001 	if (!dev)
1002 		return ERR_PTR(-EINVAL);
1003 
1004 	dev_id = dev_name(dev);
1005 
1006 	mutex_lock(&nvmem_lookup_mutex);
1007 
1008 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1009 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1010 		    (strcmp(lookup->con_id, con_id) == 0)) {
1011 			/* This is the right entry. */
1012 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1013 						   device_match_name);
1014 			if (IS_ERR(nvmem)) {
1015 				/* Provider may not be registered yet. */
1016 				cell = ERR_CAST(nvmem);
1017 				break;
1018 			}
1019 
1020 			cell = nvmem_find_cell_by_name(nvmem,
1021 						       lookup->cell_name);
1022 			if (!cell) {
1023 				__nvmem_device_put(nvmem);
1024 				cell = ERR_PTR(-ENOENT);
1025 			}
1026 			break;
1027 		}
1028 	}
1029 
1030 	mutex_unlock(&nvmem_lookup_mutex);
1031 	return cell;
1032 }
1033 
1034 #if IS_ENABLED(CONFIG_OF)
1035 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1036 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1037 {
1038 	struct nvmem_cell *iter, *cell = NULL;
1039 
1040 	mutex_lock(&nvmem_mutex);
1041 	list_for_each_entry(iter, &nvmem->cells, node) {
1042 		if (np == iter->np) {
1043 			cell = iter;
1044 			break;
1045 		}
1046 	}
1047 	mutex_unlock(&nvmem_mutex);
1048 
1049 	return cell;
1050 }
1051 
1052 /**
1053  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1054  *
1055  * @np: Device tree node that uses the nvmem cell.
1056  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1057  *      for the cell at index 0 (the lone cell with no accompanying
1058  *      nvmem-cell-names property).
1059  *
1060  * Return: Will be an ERR_PTR() on error or a valid pointer
1061  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1062  * nvmem_cell_put().
1063  */
of_nvmem_cell_get(struct device_node * np,const char * id)1064 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1065 {
1066 	struct device_node *cell_np, *nvmem_np;
1067 	struct nvmem_device *nvmem;
1068 	struct nvmem_cell *cell;
1069 	int index = 0;
1070 
1071 	/* if cell name exists, find index to the name */
1072 	if (id)
1073 		index = of_property_match_string(np, "nvmem-cell-names", id);
1074 
1075 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1076 	if (!cell_np)
1077 		return ERR_PTR(-ENOENT);
1078 
1079 	nvmem_np = of_get_next_parent(cell_np);
1080 	if (!nvmem_np)
1081 		return ERR_PTR(-EINVAL);
1082 
1083 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1084 	of_node_put(nvmem_np);
1085 	if (IS_ERR(nvmem))
1086 		return ERR_CAST(nvmem);
1087 
1088 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1089 	if (!cell) {
1090 		__nvmem_device_put(nvmem);
1091 		return ERR_PTR(-ENOENT);
1092 	}
1093 
1094 	return cell;
1095 }
1096 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1097 #endif
1098 
1099 /**
1100  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1101  *
1102  * @dev: Device that requests the nvmem cell.
1103  * @id: nvmem cell name to get (this corresponds with the name from the
1104  *      nvmem-cell-names property for DT systems and with the con_id from
1105  *      the lookup entry for non-DT systems).
1106  *
1107  * Return: Will be an ERR_PTR() on error or a valid pointer
1108  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1109  * nvmem_cell_put().
1110  */
nvmem_cell_get(struct device * dev,const char * id)1111 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1112 {
1113 	struct nvmem_cell *cell;
1114 
1115 	if (dev->of_node) { /* try dt first */
1116 		cell = of_nvmem_cell_get(dev->of_node, id);
1117 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1118 			return cell;
1119 	}
1120 
1121 	/* NULL cell id only allowed for device tree; invalid otherwise */
1122 	if (!id)
1123 		return ERR_PTR(-EINVAL);
1124 
1125 	return nvmem_cell_get_from_lookup(dev, id);
1126 }
1127 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1128 
devm_nvmem_cell_release(struct device * dev,void * res)1129 static void devm_nvmem_cell_release(struct device *dev, void *res)
1130 {
1131 	nvmem_cell_put(*(struct nvmem_cell **)res);
1132 }
1133 
1134 /**
1135  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1136  *
1137  * @dev: Device that requests the nvmem cell.
1138  * @id: nvmem cell name id to get.
1139  *
1140  * Return: Will be an ERR_PTR() on error or a valid pointer
1141  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1142  * automatically once the device is freed.
1143  */
devm_nvmem_cell_get(struct device * dev,const char * id)1144 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1145 {
1146 	struct nvmem_cell **ptr, *cell;
1147 
1148 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1149 	if (!ptr)
1150 		return ERR_PTR(-ENOMEM);
1151 
1152 	cell = nvmem_cell_get(dev, id);
1153 	if (!IS_ERR(cell)) {
1154 		*ptr = cell;
1155 		devres_add(dev, ptr);
1156 	} else {
1157 		devres_free(ptr);
1158 	}
1159 
1160 	return cell;
1161 }
1162 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1163 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1164 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1165 {
1166 	struct nvmem_cell **c = res;
1167 
1168 	if (WARN_ON(!c || !*c))
1169 		return 0;
1170 
1171 	return *c == data;
1172 }
1173 
1174 /**
1175  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1176  * from devm_nvmem_cell_get.
1177  *
1178  * @dev: Device that requests the nvmem cell.
1179  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1180  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1181 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1182 {
1183 	int ret;
1184 
1185 	ret = devres_release(dev, devm_nvmem_cell_release,
1186 				devm_nvmem_cell_match, cell);
1187 
1188 	WARN_ON(ret);
1189 }
1190 EXPORT_SYMBOL(devm_nvmem_cell_put);
1191 
1192 /**
1193  * nvmem_cell_put() - Release previously allocated nvmem cell.
1194  *
1195  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1196  */
nvmem_cell_put(struct nvmem_cell * cell)1197 void nvmem_cell_put(struct nvmem_cell *cell)
1198 {
1199 	struct nvmem_device *nvmem = cell->nvmem;
1200 
1201 	__nvmem_device_put(nvmem);
1202 }
1203 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1204 
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1205 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1206 {
1207 	u8 *p, *b;
1208 	int i, extra, bit_offset = cell->bit_offset;
1209 
1210 	p = b = buf;
1211 	if (bit_offset) {
1212 		/* First shift */
1213 		*b++ >>= bit_offset;
1214 
1215 		/* setup rest of the bytes if any */
1216 		for (i = 1; i < cell->bytes; i++) {
1217 			/* Get bits from next byte and shift them towards msb */
1218 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1219 
1220 			p = b;
1221 			*b++ >>= bit_offset;
1222 		}
1223 	} else {
1224 		/* point to the msb */
1225 		p += cell->bytes - 1;
1226 	}
1227 
1228 	/* result fits in less bytes */
1229 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1230 	while (--extra >= 0)
1231 		*p-- = 0;
1232 
1233 	/* clear msb bits if any leftover in the last byte */
1234 	if (cell->nbits % BITS_PER_BYTE)
1235 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1236 }
1237 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1238 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1239 		      struct nvmem_cell *cell,
1240 		      void *buf, size_t *len)
1241 {
1242 	int rc;
1243 
1244 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1245 
1246 	if (rc)
1247 		return rc;
1248 
1249 	/* shift bits in-place */
1250 	if (cell->bit_offset || cell->nbits)
1251 		nvmem_shift_read_buffer_in_place(cell, buf);
1252 
1253 	if (len)
1254 		*len = cell->bytes;
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * nvmem_cell_read() - Read a given nvmem cell
1261  *
1262  * @cell: nvmem cell to be read.
1263  * @len: pointer to length of cell which will be populated on successful read;
1264  *	 can be NULL.
1265  *
1266  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1267  * buffer should be freed by the consumer with a kfree().
1268  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1269 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1270 {
1271 	struct nvmem_device *nvmem = cell->nvmem;
1272 	u8 *buf;
1273 	int rc;
1274 
1275 	if (!nvmem)
1276 		return ERR_PTR(-EINVAL);
1277 
1278 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1279 	if (!buf)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1283 	if (rc) {
1284 		kfree(buf);
1285 		return ERR_PTR(rc);
1286 	}
1287 
1288 	return buf;
1289 }
1290 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1291 
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1292 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1293 					     u8 *_buf, int len)
1294 {
1295 	struct nvmem_device *nvmem = cell->nvmem;
1296 	int i, rc, nbits, bit_offset = cell->bit_offset;
1297 	u8 v, *p, *buf, *b, pbyte, pbits;
1298 
1299 	nbits = cell->nbits;
1300 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1301 	if (!buf)
1302 		return ERR_PTR(-ENOMEM);
1303 
1304 	memcpy(buf, _buf, len);
1305 	p = b = buf;
1306 
1307 	if (bit_offset) {
1308 		pbyte = *b;
1309 		*b <<= bit_offset;
1310 
1311 		/* setup the first byte with lsb bits from nvmem */
1312 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1313 		if (rc)
1314 			goto err;
1315 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1316 
1317 		/* setup rest of the byte if any */
1318 		for (i = 1; i < cell->bytes; i++) {
1319 			/* Get last byte bits and shift them towards lsb */
1320 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1321 			pbyte = *b;
1322 			p = b;
1323 			*b <<= bit_offset;
1324 			*b++ |= pbits;
1325 		}
1326 	}
1327 
1328 	/* if it's not end on byte boundary */
1329 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1330 		/* setup the last byte with msb bits from nvmem */
1331 		rc = nvmem_reg_read(nvmem,
1332 				    cell->offset + cell->bytes - 1, &v, 1);
1333 		if (rc)
1334 			goto err;
1335 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1336 
1337 	}
1338 
1339 	return buf;
1340 err:
1341 	kfree(buf);
1342 	return ERR_PTR(rc);
1343 }
1344 
1345 /**
1346  * nvmem_cell_write() - Write to a given nvmem cell
1347  *
1348  * @cell: nvmem cell to be written.
1349  * @buf: Buffer to be written.
1350  * @len: length of buffer to be written to nvmem cell.
1351  *
1352  * Return: length of bytes written or negative on failure.
1353  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1354 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1355 {
1356 	struct nvmem_device *nvmem = cell->nvmem;
1357 	int rc;
1358 
1359 	if (!nvmem || nvmem->read_only ||
1360 	    (cell->bit_offset == 0 && len != cell->bytes))
1361 		return -EINVAL;
1362 
1363 	if (cell->bit_offset || cell->nbits) {
1364 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1365 		if (IS_ERR(buf))
1366 			return PTR_ERR(buf);
1367 	}
1368 
1369 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1370 
1371 	/* free the tmp buffer */
1372 	if (cell->bit_offset || cell->nbits)
1373 		kfree(buf);
1374 
1375 	if (rc)
1376 		return rc;
1377 
1378 	return len;
1379 }
1380 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1381 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1382 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1383 				  void *val, size_t count)
1384 {
1385 	struct nvmem_cell *cell;
1386 	void *buf;
1387 	size_t len;
1388 
1389 	cell = nvmem_cell_get(dev, cell_id);
1390 	if (IS_ERR(cell))
1391 		return PTR_ERR(cell);
1392 
1393 	buf = nvmem_cell_read(cell, &len);
1394 	if (IS_ERR(buf)) {
1395 		nvmem_cell_put(cell);
1396 		return PTR_ERR(buf);
1397 	}
1398 	if (len != count) {
1399 		kfree(buf);
1400 		nvmem_cell_put(cell);
1401 		return -EINVAL;
1402 	}
1403 	memcpy(val, buf, count);
1404 	kfree(buf);
1405 	nvmem_cell_put(cell);
1406 
1407 	return 0;
1408 }
1409 
1410 /**
1411  * nvmem_cell_read_u8() - Read a cell value as a u8
1412  *
1413  * @dev: Device that requests the nvmem cell.
1414  * @cell_id: Name of nvmem cell to read.
1415  * @val: pointer to output value.
1416  *
1417  * Return: 0 on success or negative errno.
1418  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1419 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1420 {
1421 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1422 }
1423 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1424 
1425 /**
1426  * nvmem_cell_read_u16() - Read a cell value as a u16
1427  *
1428  * @dev: Device that requests the nvmem cell.
1429  * @cell_id: Name of nvmem cell to read.
1430  * @val: pointer to output value.
1431  *
1432  * Return: 0 on success or negative errno.
1433  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1434 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1435 {
1436 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1437 }
1438 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1439 
1440 /**
1441  * nvmem_cell_read_u32() - Read a cell value as a u32
1442  *
1443  * @dev: Device that requests the nvmem cell.
1444  * @cell_id: Name of nvmem cell to read.
1445  * @val: pointer to output value.
1446  *
1447  * Return: 0 on success or negative errno.
1448  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1449 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1450 {
1451 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1452 }
1453 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1454 
1455 /**
1456  * nvmem_cell_read_u64() - Read a cell value as a u64
1457  *
1458  * @dev: Device that requests the nvmem cell.
1459  * @cell_id: Name of nvmem cell to read.
1460  * @val: pointer to output value.
1461  *
1462  * Return: 0 on success or negative errno.
1463  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1464 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1465 {
1466 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1467 }
1468 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1469 
1470 /**
1471  * nvmem_device_cell_read() - Read a given nvmem device and cell
1472  *
1473  * @nvmem: nvmem device to read from.
1474  * @info: nvmem cell info to be read.
1475  * @buf: buffer pointer which will be populated on successful read.
1476  *
1477  * Return: length of successful bytes read on success and negative
1478  * error code on error.
1479  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1480 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1481 			   struct nvmem_cell_info *info, void *buf)
1482 {
1483 	struct nvmem_cell cell;
1484 	int rc;
1485 	ssize_t len;
1486 
1487 	if (!nvmem)
1488 		return -EINVAL;
1489 
1490 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1491 	if (rc)
1492 		return rc;
1493 
1494 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1495 	if (rc)
1496 		return rc;
1497 
1498 	return len;
1499 }
1500 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1501 
1502 /**
1503  * nvmem_device_cell_write() - Write cell to a given nvmem device
1504  *
1505  * @nvmem: nvmem device to be written to.
1506  * @info: nvmem cell info to be written.
1507  * @buf: buffer to be written to cell.
1508  *
1509  * Return: length of bytes written or negative error code on failure.
1510  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1511 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1512 			    struct nvmem_cell_info *info, void *buf)
1513 {
1514 	struct nvmem_cell cell;
1515 	int rc;
1516 
1517 	if (!nvmem)
1518 		return -EINVAL;
1519 
1520 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1521 	if (rc)
1522 		return rc;
1523 
1524 	return nvmem_cell_write(&cell, buf, cell.bytes);
1525 }
1526 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1527 
1528 /**
1529  * nvmem_device_read() - Read from a given nvmem device
1530  *
1531  * @nvmem: nvmem device to read from.
1532  * @offset: offset in nvmem device.
1533  * @bytes: number of bytes to read.
1534  * @buf: buffer pointer which will be populated on successful read.
1535  *
1536  * Return: length of successful bytes read on success and negative
1537  * error code on error.
1538  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1539 int nvmem_device_read(struct nvmem_device *nvmem,
1540 		      unsigned int offset,
1541 		      size_t bytes, void *buf)
1542 {
1543 	int rc;
1544 
1545 	if (!nvmem)
1546 		return -EINVAL;
1547 
1548 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1549 
1550 	if (rc)
1551 		return rc;
1552 
1553 	return bytes;
1554 }
1555 EXPORT_SYMBOL_GPL(nvmem_device_read);
1556 
1557 /**
1558  * nvmem_device_write() - Write cell to a given nvmem device
1559  *
1560  * @nvmem: nvmem device to be written to.
1561  * @offset: offset in nvmem device.
1562  * @bytes: number of bytes to write.
1563  * @buf: buffer to be written.
1564  *
1565  * Return: length of bytes written or negative error code on failure.
1566  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1567 int nvmem_device_write(struct nvmem_device *nvmem,
1568 		       unsigned int offset,
1569 		       size_t bytes, void *buf)
1570 {
1571 	int rc;
1572 
1573 	if (!nvmem)
1574 		return -EINVAL;
1575 
1576 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1577 
1578 	if (rc)
1579 		return rc;
1580 
1581 
1582 	return bytes;
1583 }
1584 EXPORT_SYMBOL_GPL(nvmem_device_write);
1585 
1586 /**
1587  * nvmem_add_cell_table() - register a table of cell info entries
1588  *
1589  * @table: table of cell info entries
1590  */
nvmem_add_cell_table(struct nvmem_cell_table * table)1591 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1592 {
1593 	mutex_lock(&nvmem_cell_mutex);
1594 	list_add_tail(&table->node, &nvmem_cell_tables);
1595 	mutex_unlock(&nvmem_cell_mutex);
1596 }
1597 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1598 
1599 /**
1600  * nvmem_del_cell_table() - remove a previously registered cell info table
1601  *
1602  * @table: table of cell info entries
1603  */
nvmem_del_cell_table(struct nvmem_cell_table * table)1604 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1605 {
1606 	mutex_lock(&nvmem_cell_mutex);
1607 	list_del(&table->node);
1608 	mutex_unlock(&nvmem_cell_mutex);
1609 }
1610 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1611 
1612 /**
1613  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1614  *
1615  * @entries: array of cell lookup entries
1616  * @nentries: number of cell lookup entries in the array
1617  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1618 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1619 {
1620 	int i;
1621 
1622 	mutex_lock(&nvmem_lookup_mutex);
1623 	for (i = 0; i < nentries; i++)
1624 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1625 	mutex_unlock(&nvmem_lookup_mutex);
1626 }
1627 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1628 
1629 /**
1630  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1631  *                            entries
1632  *
1633  * @entries: array of cell lookup entries
1634  * @nentries: number of cell lookup entries in the array
1635  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1636 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1637 {
1638 	int i;
1639 
1640 	mutex_lock(&nvmem_lookup_mutex);
1641 	for (i = 0; i < nentries; i++)
1642 		list_del(&entries[i].node);
1643 	mutex_unlock(&nvmem_lookup_mutex);
1644 }
1645 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1646 
1647 /**
1648  * nvmem_dev_name() - Get the name of a given nvmem device.
1649  *
1650  * @nvmem: nvmem device.
1651  *
1652  * Return: name of the nvmem device.
1653  */
nvmem_dev_name(struct nvmem_device * nvmem)1654 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1655 {
1656 	return dev_name(&nvmem->dev);
1657 }
1658 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1659 
nvmem_init(void)1660 static int __init nvmem_init(void)
1661 {
1662 	return bus_register(&nvmem_bus_type);
1663 }
1664 
nvmem_exit(void)1665 static void __exit nvmem_exit(void)
1666 {
1667 	bus_unregister(&nvmem_bus_type);
1668 }
1669 
1670 subsys_initcall(nvmem_init);
1671 module_exit(nvmem_exit);
1672 
1673 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1674 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1675 MODULE_DESCRIPTION("nvmem Driver Core");
1676 MODULE_LICENSE("GPL v2");
1677