1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) Microsoft Corporation.
4 *
5 * Author:
6 * Jake Oshins <jakeo@microsoft.com>
7 *
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
15 *
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
21 *
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
31 *
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
38 */
39
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53
54 /*
55 * Protocol versions. The low word is the minor version, the high word the
56 * major version.
57 */
58
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62
63 enum pci_protocol_version_t {
64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */
67 };
68
69 #define CPU_AFFINITY_ALL -1ULL
70
71 /*
72 * Supported protocol versions in the order of probing - highest go
73 * first.
74 */
75 static enum pci_protocol_version_t pci_protocol_versions[] = {
76 PCI_PROTOCOL_VERSION_1_3,
77 PCI_PROTOCOL_VERSION_1_2,
78 PCI_PROTOCOL_VERSION_1_1,
79 };
80
81 #define PCI_CONFIG_MMIO_LENGTH 0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
84
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
86
87 #define STATUS_REVISION_MISMATCH 0xC0000059
88
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
91
92 /*
93 * Message Types
94 */
95
96 enum pci_message_type {
97 /*
98 * Version 1.1
99 */
100 PCI_MESSAGE_BASE = 0x42490000,
101 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0,
102 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1,
103 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4,
104 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6,
106 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7,
107 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8,
108 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9,
109 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA,
110 PCI_EJECT = PCI_MESSAGE_BASE + 0xB,
111 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC,
112 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD,
113 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE,
114 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF,
115 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10,
116 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11,
117 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12,
118 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13,
119 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14,
120 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15,
121 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16,
122 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17,
123 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */
124 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19,
125 PCI_MESSAGE_MAXIMUM
126 };
127
128 /*
129 * Structures defining the virtual PCI Express protocol.
130 */
131
132 union pci_version {
133 struct {
134 u16 minor_version;
135 u16 major_version;
136 } parts;
137 u32 version;
138 } __packed;
139
140 /*
141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142 * which is all this driver does. This representation is the one used in
143 * Windows, which is what is expected when sending this back and forth with
144 * the Hyper-V parent partition.
145 */
146 union win_slot_encoding {
147 struct {
148 u32 dev:5;
149 u32 func:3;
150 u32 reserved:24;
151 } bits;
152 u32 slot;
153 } __packed;
154
155 /*
156 * Pretty much as defined in the PCI Specifications.
157 */
158 struct pci_function_description {
159 u16 v_id; /* vendor ID */
160 u16 d_id; /* device ID */
161 u8 rev;
162 u8 prog_intf;
163 u8 subclass;
164 u8 base_class;
165 u32 subsystem_id;
166 union win_slot_encoding win_slot;
167 u32 ser; /* serial number */
168 } __packed;
169
170 enum pci_device_description_flags {
171 HV_PCI_DEVICE_FLAG_NONE = 0x0,
172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1,
173 };
174
175 struct pci_function_description2 {
176 u16 v_id; /* vendor ID */
177 u16 d_id; /* device ID */
178 u8 rev;
179 u8 prog_intf;
180 u8 subclass;
181 u8 base_class;
182 u32 subsystem_id;
183 union win_slot_encoding win_slot;
184 u32 ser; /* serial number */
185 u32 flags;
186 u16 virtual_numa_node;
187 u16 reserved;
188 } __packed;
189
190 /**
191 * struct hv_msi_desc
192 * @vector: IDT entry
193 * @delivery_mode: As defined in Intel's Programmer's
194 * Reference Manual, Volume 3, Chapter 8.
195 * @vector_count: Number of contiguous entries in the
196 * Interrupt Descriptor Table that are
197 * occupied by this Message-Signaled
198 * Interrupt. For "MSI", as first defined
199 * in PCI 2.2, this can be between 1 and
200 * 32. For "MSI-X," as first defined in PCI
201 * 3.0, this must be 1, as each MSI-X table
202 * entry would have its own descriptor.
203 * @reserved: Empty space
204 * @cpu_mask: All the target virtual processors.
205 */
206 struct hv_msi_desc {
207 u8 vector;
208 u8 delivery_mode;
209 u16 vector_count;
210 u32 reserved;
211 u64 cpu_mask;
212 } __packed;
213
214 /**
215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
216 * @vector: IDT entry
217 * @delivery_mode: As defined in Intel's Programmer's
218 * Reference Manual, Volume 3, Chapter 8.
219 * @vector_count: Number of contiguous entries in the
220 * Interrupt Descriptor Table that are
221 * occupied by this Message-Signaled
222 * Interrupt. For "MSI", as first defined
223 * in PCI 2.2, this can be between 1 and
224 * 32. For "MSI-X," as first defined in PCI
225 * 3.0, this must be 1, as each MSI-X table
226 * entry would have its own descriptor.
227 * @processor_count: number of bits enabled in array.
228 * @processor_array: All the target virtual processors.
229 */
230 struct hv_msi_desc2 {
231 u8 vector;
232 u8 delivery_mode;
233 u16 vector_count;
234 u16 processor_count;
235 u16 processor_array[32];
236 } __packed;
237
238 /**
239 * struct tran_int_desc
240 * @reserved: unused, padding
241 * @vector_count: same as in hv_msi_desc
242 * @data: This is the "data payload" value that is
243 * written by the device when it generates
244 * a message-signaled interrupt, either MSI
245 * or MSI-X.
246 * @address: This is the address to which the data
247 * payload is written on interrupt
248 * generation.
249 */
250 struct tran_int_desc {
251 u16 reserved;
252 u16 vector_count;
253 u32 data;
254 u64 address;
255 } __packed;
256
257 /*
258 * A generic message format for virtual PCI.
259 * Specific message formats are defined later in the file.
260 */
261
262 struct pci_message {
263 u32 type;
264 } __packed;
265
266 struct pci_child_message {
267 struct pci_message message_type;
268 union win_slot_encoding wslot;
269 } __packed;
270
271 struct pci_incoming_message {
272 struct vmpacket_descriptor hdr;
273 struct pci_message message_type;
274 } __packed;
275
276 struct pci_response {
277 struct vmpacket_descriptor hdr;
278 s32 status; /* negative values are failures */
279 } __packed;
280
281 struct pci_packet {
282 void (*completion_func)(void *context, struct pci_response *resp,
283 int resp_packet_size);
284 void *compl_ctxt;
285
286 struct pci_message message[];
287 };
288
289 /*
290 * Specific message types supporting the PCI protocol.
291 */
292
293 /*
294 * Version negotiation message. Sent from the guest to the host.
295 * The guest is free to try different versions until the host
296 * accepts the version.
297 *
298 * pci_version: The protocol version requested.
299 * is_last_attempt: If TRUE, this is the last version guest will request.
300 * reservedz: Reserved field, set to zero.
301 */
302
303 struct pci_version_request {
304 struct pci_message message_type;
305 u32 protocol_version;
306 } __packed;
307
308 /*
309 * Bus D0 Entry. This is sent from the guest to the host when the virtual
310 * bus (PCI Express port) is ready for action.
311 */
312
313 struct pci_bus_d0_entry {
314 struct pci_message message_type;
315 u32 reserved;
316 u64 mmio_base;
317 } __packed;
318
319 struct pci_bus_relations {
320 struct pci_incoming_message incoming;
321 u32 device_count;
322 struct pci_function_description func[];
323 } __packed;
324
325 struct pci_bus_relations2 {
326 struct pci_incoming_message incoming;
327 u32 device_count;
328 struct pci_function_description2 func[];
329 } __packed;
330
331 struct pci_q_res_req_response {
332 struct vmpacket_descriptor hdr;
333 s32 status; /* negative values are failures */
334 u32 probed_bar[PCI_STD_NUM_BARS];
335 } __packed;
336
337 struct pci_set_power {
338 struct pci_message message_type;
339 union win_slot_encoding wslot;
340 u32 power_state; /* In Windows terms */
341 u32 reserved;
342 } __packed;
343
344 struct pci_set_power_response {
345 struct vmpacket_descriptor hdr;
346 s32 status; /* negative values are failures */
347 union win_slot_encoding wslot;
348 u32 resultant_state; /* In Windows terms */
349 u32 reserved;
350 } __packed;
351
352 struct pci_resources_assigned {
353 struct pci_message message_type;
354 union win_slot_encoding wslot;
355 u8 memory_range[0x14][6]; /* not used here */
356 u32 msi_descriptors;
357 u32 reserved[4];
358 } __packed;
359
360 struct pci_resources_assigned2 {
361 struct pci_message message_type;
362 union win_slot_encoding wslot;
363 u8 memory_range[0x14][6]; /* not used here */
364 u32 msi_descriptor_count;
365 u8 reserved[70];
366 } __packed;
367
368 struct pci_create_interrupt {
369 struct pci_message message_type;
370 union win_slot_encoding wslot;
371 struct hv_msi_desc int_desc;
372 } __packed;
373
374 struct pci_create_int_response {
375 struct pci_response response;
376 u32 reserved;
377 struct tran_int_desc int_desc;
378 } __packed;
379
380 struct pci_create_interrupt2 {
381 struct pci_message message_type;
382 union win_slot_encoding wslot;
383 struct hv_msi_desc2 int_desc;
384 } __packed;
385
386 struct pci_delete_interrupt {
387 struct pci_message message_type;
388 union win_slot_encoding wslot;
389 struct tran_int_desc int_desc;
390 } __packed;
391
392 /*
393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
394 */
395 struct pci_read_block {
396 struct pci_message message_type;
397 u32 block_id;
398 union win_slot_encoding wslot;
399 u32 bytes_requested;
400 } __packed;
401
402 struct pci_read_block_response {
403 struct vmpacket_descriptor hdr;
404 u32 status;
405 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
406 } __packed;
407
408 /*
409 * Note: the VM must pass a valid block id, wslot and byte_count.
410 */
411 struct pci_write_block {
412 struct pci_message message_type;
413 u32 block_id;
414 union win_slot_encoding wslot;
415 u32 byte_count;
416 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
417 } __packed;
418
419 struct pci_dev_inval_block {
420 struct pci_incoming_message incoming;
421 union win_slot_encoding wslot;
422 u64 block_mask;
423 } __packed;
424
425 struct pci_dev_incoming {
426 struct pci_incoming_message incoming;
427 union win_slot_encoding wslot;
428 } __packed;
429
430 struct pci_eject_response {
431 struct pci_message message_type;
432 union win_slot_encoding wslot;
433 u32 status;
434 } __packed;
435
436 static int pci_ring_size = (4 * PAGE_SIZE);
437
438 /*
439 * Driver specific state.
440 */
441
442 enum hv_pcibus_state {
443 hv_pcibus_init = 0,
444 hv_pcibus_probed,
445 hv_pcibus_installed,
446 hv_pcibus_removing,
447 hv_pcibus_maximum
448 };
449
450 struct hv_pcibus_device {
451 struct pci_sysdata sysdata;
452 /* Protocol version negotiated with the host */
453 enum pci_protocol_version_t protocol_version;
454 enum hv_pcibus_state state;
455 refcount_t remove_lock;
456 struct hv_device *hdev;
457 resource_size_t low_mmio_space;
458 resource_size_t high_mmio_space;
459 struct resource *mem_config;
460 struct resource *low_mmio_res;
461 struct resource *high_mmio_res;
462 struct completion *survey_event;
463 struct completion remove_event;
464 struct pci_bus *pci_bus;
465 spinlock_t config_lock; /* Avoid two threads writing index page */
466 spinlock_t device_list_lock; /* Protect lists below */
467 void __iomem *cfg_addr;
468
469 struct list_head resources_for_children;
470
471 struct list_head children;
472 struct list_head dr_list;
473
474 struct msi_domain_info msi_info;
475 struct msi_controller msi_chip;
476 struct irq_domain *irq_domain;
477
478 spinlock_t retarget_msi_interrupt_lock;
479
480 struct workqueue_struct *wq;
481
482 /* Highest slot of child device with resources allocated */
483 int wslot_res_allocated;
484
485 /* hypercall arg, must not cross page boundary */
486 struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
487
488 /*
489 * Don't put anything here: retarget_msi_interrupt_params must be last
490 */
491 };
492
493 /*
494 * Tracks "Device Relations" messages from the host, which must be both
495 * processed in order and deferred so that they don't run in the context
496 * of the incoming packet callback.
497 */
498 struct hv_dr_work {
499 struct work_struct wrk;
500 struct hv_pcibus_device *bus;
501 };
502
503 struct hv_pcidev_description {
504 u16 v_id; /* vendor ID */
505 u16 d_id; /* device ID */
506 u8 rev;
507 u8 prog_intf;
508 u8 subclass;
509 u8 base_class;
510 u32 subsystem_id;
511 union win_slot_encoding win_slot;
512 u32 ser; /* serial number */
513 u32 flags;
514 u16 virtual_numa_node;
515 };
516
517 struct hv_dr_state {
518 struct list_head list_entry;
519 u32 device_count;
520 struct hv_pcidev_description func[];
521 };
522
523 enum hv_pcichild_state {
524 hv_pcichild_init = 0,
525 hv_pcichild_requirements,
526 hv_pcichild_resourced,
527 hv_pcichild_ejecting,
528 hv_pcichild_maximum
529 };
530
531 struct hv_pci_dev {
532 /* List protected by pci_rescan_remove_lock */
533 struct list_head list_entry;
534 refcount_t refs;
535 enum hv_pcichild_state state;
536 struct pci_slot *pci_slot;
537 struct hv_pcidev_description desc;
538 bool reported_missing;
539 struct hv_pcibus_device *hbus;
540 struct work_struct wrk;
541
542 void (*block_invalidate)(void *context, u64 block_mask);
543 void *invalidate_context;
544
545 /*
546 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
547 * read it back, for each of the BAR offsets within config space.
548 */
549 u32 probed_bar[PCI_STD_NUM_BARS];
550 };
551
552 struct hv_pci_compl {
553 struct completion host_event;
554 s32 completion_status;
555 };
556
557 static void hv_pci_onchannelcallback(void *context);
558
559 /**
560 * hv_pci_generic_compl() - Invoked for a completion packet
561 * @context: Set up by the sender of the packet.
562 * @resp: The response packet
563 * @resp_packet_size: Size in bytes of the packet
564 *
565 * This function is used to trigger an event and report status
566 * for any message for which the completion packet contains a
567 * status and nothing else.
568 */
hv_pci_generic_compl(void * context,struct pci_response * resp,int resp_packet_size)569 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
570 int resp_packet_size)
571 {
572 struct hv_pci_compl *comp_pkt = context;
573
574 if (resp_packet_size >= offsetofend(struct pci_response, status))
575 comp_pkt->completion_status = resp->status;
576 else
577 comp_pkt->completion_status = -1;
578
579 complete(&comp_pkt->host_event);
580 }
581
582 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
583 u32 wslot);
584
get_pcichild(struct hv_pci_dev * hpdev)585 static void get_pcichild(struct hv_pci_dev *hpdev)
586 {
587 refcount_inc(&hpdev->refs);
588 }
589
put_pcichild(struct hv_pci_dev * hpdev)590 static void put_pcichild(struct hv_pci_dev *hpdev)
591 {
592 if (refcount_dec_and_test(&hpdev->refs))
593 kfree(hpdev);
594 }
595
596 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
597 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
598
599 /*
600 * There is no good way to get notified from vmbus_onoffer_rescind(),
601 * so let's use polling here, since this is not a hot path.
602 */
wait_for_response(struct hv_device * hdev,struct completion * comp)603 static int wait_for_response(struct hv_device *hdev,
604 struct completion *comp)
605 {
606 while (true) {
607 if (hdev->channel->rescind) {
608 dev_warn_once(&hdev->device, "The device is gone.\n");
609 return -ENODEV;
610 }
611
612 if (wait_for_completion_timeout(comp, HZ / 10))
613 break;
614 }
615
616 return 0;
617 }
618
619 /**
620 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
621 * @devfn: The Linux representation of PCI slot
622 *
623 * Windows uses a slightly different representation of PCI slot.
624 *
625 * Return: The Windows representation
626 */
devfn_to_wslot(int devfn)627 static u32 devfn_to_wslot(int devfn)
628 {
629 union win_slot_encoding wslot;
630
631 wslot.slot = 0;
632 wslot.bits.dev = PCI_SLOT(devfn);
633 wslot.bits.func = PCI_FUNC(devfn);
634
635 return wslot.slot;
636 }
637
638 /**
639 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
640 * @wslot: The Windows representation of PCI slot
641 *
642 * Windows uses a slightly different representation of PCI slot.
643 *
644 * Return: The Linux representation
645 */
wslot_to_devfn(u32 wslot)646 static int wslot_to_devfn(u32 wslot)
647 {
648 union win_slot_encoding slot_no;
649
650 slot_no.slot = wslot;
651 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
652 }
653
654 /*
655 * PCI Configuration Space for these root PCI buses is implemented as a pair
656 * of pages in memory-mapped I/O space. Writing to the first page chooses
657 * the PCI function being written or read. Once the first page has been
658 * written to, the following page maps in the entire configuration space of
659 * the function.
660 */
661
662 /**
663 * _hv_pcifront_read_config() - Internal PCI config read
664 * @hpdev: The PCI driver's representation of the device
665 * @where: Offset within config space
666 * @size: Size of the transfer
667 * @val: Pointer to the buffer receiving the data
668 */
_hv_pcifront_read_config(struct hv_pci_dev * hpdev,int where,int size,u32 * val)669 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
670 int size, u32 *val)
671 {
672 unsigned long flags;
673 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
674
675 /*
676 * If the attempt is to read the IDs or the ROM BAR, simulate that.
677 */
678 if (where + size <= PCI_COMMAND) {
679 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
680 } else if (where >= PCI_CLASS_REVISION && where + size <=
681 PCI_CACHE_LINE_SIZE) {
682 memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
683 PCI_CLASS_REVISION, size);
684 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
685 PCI_ROM_ADDRESS) {
686 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
687 PCI_SUBSYSTEM_VENDOR_ID, size);
688 } else if (where >= PCI_ROM_ADDRESS && where + size <=
689 PCI_CAPABILITY_LIST) {
690 /* ROM BARs are unimplemented */
691 *val = 0;
692 } else if (where >= PCI_INTERRUPT_LINE && where + size <=
693 PCI_INTERRUPT_PIN) {
694 /*
695 * Interrupt Line and Interrupt PIN are hard-wired to zero
696 * because this front-end only supports message-signaled
697 * interrupts.
698 */
699 *val = 0;
700 } else if (where + size <= CFG_PAGE_SIZE) {
701 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
702 /* Choose the function to be read. (See comment above) */
703 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
704 /* Make sure the function was chosen before we start reading. */
705 mb();
706 /* Read from that function's config space. */
707 switch (size) {
708 case 1:
709 *val = readb(addr);
710 break;
711 case 2:
712 *val = readw(addr);
713 break;
714 default:
715 *val = readl(addr);
716 break;
717 }
718 /*
719 * Make sure the read was done before we release the spinlock
720 * allowing consecutive reads/writes.
721 */
722 mb();
723 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
724 } else {
725 dev_err(&hpdev->hbus->hdev->device,
726 "Attempt to read beyond a function's config space.\n");
727 }
728 }
729
hv_pcifront_get_vendor_id(struct hv_pci_dev * hpdev)730 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
731 {
732 u16 ret;
733 unsigned long flags;
734 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
735 PCI_VENDOR_ID;
736
737 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
738
739 /* Choose the function to be read. (See comment above) */
740 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
741 /* Make sure the function was chosen before we start reading. */
742 mb();
743 /* Read from that function's config space. */
744 ret = readw(addr);
745 /*
746 * mb() is not required here, because the spin_unlock_irqrestore()
747 * is a barrier.
748 */
749
750 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
751
752 return ret;
753 }
754
755 /**
756 * _hv_pcifront_write_config() - Internal PCI config write
757 * @hpdev: The PCI driver's representation of the device
758 * @where: Offset within config space
759 * @size: Size of the transfer
760 * @val: The data being transferred
761 */
_hv_pcifront_write_config(struct hv_pci_dev * hpdev,int where,int size,u32 val)762 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
763 int size, u32 val)
764 {
765 unsigned long flags;
766 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
767
768 if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
769 where + size <= PCI_CAPABILITY_LIST) {
770 /* SSIDs and ROM BARs are read-only */
771 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
772 spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
773 /* Choose the function to be written. (See comment above) */
774 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
775 /* Make sure the function was chosen before we start writing. */
776 wmb();
777 /* Write to that function's config space. */
778 switch (size) {
779 case 1:
780 writeb(val, addr);
781 break;
782 case 2:
783 writew(val, addr);
784 break;
785 default:
786 writel(val, addr);
787 break;
788 }
789 /*
790 * Make sure the write was done before we release the spinlock
791 * allowing consecutive reads/writes.
792 */
793 mb();
794 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
795 } else {
796 dev_err(&hpdev->hbus->hdev->device,
797 "Attempt to write beyond a function's config space.\n");
798 }
799 }
800
801 /**
802 * hv_pcifront_read_config() - Read configuration space
803 * @bus: PCI Bus structure
804 * @devfn: Device/function
805 * @where: Offset from base
806 * @size: Byte/word/dword
807 * @val: Value to be read
808 *
809 * Return: PCIBIOS_SUCCESSFUL on success
810 * PCIBIOS_DEVICE_NOT_FOUND on failure
811 */
hv_pcifront_read_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)812 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
813 int where, int size, u32 *val)
814 {
815 struct hv_pcibus_device *hbus =
816 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
817 struct hv_pci_dev *hpdev;
818
819 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
820 if (!hpdev)
821 return PCIBIOS_DEVICE_NOT_FOUND;
822
823 _hv_pcifront_read_config(hpdev, where, size, val);
824
825 put_pcichild(hpdev);
826 return PCIBIOS_SUCCESSFUL;
827 }
828
829 /**
830 * hv_pcifront_write_config() - Write configuration space
831 * @bus: PCI Bus structure
832 * @devfn: Device/function
833 * @where: Offset from base
834 * @size: Byte/word/dword
835 * @val: Value to be written to device
836 *
837 * Return: PCIBIOS_SUCCESSFUL on success
838 * PCIBIOS_DEVICE_NOT_FOUND on failure
839 */
hv_pcifront_write_config(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)840 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
841 int where, int size, u32 val)
842 {
843 struct hv_pcibus_device *hbus =
844 container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
845 struct hv_pci_dev *hpdev;
846
847 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
848 if (!hpdev)
849 return PCIBIOS_DEVICE_NOT_FOUND;
850
851 _hv_pcifront_write_config(hpdev, where, size, val);
852
853 put_pcichild(hpdev);
854 return PCIBIOS_SUCCESSFUL;
855 }
856
857 /* PCIe operations */
858 static struct pci_ops hv_pcifront_ops = {
859 .read = hv_pcifront_read_config,
860 .write = hv_pcifront_write_config,
861 };
862
863 /*
864 * Paravirtual backchannel
865 *
866 * Hyper-V SR-IOV provides a backchannel mechanism in software for
867 * communication between a VF driver and a PF driver. These
868 * "configuration blocks" are similar in concept to PCI configuration space,
869 * but instead of doing reads and writes in 32-bit chunks through a very slow
870 * path, packets of up to 128 bytes can be sent or received asynchronously.
871 *
872 * Nearly every SR-IOV device contains just such a communications channel in
873 * hardware, so using this one in software is usually optional. Using the
874 * software channel, however, allows driver implementers to leverage software
875 * tools that fuzz the communications channel looking for vulnerabilities.
876 *
877 * The usage model for these packets puts the responsibility for reading or
878 * writing on the VF driver. The VF driver sends a read or a write packet,
879 * indicating which "block" is being referred to by number.
880 *
881 * If the PF driver wishes to initiate communication, it can "invalidate" one or
882 * more of the first 64 blocks. This invalidation is delivered via a callback
883 * supplied by the VF driver by this driver.
884 *
885 * No protocol is implied, except that supplied by the PF and VF drivers.
886 */
887
888 struct hv_read_config_compl {
889 struct hv_pci_compl comp_pkt;
890 void *buf;
891 unsigned int len;
892 unsigned int bytes_returned;
893 };
894
895 /**
896 * hv_pci_read_config_compl() - Invoked when a response packet
897 * for a read config block operation arrives.
898 * @context: Identifies the read config operation
899 * @resp: The response packet itself
900 * @resp_packet_size: Size in bytes of the response packet
901 */
hv_pci_read_config_compl(void * context,struct pci_response * resp,int resp_packet_size)902 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
903 int resp_packet_size)
904 {
905 struct hv_read_config_compl *comp = context;
906 struct pci_read_block_response *read_resp =
907 (struct pci_read_block_response *)resp;
908 unsigned int data_len, hdr_len;
909
910 hdr_len = offsetof(struct pci_read_block_response, bytes);
911 if (resp_packet_size < hdr_len) {
912 comp->comp_pkt.completion_status = -1;
913 goto out;
914 }
915
916 data_len = resp_packet_size - hdr_len;
917 if (data_len > 0 && read_resp->status == 0) {
918 comp->bytes_returned = min(comp->len, data_len);
919 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
920 } else {
921 comp->bytes_returned = 0;
922 }
923
924 comp->comp_pkt.completion_status = read_resp->status;
925 out:
926 complete(&comp->comp_pkt.host_event);
927 }
928
929 /**
930 * hv_read_config_block() - Sends a read config block request to
931 * the back-end driver running in the Hyper-V parent partition.
932 * @pdev: The PCI driver's representation for this device.
933 * @buf: Buffer into which the config block will be copied.
934 * @len: Size in bytes of buf.
935 * @block_id: Identifies the config block which has been requested.
936 * @bytes_returned: Size which came back from the back-end driver.
937 *
938 * Return: 0 on success, -errno on failure
939 */
hv_read_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id,unsigned int * bytes_returned)940 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
941 unsigned int len, unsigned int block_id,
942 unsigned int *bytes_returned)
943 {
944 struct hv_pcibus_device *hbus =
945 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
946 sysdata);
947 struct {
948 struct pci_packet pkt;
949 char buf[sizeof(struct pci_read_block)];
950 } pkt;
951 struct hv_read_config_compl comp_pkt;
952 struct pci_read_block *read_blk;
953 int ret;
954
955 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
956 return -EINVAL;
957
958 init_completion(&comp_pkt.comp_pkt.host_event);
959 comp_pkt.buf = buf;
960 comp_pkt.len = len;
961
962 memset(&pkt, 0, sizeof(pkt));
963 pkt.pkt.completion_func = hv_pci_read_config_compl;
964 pkt.pkt.compl_ctxt = &comp_pkt;
965 read_blk = (struct pci_read_block *)&pkt.pkt.message;
966 read_blk->message_type.type = PCI_READ_BLOCK;
967 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
968 read_blk->block_id = block_id;
969 read_blk->bytes_requested = len;
970
971 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
972 sizeof(*read_blk), (unsigned long)&pkt.pkt,
973 VM_PKT_DATA_INBAND,
974 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
975 if (ret)
976 return ret;
977
978 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
979 if (ret)
980 return ret;
981
982 if (comp_pkt.comp_pkt.completion_status != 0 ||
983 comp_pkt.bytes_returned == 0) {
984 dev_err(&hbus->hdev->device,
985 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
986 comp_pkt.comp_pkt.completion_status,
987 comp_pkt.bytes_returned);
988 return -EIO;
989 }
990
991 *bytes_returned = comp_pkt.bytes_returned;
992 return 0;
993 }
994
995 /**
996 * hv_pci_write_config_compl() - Invoked when a response packet for a write
997 * config block operation arrives.
998 * @context: Identifies the write config operation
999 * @resp: The response packet itself
1000 * @resp_packet_size: Size in bytes of the response packet
1001 */
hv_pci_write_config_compl(void * context,struct pci_response * resp,int resp_packet_size)1002 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1003 int resp_packet_size)
1004 {
1005 struct hv_pci_compl *comp_pkt = context;
1006
1007 comp_pkt->completion_status = resp->status;
1008 complete(&comp_pkt->host_event);
1009 }
1010
1011 /**
1012 * hv_write_config_block() - Sends a write config block request to the
1013 * back-end driver running in the Hyper-V parent partition.
1014 * @pdev: The PCI driver's representation for this device.
1015 * @buf: Buffer from which the config block will be copied.
1016 * @len: Size in bytes of buf.
1017 * @block_id: Identifies the config block which is being written.
1018 *
1019 * Return: 0 on success, -errno on failure
1020 */
hv_write_config_block(struct pci_dev * pdev,void * buf,unsigned int len,unsigned int block_id)1021 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1022 unsigned int len, unsigned int block_id)
1023 {
1024 struct hv_pcibus_device *hbus =
1025 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1026 sysdata);
1027 struct {
1028 struct pci_packet pkt;
1029 char buf[sizeof(struct pci_write_block)];
1030 u32 reserved;
1031 } pkt;
1032 struct hv_pci_compl comp_pkt;
1033 struct pci_write_block *write_blk;
1034 u32 pkt_size;
1035 int ret;
1036
1037 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1038 return -EINVAL;
1039
1040 init_completion(&comp_pkt.host_event);
1041
1042 memset(&pkt, 0, sizeof(pkt));
1043 pkt.pkt.completion_func = hv_pci_write_config_compl;
1044 pkt.pkt.compl_ctxt = &comp_pkt;
1045 write_blk = (struct pci_write_block *)&pkt.pkt.message;
1046 write_blk->message_type.type = PCI_WRITE_BLOCK;
1047 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1048 write_blk->block_id = block_id;
1049 write_blk->byte_count = len;
1050 memcpy(write_blk->bytes, buf, len);
1051 pkt_size = offsetof(struct pci_write_block, bytes) + len;
1052 /*
1053 * This quirk is required on some hosts shipped around 2018, because
1054 * these hosts don't check the pkt_size correctly (new hosts have been
1055 * fixed since early 2019). The quirk is also safe on very old hosts
1056 * and new hosts, because, on them, what really matters is the length
1057 * specified in write_blk->byte_count.
1058 */
1059 pkt_size += sizeof(pkt.reserved);
1060
1061 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1062 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1063 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1064 if (ret)
1065 return ret;
1066
1067 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1068 if (ret)
1069 return ret;
1070
1071 if (comp_pkt.completion_status != 0) {
1072 dev_err(&hbus->hdev->device,
1073 "Write Config Block failed: 0x%x\n",
1074 comp_pkt.completion_status);
1075 return -EIO;
1076 }
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * hv_register_block_invalidate() - Invoked when a config block invalidation
1083 * arrives from the back-end driver.
1084 * @pdev: The PCI driver's representation for this device.
1085 * @context: Identifies the device.
1086 * @block_invalidate: Identifies all of the blocks being invalidated.
1087 *
1088 * Return: 0 on success, -errno on failure
1089 */
hv_register_block_invalidate(struct pci_dev * pdev,void * context,void (* block_invalidate)(void * context,u64 block_mask))1090 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1091 void (*block_invalidate)(void *context,
1092 u64 block_mask))
1093 {
1094 struct hv_pcibus_device *hbus =
1095 container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1096 sysdata);
1097 struct hv_pci_dev *hpdev;
1098
1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1100 if (!hpdev)
1101 return -ENODEV;
1102
1103 hpdev->block_invalidate = block_invalidate;
1104 hpdev->invalidate_context = context;
1105
1106 put_pcichild(hpdev);
1107 return 0;
1108
1109 }
1110
1111 /* Interrupt management hooks */
hv_int_desc_free(struct hv_pci_dev * hpdev,struct tran_int_desc * int_desc)1112 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1113 struct tran_int_desc *int_desc)
1114 {
1115 struct pci_delete_interrupt *int_pkt;
1116 struct {
1117 struct pci_packet pkt;
1118 u8 buffer[sizeof(struct pci_delete_interrupt)];
1119 } ctxt;
1120
1121 memset(&ctxt, 0, sizeof(ctxt));
1122 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1123 int_pkt->message_type.type =
1124 PCI_DELETE_INTERRUPT_MESSAGE;
1125 int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1126 int_pkt->int_desc = *int_desc;
1127 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1128 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1129 kfree(int_desc);
1130 }
1131
1132 /**
1133 * hv_msi_free() - Free the MSI.
1134 * @domain: The interrupt domain pointer
1135 * @info: Extra MSI-related context
1136 * @irq: Identifies the IRQ.
1137 *
1138 * The Hyper-V parent partition and hypervisor are tracking the
1139 * messages that are in use, keeping the interrupt redirection
1140 * table up to date. This callback sends a message that frees
1141 * the IRT entry and related tracking nonsense.
1142 */
hv_msi_free(struct irq_domain * domain,struct msi_domain_info * info,unsigned int irq)1143 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1144 unsigned int irq)
1145 {
1146 struct hv_pcibus_device *hbus;
1147 struct hv_pci_dev *hpdev;
1148 struct pci_dev *pdev;
1149 struct tran_int_desc *int_desc;
1150 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1151 struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1152
1153 pdev = msi_desc_to_pci_dev(msi);
1154 hbus = info->data;
1155 int_desc = irq_data_get_irq_chip_data(irq_data);
1156 if (!int_desc)
1157 return;
1158
1159 irq_data->chip_data = NULL;
1160 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1161 if (!hpdev) {
1162 kfree(int_desc);
1163 return;
1164 }
1165
1166 hv_int_desc_free(hpdev, int_desc);
1167 put_pcichild(hpdev);
1168 }
1169
hv_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)1170 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1171 bool force)
1172 {
1173 struct irq_data *parent = data->parent_data;
1174
1175 return parent->chip->irq_set_affinity(parent, dest, force);
1176 }
1177
hv_irq_mask(struct irq_data * data)1178 static void hv_irq_mask(struct irq_data *data)
1179 {
1180 pci_msi_mask_irq(data);
1181 }
1182
1183 /**
1184 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1185 * affinity.
1186 * @data: Describes the IRQ
1187 *
1188 * Build new a destination for the MSI and make a hypercall to
1189 * update the Interrupt Redirection Table. "Device Logical ID"
1190 * is built out of this PCI bus's instance GUID and the function
1191 * number of the device.
1192 */
hv_irq_unmask(struct irq_data * data)1193 static void hv_irq_unmask(struct irq_data *data)
1194 {
1195 struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1196 struct irq_cfg *cfg = irqd_cfg(data);
1197 struct hv_retarget_device_interrupt *params;
1198 struct hv_pcibus_device *hbus;
1199 struct cpumask *dest;
1200 cpumask_var_t tmp;
1201 struct pci_bus *pbus;
1202 struct pci_dev *pdev;
1203 unsigned long flags;
1204 u32 var_size = 0;
1205 int cpu, nr_bank;
1206 u64 res;
1207
1208 dest = irq_data_get_effective_affinity_mask(data);
1209 pdev = msi_desc_to_pci_dev(msi_desc);
1210 pbus = pdev->bus;
1211 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1212
1213 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1214
1215 params = &hbus->retarget_msi_interrupt_params;
1216 memset(params, 0, sizeof(*params));
1217 params->partition_id = HV_PARTITION_ID_SELF;
1218 params->int_entry.source = 1; /* MSI(-X) */
1219 hv_set_msi_entry_from_desc(¶ms->int_entry.msi_entry, msi_desc);
1220 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1221 (hbus->hdev->dev_instance.b[4] << 16) |
1222 (hbus->hdev->dev_instance.b[7] << 8) |
1223 (hbus->hdev->dev_instance.b[6] & 0xf8) |
1224 PCI_FUNC(pdev->devfn);
1225 params->int_target.vector = cfg->vector;
1226
1227 /*
1228 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1229 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1230 * spurious interrupt storm. Not doing so does not seem to have a
1231 * negative effect (yet?).
1232 */
1233
1234 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1235 /*
1236 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1237 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1238 * with >64 VP support.
1239 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1240 * is not sufficient for this hypercall.
1241 */
1242 params->int_target.flags |=
1243 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1244
1245 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1246 res = 1;
1247 goto exit_unlock;
1248 }
1249
1250 cpumask_and(tmp, dest, cpu_online_mask);
1251 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp);
1252 free_cpumask_var(tmp);
1253
1254 if (nr_bank <= 0) {
1255 res = 1;
1256 goto exit_unlock;
1257 }
1258
1259 /*
1260 * var-sized hypercall, var-size starts after vp_mask (thus
1261 * vp_set.format does not count, but vp_set.valid_bank_mask
1262 * does).
1263 */
1264 var_size = 1 + nr_bank;
1265 } else {
1266 for_each_cpu_and(cpu, dest, cpu_online_mask) {
1267 params->int_target.vp_mask |=
1268 (1ULL << hv_cpu_number_to_vp_number(cpu));
1269 }
1270 }
1271
1272 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1273 params, NULL);
1274
1275 exit_unlock:
1276 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1277
1278 /*
1279 * During hibernation, when a CPU is offlined, the kernel tries
1280 * to move the interrupt to the remaining CPUs that haven't
1281 * been offlined yet. In this case, the below hv_do_hypercall()
1282 * always fails since the vmbus channel has been closed:
1283 * refer to cpu_disable_common() -> fixup_irqs() ->
1284 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1285 *
1286 * Suppress the error message for hibernation because the failure
1287 * during hibernation does not matter (at this time all the devices
1288 * have been frozen). Note: the correct affinity info is still updated
1289 * into the irqdata data structure in migrate_one_irq() ->
1290 * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1291 * resumes, hv_pci_restore_msi_state() is able to correctly restore
1292 * the interrupt with the correct affinity.
1293 */
1294 if (res && hbus->state != hv_pcibus_removing)
1295 dev_err(&hbus->hdev->device,
1296 "%s() failed: %#llx", __func__, res);
1297
1298 pci_msi_unmask_irq(data);
1299 }
1300
1301 struct compose_comp_ctxt {
1302 struct hv_pci_compl comp_pkt;
1303 struct tran_int_desc int_desc;
1304 };
1305
hv_pci_compose_compl(void * context,struct pci_response * resp,int resp_packet_size)1306 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1307 int resp_packet_size)
1308 {
1309 struct compose_comp_ctxt *comp_pkt = context;
1310 struct pci_create_int_response *int_resp =
1311 (struct pci_create_int_response *)resp;
1312
1313 comp_pkt->comp_pkt.completion_status = resp->status;
1314 comp_pkt->int_desc = int_resp->int_desc;
1315 complete(&comp_pkt->comp_pkt.host_event);
1316 }
1317
hv_compose_msi_req_v1(struct pci_create_interrupt * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1318 static u32 hv_compose_msi_req_v1(
1319 struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1320 u32 slot, u8 vector)
1321 {
1322 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1323 int_pkt->wslot.slot = slot;
1324 int_pkt->int_desc.vector = vector;
1325 int_pkt->int_desc.vector_count = 1;
1326 int_pkt->int_desc.delivery_mode = dest_Fixed;
1327
1328 /*
1329 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1330 * hv_irq_unmask().
1331 */
1332 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1333
1334 return sizeof(*int_pkt);
1335 }
1336
hv_compose_msi_req_v2(struct pci_create_interrupt2 * int_pkt,struct cpumask * affinity,u32 slot,u8 vector)1337 static u32 hv_compose_msi_req_v2(
1338 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1339 u32 slot, u8 vector)
1340 {
1341 int cpu;
1342
1343 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1344 int_pkt->wslot.slot = slot;
1345 int_pkt->int_desc.vector = vector;
1346 int_pkt->int_desc.vector_count = 1;
1347 int_pkt->int_desc.delivery_mode = dest_Fixed;
1348
1349 /*
1350 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1351 * by subsequent retarget in hv_irq_unmask().
1352 */
1353 cpu = cpumask_first_and(affinity, cpu_online_mask);
1354 int_pkt->int_desc.processor_array[0] =
1355 hv_cpu_number_to_vp_number(cpu);
1356 int_pkt->int_desc.processor_count = 1;
1357
1358 return sizeof(*int_pkt);
1359 }
1360
1361 /**
1362 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1363 * @data: Everything about this MSI
1364 * @msg: Buffer that is filled in by this function
1365 *
1366 * This function unpacks the IRQ looking for target CPU set, IDT
1367 * vector and mode and sends a message to the parent partition
1368 * asking for a mapping for that tuple in this partition. The
1369 * response supplies a data value and address to which that data
1370 * should be written to trigger that interrupt.
1371 */
hv_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)1372 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1373 {
1374 struct irq_cfg *cfg = irqd_cfg(data);
1375 struct hv_pcibus_device *hbus;
1376 struct vmbus_channel *channel;
1377 struct hv_pci_dev *hpdev;
1378 struct pci_bus *pbus;
1379 struct pci_dev *pdev;
1380 struct cpumask *dest;
1381 struct compose_comp_ctxt comp;
1382 struct tran_int_desc *int_desc;
1383 struct {
1384 struct pci_packet pci_pkt;
1385 union {
1386 struct pci_create_interrupt v1;
1387 struct pci_create_interrupt2 v2;
1388 } int_pkts;
1389 } __packed ctxt;
1390
1391 u32 size;
1392 int ret;
1393
1394 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1395 dest = irq_data_get_effective_affinity_mask(data);
1396 pbus = pdev->bus;
1397 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1398 channel = hbus->hdev->channel;
1399 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1400 if (!hpdev)
1401 goto return_null_message;
1402
1403 /* Free any previous message that might have already been composed. */
1404 if (data->chip_data) {
1405 int_desc = data->chip_data;
1406 data->chip_data = NULL;
1407 hv_int_desc_free(hpdev, int_desc);
1408 }
1409
1410 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1411 if (!int_desc)
1412 goto drop_reference;
1413
1414 memset(&ctxt, 0, sizeof(ctxt));
1415 init_completion(&comp.comp_pkt.host_event);
1416 ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1417 ctxt.pci_pkt.compl_ctxt = ∁
1418
1419 switch (hbus->protocol_version) {
1420 case PCI_PROTOCOL_VERSION_1_1:
1421 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1422 dest,
1423 hpdev->desc.win_slot.slot,
1424 cfg->vector);
1425 break;
1426
1427 case PCI_PROTOCOL_VERSION_1_2:
1428 case PCI_PROTOCOL_VERSION_1_3:
1429 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1430 dest,
1431 hpdev->desc.win_slot.slot,
1432 cfg->vector);
1433 break;
1434
1435 default:
1436 /* As we only negotiate protocol versions known to this driver,
1437 * this path should never hit. However, this is it not a hot
1438 * path so we print a message to aid future updates.
1439 */
1440 dev_err(&hbus->hdev->device,
1441 "Unexpected vPCI protocol, update driver.");
1442 goto free_int_desc;
1443 }
1444
1445 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1446 size, (unsigned long)&ctxt.pci_pkt,
1447 VM_PKT_DATA_INBAND,
1448 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1449 if (ret) {
1450 dev_err(&hbus->hdev->device,
1451 "Sending request for interrupt failed: 0x%x",
1452 comp.comp_pkt.completion_status);
1453 goto free_int_desc;
1454 }
1455
1456 /*
1457 * Prevents hv_pci_onchannelcallback() from running concurrently
1458 * in the tasklet.
1459 */
1460 tasklet_disable(&channel->callback_event);
1461
1462 /*
1463 * Since this function is called with IRQ locks held, can't
1464 * do normal wait for completion; instead poll.
1465 */
1466 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1467 unsigned long flags;
1468
1469 /* 0xFFFF means an invalid PCI VENDOR ID. */
1470 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1471 dev_err_once(&hbus->hdev->device,
1472 "the device has gone\n");
1473 goto enable_tasklet;
1474 }
1475
1476 /*
1477 * Make sure that the ring buffer data structure doesn't get
1478 * freed while we dereference the ring buffer pointer. Test
1479 * for the channel's onchannel_callback being NULL within a
1480 * sched_lock critical section. See also the inline comments
1481 * in vmbus_reset_channel_cb().
1482 */
1483 spin_lock_irqsave(&channel->sched_lock, flags);
1484 if (unlikely(channel->onchannel_callback == NULL)) {
1485 spin_unlock_irqrestore(&channel->sched_lock, flags);
1486 goto enable_tasklet;
1487 }
1488 hv_pci_onchannelcallback(hbus);
1489 spin_unlock_irqrestore(&channel->sched_lock, flags);
1490
1491 if (hpdev->state == hv_pcichild_ejecting) {
1492 dev_err_once(&hbus->hdev->device,
1493 "the device is being ejected\n");
1494 goto enable_tasklet;
1495 }
1496
1497 udelay(100);
1498 }
1499
1500 tasklet_enable(&channel->callback_event);
1501
1502 if (comp.comp_pkt.completion_status < 0) {
1503 dev_err(&hbus->hdev->device,
1504 "Request for interrupt failed: 0x%x",
1505 comp.comp_pkt.completion_status);
1506 goto free_int_desc;
1507 }
1508
1509 /*
1510 * Record the assignment so that this can be unwound later. Using
1511 * irq_set_chip_data() here would be appropriate, but the lock it takes
1512 * is already held.
1513 */
1514 *int_desc = comp.int_desc;
1515 data->chip_data = int_desc;
1516
1517 /* Pass up the result. */
1518 msg->address_hi = comp.int_desc.address >> 32;
1519 msg->address_lo = comp.int_desc.address & 0xffffffff;
1520 msg->data = comp.int_desc.data;
1521
1522 put_pcichild(hpdev);
1523 return;
1524
1525 enable_tasklet:
1526 tasklet_enable(&channel->callback_event);
1527 free_int_desc:
1528 kfree(int_desc);
1529 drop_reference:
1530 put_pcichild(hpdev);
1531 return_null_message:
1532 msg->address_hi = 0;
1533 msg->address_lo = 0;
1534 msg->data = 0;
1535 }
1536
1537 /* HW Interrupt Chip Descriptor */
1538 static struct irq_chip hv_msi_irq_chip = {
1539 .name = "Hyper-V PCIe MSI",
1540 .irq_compose_msi_msg = hv_compose_msi_msg,
1541 .irq_set_affinity = hv_set_affinity,
1542 .irq_ack = irq_chip_ack_parent,
1543 .irq_mask = hv_irq_mask,
1544 .irq_unmask = hv_irq_unmask,
1545 };
1546
1547 static struct msi_domain_ops hv_msi_ops = {
1548 .msi_prepare = pci_msi_prepare,
1549 .msi_free = hv_msi_free,
1550 };
1551
1552 /**
1553 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1554 * @hbus: The root PCI bus
1555 *
1556 * This function creates an IRQ domain which will be used for
1557 * interrupts from devices that have been passed through. These
1558 * devices only support MSI and MSI-X, not line-based interrupts
1559 * or simulations of line-based interrupts through PCIe's
1560 * fabric-layer messages. Because interrupts are remapped, we
1561 * can support multi-message MSI here.
1562 *
1563 * Return: '0' on success and error value on failure
1564 */
hv_pcie_init_irq_domain(struct hv_pcibus_device * hbus)1565 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1566 {
1567 hbus->msi_info.chip = &hv_msi_irq_chip;
1568 hbus->msi_info.ops = &hv_msi_ops;
1569 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1570 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1571 MSI_FLAG_PCI_MSIX);
1572 hbus->msi_info.handler = handle_edge_irq;
1573 hbus->msi_info.handler_name = "edge";
1574 hbus->msi_info.data = hbus;
1575 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1576 &hbus->msi_info,
1577 x86_vector_domain);
1578 if (!hbus->irq_domain) {
1579 dev_err(&hbus->hdev->device,
1580 "Failed to build an MSI IRQ domain\n");
1581 return -ENODEV;
1582 }
1583
1584 return 0;
1585 }
1586
1587 /**
1588 * get_bar_size() - Get the address space consumed by a BAR
1589 * @bar_val: Value that a BAR returned after -1 was written
1590 * to it.
1591 *
1592 * This function returns the size of the BAR, rounded up to 1
1593 * page. It has to be rounded up because the hypervisor's page
1594 * table entry that maps the BAR into the VM can't specify an
1595 * offset within a page. The invariant is that the hypervisor
1596 * must place any BARs of smaller than page length at the
1597 * beginning of a page.
1598 *
1599 * Return: Size in bytes of the consumed MMIO space.
1600 */
get_bar_size(u64 bar_val)1601 static u64 get_bar_size(u64 bar_val)
1602 {
1603 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1604 PAGE_SIZE);
1605 }
1606
1607 /**
1608 * survey_child_resources() - Total all MMIO requirements
1609 * @hbus: Root PCI bus, as understood by this driver
1610 */
survey_child_resources(struct hv_pcibus_device * hbus)1611 static void survey_child_resources(struct hv_pcibus_device *hbus)
1612 {
1613 struct hv_pci_dev *hpdev;
1614 resource_size_t bar_size = 0;
1615 unsigned long flags;
1616 struct completion *event;
1617 u64 bar_val;
1618 int i;
1619
1620 /* If nobody is waiting on the answer, don't compute it. */
1621 event = xchg(&hbus->survey_event, NULL);
1622 if (!event)
1623 return;
1624
1625 /* If the answer has already been computed, go with it. */
1626 if (hbus->low_mmio_space || hbus->high_mmio_space) {
1627 complete(event);
1628 return;
1629 }
1630
1631 spin_lock_irqsave(&hbus->device_list_lock, flags);
1632
1633 /*
1634 * Due to an interesting quirk of the PCI spec, all memory regions
1635 * for a child device are a power of 2 in size and aligned in memory,
1636 * so it's sufficient to just add them up without tracking alignment.
1637 */
1638 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1639 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1640 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1641 dev_err(&hbus->hdev->device,
1642 "There's an I/O BAR in this list!\n");
1643
1644 if (hpdev->probed_bar[i] != 0) {
1645 /*
1646 * A probed BAR has all the upper bits set that
1647 * can be changed.
1648 */
1649
1650 bar_val = hpdev->probed_bar[i];
1651 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1652 bar_val |=
1653 ((u64)hpdev->probed_bar[++i] << 32);
1654 else
1655 bar_val |= 0xffffffff00000000ULL;
1656
1657 bar_size = get_bar_size(bar_val);
1658
1659 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1660 hbus->high_mmio_space += bar_size;
1661 else
1662 hbus->low_mmio_space += bar_size;
1663 }
1664 }
1665 }
1666
1667 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1668 complete(event);
1669 }
1670
1671 /**
1672 * prepopulate_bars() - Fill in BARs with defaults
1673 * @hbus: Root PCI bus, as understood by this driver
1674 *
1675 * The core PCI driver code seems much, much happier if the BARs
1676 * for a device have values upon first scan. So fill them in.
1677 * The algorithm below works down from large sizes to small,
1678 * attempting to pack the assignments optimally. The assumption,
1679 * enforced in other parts of the code, is that the beginning of
1680 * the memory-mapped I/O space will be aligned on the largest
1681 * BAR size.
1682 */
prepopulate_bars(struct hv_pcibus_device * hbus)1683 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1684 {
1685 resource_size_t high_size = 0;
1686 resource_size_t low_size = 0;
1687 resource_size_t high_base = 0;
1688 resource_size_t low_base = 0;
1689 resource_size_t bar_size;
1690 struct hv_pci_dev *hpdev;
1691 unsigned long flags;
1692 u64 bar_val;
1693 u32 command;
1694 bool high;
1695 int i;
1696
1697 if (hbus->low_mmio_space) {
1698 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1699 low_base = hbus->low_mmio_res->start;
1700 }
1701
1702 if (hbus->high_mmio_space) {
1703 high_size = 1ULL <<
1704 (63 - __builtin_clzll(hbus->high_mmio_space));
1705 high_base = hbus->high_mmio_res->start;
1706 }
1707
1708 spin_lock_irqsave(&hbus->device_list_lock, flags);
1709
1710 /*
1711 * Clear the memory enable bit, in case it's already set. This occurs
1712 * in the suspend path of hibernation, where the device is suspended,
1713 * resumed and suspended again: see hibernation_snapshot() and
1714 * hibernation_platform_enter().
1715 *
1716 * If the memory enable bit is already set, Hyper-V sliently ignores
1717 * the below BAR updates, and the related PCI device driver can not
1718 * work, because reading from the device register(s) always returns
1719 * 0xFFFFFFFF.
1720 */
1721 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1722 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1723 command &= ~PCI_COMMAND_MEMORY;
1724 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1725 }
1726
1727 /* Pick addresses for the BARs. */
1728 do {
1729 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1730 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1731 bar_val = hpdev->probed_bar[i];
1732 if (bar_val == 0)
1733 continue;
1734 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1735 if (high) {
1736 bar_val |=
1737 ((u64)hpdev->probed_bar[i + 1]
1738 << 32);
1739 } else {
1740 bar_val |= 0xffffffffULL << 32;
1741 }
1742 bar_size = get_bar_size(bar_val);
1743 if (high) {
1744 if (high_size != bar_size) {
1745 i++;
1746 continue;
1747 }
1748 _hv_pcifront_write_config(hpdev,
1749 PCI_BASE_ADDRESS_0 + (4 * i),
1750 4,
1751 (u32)(high_base & 0xffffff00));
1752 i++;
1753 _hv_pcifront_write_config(hpdev,
1754 PCI_BASE_ADDRESS_0 + (4 * i),
1755 4, (u32)(high_base >> 32));
1756 high_base += bar_size;
1757 } else {
1758 if (low_size != bar_size)
1759 continue;
1760 _hv_pcifront_write_config(hpdev,
1761 PCI_BASE_ADDRESS_0 + (4 * i),
1762 4,
1763 (u32)(low_base & 0xffffff00));
1764 low_base += bar_size;
1765 }
1766 }
1767 if (high_size <= 1 && low_size <= 1) {
1768 /* Set the memory enable bit. */
1769 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1770 &command);
1771 command |= PCI_COMMAND_MEMORY;
1772 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1773 command);
1774 break;
1775 }
1776 }
1777
1778 high_size >>= 1;
1779 low_size >>= 1;
1780 } while (high_size || low_size);
1781
1782 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1783 }
1784
1785 /*
1786 * Assign entries in sysfs pci slot directory.
1787 *
1788 * Note that this function does not need to lock the children list
1789 * because it is called from pci_devices_present_work which
1790 * is serialized with hv_eject_device_work because they are on the
1791 * same ordered workqueue. Therefore hbus->children list will not change
1792 * even when pci_create_slot sleeps.
1793 */
hv_pci_assign_slots(struct hv_pcibus_device * hbus)1794 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1795 {
1796 struct hv_pci_dev *hpdev;
1797 char name[SLOT_NAME_SIZE];
1798 int slot_nr;
1799
1800 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1801 if (hpdev->pci_slot)
1802 continue;
1803
1804 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1805 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1806 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1807 name, NULL);
1808 if (IS_ERR(hpdev->pci_slot)) {
1809 pr_warn("pci_create slot %s failed\n", name);
1810 hpdev->pci_slot = NULL;
1811 }
1812 }
1813 }
1814
1815 /*
1816 * Remove entries in sysfs pci slot directory.
1817 */
hv_pci_remove_slots(struct hv_pcibus_device * hbus)1818 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1819 {
1820 struct hv_pci_dev *hpdev;
1821
1822 list_for_each_entry(hpdev, &hbus->children, list_entry) {
1823 if (!hpdev->pci_slot)
1824 continue;
1825 pci_destroy_slot(hpdev->pci_slot);
1826 hpdev->pci_slot = NULL;
1827 }
1828 }
1829
1830 /*
1831 * Set NUMA node for the devices on the bus
1832 */
hv_pci_assign_numa_node(struct hv_pcibus_device * hbus)1833 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1834 {
1835 struct pci_dev *dev;
1836 struct pci_bus *bus = hbus->pci_bus;
1837 struct hv_pci_dev *hv_dev;
1838
1839 list_for_each_entry(dev, &bus->devices, bus_list) {
1840 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1841 if (!hv_dev)
1842 continue;
1843
1844 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1845 set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1846
1847 put_pcichild(hv_dev);
1848 }
1849 }
1850
1851 /**
1852 * create_root_hv_pci_bus() - Expose a new root PCI bus
1853 * @hbus: Root PCI bus, as understood by this driver
1854 *
1855 * Return: 0 on success, -errno on failure
1856 */
create_root_hv_pci_bus(struct hv_pcibus_device * hbus)1857 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1858 {
1859 /* Register the device */
1860 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1861 0, /* bus number is always zero */
1862 &hv_pcifront_ops,
1863 &hbus->sysdata,
1864 &hbus->resources_for_children);
1865 if (!hbus->pci_bus)
1866 return -ENODEV;
1867
1868 hbus->pci_bus->msi = &hbus->msi_chip;
1869 hbus->pci_bus->msi->dev = &hbus->hdev->device;
1870
1871 pci_lock_rescan_remove();
1872 pci_scan_child_bus(hbus->pci_bus);
1873 hv_pci_assign_numa_node(hbus);
1874 pci_bus_assign_resources(hbus->pci_bus);
1875 hv_pci_assign_slots(hbus);
1876 pci_bus_add_devices(hbus->pci_bus);
1877 pci_unlock_rescan_remove();
1878 hbus->state = hv_pcibus_installed;
1879 return 0;
1880 }
1881
1882 struct q_res_req_compl {
1883 struct completion host_event;
1884 struct hv_pci_dev *hpdev;
1885 };
1886
1887 /**
1888 * q_resource_requirements() - Query Resource Requirements
1889 * @context: The completion context.
1890 * @resp: The response that came from the host.
1891 * @resp_packet_size: The size in bytes of resp.
1892 *
1893 * This function is invoked on completion of a Query Resource
1894 * Requirements packet.
1895 */
q_resource_requirements(void * context,struct pci_response * resp,int resp_packet_size)1896 static void q_resource_requirements(void *context, struct pci_response *resp,
1897 int resp_packet_size)
1898 {
1899 struct q_res_req_compl *completion = context;
1900 struct pci_q_res_req_response *q_res_req =
1901 (struct pci_q_res_req_response *)resp;
1902 int i;
1903
1904 if (resp->status < 0) {
1905 dev_err(&completion->hpdev->hbus->hdev->device,
1906 "query resource requirements failed: %x\n",
1907 resp->status);
1908 } else {
1909 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1910 completion->hpdev->probed_bar[i] =
1911 q_res_req->probed_bar[i];
1912 }
1913 }
1914
1915 complete(&completion->host_event);
1916 }
1917
1918 /**
1919 * new_pcichild_device() - Create a new child device
1920 * @hbus: The internal struct tracking this root PCI bus.
1921 * @desc: The information supplied so far from the host
1922 * about the device.
1923 *
1924 * This function creates the tracking structure for a new child
1925 * device and kicks off the process of figuring out what it is.
1926 *
1927 * Return: Pointer to the new tracking struct
1928 */
new_pcichild_device(struct hv_pcibus_device * hbus,struct hv_pcidev_description * desc)1929 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1930 struct hv_pcidev_description *desc)
1931 {
1932 struct hv_pci_dev *hpdev;
1933 struct pci_child_message *res_req;
1934 struct q_res_req_compl comp_pkt;
1935 struct {
1936 struct pci_packet init_packet;
1937 u8 buffer[sizeof(struct pci_child_message)];
1938 } pkt;
1939 unsigned long flags;
1940 int ret;
1941
1942 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1943 if (!hpdev)
1944 return NULL;
1945
1946 hpdev->hbus = hbus;
1947
1948 memset(&pkt, 0, sizeof(pkt));
1949 init_completion(&comp_pkt.host_event);
1950 comp_pkt.hpdev = hpdev;
1951 pkt.init_packet.compl_ctxt = &comp_pkt;
1952 pkt.init_packet.completion_func = q_resource_requirements;
1953 res_req = (struct pci_child_message *)&pkt.init_packet.message;
1954 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1955 res_req->wslot.slot = desc->win_slot.slot;
1956
1957 ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1958 sizeof(struct pci_child_message),
1959 (unsigned long)&pkt.init_packet,
1960 VM_PKT_DATA_INBAND,
1961 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1962 if (ret)
1963 goto error;
1964
1965 if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1966 goto error;
1967
1968 hpdev->desc = *desc;
1969 refcount_set(&hpdev->refs, 1);
1970 get_pcichild(hpdev);
1971 spin_lock_irqsave(&hbus->device_list_lock, flags);
1972
1973 list_add_tail(&hpdev->list_entry, &hbus->children);
1974 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1975 return hpdev;
1976
1977 error:
1978 kfree(hpdev);
1979 return NULL;
1980 }
1981
1982 /**
1983 * get_pcichild_wslot() - Find device from slot
1984 * @hbus: Root PCI bus, as understood by this driver
1985 * @wslot: Location on the bus
1986 *
1987 * This function looks up a PCI device and returns the internal
1988 * representation of it. It acquires a reference on it, so that
1989 * the device won't be deleted while somebody is using it. The
1990 * caller is responsible for calling put_pcichild() to release
1991 * this reference.
1992 *
1993 * Return: Internal representation of a PCI device
1994 */
get_pcichild_wslot(struct hv_pcibus_device * hbus,u32 wslot)1995 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1996 u32 wslot)
1997 {
1998 unsigned long flags;
1999 struct hv_pci_dev *iter, *hpdev = NULL;
2000
2001 spin_lock_irqsave(&hbus->device_list_lock, flags);
2002 list_for_each_entry(iter, &hbus->children, list_entry) {
2003 if (iter->desc.win_slot.slot == wslot) {
2004 hpdev = iter;
2005 get_pcichild(hpdev);
2006 break;
2007 }
2008 }
2009 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2010
2011 return hpdev;
2012 }
2013
2014 /**
2015 * pci_devices_present_work() - Handle new list of child devices
2016 * @work: Work struct embedded in struct hv_dr_work
2017 *
2018 * "Bus Relations" is the Windows term for "children of this
2019 * bus." The terminology is preserved here for people trying to
2020 * debug the interaction between Hyper-V and Linux. This
2021 * function is called when the parent partition reports a list
2022 * of functions that should be observed under this PCI Express
2023 * port (bus).
2024 *
2025 * This function updates the list, and must tolerate being
2026 * called multiple times with the same information. The typical
2027 * number of child devices is one, with very atypical cases
2028 * involving three or four, so the algorithms used here can be
2029 * simple and inefficient.
2030 *
2031 * It must also treat the omission of a previously observed device as
2032 * notification that the device no longer exists.
2033 *
2034 * Note that this function is serialized with hv_eject_device_work(),
2035 * because both are pushed to the ordered workqueue hbus->wq.
2036 */
pci_devices_present_work(struct work_struct * work)2037 static void pci_devices_present_work(struct work_struct *work)
2038 {
2039 u32 child_no;
2040 bool found;
2041 struct hv_pcidev_description *new_desc;
2042 struct hv_pci_dev *hpdev;
2043 struct hv_pcibus_device *hbus;
2044 struct list_head removed;
2045 struct hv_dr_work *dr_wrk;
2046 struct hv_dr_state *dr = NULL;
2047 unsigned long flags;
2048
2049 dr_wrk = container_of(work, struct hv_dr_work, wrk);
2050 hbus = dr_wrk->bus;
2051 kfree(dr_wrk);
2052
2053 INIT_LIST_HEAD(&removed);
2054
2055 /* Pull this off the queue and process it if it was the last one. */
2056 spin_lock_irqsave(&hbus->device_list_lock, flags);
2057 while (!list_empty(&hbus->dr_list)) {
2058 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2059 list_entry);
2060 list_del(&dr->list_entry);
2061
2062 /* Throw this away if the list still has stuff in it. */
2063 if (!list_empty(&hbus->dr_list)) {
2064 kfree(dr);
2065 continue;
2066 }
2067 }
2068 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2069
2070 if (!dr) {
2071 put_hvpcibus(hbus);
2072 return;
2073 }
2074
2075 /* First, mark all existing children as reported missing. */
2076 spin_lock_irqsave(&hbus->device_list_lock, flags);
2077 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2078 hpdev->reported_missing = true;
2079 }
2080 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2081
2082 /* Next, add back any reported devices. */
2083 for (child_no = 0; child_no < dr->device_count; child_no++) {
2084 found = false;
2085 new_desc = &dr->func[child_no];
2086
2087 spin_lock_irqsave(&hbus->device_list_lock, flags);
2088 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2089 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2090 (hpdev->desc.v_id == new_desc->v_id) &&
2091 (hpdev->desc.d_id == new_desc->d_id) &&
2092 (hpdev->desc.ser == new_desc->ser)) {
2093 hpdev->reported_missing = false;
2094 found = true;
2095 }
2096 }
2097 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2098
2099 if (!found) {
2100 hpdev = new_pcichild_device(hbus, new_desc);
2101 if (!hpdev)
2102 dev_err(&hbus->hdev->device,
2103 "couldn't record a child device.\n");
2104 }
2105 }
2106
2107 /* Move missing children to a list on the stack. */
2108 spin_lock_irqsave(&hbus->device_list_lock, flags);
2109 do {
2110 found = false;
2111 list_for_each_entry(hpdev, &hbus->children, list_entry) {
2112 if (hpdev->reported_missing) {
2113 found = true;
2114 put_pcichild(hpdev);
2115 list_move_tail(&hpdev->list_entry, &removed);
2116 break;
2117 }
2118 }
2119 } while (found);
2120 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2121
2122 /* Delete everything that should no longer exist. */
2123 while (!list_empty(&removed)) {
2124 hpdev = list_first_entry(&removed, struct hv_pci_dev,
2125 list_entry);
2126 list_del(&hpdev->list_entry);
2127
2128 if (hpdev->pci_slot)
2129 pci_destroy_slot(hpdev->pci_slot);
2130
2131 put_pcichild(hpdev);
2132 }
2133
2134 switch (hbus->state) {
2135 case hv_pcibus_installed:
2136 /*
2137 * Tell the core to rescan bus
2138 * because there may have been changes.
2139 */
2140 pci_lock_rescan_remove();
2141 pci_scan_child_bus(hbus->pci_bus);
2142 hv_pci_assign_numa_node(hbus);
2143 hv_pci_assign_slots(hbus);
2144 pci_unlock_rescan_remove();
2145 break;
2146
2147 case hv_pcibus_init:
2148 case hv_pcibus_probed:
2149 survey_child_resources(hbus);
2150 break;
2151
2152 default:
2153 break;
2154 }
2155
2156 put_hvpcibus(hbus);
2157 kfree(dr);
2158 }
2159
2160 /**
2161 * hv_pci_start_relations_work() - Queue work to start device discovery
2162 * @hbus: Root PCI bus, as understood by this driver
2163 * @dr: The list of children returned from host
2164 *
2165 * Return: 0 on success, -errno on failure
2166 */
hv_pci_start_relations_work(struct hv_pcibus_device * hbus,struct hv_dr_state * dr)2167 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2168 struct hv_dr_state *dr)
2169 {
2170 struct hv_dr_work *dr_wrk;
2171 unsigned long flags;
2172 bool pending_dr;
2173
2174 if (hbus->state == hv_pcibus_removing) {
2175 dev_info(&hbus->hdev->device,
2176 "PCI VMBus BUS_RELATIONS: ignored\n");
2177 return -ENOENT;
2178 }
2179
2180 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2181 if (!dr_wrk)
2182 return -ENOMEM;
2183
2184 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2185 dr_wrk->bus = hbus;
2186
2187 spin_lock_irqsave(&hbus->device_list_lock, flags);
2188 /*
2189 * If pending_dr is true, we have already queued a work,
2190 * which will see the new dr. Otherwise, we need to
2191 * queue a new work.
2192 */
2193 pending_dr = !list_empty(&hbus->dr_list);
2194 list_add_tail(&dr->list_entry, &hbus->dr_list);
2195 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2196
2197 if (pending_dr) {
2198 kfree(dr_wrk);
2199 } else {
2200 get_hvpcibus(hbus);
2201 queue_work(hbus->wq, &dr_wrk->wrk);
2202 }
2203
2204 return 0;
2205 }
2206
2207 /**
2208 * hv_pci_devices_present() - Handle list of new children
2209 * @hbus: Root PCI bus, as understood by this driver
2210 * @relations: Packet from host listing children
2211 *
2212 * Process a new list of devices on the bus. The list of devices is
2213 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2214 * whenever a new list of devices for this bus appears.
2215 */
hv_pci_devices_present(struct hv_pcibus_device * hbus,struct pci_bus_relations * relations)2216 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2217 struct pci_bus_relations *relations)
2218 {
2219 struct hv_dr_state *dr;
2220 int i;
2221
2222 dr = kzalloc(struct_size(dr, func, relations->device_count),
2223 GFP_NOWAIT);
2224 if (!dr)
2225 return;
2226
2227 dr->device_count = relations->device_count;
2228 for (i = 0; i < dr->device_count; i++) {
2229 dr->func[i].v_id = relations->func[i].v_id;
2230 dr->func[i].d_id = relations->func[i].d_id;
2231 dr->func[i].rev = relations->func[i].rev;
2232 dr->func[i].prog_intf = relations->func[i].prog_intf;
2233 dr->func[i].subclass = relations->func[i].subclass;
2234 dr->func[i].base_class = relations->func[i].base_class;
2235 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2236 dr->func[i].win_slot = relations->func[i].win_slot;
2237 dr->func[i].ser = relations->func[i].ser;
2238 }
2239
2240 if (hv_pci_start_relations_work(hbus, dr))
2241 kfree(dr);
2242 }
2243
2244 /**
2245 * hv_pci_devices_present2() - Handle list of new children
2246 * @hbus: Root PCI bus, as understood by this driver
2247 * @relations: Packet from host listing children
2248 *
2249 * This function is the v2 version of hv_pci_devices_present()
2250 */
hv_pci_devices_present2(struct hv_pcibus_device * hbus,struct pci_bus_relations2 * relations)2251 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2252 struct pci_bus_relations2 *relations)
2253 {
2254 struct hv_dr_state *dr;
2255 int i;
2256
2257 dr = kzalloc(struct_size(dr, func, relations->device_count),
2258 GFP_NOWAIT);
2259 if (!dr)
2260 return;
2261
2262 dr->device_count = relations->device_count;
2263 for (i = 0; i < dr->device_count; i++) {
2264 dr->func[i].v_id = relations->func[i].v_id;
2265 dr->func[i].d_id = relations->func[i].d_id;
2266 dr->func[i].rev = relations->func[i].rev;
2267 dr->func[i].prog_intf = relations->func[i].prog_intf;
2268 dr->func[i].subclass = relations->func[i].subclass;
2269 dr->func[i].base_class = relations->func[i].base_class;
2270 dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2271 dr->func[i].win_slot = relations->func[i].win_slot;
2272 dr->func[i].ser = relations->func[i].ser;
2273 dr->func[i].flags = relations->func[i].flags;
2274 dr->func[i].virtual_numa_node =
2275 relations->func[i].virtual_numa_node;
2276 }
2277
2278 if (hv_pci_start_relations_work(hbus, dr))
2279 kfree(dr);
2280 }
2281
2282 /**
2283 * hv_eject_device_work() - Asynchronously handles ejection
2284 * @work: Work struct embedded in internal device struct
2285 *
2286 * This function handles ejecting a device. Windows will
2287 * attempt to gracefully eject a device, waiting 60 seconds to
2288 * hear back from the guest OS that this completed successfully.
2289 * If this timer expires, the device will be forcibly removed.
2290 */
hv_eject_device_work(struct work_struct * work)2291 static void hv_eject_device_work(struct work_struct *work)
2292 {
2293 struct pci_eject_response *ejct_pkt;
2294 struct hv_pcibus_device *hbus;
2295 struct hv_pci_dev *hpdev;
2296 struct pci_dev *pdev;
2297 unsigned long flags;
2298 int wslot;
2299 struct {
2300 struct pci_packet pkt;
2301 u8 buffer[sizeof(struct pci_eject_response)];
2302 } ctxt;
2303
2304 hpdev = container_of(work, struct hv_pci_dev, wrk);
2305 hbus = hpdev->hbus;
2306
2307 WARN_ON(hpdev->state != hv_pcichild_ejecting);
2308
2309 /*
2310 * Ejection can come before or after the PCI bus has been set up, so
2311 * attempt to find it and tear down the bus state, if it exists. This
2312 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2313 * because hbus->pci_bus may not exist yet.
2314 */
2315 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2316 pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2317 if (pdev) {
2318 pci_lock_rescan_remove();
2319 pci_stop_and_remove_bus_device(pdev);
2320 pci_dev_put(pdev);
2321 pci_unlock_rescan_remove();
2322 }
2323
2324 spin_lock_irqsave(&hbus->device_list_lock, flags);
2325 list_del(&hpdev->list_entry);
2326 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2327
2328 if (hpdev->pci_slot)
2329 pci_destroy_slot(hpdev->pci_slot);
2330
2331 memset(&ctxt, 0, sizeof(ctxt));
2332 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2333 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2334 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2335 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2336 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2337 VM_PKT_DATA_INBAND, 0);
2338
2339 /* For the get_pcichild() in hv_pci_eject_device() */
2340 put_pcichild(hpdev);
2341 /* For the two refs got in new_pcichild_device() */
2342 put_pcichild(hpdev);
2343 put_pcichild(hpdev);
2344 /* hpdev has been freed. Do not use it any more. */
2345
2346 put_hvpcibus(hbus);
2347 }
2348
2349 /**
2350 * hv_pci_eject_device() - Handles device ejection
2351 * @hpdev: Internal device tracking struct
2352 *
2353 * This function is invoked when an ejection packet arrives. It
2354 * just schedules work so that we don't re-enter the packet
2355 * delivery code handling the ejection.
2356 */
hv_pci_eject_device(struct hv_pci_dev * hpdev)2357 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2358 {
2359 struct hv_pcibus_device *hbus = hpdev->hbus;
2360 struct hv_device *hdev = hbus->hdev;
2361
2362 if (hbus->state == hv_pcibus_removing) {
2363 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2364 return;
2365 }
2366
2367 hpdev->state = hv_pcichild_ejecting;
2368 get_pcichild(hpdev);
2369 INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2370 get_hvpcibus(hbus);
2371 queue_work(hbus->wq, &hpdev->wrk);
2372 }
2373
2374 /**
2375 * hv_pci_onchannelcallback() - Handles incoming packets
2376 * @context: Internal bus tracking struct
2377 *
2378 * This function is invoked whenever the host sends a packet to
2379 * this channel (which is private to this root PCI bus).
2380 */
hv_pci_onchannelcallback(void * context)2381 static void hv_pci_onchannelcallback(void *context)
2382 {
2383 const int packet_size = 0x100;
2384 int ret;
2385 struct hv_pcibus_device *hbus = context;
2386 u32 bytes_recvd;
2387 u64 req_id;
2388 struct vmpacket_descriptor *desc;
2389 unsigned char *buffer;
2390 int bufferlen = packet_size;
2391 struct pci_packet *comp_packet;
2392 struct pci_response *response;
2393 struct pci_incoming_message *new_message;
2394 struct pci_bus_relations *bus_rel;
2395 struct pci_bus_relations2 *bus_rel2;
2396 struct pci_dev_inval_block *inval;
2397 struct pci_dev_incoming *dev_message;
2398 struct hv_pci_dev *hpdev;
2399
2400 buffer = kmalloc(bufferlen, GFP_ATOMIC);
2401 if (!buffer)
2402 return;
2403
2404 while (1) {
2405 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2406 bufferlen, &bytes_recvd, &req_id);
2407
2408 if (ret == -ENOBUFS) {
2409 kfree(buffer);
2410 /* Handle large packet */
2411 bufferlen = bytes_recvd;
2412 buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2413 if (!buffer)
2414 return;
2415 continue;
2416 }
2417
2418 /* Zero length indicates there are no more packets. */
2419 if (ret || !bytes_recvd)
2420 break;
2421
2422 /*
2423 * All incoming packets must be at least as large as a
2424 * response.
2425 */
2426 if (bytes_recvd <= sizeof(struct pci_response))
2427 continue;
2428 desc = (struct vmpacket_descriptor *)buffer;
2429
2430 switch (desc->type) {
2431 case VM_PKT_COMP:
2432
2433 /*
2434 * The host is trusted, and thus it's safe to interpret
2435 * this transaction ID as a pointer.
2436 */
2437 comp_packet = (struct pci_packet *)req_id;
2438 response = (struct pci_response *)buffer;
2439 comp_packet->completion_func(comp_packet->compl_ctxt,
2440 response,
2441 bytes_recvd);
2442 break;
2443
2444 case VM_PKT_DATA_INBAND:
2445
2446 new_message = (struct pci_incoming_message *)buffer;
2447 switch (new_message->message_type.type) {
2448 case PCI_BUS_RELATIONS:
2449
2450 bus_rel = (struct pci_bus_relations *)buffer;
2451 if (bytes_recvd <
2452 struct_size(bus_rel, func,
2453 bus_rel->device_count)) {
2454 dev_err(&hbus->hdev->device,
2455 "bus relations too small\n");
2456 break;
2457 }
2458
2459 hv_pci_devices_present(hbus, bus_rel);
2460 break;
2461
2462 case PCI_BUS_RELATIONS2:
2463
2464 bus_rel2 = (struct pci_bus_relations2 *)buffer;
2465 if (bytes_recvd <
2466 struct_size(bus_rel2, func,
2467 bus_rel2->device_count)) {
2468 dev_err(&hbus->hdev->device,
2469 "bus relations v2 too small\n");
2470 break;
2471 }
2472
2473 hv_pci_devices_present2(hbus, bus_rel2);
2474 break;
2475
2476 case PCI_EJECT:
2477
2478 dev_message = (struct pci_dev_incoming *)buffer;
2479 hpdev = get_pcichild_wslot(hbus,
2480 dev_message->wslot.slot);
2481 if (hpdev) {
2482 hv_pci_eject_device(hpdev);
2483 put_pcichild(hpdev);
2484 }
2485 break;
2486
2487 case PCI_INVALIDATE_BLOCK:
2488
2489 inval = (struct pci_dev_inval_block *)buffer;
2490 hpdev = get_pcichild_wslot(hbus,
2491 inval->wslot.slot);
2492 if (hpdev) {
2493 if (hpdev->block_invalidate) {
2494 hpdev->block_invalidate(
2495 hpdev->invalidate_context,
2496 inval->block_mask);
2497 }
2498 put_pcichild(hpdev);
2499 }
2500 break;
2501
2502 default:
2503 dev_warn(&hbus->hdev->device,
2504 "Unimplemented protocol message %x\n",
2505 new_message->message_type.type);
2506 break;
2507 }
2508 break;
2509
2510 default:
2511 dev_err(&hbus->hdev->device,
2512 "unhandled packet type %d, tid %llx len %d\n",
2513 desc->type, req_id, bytes_recvd);
2514 break;
2515 }
2516 }
2517
2518 kfree(buffer);
2519 }
2520
2521 /**
2522 * hv_pci_protocol_negotiation() - Set up protocol
2523 * @hdev: VMBus's tracking struct for this root PCI bus.
2524 * @version: Array of supported channel protocol versions in
2525 * the order of probing - highest go first.
2526 * @num_version: Number of elements in the version array.
2527 *
2528 * This driver is intended to support running on Windows 10
2529 * (server) and later versions. It will not run on earlier
2530 * versions, as they assume that many of the operations which
2531 * Linux needs accomplished with a spinlock held were done via
2532 * asynchronous messaging via VMBus. Windows 10 increases the
2533 * surface area of PCI emulation so that these actions can take
2534 * place by suspending a virtual processor for their duration.
2535 *
2536 * This function negotiates the channel protocol version,
2537 * failing if the host doesn't support the necessary protocol
2538 * level.
2539 */
hv_pci_protocol_negotiation(struct hv_device * hdev,enum pci_protocol_version_t version[],int num_version)2540 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2541 enum pci_protocol_version_t version[],
2542 int num_version)
2543 {
2544 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2545 struct pci_version_request *version_req;
2546 struct hv_pci_compl comp_pkt;
2547 struct pci_packet *pkt;
2548 int ret;
2549 int i;
2550
2551 /*
2552 * Initiate the handshake with the host and negotiate
2553 * a version that the host can support. We start with the
2554 * highest version number and go down if the host cannot
2555 * support it.
2556 */
2557 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2558 if (!pkt)
2559 return -ENOMEM;
2560
2561 init_completion(&comp_pkt.host_event);
2562 pkt->completion_func = hv_pci_generic_compl;
2563 pkt->compl_ctxt = &comp_pkt;
2564 version_req = (struct pci_version_request *)&pkt->message;
2565 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2566
2567 for (i = 0; i < num_version; i++) {
2568 version_req->protocol_version = version[i];
2569 ret = vmbus_sendpacket(hdev->channel, version_req,
2570 sizeof(struct pci_version_request),
2571 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2572 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2573 if (!ret)
2574 ret = wait_for_response(hdev, &comp_pkt.host_event);
2575
2576 if (ret) {
2577 dev_err(&hdev->device,
2578 "PCI Pass-through VSP failed to request version: %d",
2579 ret);
2580 goto exit;
2581 }
2582
2583 if (comp_pkt.completion_status >= 0) {
2584 hbus->protocol_version = version[i];
2585 dev_info(&hdev->device,
2586 "PCI VMBus probing: Using version %#x\n",
2587 hbus->protocol_version);
2588 goto exit;
2589 }
2590
2591 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2592 dev_err(&hdev->device,
2593 "PCI Pass-through VSP failed version request: %#x",
2594 comp_pkt.completion_status);
2595 ret = -EPROTO;
2596 goto exit;
2597 }
2598
2599 reinit_completion(&comp_pkt.host_event);
2600 }
2601
2602 dev_err(&hdev->device,
2603 "PCI pass-through VSP failed to find supported version");
2604 ret = -EPROTO;
2605
2606 exit:
2607 kfree(pkt);
2608 return ret;
2609 }
2610
2611 /**
2612 * hv_pci_free_bridge_windows() - Release memory regions for the
2613 * bus
2614 * @hbus: Root PCI bus, as understood by this driver
2615 */
hv_pci_free_bridge_windows(struct hv_pcibus_device * hbus)2616 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2617 {
2618 /*
2619 * Set the resources back to the way they looked when they
2620 * were allocated by setting IORESOURCE_BUSY again.
2621 */
2622
2623 if (hbus->low_mmio_space && hbus->low_mmio_res) {
2624 hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2625 vmbus_free_mmio(hbus->low_mmio_res->start,
2626 resource_size(hbus->low_mmio_res));
2627 }
2628
2629 if (hbus->high_mmio_space && hbus->high_mmio_res) {
2630 hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2631 vmbus_free_mmio(hbus->high_mmio_res->start,
2632 resource_size(hbus->high_mmio_res));
2633 }
2634 }
2635
2636 /**
2637 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2638 * for the bus
2639 * @hbus: Root PCI bus, as understood by this driver
2640 *
2641 * This function calls vmbus_allocate_mmio(), which is itself a
2642 * bit of a compromise. Ideally, we might change the pnp layer
2643 * in the kernel such that it comprehends either PCI devices
2644 * which are "grandchildren of ACPI," with some intermediate bus
2645 * node (in this case, VMBus) or change it such that it
2646 * understands VMBus. The pnp layer, however, has been declared
2647 * deprecated, and not subject to change.
2648 *
2649 * The workaround, implemented here, is to ask VMBus to allocate
2650 * MMIO space for this bus. VMBus itself knows which ranges are
2651 * appropriate by looking at its own ACPI objects. Then, after
2652 * these ranges are claimed, they're modified to look like they
2653 * would have looked if the ACPI and pnp code had allocated
2654 * bridge windows. These descriptors have to exist in this form
2655 * in order to satisfy the code which will get invoked when the
2656 * endpoint PCI function driver calls request_mem_region() or
2657 * request_mem_region_exclusive().
2658 *
2659 * Return: 0 on success, -errno on failure
2660 */
hv_pci_allocate_bridge_windows(struct hv_pcibus_device * hbus)2661 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2662 {
2663 resource_size_t align;
2664 int ret;
2665
2666 if (hbus->low_mmio_space) {
2667 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2668 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2669 (u64)(u32)0xffffffff,
2670 hbus->low_mmio_space,
2671 align, false);
2672 if (ret) {
2673 dev_err(&hbus->hdev->device,
2674 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2675 hbus->low_mmio_space);
2676 return ret;
2677 }
2678
2679 /* Modify this resource to become a bridge window. */
2680 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2681 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2682 pci_add_resource(&hbus->resources_for_children,
2683 hbus->low_mmio_res);
2684 }
2685
2686 if (hbus->high_mmio_space) {
2687 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2688 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2689 0x100000000, -1,
2690 hbus->high_mmio_space, align,
2691 false);
2692 if (ret) {
2693 dev_err(&hbus->hdev->device,
2694 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2695 hbus->high_mmio_space);
2696 goto release_low_mmio;
2697 }
2698
2699 /* Modify this resource to become a bridge window. */
2700 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2701 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2702 pci_add_resource(&hbus->resources_for_children,
2703 hbus->high_mmio_res);
2704 }
2705
2706 return 0;
2707
2708 release_low_mmio:
2709 if (hbus->low_mmio_res) {
2710 vmbus_free_mmio(hbus->low_mmio_res->start,
2711 resource_size(hbus->low_mmio_res));
2712 }
2713
2714 return ret;
2715 }
2716
2717 /**
2718 * hv_allocate_config_window() - Find MMIO space for PCI Config
2719 * @hbus: Root PCI bus, as understood by this driver
2720 *
2721 * This function claims memory-mapped I/O space for accessing
2722 * configuration space for the functions on this bus.
2723 *
2724 * Return: 0 on success, -errno on failure
2725 */
hv_allocate_config_window(struct hv_pcibus_device * hbus)2726 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2727 {
2728 int ret;
2729
2730 /*
2731 * Set up a region of MMIO space to use for accessing configuration
2732 * space.
2733 */
2734 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2735 PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2736 if (ret)
2737 return ret;
2738
2739 /*
2740 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2741 * resource claims (those which cannot be overlapped) and the ranges
2742 * which are valid for the children of this bus, which are intended
2743 * to be overlapped by those children. Set the flag on this claim
2744 * meaning that this region can't be overlapped.
2745 */
2746
2747 hbus->mem_config->flags |= IORESOURCE_BUSY;
2748
2749 return 0;
2750 }
2751
hv_free_config_window(struct hv_pcibus_device * hbus)2752 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2753 {
2754 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2755 }
2756
2757 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2758
2759 /**
2760 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2761 * @hdev: VMBus's tracking struct for this root PCI bus
2762 *
2763 * Return: 0 on success, -errno on failure
2764 */
hv_pci_enter_d0(struct hv_device * hdev)2765 static int hv_pci_enter_d0(struct hv_device *hdev)
2766 {
2767 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2768 struct pci_bus_d0_entry *d0_entry;
2769 struct hv_pci_compl comp_pkt;
2770 struct pci_packet *pkt;
2771 int ret;
2772
2773 /*
2774 * Tell the host that the bus is ready to use, and moved into the
2775 * powered-on state. This includes telling the host which region
2776 * of memory-mapped I/O space has been chosen for configuration space
2777 * access.
2778 */
2779 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2780 if (!pkt)
2781 return -ENOMEM;
2782
2783 init_completion(&comp_pkt.host_event);
2784 pkt->completion_func = hv_pci_generic_compl;
2785 pkt->compl_ctxt = &comp_pkt;
2786 d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2787 d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2788 d0_entry->mmio_base = hbus->mem_config->start;
2789
2790 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2791 (unsigned long)pkt, VM_PKT_DATA_INBAND,
2792 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2793 if (!ret)
2794 ret = wait_for_response(hdev, &comp_pkt.host_event);
2795
2796 if (ret)
2797 goto exit;
2798
2799 if (comp_pkt.completion_status < 0) {
2800 dev_err(&hdev->device,
2801 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2802 comp_pkt.completion_status);
2803 ret = -EPROTO;
2804 goto exit;
2805 }
2806
2807 ret = 0;
2808
2809 exit:
2810 kfree(pkt);
2811 return ret;
2812 }
2813
2814 /**
2815 * hv_pci_query_relations() - Ask host to send list of child
2816 * devices
2817 * @hdev: VMBus's tracking struct for this root PCI bus
2818 *
2819 * Return: 0 on success, -errno on failure
2820 */
hv_pci_query_relations(struct hv_device * hdev)2821 static int hv_pci_query_relations(struct hv_device *hdev)
2822 {
2823 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2824 struct pci_message message;
2825 struct completion comp;
2826 int ret;
2827
2828 /* Ask the host to send along the list of child devices */
2829 init_completion(&comp);
2830 if (cmpxchg(&hbus->survey_event, NULL, &comp))
2831 return -ENOTEMPTY;
2832
2833 memset(&message, 0, sizeof(message));
2834 message.type = PCI_QUERY_BUS_RELATIONS;
2835
2836 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2837 0, VM_PKT_DATA_INBAND, 0);
2838 if (!ret)
2839 ret = wait_for_response(hdev, &comp);
2840
2841 return ret;
2842 }
2843
2844 /**
2845 * hv_send_resources_allocated() - Report local resource choices
2846 * @hdev: VMBus's tracking struct for this root PCI bus
2847 *
2848 * The host OS is expecting to be sent a request as a message
2849 * which contains all the resources that the device will use.
2850 * The response contains those same resources, "translated"
2851 * which is to say, the values which should be used by the
2852 * hardware, when it delivers an interrupt. (MMIO resources are
2853 * used in local terms.) This is nice for Windows, and lines up
2854 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2855 * is deeply expecting to scan an emulated PCI configuration
2856 * space. So this message is sent here only to drive the state
2857 * machine on the host forward.
2858 *
2859 * Return: 0 on success, -errno on failure
2860 */
hv_send_resources_allocated(struct hv_device * hdev)2861 static int hv_send_resources_allocated(struct hv_device *hdev)
2862 {
2863 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2864 struct pci_resources_assigned *res_assigned;
2865 struct pci_resources_assigned2 *res_assigned2;
2866 struct hv_pci_compl comp_pkt;
2867 struct hv_pci_dev *hpdev;
2868 struct pci_packet *pkt;
2869 size_t size_res;
2870 int wslot;
2871 int ret;
2872
2873 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2874 ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2875
2876 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2877 if (!pkt)
2878 return -ENOMEM;
2879
2880 ret = 0;
2881
2882 for (wslot = 0; wslot < 256; wslot++) {
2883 hpdev = get_pcichild_wslot(hbus, wslot);
2884 if (!hpdev)
2885 continue;
2886
2887 memset(pkt, 0, sizeof(*pkt) + size_res);
2888 init_completion(&comp_pkt.host_event);
2889 pkt->completion_func = hv_pci_generic_compl;
2890 pkt->compl_ctxt = &comp_pkt;
2891
2892 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2893 res_assigned =
2894 (struct pci_resources_assigned *)&pkt->message;
2895 res_assigned->message_type.type =
2896 PCI_RESOURCES_ASSIGNED;
2897 res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2898 } else {
2899 res_assigned2 =
2900 (struct pci_resources_assigned2 *)&pkt->message;
2901 res_assigned2->message_type.type =
2902 PCI_RESOURCES_ASSIGNED2;
2903 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2904 }
2905 put_pcichild(hpdev);
2906
2907 ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2908 size_res, (unsigned long)pkt,
2909 VM_PKT_DATA_INBAND,
2910 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2911 if (!ret)
2912 ret = wait_for_response(hdev, &comp_pkt.host_event);
2913 if (ret)
2914 break;
2915
2916 if (comp_pkt.completion_status < 0) {
2917 ret = -EPROTO;
2918 dev_err(&hdev->device,
2919 "resource allocated returned 0x%x",
2920 comp_pkt.completion_status);
2921 break;
2922 }
2923
2924 hbus->wslot_res_allocated = wslot;
2925 }
2926
2927 kfree(pkt);
2928 return ret;
2929 }
2930
2931 /**
2932 * hv_send_resources_released() - Report local resources
2933 * released
2934 * @hdev: VMBus's tracking struct for this root PCI bus
2935 *
2936 * Return: 0 on success, -errno on failure
2937 */
hv_send_resources_released(struct hv_device * hdev)2938 static int hv_send_resources_released(struct hv_device *hdev)
2939 {
2940 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2941 struct pci_child_message pkt;
2942 struct hv_pci_dev *hpdev;
2943 int wslot;
2944 int ret;
2945
2946 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2947 hpdev = get_pcichild_wslot(hbus, wslot);
2948 if (!hpdev)
2949 continue;
2950
2951 memset(&pkt, 0, sizeof(pkt));
2952 pkt.message_type.type = PCI_RESOURCES_RELEASED;
2953 pkt.wslot.slot = hpdev->desc.win_slot.slot;
2954
2955 put_pcichild(hpdev);
2956
2957 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2958 VM_PKT_DATA_INBAND, 0);
2959 if (ret)
2960 return ret;
2961
2962 hbus->wslot_res_allocated = wslot - 1;
2963 }
2964
2965 hbus->wslot_res_allocated = -1;
2966
2967 return 0;
2968 }
2969
get_hvpcibus(struct hv_pcibus_device * hbus)2970 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2971 {
2972 refcount_inc(&hbus->remove_lock);
2973 }
2974
put_hvpcibus(struct hv_pcibus_device * hbus)2975 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2976 {
2977 if (refcount_dec_and_test(&hbus->remove_lock))
2978 complete(&hbus->remove_event);
2979 }
2980
2981 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2982 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2983
2984 /*
2985 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2986 * as invalid for passthrough PCI devices of this driver.
2987 */
2988 #define HVPCI_DOM_INVALID 0
2989
2990 /**
2991 * hv_get_dom_num() - Get a valid PCI domain number
2992 * Check if the PCI domain number is in use, and return another number if
2993 * it is in use.
2994 *
2995 * @dom: Requested domain number
2996 *
2997 * return: domain number on success, HVPCI_DOM_INVALID on failure
2998 */
hv_get_dom_num(u16 dom)2999 static u16 hv_get_dom_num(u16 dom)
3000 {
3001 unsigned int i;
3002
3003 if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3004 return dom;
3005
3006 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3007 if (test_and_set_bit(i, hvpci_dom_map) == 0)
3008 return i;
3009 }
3010
3011 return HVPCI_DOM_INVALID;
3012 }
3013
3014 /**
3015 * hv_put_dom_num() - Mark the PCI domain number as free
3016 * @dom: Domain number to be freed
3017 */
hv_put_dom_num(u16 dom)3018 static void hv_put_dom_num(u16 dom)
3019 {
3020 clear_bit(dom, hvpci_dom_map);
3021 }
3022
3023 /**
3024 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3025 * @hdev: VMBus's tracking struct for this root PCI bus
3026 * @dev_id: Identifies the device itself
3027 *
3028 * Return: 0 on success, -errno on failure
3029 */
hv_pci_probe(struct hv_device * hdev,const struct hv_vmbus_device_id * dev_id)3030 static int hv_pci_probe(struct hv_device *hdev,
3031 const struct hv_vmbus_device_id *dev_id)
3032 {
3033 struct hv_pcibus_device *hbus;
3034 u16 dom_req, dom;
3035 char *name;
3036 bool enter_d0_retry = true;
3037 int ret;
3038
3039 /*
3040 * hv_pcibus_device contains the hypercall arguments for retargeting in
3041 * hv_irq_unmask(). Those must not cross a page boundary.
3042 */
3043 BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3044
3045 /*
3046 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3047 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3048 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3049 * alignment of hbus is important because hbus's field
3050 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3051 *
3052 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3053 * allocated by the latter is not tracked and scanned by kmemleak, and
3054 * hence kmemleak reports the pointer contained in the hbus buffer
3055 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3056 * is tracked by hbus->children) as memory leak (false positive).
3057 *
3058 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3059 * used to allocate the hbus buffer and we can avoid the kmemleak false
3060 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3061 * kmemleak to track and scan the hbus buffer.
3062 */
3063 hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3064 if (!hbus)
3065 return -ENOMEM;
3066 hbus->state = hv_pcibus_init;
3067 hbus->wslot_res_allocated = -1;
3068
3069 /*
3070 * The PCI bus "domain" is what is called "segment" in ACPI and other
3071 * specs. Pull it from the instance ID, to get something usually
3072 * unique. In rare cases of collision, we will find out another number
3073 * not in use.
3074 *
3075 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3076 * together with this guest driver can guarantee that (1) The only
3077 * domain used by Gen1 VMs for something that looks like a physical
3078 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3079 * (2) There will be no overlap between domains (after fixing possible
3080 * collisions) in the same VM.
3081 */
3082 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3083 dom = hv_get_dom_num(dom_req);
3084
3085 if (dom == HVPCI_DOM_INVALID) {
3086 dev_err(&hdev->device,
3087 "Unable to use dom# 0x%hx or other numbers", dom_req);
3088 ret = -EINVAL;
3089 goto free_bus;
3090 }
3091
3092 if (dom != dom_req)
3093 dev_info(&hdev->device,
3094 "PCI dom# 0x%hx has collision, using 0x%hx",
3095 dom_req, dom);
3096
3097 hbus->sysdata.domain = dom;
3098
3099 hbus->hdev = hdev;
3100 refcount_set(&hbus->remove_lock, 1);
3101 INIT_LIST_HEAD(&hbus->children);
3102 INIT_LIST_HEAD(&hbus->dr_list);
3103 INIT_LIST_HEAD(&hbus->resources_for_children);
3104 spin_lock_init(&hbus->config_lock);
3105 spin_lock_init(&hbus->device_list_lock);
3106 spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3107 init_completion(&hbus->remove_event);
3108 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3109 hbus->sysdata.domain);
3110 if (!hbus->wq) {
3111 ret = -ENOMEM;
3112 goto free_dom;
3113 }
3114
3115 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3116 hv_pci_onchannelcallback, hbus);
3117 if (ret)
3118 goto destroy_wq;
3119
3120 hv_set_drvdata(hdev, hbus);
3121
3122 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3123 ARRAY_SIZE(pci_protocol_versions));
3124 if (ret)
3125 goto close;
3126
3127 ret = hv_allocate_config_window(hbus);
3128 if (ret)
3129 goto close;
3130
3131 hbus->cfg_addr = ioremap(hbus->mem_config->start,
3132 PCI_CONFIG_MMIO_LENGTH);
3133 if (!hbus->cfg_addr) {
3134 dev_err(&hdev->device,
3135 "Unable to map a virtual address for config space\n");
3136 ret = -ENOMEM;
3137 goto free_config;
3138 }
3139
3140 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3141 if (!name) {
3142 ret = -ENOMEM;
3143 goto unmap;
3144 }
3145
3146 hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3147 kfree(name);
3148 if (!hbus->sysdata.fwnode) {
3149 ret = -ENOMEM;
3150 goto unmap;
3151 }
3152
3153 ret = hv_pcie_init_irq_domain(hbus);
3154 if (ret)
3155 goto free_fwnode;
3156
3157 retry:
3158 ret = hv_pci_query_relations(hdev);
3159 if (ret)
3160 goto free_irq_domain;
3161
3162 ret = hv_pci_enter_d0(hdev);
3163 /*
3164 * In certain case (Kdump) the pci device of interest was
3165 * not cleanly shut down and resource is still held on host
3166 * side, the host could return invalid device status.
3167 * We need to explicitly request host to release the resource
3168 * and try to enter D0 again.
3169 * Since the hv_pci_bus_exit() call releases structures
3170 * of all its child devices, we need to start the retry from
3171 * hv_pci_query_relations() call, requesting host to send
3172 * the synchronous child device relations message before this
3173 * information is needed in hv_send_resources_allocated()
3174 * call later.
3175 */
3176 if (ret == -EPROTO && enter_d0_retry) {
3177 enter_d0_retry = false;
3178
3179 dev_err(&hdev->device, "Retrying D0 Entry\n");
3180
3181 /*
3182 * Hv_pci_bus_exit() calls hv_send_resources_released()
3183 * to free up resources of its child devices.
3184 * In the kdump kernel we need to set the
3185 * wslot_res_allocated to 255 so it scans all child
3186 * devices to release resources allocated in the
3187 * normal kernel before panic happened.
3188 */
3189 hbus->wslot_res_allocated = 255;
3190 ret = hv_pci_bus_exit(hdev, true);
3191
3192 if (ret == 0)
3193 goto retry;
3194
3195 dev_err(&hdev->device,
3196 "Retrying D0 failed with ret %d\n", ret);
3197 }
3198 if (ret)
3199 goto free_irq_domain;
3200
3201 ret = hv_pci_allocate_bridge_windows(hbus);
3202 if (ret)
3203 goto exit_d0;
3204
3205 ret = hv_send_resources_allocated(hdev);
3206 if (ret)
3207 goto free_windows;
3208
3209 prepopulate_bars(hbus);
3210
3211 hbus->state = hv_pcibus_probed;
3212
3213 ret = create_root_hv_pci_bus(hbus);
3214 if (ret)
3215 goto free_windows;
3216
3217 return 0;
3218
3219 free_windows:
3220 hv_pci_free_bridge_windows(hbus);
3221 exit_d0:
3222 (void) hv_pci_bus_exit(hdev, true);
3223 free_irq_domain:
3224 irq_domain_remove(hbus->irq_domain);
3225 free_fwnode:
3226 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3227 unmap:
3228 iounmap(hbus->cfg_addr);
3229 free_config:
3230 hv_free_config_window(hbus);
3231 close:
3232 vmbus_close(hdev->channel);
3233 destroy_wq:
3234 destroy_workqueue(hbus->wq);
3235 free_dom:
3236 hv_put_dom_num(hbus->sysdata.domain);
3237 free_bus:
3238 kfree(hbus);
3239 return ret;
3240 }
3241
hv_pci_bus_exit(struct hv_device * hdev,bool keep_devs)3242 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3243 {
3244 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3245 struct {
3246 struct pci_packet teardown_packet;
3247 u8 buffer[sizeof(struct pci_message)];
3248 } pkt;
3249 struct hv_pci_compl comp_pkt;
3250 struct hv_pci_dev *hpdev, *tmp;
3251 unsigned long flags;
3252 int ret;
3253
3254 /*
3255 * After the host sends the RESCIND_CHANNEL message, it doesn't
3256 * access the per-channel ringbuffer any longer.
3257 */
3258 if (hdev->channel->rescind)
3259 return 0;
3260
3261 if (!keep_devs) {
3262 struct list_head removed;
3263
3264 /* Move all present children to the list on stack */
3265 INIT_LIST_HEAD(&removed);
3266 spin_lock_irqsave(&hbus->device_list_lock, flags);
3267 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3268 list_move_tail(&hpdev->list_entry, &removed);
3269 spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3270
3271 /* Remove all children in the list */
3272 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3273 list_del(&hpdev->list_entry);
3274 if (hpdev->pci_slot)
3275 pci_destroy_slot(hpdev->pci_slot);
3276 /* For the two refs got in new_pcichild_device() */
3277 put_pcichild(hpdev);
3278 put_pcichild(hpdev);
3279 }
3280 }
3281
3282 ret = hv_send_resources_released(hdev);
3283 if (ret) {
3284 dev_err(&hdev->device,
3285 "Couldn't send resources released packet(s)\n");
3286 return ret;
3287 }
3288
3289 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3290 init_completion(&comp_pkt.host_event);
3291 pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3292 pkt.teardown_packet.compl_ctxt = &comp_pkt;
3293 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3294
3295 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3296 sizeof(struct pci_message),
3297 (unsigned long)&pkt.teardown_packet,
3298 VM_PKT_DATA_INBAND,
3299 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3300 if (ret)
3301 return ret;
3302
3303 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3304 return -ETIMEDOUT;
3305
3306 return 0;
3307 }
3308
3309 /**
3310 * hv_pci_remove() - Remove routine for this VMBus channel
3311 * @hdev: VMBus's tracking struct for this root PCI bus
3312 *
3313 * Return: 0 on success, -errno on failure
3314 */
hv_pci_remove(struct hv_device * hdev)3315 static int hv_pci_remove(struct hv_device *hdev)
3316 {
3317 struct hv_pcibus_device *hbus;
3318 int ret;
3319
3320 hbus = hv_get_drvdata(hdev);
3321 if (hbus->state == hv_pcibus_installed) {
3322 tasklet_disable(&hdev->channel->callback_event);
3323 hbus->state = hv_pcibus_removing;
3324 tasklet_enable(&hdev->channel->callback_event);
3325 destroy_workqueue(hbus->wq);
3326 hbus->wq = NULL;
3327 /*
3328 * At this point, no work is running or can be scheduled
3329 * on hbus-wq. We can't race with hv_pci_devices_present()
3330 * or hv_pci_eject_device(), it's safe to proceed.
3331 */
3332
3333 /* Remove the bus from PCI's point of view. */
3334 pci_lock_rescan_remove();
3335 pci_stop_root_bus(hbus->pci_bus);
3336 hv_pci_remove_slots(hbus);
3337 pci_remove_root_bus(hbus->pci_bus);
3338 pci_unlock_rescan_remove();
3339 }
3340
3341 ret = hv_pci_bus_exit(hdev, false);
3342
3343 vmbus_close(hdev->channel);
3344
3345 iounmap(hbus->cfg_addr);
3346 hv_free_config_window(hbus);
3347 pci_free_resource_list(&hbus->resources_for_children);
3348 hv_pci_free_bridge_windows(hbus);
3349 irq_domain_remove(hbus->irq_domain);
3350 irq_domain_free_fwnode(hbus->sysdata.fwnode);
3351 put_hvpcibus(hbus);
3352 wait_for_completion(&hbus->remove_event);
3353
3354 hv_put_dom_num(hbus->sysdata.domain);
3355
3356 kfree(hbus);
3357 return ret;
3358 }
3359
hv_pci_suspend(struct hv_device * hdev)3360 static int hv_pci_suspend(struct hv_device *hdev)
3361 {
3362 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3363 enum hv_pcibus_state old_state;
3364 int ret;
3365
3366 /*
3367 * hv_pci_suspend() must make sure there are no pending work items
3368 * before calling vmbus_close(), since it runs in a process context
3369 * as a callback in dpm_suspend(). When it starts to run, the channel
3370 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3371 * context, can be still running concurrently and scheduling new work
3372 * items onto hbus->wq in hv_pci_devices_present() and
3373 * hv_pci_eject_device(), and the work item handlers can access the
3374 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3375 * the work item handler pci_devices_present_work() ->
3376 * new_pcichild_device() writes to the vmbus channel.
3377 *
3378 * To eliminate the race, hv_pci_suspend() disables the channel
3379 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3380 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3381 * it knows that no new work item can be scheduled, and then it flushes
3382 * hbus->wq and safely closes the vmbus channel.
3383 */
3384 tasklet_disable(&hdev->channel->callback_event);
3385
3386 /* Change the hbus state to prevent new work items. */
3387 old_state = hbus->state;
3388 if (hbus->state == hv_pcibus_installed)
3389 hbus->state = hv_pcibus_removing;
3390
3391 tasklet_enable(&hdev->channel->callback_event);
3392
3393 if (old_state != hv_pcibus_installed)
3394 return -EINVAL;
3395
3396 flush_workqueue(hbus->wq);
3397
3398 ret = hv_pci_bus_exit(hdev, true);
3399 if (ret)
3400 return ret;
3401
3402 vmbus_close(hdev->channel);
3403
3404 return 0;
3405 }
3406
hv_pci_restore_msi_msg(struct pci_dev * pdev,void * arg)3407 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3408 {
3409 struct msi_desc *entry;
3410 struct irq_data *irq_data;
3411
3412 for_each_pci_msi_entry(entry, pdev) {
3413 irq_data = irq_get_irq_data(entry->irq);
3414 if (WARN_ON_ONCE(!irq_data))
3415 return -EINVAL;
3416
3417 hv_compose_msi_msg(irq_data, &entry->msg);
3418 }
3419
3420 return 0;
3421 }
3422
3423 /*
3424 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg()
3425 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3426 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3427 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3428 * Table entries.
3429 */
hv_pci_restore_msi_state(struct hv_pcibus_device * hbus)3430 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3431 {
3432 pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3433 }
3434
hv_pci_resume(struct hv_device * hdev)3435 static int hv_pci_resume(struct hv_device *hdev)
3436 {
3437 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3438 enum pci_protocol_version_t version[1];
3439 int ret;
3440
3441 hbus->state = hv_pcibus_init;
3442
3443 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3444 hv_pci_onchannelcallback, hbus);
3445 if (ret)
3446 return ret;
3447
3448 /* Only use the version that was in use before hibernation. */
3449 version[0] = hbus->protocol_version;
3450 ret = hv_pci_protocol_negotiation(hdev, version, 1);
3451 if (ret)
3452 goto out;
3453
3454 ret = hv_pci_query_relations(hdev);
3455 if (ret)
3456 goto out;
3457
3458 ret = hv_pci_enter_d0(hdev);
3459 if (ret)
3460 goto out;
3461
3462 ret = hv_send_resources_allocated(hdev);
3463 if (ret)
3464 goto out;
3465
3466 prepopulate_bars(hbus);
3467
3468 hv_pci_restore_msi_state(hbus);
3469
3470 hbus->state = hv_pcibus_installed;
3471 return 0;
3472 out:
3473 vmbus_close(hdev->channel);
3474 return ret;
3475 }
3476
3477 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3478 /* PCI Pass-through Class ID */
3479 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3480 { HV_PCIE_GUID, },
3481 { },
3482 };
3483
3484 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3485
3486 static struct hv_driver hv_pci_drv = {
3487 .name = "hv_pci",
3488 .id_table = hv_pci_id_table,
3489 .probe = hv_pci_probe,
3490 .remove = hv_pci_remove,
3491 .suspend = hv_pci_suspend,
3492 .resume = hv_pci_resume,
3493 };
3494
exit_hv_pci_drv(void)3495 static void __exit exit_hv_pci_drv(void)
3496 {
3497 vmbus_driver_unregister(&hv_pci_drv);
3498
3499 hvpci_block_ops.read_block = NULL;
3500 hvpci_block_ops.write_block = NULL;
3501 hvpci_block_ops.reg_blk_invalidate = NULL;
3502 }
3503
init_hv_pci_drv(void)3504 static int __init init_hv_pci_drv(void)
3505 {
3506 if (!hv_is_hyperv_initialized())
3507 return -ENODEV;
3508
3509 /* Set the invalid domain number's bit, so it will not be used */
3510 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3511
3512 /* Initialize PCI block r/w interface */
3513 hvpci_block_ops.read_block = hv_read_config_block;
3514 hvpci_block_ops.write_block = hv_write_config_block;
3515 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3516
3517 return vmbus_driver_register(&hv_pci_drv);
3518 }
3519
3520 module_init(init_hv_pci_drv);
3521 module_exit(exit_hv_pci_drv);
3522
3523 MODULE_DESCRIPTION("Hyper-V PCI");
3524 MODULE_LICENSE("GPL v2");
3525