• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
24 #include <net/sock.h>
25 #include <net/tcp.h>
26 
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
29 
30 #define TAPRIO_ALL_GATES_OPEN -1
31 
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
34 #define TAPRIO_FLAGS_INVALID U32_MAX
35 
36 struct sched_entry {
37 	struct list_head list;
38 
39 	/* The instant that this entry "closes" and the next one
40 	 * should open, the qdisc will make some effort so that no
41 	 * packet leaves after this time.
42 	 */
43 	ktime_t close_time;
44 	ktime_t next_txtime;
45 	atomic_t budget;
46 	int index;
47 	u32 gate_mask;
48 	u32 interval;
49 	u8 command;
50 };
51 
52 struct sched_gate_list {
53 	struct rcu_head rcu;
54 	struct list_head entries;
55 	size_t num_entries;
56 	ktime_t cycle_close_time;
57 	s64 cycle_time;
58 	s64 cycle_time_extension;
59 	s64 base_time;
60 };
61 
62 struct taprio_sched {
63 	struct Qdisc **qdiscs;
64 	struct Qdisc *root;
65 	u32 flags;
66 	enum tk_offsets tk_offset;
67 	int clockid;
68 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
69 				    * speeds it's sub-nanoseconds per byte
70 				    */
71 
72 	/* Protects the update side of the RCU protected current_entry */
73 	spinlock_t current_entry_lock;
74 	struct sched_entry __rcu *current_entry;
75 	struct sched_gate_list __rcu *oper_sched;
76 	struct sched_gate_list __rcu *admin_sched;
77 	struct hrtimer advance_timer;
78 	struct list_head taprio_list;
79 	struct sk_buff *(*dequeue)(struct Qdisc *sch);
80 	struct sk_buff *(*peek)(struct Qdisc *sch);
81 	u32 txtime_delay;
82 };
83 
84 struct __tc_taprio_qopt_offload {
85 	refcount_t users;
86 	struct tc_taprio_qopt_offload offload;
87 };
88 
sched_base_time(const struct sched_gate_list * sched)89 static ktime_t sched_base_time(const struct sched_gate_list *sched)
90 {
91 	if (!sched)
92 		return KTIME_MAX;
93 
94 	return ns_to_ktime(sched->base_time);
95 }
96 
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)97 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
98 {
99 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
100 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
101 
102 	switch (tk_offset) {
103 	case TK_OFFS_MAX:
104 		return mono;
105 	default:
106 		return ktime_mono_to_any(mono, tk_offset);
107 	}
108 }
109 
taprio_get_time(const struct taprio_sched * q)110 static ktime_t taprio_get_time(const struct taprio_sched *q)
111 {
112 	return taprio_mono_to_any(q, ktime_get());
113 }
114 
taprio_free_sched_cb(struct rcu_head * head)115 static void taprio_free_sched_cb(struct rcu_head *head)
116 {
117 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
118 	struct sched_entry *entry, *n;
119 
120 	if (!sched)
121 		return;
122 
123 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
124 		list_del(&entry->list);
125 		kfree(entry);
126 	}
127 
128 	kfree(sched);
129 }
130 
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)131 static void switch_schedules(struct taprio_sched *q,
132 			     struct sched_gate_list **admin,
133 			     struct sched_gate_list **oper)
134 {
135 	rcu_assign_pointer(q->oper_sched, *admin);
136 	rcu_assign_pointer(q->admin_sched, NULL);
137 
138 	if (*oper)
139 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
140 
141 	*oper = *admin;
142 	*admin = NULL;
143 }
144 
145 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)146 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
147 {
148 	ktime_t time_since_sched_start;
149 	s32 time_elapsed;
150 
151 	time_since_sched_start = ktime_sub(time, sched->base_time);
152 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
153 
154 	return time_elapsed;
155 }
156 
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)157 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
158 				     struct sched_gate_list *admin,
159 				     struct sched_entry *entry,
160 				     ktime_t intv_start)
161 {
162 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
163 	ktime_t intv_end, cycle_ext_end, cycle_end;
164 
165 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
166 	intv_end = ktime_add_ns(intv_start, entry->interval);
167 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
168 
169 	if (ktime_before(intv_end, cycle_end))
170 		return intv_end;
171 	else if (admin && admin != sched &&
172 		 ktime_after(admin->base_time, cycle_end) &&
173 		 ktime_before(admin->base_time, cycle_ext_end))
174 		return admin->base_time;
175 	else
176 		return cycle_end;
177 }
178 
length_to_duration(struct taprio_sched * q,int len)179 static int length_to_duration(struct taprio_sched *q, int len)
180 {
181 	return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
182 }
183 
184 /* Returns the entry corresponding to next available interval. If
185  * validate_interval is set, it only validates whether the timestamp occurs
186  * when the gate corresponding to the skb's traffic class is open.
187  */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)188 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
189 						  struct Qdisc *sch,
190 						  struct sched_gate_list *sched,
191 						  struct sched_gate_list *admin,
192 						  ktime_t time,
193 						  ktime_t *interval_start,
194 						  ktime_t *interval_end,
195 						  bool validate_interval)
196 {
197 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
198 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
199 	struct sched_entry *entry = NULL, *entry_found = NULL;
200 	struct taprio_sched *q = qdisc_priv(sch);
201 	struct net_device *dev = qdisc_dev(sch);
202 	bool entry_available = false;
203 	s32 cycle_elapsed;
204 	int tc, n;
205 
206 	tc = netdev_get_prio_tc_map(dev, skb->priority);
207 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
208 
209 	*interval_start = 0;
210 	*interval_end = 0;
211 
212 	if (!sched)
213 		return NULL;
214 
215 	cycle = sched->cycle_time;
216 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
217 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
218 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
219 
220 	list_for_each_entry(entry, &sched->entries, list) {
221 		curr_intv_start = curr_intv_end;
222 		curr_intv_end = get_interval_end_time(sched, admin, entry,
223 						      curr_intv_start);
224 
225 		if (ktime_after(curr_intv_start, cycle_end))
226 			break;
227 
228 		if (!(entry->gate_mask & BIT(tc)) ||
229 		    packet_transmit_time > entry->interval)
230 			continue;
231 
232 		txtime = entry->next_txtime;
233 
234 		if (ktime_before(txtime, time) || validate_interval) {
235 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
236 			if ((ktime_before(curr_intv_start, time) &&
237 			     ktime_before(transmit_end_time, curr_intv_end)) ||
238 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
239 				entry_found = entry;
240 				*interval_start = curr_intv_start;
241 				*interval_end = curr_intv_end;
242 				break;
243 			} else if (!entry_available && !validate_interval) {
244 				/* Here, we are just trying to find out the
245 				 * first available interval in the next cycle.
246 				 */
247 				entry_available = 1;
248 				entry_found = entry;
249 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
250 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
251 			}
252 		} else if (ktime_before(txtime, earliest_txtime) &&
253 			   !entry_available) {
254 			earliest_txtime = txtime;
255 			entry_found = entry;
256 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
257 			*interval_start = ktime_add(curr_intv_start, n * cycle);
258 			*interval_end = ktime_add(curr_intv_end, n * cycle);
259 		}
260 	}
261 
262 	return entry_found;
263 }
264 
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)265 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
266 {
267 	struct taprio_sched *q = qdisc_priv(sch);
268 	struct sched_gate_list *sched, *admin;
269 	ktime_t interval_start, interval_end;
270 	struct sched_entry *entry;
271 
272 	rcu_read_lock();
273 	sched = rcu_dereference(q->oper_sched);
274 	admin = rcu_dereference(q->admin_sched);
275 
276 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
277 				       &interval_start, &interval_end, true);
278 	rcu_read_unlock();
279 
280 	return entry;
281 }
282 
taprio_flags_valid(u32 flags)283 static bool taprio_flags_valid(u32 flags)
284 {
285 	/* Make sure no other flag bits are set. */
286 	if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
287 		      TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
288 		return false;
289 	/* txtime-assist and full offload are mutually exclusive */
290 	if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
291 	    (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
292 		return false;
293 	return true;
294 }
295 
296 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)297 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
298 {
299 	unsigned int offset = skb_network_offset(skb);
300 	const struct ipv6hdr *ipv6h;
301 	const struct iphdr *iph;
302 	struct ipv6hdr _ipv6h;
303 
304 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
305 	if (!ipv6h)
306 		return 0;
307 
308 	if (ipv6h->version == 4) {
309 		iph = (struct iphdr *)ipv6h;
310 		offset += iph->ihl * 4;
311 
312 		/* special-case 6in4 tunnelling, as that is a common way to get
313 		 * v6 connectivity in the home
314 		 */
315 		if (iph->protocol == IPPROTO_IPV6) {
316 			ipv6h = skb_header_pointer(skb, offset,
317 						   sizeof(_ipv6h), &_ipv6h);
318 
319 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
320 				return 0;
321 		} else if (iph->protocol != IPPROTO_TCP) {
322 			return 0;
323 		}
324 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
325 		return 0;
326 	}
327 
328 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
329 }
330 
331 /* There are a few scenarios where we will have to modify the txtime from
332  * what is read from next_txtime in sched_entry. They are:
333  * 1. If txtime is in the past,
334  *    a. The gate for the traffic class is currently open and packet can be
335  *       transmitted before it closes, schedule the packet right away.
336  *    b. If the gate corresponding to the traffic class is going to open later
337  *       in the cycle, set the txtime of packet to the interval start.
338  * 2. If txtime is in the future, there are packets corresponding to the
339  *    current traffic class waiting to be transmitted. So, the following
340  *    possibilities exist:
341  *    a. We can transmit the packet before the window containing the txtime
342  *       closes.
343  *    b. The window might close before the transmission can be completed
344  *       successfully. So, schedule the packet in the next open window.
345  */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)346 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
347 {
348 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
349 	struct taprio_sched *q = qdisc_priv(sch);
350 	struct sched_gate_list *sched, *admin;
351 	ktime_t minimum_time, now, txtime;
352 	int len, packet_transmit_time;
353 	struct sched_entry *entry;
354 	bool sched_changed;
355 
356 	now = taprio_get_time(q);
357 	minimum_time = ktime_add_ns(now, q->txtime_delay);
358 
359 	tcp_tstamp = get_tcp_tstamp(q, skb);
360 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
361 
362 	rcu_read_lock();
363 	admin = rcu_dereference(q->admin_sched);
364 	sched = rcu_dereference(q->oper_sched);
365 	if (admin && ktime_after(minimum_time, admin->base_time))
366 		switch_schedules(q, &admin, &sched);
367 
368 	/* Until the schedule starts, all the queues are open */
369 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
370 		txtime = minimum_time;
371 		goto done;
372 	}
373 
374 	len = qdisc_pkt_len(skb);
375 	packet_transmit_time = length_to_duration(q, len);
376 
377 	do {
378 		sched_changed = 0;
379 
380 		entry = find_entry_to_transmit(skb, sch, sched, admin,
381 					       minimum_time,
382 					       &interval_start, &interval_end,
383 					       false);
384 		if (!entry) {
385 			txtime = 0;
386 			goto done;
387 		}
388 
389 		txtime = entry->next_txtime;
390 		txtime = max_t(ktime_t, txtime, minimum_time);
391 		txtime = max_t(ktime_t, txtime, interval_start);
392 
393 		if (admin && admin != sched &&
394 		    ktime_after(txtime, admin->base_time)) {
395 			sched = admin;
396 			sched_changed = 1;
397 			continue;
398 		}
399 
400 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
401 		minimum_time = transmit_end_time;
402 
403 		/* Update the txtime of current entry to the next time it's
404 		 * interval starts.
405 		 */
406 		if (ktime_after(transmit_end_time, interval_end))
407 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
408 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
409 
410 	entry->next_txtime = transmit_end_time;
411 
412 done:
413 	rcu_read_unlock();
414 	return txtime;
415 }
416 
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)417 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
418 			  struct sk_buff **to_free)
419 {
420 	struct taprio_sched *q = qdisc_priv(sch);
421 	struct Qdisc *child;
422 	int queue;
423 
424 	queue = skb_get_queue_mapping(skb);
425 
426 	child = q->qdiscs[queue];
427 	if (unlikely(!child))
428 		return qdisc_drop(skb, sch, to_free);
429 
430 	if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
431 		if (!is_valid_interval(skb, sch))
432 			return qdisc_drop(skb, sch, to_free);
433 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
434 		skb->tstamp = get_packet_txtime(skb, sch);
435 		if (!skb->tstamp)
436 			return qdisc_drop(skb, sch, to_free);
437 	}
438 
439 	qdisc_qstats_backlog_inc(sch, skb);
440 	sch->q.qlen++;
441 
442 	return qdisc_enqueue(skb, child, to_free);
443 }
444 
taprio_peek_soft(struct Qdisc * sch)445 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
446 {
447 	struct taprio_sched *q = qdisc_priv(sch);
448 	struct net_device *dev = qdisc_dev(sch);
449 	struct sched_entry *entry;
450 	struct sk_buff *skb;
451 	u32 gate_mask;
452 	int i;
453 
454 	rcu_read_lock();
455 	entry = rcu_dereference(q->current_entry);
456 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
457 	rcu_read_unlock();
458 
459 	if (!gate_mask)
460 		return NULL;
461 
462 	for (i = 0; i < dev->num_tx_queues; i++) {
463 		struct Qdisc *child = q->qdiscs[i];
464 		int prio;
465 		u8 tc;
466 
467 		if (unlikely(!child))
468 			continue;
469 
470 		skb = child->ops->peek(child);
471 		if (!skb)
472 			continue;
473 
474 		if (TXTIME_ASSIST_IS_ENABLED(q->flags))
475 			return skb;
476 
477 		prio = skb->priority;
478 		tc = netdev_get_prio_tc_map(dev, prio);
479 
480 		if (!(gate_mask & BIT(tc)))
481 			continue;
482 
483 		return skb;
484 	}
485 
486 	return NULL;
487 }
488 
taprio_peek_offload(struct Qdisc * sch)489 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
490 {
491 	struct taprio_sched *q = qdisc_priv(sch);
492 	struct net_device *dev = qdisc_dev(sch);
493 	struct sk_buff *skb;
494 	int i;
495 
496 	for (i = 0; i < dev->num_tx_queues; i++) {
497 		struct Qdisc *child = q->qdiscs[i];
498 
499 		if (unlikely(!child))
500 			continue;
501 
502 		skb = child->ops->peek(child);
503 		if (!skb)
504 			continue;
505 
506 		return skb;
507 	}
508 
509 	return NULL;
510 }
511 
taprio_peek(struct Qdisc * sch)512 static struct sk_buff *taprio_peek(struct Qdisc *sch)
513 {
514 	struct taprio_sched *q = qdisc_priv(sch);
515 
516 	return q->peek(sch);
517 }
518 
taprio_set_budget(struct taprio_sched * q,struct sched_entry * entry)519 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
520 {
521 	atomic_set(&entry->budget,
522 		   div64_u64((u64)entry->interval * 1000,
523 			     atomic64_read(&q->picos_per_byte)));
524 }
525 
taprio_dequeue_soft(struct Qdisc * sch)526 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
527 {
528 	struct taprio_sched *q = qdisc_priv(sch);
529 	struct net_device *dev = qdisc_dev(sch);
530 	struct sk_buff *skb = NULL;
531 	struct sched_entry *entry;
532 	u32 gate_mask;
533 	int i;
534 
535 	rcu_read_lock();
536 	entry = rcu_dereference(q->current_entry);
537 	/* if there's no entry, it means that the schedule didn't
538 	 * start yet, so force all gates to be open, this is in
539 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
540 	 * "AdminGateSates"
541 	 */
542 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
543 
544 	if (!gate_mask)
545 		goto done;
546 
547 	for (i = 0; i < dev->num_tx_queues; i++) {
548 		struct Qdisc *child = q->qdiscs[i];
549 		ktime_t guard;
550 		int prio;
551 		int len;
552 		u8 tc;
553 
554 		if (unlikely(!child))
555 			continue;
556 
557 		if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
558 			skb = child->ops->dequeue(child);
559 			if (!skb)
560 				continue;
561 			goto skb_found;
562 		}
563 
564 		skb = child->ops->peek(child);
565 		if (!skb)
566 			continue;
567 
568 		prio = skb->priority;
569 		tc = netdev_get_prio_tc_map(dev, prio);
570 
571 		if (!(gate_mask & BIT(tc))) {
572 			skb = NULL;
573 			continue;
574 		}
575 
576 		len = qdisc_pkt_len(skb);
577 		guard = ktime_add_ns(taprio_get_time(q),
578 				     length_to_duration(q, len));
579 
580 		/* In the case that there's no gate entry, there's no
581 		 * guard band ...
582 		 */
583 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
584 		    ktime_after(guard, entry->close_time)) {
585 			skb = NULL;
586 			continue;
587 		}
588 
589 		/* ... and no budget. */
590 		if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
591 		    atomic_sub_return(len, &entry->budget) < 0) {
592 			skb = NULL;
593 			continue;
594 		}
595 
596 		skb = child->ops->dequeue(child);
597 		if (unlikely(!skb))
598 			goto done;
599 
600 skb_found:
601 		qdisc_bstats_update(sch, skb);
602 		qdisc_qstats_backlog_dec(sch, skb);
603 		sch->q.qlen--;
604 
605 		goto done;
606 	}
607 
608 done:
609 	rcu_read_unlock();
610 
611 	return skb;
612 }
613 
taprio_dequeue_offload(struct Qdisc * sch)614 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
615 {
616 	struct taprio_sched *q = qdisc_priv(sch);
617 	struct net_device *dev = qdisc_dev(sch);
618 	struct sk_buff *skb;
619 	int i;
620 
621 	for (i = 0; i < dev->num_tx_queues; i++) {
622 		struct Qdisc *child = q->qdiscs[i];
623 
624 		if (unlikely(!child))
625 			continue;
626 
627 		skb = child->ops->dequeue(child);
628 		if (unlikely(!skb))
629 			continue;
630 
631 		qdisc_bstats_update(sch, skb);
632 		qdisc_qstats_backlog_dec(sch, skb);
633 		sch->q.qlen--;
634 
635 		return skb;
636 	}
637 
638 	return NULL;
639 }
640 
taprio_dequeue(struct Qdisc * sch)641 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
642 {
643 	struct taprio_sched *q = qdisc_priv(sch);
644 
645 	return q->dequeue(sch);
646 }
647 
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)648 static bool should_restart_cycle(const struct sched_gate_list *oper,
649 				 const struct sched_entry *entry)
650 {
651 	if (list_is_last(&entry->list, &oper->entries))
652 		return true;
653 
654 	if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
655 		return true;
656 
657 	return false;
658 }
659 
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t close_time)660 static bool should_change_schedules(const struct sched_gate_list *admin,
661 				    const struct sched_gate_list *oper,
662 				    ktime_t close_time)
663 {
664 	ktime_t next_base_time, extension_time;
665 
666 	if (!admin)
667 		return false;
668 
669 	next_base_time = sched_base_time(admin);
670 
671 	/* This is the simple case, the close_time would fall after
672 	 * the next schedule base_time.
673 	 */
674 	if (ktime_compare(next_base_time, close_time) <= 0)
675 		return true;
676 
677 	/* This is the cycle_time_extension case, if the close_time
678 	 * plus the amount that can be extended would fall after the
679 	 * next schedule base_time, we can extend the current schedule
680 	 * for that amount.
681 	 */
682 	extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
683 
684 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
685 	 * how precisely the extension should be made. So after
686 	 * conformance testing, this logic may change.
687 	 */
688 	if (ktime_compare(next_base_time, extension_time) <= 0)
689 		return true;
690 
691 	return false;
692 }
693 
advance_sched(struct hrtimer * timer)694 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
695 {
696 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
697 					      advance_timer);
698 	struct sched_gate_list *oper, *admin;
699 	struct sched_entry *entry, *next;
700 	struct Qdisc *sch = q->root;
701 	ktime_t close_time;
702 
703 	spin_lock(&q->current_entry_lock);
704 	entry = rcu_dereference_protected(q->current_entry,
705 					  lockdep_is_held(&q->current_entry_lock));
706 	oper = rcu_dereference_protected(q->oper_sched,
707 					 lockdep_is_held(&q->current_entry_lock));
708 	admin = rcu_dereference_protected(q->admin_sched,
709 					  lockdep_is_held(&q->current_entry_lock));
710 
711 	if (!oper)
712 		switch_schedules(q, &admin, &oper);
713 
714 	/* This can happen in two cases: 1. this is the very first run
715 	 * of this function (i.e. we weren't running any schedule
716 	 * previously); 2. The previous schedule just ended. The first
717 	 * entry of all schedules are pre-calculated during the
718 	 * schedule initialization.
719 	 */
720 	if (unlikely(!entry || entry->close_time == oper->base_time)) {
721 		next = list_first_entry(&oper->entries, struct sched_entry,
722 					list);
723 		close_time = next->close_time;
724 		goto first_run;
725 	}
726 
727 	if (should_restart_cycle(oper, entry)) {
728 		next = list_first_entry(&oper->entries, struct sched_entry,
729 					list);
730 		oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
731 						      oper->cycle_time);
732 	} else {
733 		next = list_next_entry(entry, list);
734 	}
735 
736 	close_time = ktime_add_ns(entry->close_time, next->interval);
737 	close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
738 
739 	if (should_change_schedules(admin, oper, close_time)) {
740 		/* Set things so the next time this runs, the new
741 		 * schedule runs.
742 		 */
743 		close_time = sched_base_time(admin);
744 		switch_schedules(q, &admin, &oper);
745 	}
746 
747 	next->close_time = close_time;
748 	taprio_set_budget(q, next);
749 
750 first_run:
751 	rcu_assign_pointer(q->current_entry, next);
752 	spin_unlock(&q->current_entry_lock);
753 
754 	hrtimer_set_expires(&q->advance_timer, close_time);
755 
756 	rcu_read_lock();
757 	__netif_schedule(sch);
758 	rcu_read_unlock();
759 
760 	return HRTIMER_RESTART;
761 }
762 
763 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
764 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
765 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
766 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
767 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
768 };
769 
770 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
771 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
772 		.len = sizeof(struct tc_mqprio_qopt)
773 	},
774 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
775 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
776 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
777 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
778 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
779 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
780 	[TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
781 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
782 };
783 
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)784 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
785 			    struct sched_entry *entry,
786 			    struct netlink_ext_ack *extack)
787 {
788 	int min_duration = length_to_duration(q, ETH_ZLEN);
789 	u32 interval = 0;
790 
791 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
792 		entry->command = nla_get_u8(
793 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
794 
795 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
796 		entry->gate_mask = nla_get_u32(
797 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
798 
799 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
800 		interval = nla_get_u32(
801 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
802 
803 	/* The interval should allow at least the minimum ethernet
804 	 * frame to go out.
805 	 */
806 	if (interval < min_duration) {
807 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
808 		return -EINVAL;
809 	}
810 
811 	entry->interval = interval;
812 
813 	return 0;
814 }
815 
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)816 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
817 			     struct sched_entry *entry, int index,
818 			     struct netlink_ext_ack *extack)
819 {
820 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
821 	int err;
822 
823 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
824 					  entry_policy, NULL);
825 	if (err < 0) {
826 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
827 		return -EINVAL;
828 	}
829 
830 	entry->index = index;
831 
832 	return fill_sched_entry(q, tb, entry, extack);
833 }
834 
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)835 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
836 			    struct sched_gate_list *sched,
837 			    struct netlink_ext_ack *extack)
838 {
839 	struct nlattr *n;
840 	int err, rem;
841 	int i = 0;
842 
843 	if (!list)
844 		return -EINVAL;
845 
846 	nla_for_each_nested(n, list, rem) {
847 		struct sched_entry *entry;
848 
849 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
850 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
851 			continue;
852 		}
853 
854 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
855 		if (!entry) {
856 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
857 			return -ENOMEM;
858 		}
859 
860 		err = parse_sched_entry(q, n, entry, i, extack);
861 		if (err < 0) {
862 			kfree(entry);
863 			return err;
864 		}
865 
866 		list_add_tail(&entry->list, &sched->entries);
867 		i++;
868 	}
869 
870 	sched->num_entries = i;
871 
872 	return i;
873 }
874 
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)875 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
876 				 struct sched_gate_list *new,
877 				 struct netlink_ext_ack *extack)
878 {
879 	int err = 0;
880 
881 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
882 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
883 		return -ENOTSUPP;
884 	}
885 
886 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
887 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
888 
889 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
890 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
891 
892 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
893 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
894 
895 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
896 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
897 				       new, extack);
898 	if (err < 0)
899 		return err;
900 
901 	if (!new->cycle_time) {
902 		struct sched_entry *entry;
903 		ktime_t cycle = 0;
904 
905 		list_for_each_entry(entry, &new->entries, list)
906 			cycle = ktime_add_ns(cycle, entry->interval);
907 
908 		if (!cycle) {
909 			NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
910 			return -EINVAL;
911 		}
912 
913 		new->cycle_time = cycle;
914 	}
915 
916 	return 0;
917 }
918 
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)919 static int taprio_parse_mqprio_opt(struct net_device *dev,
920 				   struct tc_mqprio_qopt *qopt,
921 				   struct netlink_ext_ack *extack,
922 				   u32 taprio_flags)
923 {
924 	int i, j;
925 
926 	if (!qopt && !dev->num_tc) {
927 		NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
928 		return -EINVAL;
929 	}
930 
931 	/* If num_tc is already set, it means that the user already
932 	 * configured the mqprio part
933 	 */
934 	if (dev->num_tc)
935 		return 0;
936 
937 	/* Verify num_tc is not out of max range */
938 	if (qopt->num_tc > TC_MAX_QUEUE) {
939 		NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
940 		return -EINVAL;
941 	}
942 
943 	/* taprio imposes that traffic classes map 1:n to tx queues */
944 	if (qopt->num_tc > dev->num_tx_queues) {
945 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
946 		return -EINVAL;
947 	}
948 
949 	/* Verify priority mapping uses valid tcs */
950 	for (i = 0; i <= TC_BITMASK; i++) {
951 		if (qopt->prio_tc_map[i] >= qopt->num_tc) {
952 			NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
953 			return -EINVAL;
954 		}
955 	}
956 
957 	for (i = 0; i < qopt->num_tc; i++) {
958 		unsigned int last = qopt->offset[i] + qopt->count[i];
959 
960 		/* Verify the queue count is in tx range being equal to the
961 		 * real_num_tx_queues indicates the last queue is in use.
962 		 */
963 		if (qopt->offset[i] >= dev->num_tx_queues ||
964 		    !qopt->count[i] ||
965 		    last > dev->real_num_tx_queues) {
966 			NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
967 			return -EINVAL;
968 		}
969 
970 		if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
971 			continue;
972 
973 		/* Verify that the offset and counts do not overlap */
974 		for (j = i + 1; j < qopt->num_tc; j++) {
975 			if (last > qopt->offset[j]) {
976 				NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
977 				return -EINVAL;
978 			}
979 		}
980 	}
981 
982 	return 0;
983 }
984 
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)985 static int taprio_get_start_time(struct Qdisc *sch,
986 				 struct sched_gate_list *sched,
987 				 ktime_t *start)
988 {
989 	struct taprio_sched *q = qdisc_priv(sch);
990 	ktime_t now, base, cycle;
991 	s64 n;
992 
993 	base = sched_base_time(sched);
994 	now = taprio_get_time(q);
995 
996 	if (ktime_after(base, now)) {
997 		*start = base;
998 		return 0;
999 	}
1000 
1001 	cycle = sched->cycle_time;
1002 
1003 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1004 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1005 	 * something went really wrong. In that case, we should warn about this
1006 	 * inconsistent state and return error.
1007 	 */
1008 	if (WARN_ON(!cycle))
1009 		return -EFAULT;
1010 
1011 	/* Schedule the start time for the beginning of the next
1012 	 * cycle.
1013 	 */
1014 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1015 	*start = ktime_add_ns(base, (n + 1) * cycle);
1016 	return 0;
1017 }
1018 
setup_first_close_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1019 static void setup_first_close_time(struct taprio_sched *q,
1020 				   struct sched_gate_list *sched, ktime_t base)
1021 {
1022 	struct sched_entry *first;
1023 	ktime_t cycle;
1024 
1025 	first = list_first_entry(&sched->entries,
1026 				 struct sched_entry, list);
1027 
1028 	cycle = sched->cycle_time;
1029 
1030 	/* FIXME: find a better place to do this */
1031 	sched->cycle_close_time = ktime_add_ns(base, cycle);
1032 
1033 	first->close_time = ktime_add_ns(base, first->interval);
1034 	taprio_set_budget(q, first);
1035 	rcu_assign_pointer(q->current_entry, NULL);
1036 }
1037 
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1038 static void taprio_start_sched(struct Qdisc *sch,
1039 			       ktime_t start, struct sched_gate_list *new)
1040 {
1041 	struct taprio_sched *q = qdisc_priv(sch);
1042 	ktime_t expires;
1043 
1044 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1045 		return;
1046 
1047 	expires = hrtimer_get_expires(&q->advance_timer);
1048 	if (expires == 0)
1049 		expires = KTIME_MAX;
1050 
1051 	/* If the new schedule starts before the next expiration, we
1052 	 * reprogram it to the earliest one, so we change the admin
1053 	 * schedule to the operational one at the right time.
1054 	 */
1055 	start = min_t(ktime_t, start, expires);
1056 
1057 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1058 }
1059 
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q)1060 static void taprio_set_picos_per_byte(struct net_device *dev,
1061 				      struct taprio_sched *q)
1062 {
1063 	struct ethtool_link_ksettings ecmd;
1064 	int speed = SPEED_10;
1065 	int picos_per_byte;
1066 	int err;
1067 
1068 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1069 	if (err < 0)
1070 		goto skip;
1071 
1072 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1073 		speed = ecmd.base.speed;
1074 
1075 skip:
1076 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1077 
1078 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1079 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1080 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1081 		   ecmd.base.speed);
1082 }
1083 
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1084 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1085 			       void *ptr)
1086 {
1087 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1088 	struct net_device *qdev;
1089 	struct taprio_sched *q;
1090 	bool found = false;
1091 
1092 	ASSERT_RTNL();
1093 
1094 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1095 		return NOTIFY_DONE;
1096 
1097 	spin_lock(&taprio_list_lock);
1098 	list_for_each_entry(q, &taprio_list, taprio_list) {
1099 		qdev = qdisc_dev(q->root);
1100 		if (qdev == dev) {
1101 			found = true;
1102 			break;
1103 		}
1104 	}
1105 	spin_unlock(&taprio_list_lock);
1106 
1107 	if (found)
1108 		taprio_set_picos_per_byte(dev, q);
1109 
1110 	return NOTIFY_DONE;
1111 }
1112 
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1113 static void setup_txtime(struct taprio_sched *q,
1114 			 struct sched_gate_list *sched, ktime_t base)
1115 {
1116 	struct sched_entry *entry;
1117 	u32 interval = 0;
1118 
1119 	list_for_each_entry(entry, &sched->entries, list) {
1120 		entry->next_txtime = ktime_add_ns(base, interval);
1121 		interval += entry->interval;
1122 	}
1123 }
1124 
taprio_offload_alloc(int num_entries)1125 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1126 {
1127 	struct __tc_taprio_qopt_offload *__offload;
1128 
1129 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1130 			    GFP_KERNEL);
1131 	if (!__offload)
1132 		return NULL;
1133 
1134 	refcount_set(&__offload->users, 1);
1135 
1136 	return &__offload->offload;
1137 }
1138 
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1139 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1140 						  *offload)
1141 {
1142 	struct __tc_taprio_qopt_offload *__offload;
1143 
1144 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1145 				 offload);
1146 
1147 	refcount_inc(&__offload->users);
1148 
1149 	return offload;
1150 }
1151 EXPORT_SYMBOL_GPL(taprio_offload_get);
1152 
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1153 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1154 {
1155 	struct __tc_taprio_qopt_offload *__offload;
1156 
1157 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1158 				 offload);
1159 
1160 	if (!refcount_dec_and_test(&__offload->users))
1161 		return;
1162 
1163 	kfree(__offload);
1164 }
1165 EXPORT_SYMBOL_GPL(taprio_offload_free);
1166 
1167 /* The function will only serve to keep the pointers to the "oper" and "admin"
1168  * schedules valid in relation to their base times, so when calling dump() the
1169  * users looks at the right schedules.
1170  * When using full offload, the admin configuration is promoted to oper at the
1171  * base_time in the PHC time domain.  But because the system time is not
1172  * necessarily in sync with that, we can't just trigger a hrtimer to call
1173  * switch_schedules at the right hardware time.
1174  * At the moment we call this by hand right away from taprio, but in the future
1175  * it will be useful to create a mechanism for drivers to notify taprio of the
1176  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1177  * This is left as TODO.
1178  */
taprio_offload_config_changed(struct taprio_sched * q)1179 static void taprio_offload_config_changed(struct taprio_sched *q)
1180 {
1181 	struct sched_gate_list *oper, *admin;
1182 
1183 	spin_lock(&q->current_entry_lock);
1184 
1185 	oper = rcu_dereference_protected(q->oper_sched,
1186 					 lockdep_is_held(&q->current_entry_lock));
1187 	admin = rcu_dereference_protected(q->admin_sched,
1188 					  lockdep_is_held(&q->current_entry_lock));
1189 
1190 	switch_schedules(q, &admin, &oper);
1191 
1192 	spin_unlock(&q->current_entry_lock);
1193 }
1194 
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1195 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1196 {
1197 	u32 i, queue_mask = 0;
1198 
1199 	for (i = 0; i < dev->num_tc; i++) {
1200 		u32 offset, count;
1201 
1202 		if (!(tc_mask & BIT(i)))
1203 			continue;
1204 
1205 		offset = dev->tc_to_txq[i].offset;
1206 		count = dev->tc_to_txq[i].count;
1207 
1208 		queue_mask |= GENMASK(offset + count - 1, offset);
1209 	}
1210 
1211 	return queue_mask;
1212 }
1213 
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload)1214 static void taprio_sched_to_offload(struct net_device *dev,
1215 				    struct sched_gate_list *sched,
1216 				    struct tc_taprio_qopt_offload *offload)
1217 {
1218 	struct sched_entry *entry;
1219 	int i = 0;
1220 
1221 	offload->base_time = sched->base_time;
1222 	offload->cycle_time = sched->cycle_time;
1223 	offload->cycle_time_extension = sched->cycle_time_extension;
1224 
1225 	list_for_each_entry(entry, &sched->entries, list) {
1226 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1227 
1228 		e->command = entry->command;
1229 		e->interval = entry->interval;
1230 		e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1231 
1232 		i++;
1233 	}
1234 
1235 	offload->num_entries = i;
1236 }
1237 
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1238 static int taprio_enable_offload(struct net_device *dev,
1239 				 struct taprio_sched *q,
1240 				 struct sched_gate_list *sched,
1241 				 struct netlink_ext_ack *extack)
1242 {
1243 	const struct net_device_ops *ops = dev->netdev_ops;
1244 	struct tc_taprio_qopt_offload *offload;
1245 	int err = 0;
1246 
1247 	if (!ops->ndo_setup_tc) {
1248 		NL_SET_ERR_MSG(extack,
1249 			       "Device does not support taprio offload");
1250 		return -EOPNOTSUPP;
1251 	}
1252 
1253 	offload = taprio_offload_alloc(sched->num_entries);
1254 	if (!offload) {
1255 		NL_SET_ERR_MSG(extack,
1256 			       "Not enough memory for enabling offload mode");
1257 		return -ENOMEM;
1258 	}
1259 	offload->enable = 1;
1260 	taprio_sched_to_offload(dev, sched, offload);
1261 
1262 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1263 	if (err < 0) {
1264 		NL_SET_ERR_MSG(extack,
1265 			       "Device failed to setup taprio offload");
1266 		goto done;
1267 	}
1268 
1269 done:
1270 	taprio_offload_free(offload);
1271 
1272 	return err;
1273 }
1274 
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1275 static int taprio_disable_offload(struct net_device *dev,
1276 				  struct taprio_sched *q,
1277 				  struct netlink_ext_ack *extack)
1278 {
1279 	const struct net_device_ops *ops = dev->netdev_ops;
1280 	struct tc_taprio_qopt_offload *offload;
1281 	int err;
1282 
1283 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1284 		return 0;
1285 
1286 	if (!ops->ndo_setup_tc)
1287 		return -EOPNOTSUPP;
1288 
1289 	offload = taprio_offload_alloc(0);
1290 	if (!offload) {
1291 		NL_SET_ERR_MSG(extack,
1292 			       "Not enough memory to disable offload mode");
1293 		return -ENOMEM;
1294 	}
1295 	offload->enable = 0;
1296 
1297 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1298 	if (err < 0) {
1299 		NL_SET_ERR_MSG(extack,
1300 			       "Device failed to disable offload");
1301 		goto out;
1302 	}
1303 
1304 out:
1305 	taprio_offload_free(offload);
1306 
1307 	return err;
1308 }
1309 
1310 /* If full offload is enabled, the only possible clockid is the net device's
1311  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1312  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1313  * in sync with the specified clockid via a user space daemon such as phc2sys.
1314  * For both software taprio and txtime-assist, the clockid is used for the
1315  * hrtimer that advances the schedule and hence mandatory.
1316  */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1317 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1318 				struct netlink_ext_ack *extack)
1319 {
1320 	struct taprio_sched *q = qdisc_priv(sch);
1321 	struct net_device *dev = qdisc_dev(sch);
1322 	int err = -EINVAL;
1323 
1324 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1325 		const struct ethtool_ops *ops = dev->ethtool_ops;
1326 		struct ethtool_ts_info info = {
1327 			.cmd = ETHTOOL_GET_TS_INFO,
1328 			.phc_index = -1,
1329 		};
1330 
1331 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1332 			NL_SET_ERR_MSG(extack,
1333 				       "The 'clockid' cannot be specified for full offload");
1334 			goto out;
1335 		}
1336 
1337 		if (ops && ops->get_ts_info)
1338 			err = ops->get_ts_info(dev, &info);
1339 
1340 		if (err || info.phc_index < 0) {
1341 			NL_SET_ERR_MSG(extack,
1342 				       "Device does not have a PTP clock");
1343 			err = -ENOTSUPP;
1344 			goto out;
1345 		}
1346 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1347 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1348 		enum tk_offsets tk_offset;
1349 
1350 		/* We only support static clockids and we don't allow
1351 		 * for it to be modified after the first init.
1352 		 */
1353 		if (clockid < 0 ||
1354 		    (q->clockid != -1 && q->clockid != clockid)) {
1355 			NL_SET_ERR_MSG(extack,
1356 				       "Changing the 'clockid' of a running schedule is not supported");
1357 			err = -ENOTSUPP;
1358 			goto out;
1359 		}
1360 
1361 		switch (clockid) {
1362 		case CLOCK_REALTIME:
1363 			tk_offset = TK_OFFS_REAL;
1364 			break;
1365 		case CLOCK_MONOTONIC:
1366 			tk_offset = TK_OFFS_MAX;
1367 			break;
1368 		case CLOCK_BOOTTIME:
1369 			tk_offset = TK_OFFS_BOOT;
1370 			break;
1371 		case CLOCK_TAI:
1372 			tk_offset = TK_OFFS_TAI;
1373 			break;
1374 		default:
1375 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1376 			err = -EINVAL;
1377 			goto out;
1378 		}
1379 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1380 		WRITE_ONCE(q->tk_offset, tk_offset);
1381 
1382 		q->clockid = clockid;
1383 	} else {
1384 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1385 		goto out;
1386 	}
1387 
1388 	/* Everything went ok, return success. */
1389 	err = 0;
1390 
1391 out:
1392 	return err;
1393 }
1394 
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1395 static int taprio_mqprio_cmp(const struct net_device *dev,
1396 			     const struct tc_mqprio_qopt *mqprio)
1397 {
1398 	int i;
1399 
1400 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1401 		return -1;
1402 
1403 	for (i = 0; i < mqprio->num_tc; i++)
1404 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1405 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1406 			return -1;
1407 
1408 	for (i = 0; i <= TC_BITMASK; i++)
1409 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1410 			return -1;
1411 
1412 	return 0;
1413 }
1414 
1415 /* The semantics of the 'flags' argument in relation to 'change()'
1416  * requests, are interpreted following two rules (which are applied in
1417  * this order): (1) an omitted 'flags' argument is interpreted as
1418  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1419  * changed.
1420  */
taprio_new_flags(const struct nlattr * attr,u32 old,struct netlink_ext_ack * extack)1421 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1422 			    struct netlink_ext_ack *extack)
1423 {
1424 	u32 new = 0;
1425 
1426 	if (attr)
1427 		new = nla_get_u32(attr);
1428 
1429 	if (old != TAPRIO_FLAGS_INVALID && old != new) {
1430 		NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1431 		return -EOPNOTSUPP;
1432 	}
1433 
1434 	if (!taprio_flags_valid(new)) {
1435 		NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1436 		return -EINVAL;
1437 	}
1438 
1439 	return new;
1440 }
1441 
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1442 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1443 			 struct netlink_ext_ack *extack)
1444 {
1445 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1446 	struct sched_gate_list *oper, *admin, *new_admin;
1447 	struct taprio_sched *q = qdisc_priv(sch);
1448 	struct net_device *dev = qdisc_dev(sch);
1449 	struct tc_mqprio_qopt *mqprio = NULL;
1450 	unsigned long flags;
1451 	ktime_t start;
1452 	int i, err;
1453 
1454 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1455 					  taprio_policy, extack);
1456 	if (err < 0)
1457 		return err;
1458 
1459 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1460 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1461 
1462 	err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1463 			       q->flags, extack);
1464 	if (err < 0)
1465 		return err;
1466 
1467 	q->flags = err;
1468 
1469 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1470 	if (err < 0)
1471 		return err;
1472 
1473 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1474 	if (!new_admin) {
1475 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1476 		return -ENOMEM;
1477 	}
1478 	INIT_LIST_HEAD(&new_admin->entries);
1479 
1480 	rcu_read_lock();
1481 	oper = rcu_dereference(q->oper_sched);
1482 	admin = rcu_dereference(q->admin_sched);
1483 	rcu_read_unlock();
1484 
1485 	/* no changes - no new mqprio settings */
1486 	if (!taprio_mqprio_cmp(dev, mqprio))
1487 		mqprio = NULL;
1488 
1489 	if (mqprio && (oper || admin)) {
1490 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1491 		err = -ENOTSUPP;
1492 		goto free_sched;
1493 	}
1494 
1495 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1496 	if (err < 0)
1497 		goto free_sched;
1498 
1499 	if (new_admin->num_entries == 0) {
1500 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1501 		err = -EINVAL;
1502 		goto free_sched;
1503 	}
1504 
1505 	err = taprio_parse_clockid(sch, tb, extack);
1506 	if (err < 0)
1507 		goto free_sched;
1508 
1509 	taprio_set_picos_per_byte(dev, q);
1510 
1511 	if (mqprio) {
1512 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1513 		if (err)
1514 			goto free_sched;
1515 		for (i = 0; i < mqprio->num_tc; i++)
1516 			netdev_set_tc_queue(dev, i,
1517 					    mqprio->count[i],
1518 					    mqprio->offset[i]);
1519 
1520 		/* Always use supplied priority mappings */
1521 		for (i = 0; i <= TC_BITMASK; i++)
1522 			netdev_set_prio_tc_map(dev, i,
1523 					       mqprio->prio_tc_map[i]);
1524 	}
1525 
1526 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1527 		err = taprio_enable_offload(dev, q, new_admin, extack);
1528 	else
1529 		err = taprio_disable_offload(dev, q, extack);
1530 	if (err)
1531 		goto free_sched;
1532 
1533 	/* Protects against enqueue()/dequeue() */
1534 	spin_lock_bh(qdisc_lock(sch));
1535 
1536 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1537 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1538 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1539 			err = -EINVAL;
1540 			goto unlock;
1541 		}
1542 
1543 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1544 	}
1545 
1546 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1547 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1548 	    !hrtimer_active(&q->advance_timer)) {
1549 		hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1550 		q->advance_timer.function = advance_sched;
1551 	}
1552 
1553 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1554 		q->dequeue = taprio_dequeue_offload;
1555 		q->peek = taprio_peek_offload;
1556 	} else {
1557 		/* Be sure to always keep the function pointers
1558 		 * in a consistent state.
1559 		 */
1560 		q->dequeue = taprio_dequeue_soft;
1561 		q->peek = taprio_peek_soft;
1562 	}
1563 
1564 	err = taprio_get_start_time(sch, new_admin, &start);
1565 	if (err < 0) {
1566 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1567 		goto unlock;
1568 	}
1569 
1570 	setup_txtime(q, new_admin, start);
1571 
1572 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1573 		if (!oper) {
1574 			rcu_assign_pointer(q->oper_sched, new_admin);
1575 			err = 0;
1576 			new_admin = NULL;
1577 			goto unlock;
1578 		}
1579 
1580 		rcu_assign_pointer(q->admin_sched, new_admin);
1581 		if (admin)
1582 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1583 	} else {
1584 		setup_first_close_time(q, new_admin, start);
1585 
1586 		/* Protects against advance_sched() */
1587 		spin_lock_irqsave(&q->current_entry_lock, flags);
1588 
1589 		taprio_start_sched(sch, start, new_admin);
1590 
1591 		rcu_assign_pointer(q->admin_sched, new_admin);
1592 		if (admin)
1593 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1594 
1595 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1596 
1597 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1598 			taprio_offload_config_changed(q);
1599 	}
1600 
1601 	new_admin = NULL;
1602 	err = 0;
1603 
1604 unlock:
1605 	spin_unlock_bh(qdisc_lock(sch));
1606 
1607 free_sched:
1608 	if (new_admin)
1609 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1610 
1611 	return err;
1612 }
1613 
taprio_reset(struct Qdisc * sch)1614 static void taprio_reset(struct Qdisc *sch)
1615 {
1616 	struct taprio_sched *q = qdisc_priv(sch);
1617 	struct net_device *dev = qdisc_dev(sch);
1618 	int i;
1619 
1620 	hrtimer_cancel(&q->advance_timer);
1621 	if (q->qdiscs) {
1622 		for (i = 0; i < dev->num_tx_queues; i++)
1623 			if (q->qdiscs[i])
1624 				qdisc_reset(q->qdiscs[i]);
1625 	}
1626 	sch->qstats.backlog = 0;
1627 	sch->q.qlen = 0;
1628 }
1629 
taprio_destroy(struct Qdisc * sch)1630 static void taprio_destroy(struct Qdisc *sch)
1631 {
1632 	struct taprio_sched *q = qdisc_priv(sch);
1633 	struct net_device *dev = qdisc_dev(sch);
1634 	unsigned int i;
1635 
1636 	spin_lock(&taprio_list_lock);
1637 	list_del(&q->taprio_list);
1638 	spin_unlock(&taprio_list_lock);
1639 
1640 	/* Note that taprio_reset() might not be called if an error
1641 	 * happens in qdisc_create(), after taprio_init() has been called.
1642 	 */
1643 	hrtimer_cancel(&q->advance_timer);
1644 
1645 	taprio_disable_offload(dev, q, NULL);
1646 
1647 	if (q->qdiscs) {
1648 		for (i = 0; i < dev->num_tx_queues; i++)
1649 			qdisc_put(q->qdiscs[i]);
1650 
1651 		kfree(q->qdiscs);
1652 	}
1653 	q->qdiscs = NULL;
1654 
1655 	netdev_reset_tc(dev);
1656 
1657 	if (q->oper_sched)
1658 		call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1659 
1660 	if (q->admin_sched)
1661 		call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1662 }
1663 
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1664 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1665 		       struct netlink_ext_ack *extack)
1666 {
1667 	struct taprio_sched *q = qdisc_priv(sch);
1668 	struct net_device *dev = qdisc_dev(sch);
1669 	int i;
1670 
1671 	spin_lock_init(&q->current_entry_lock);
1672 
1673 	hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1674 	q->advance_timer.function = advance_sched;
1675 
1676 	q->dequeue = taprio_dequeue_soft;
1677 	q->peek = taprio_peek_soft;
1678 
1679 	q->root = sch;
1680 
1681 	/* We only support static clockids. Use an invalid value as default
1682 	 * and get the valid one on taprio_change().
1683 	 */
1684 	q->clockid = -1;
1685 	q->flags = TAPRIO_FLAGS_INVALID;
1686 
1687 	spin_lock(&taprio_list_lock);
1688 	list_add(&q->taprio_list, &taprio_list);
1689 	spin_unlock(&taprio_list_lock);
1690 
1691 	if (sch->parent != TC_H_ROOT)
1692 		return -EOPNOTSUPP;
1693 
1694 	if (!netif_is_multiqueue(dev))
1695 		return -EOPNOTSUPP;
1696 
1697 	/* pre-allocate qdisc, attachment can't fail */
1698 	q->qdiscs = kcalloc(dev->num_tx_queues,
1699 			    sizeof(q->qdiscs[0]),
1700 			    GFP_KERNEL);
1701 
1702 	if (!q->qdiscs)
1703 		return -ENOMEM;
1704 
1705 	if (!opt)
1706 		return -EINVAL;
1707 
1708 	for (i = 0; i < dev->num_tx_queues; i++) {
1709 		struct netdev_queue *dev_queue;
1710 		struct Qdisc *qdisc;
1711 
1712 		dev_queue = netdev_get_tx_queue(dev, i);
1713 		qdisc = qdisc_create_dflt(dev_queue,
1714 					  &pfifo_qdisc_ops,
1715 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
1716 						    TC_H_MIN(i + 1)),
1717 					  extack);
1718 		if (!qdisc)
1719 			return -ENOMEM;
1720 
1721 		if (i < dev->real_num_tx_queues)
1722 			qdisc_hash_add(qdisc, false);
1723 
1724 		q->qdiscs[i] = qdisc;
1725 	}
1726 
1727 	return taprio_change(sch, opt, extack);
1728 }
1729 
taprio_queue_get(struct Qdisc * sch,unsigned long cl)1730 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1731 					     unsigned long cl)
1732 {
1733 	struct net_device *dev = qdisc_dev(sch);
1734 	unsigned long ntx = cl - 1;
1735 
1736 	if (ntx >= dev->num_tx_queues)
1737 		return NULL;
1738 
1739 	return netdev_get_tx_queue(dev, ntx);
1740 }
1741 
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)1742 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1743 			struct Qdisc *new, struct Qdisc **old,
1744 			struct netlink_ext_ack *extack)
1745 {
1746 	struct taprio_sched *q = qdisc_priv(sch);
1747 	struct net_device *dev = qdisc_dev(sch);
1748 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1749 
1750 	if (!dev_queue)
1751 		return -EINVAL;
1752 
1753 	if (dev->flags & IFF_UP)
1754 		dev_deactivate(dev);
1755 
1756 	*old = q->qdiscs[cl - 1];
1757 	q->qdiscs[cl - 1] = new;
1758 
1759 	if (new)
1760 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1761 
1762 	if (dev->flags & IFF_UP)
1763 		dev_activate(dev);
1764 
1765 	return 0;
1766 }
1767 
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)1768 static int dump_entry(struct sk_buff *msg,
1769 		      const struct sched_entry *entry)
1770 {
1771 	struct nlattr *item;
1772 
1773 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1774 	if (!item)
1775 		return -ENOSPC;
1776 
1777 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1778 		goto nla_put_failure;
1779 
1780 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1781 		goto nla_put_failure;
1782 
1783 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1784 			entry->gate_mask))
1785 		goto nla_put_failure;
1786 
1787 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1788 			entry->interval))
1789 		goto nla_put_failure;
1790 
1791 	return nla_nest_end(msg, item);
1792 
1793 nla_put_failure:
1794 	nla_nest_cancel(msg, item);
1795 	return -1;
1796 }
1797 
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)1798 static int dump_schedule(struct sk_buff *msg,
1799 			 const struct sched_gate_list *root)
1800 {
1801 	struct nlattr *entry_list;
1802 	struct sched_entry *entry;
1803 
1804 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1805 			root->base_time, TCA_TAPRIO_PAD))
1806 		return -1;
1807 
1808 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1809 			root->cycle_time, TCA_TAPRIO_PAD))
1810 		return -1;
1811 
1812 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1813 			root->cycle_time_extension, TCA_TAPRIO_PAD))
1814 		return -1;
1815 
1816 	entry_list = nla_nest_start_noflag(msg,
1817 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1818 	if (!entry_list)
1819 		goto error_nest;
1820 
1821 	list_for_each_entry(entry, &root->entries, list) {
1822 		if (dump_entry(msg, entry) < 0)
1823 			goto error_nest;
1824 	}
1825 
1826 	nla_nest_end(msg, entry_list);
1827 	return 0;
1828 
1829 error_nest:
1830 	nla_nest_cancel(msg, entry_list);
1831 	return -1;
1832 }
1833 
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)1834 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1835 {
1836 	struct taprio_sched *q = qdisc_priv(sch);
1837 	struct net_device *dev = qdisc_dev(sch);
1838 	struct sched_gate_list *oper, *admin;
1839 	struct tc_mqprio_qopt opt = { 0 };
1840 	struct nlattr *nest, *sched_nest;
1841 	unsigned int i;
1842 
1843 	rcu_read_lock();
1844 	oper = rcu_dereference(q->oper_sched);
1845 	admin = rcu_dereference(q->admin_sched);
1846 
1847 	opt.num_tc = netdev_get_num_tc(dev);
1848 	memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1849 
1850 	for (i = 0; i < netdev_get_num_tc(dev); i++) {
1851 		opt.count[i] = dev->tc_to_txq[i].count;
1852 		opt.offset[i] = dev->tc_to_txq[i].offset;
1853 	}
1854 
1855 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1856 	if (!nest)
1857 		goto start_error;
1858 
1859 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1860 		goto options_error;
1861 
1862 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1863 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1864 		goto options_error;
1865 
1866 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1867 		goto options_error;
1868 
1869 	if (q->txtime_delay &&
1870 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1871 		goto options_error;
1872 
1873 	if (oper && dump_schedule(skb, oper))
1874 		goto options_error;
1875 
1876 	if (!admin)
1877 		goto done;
1878 
1879 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1880 	if (!sched_nest)
1881 		goto options_error;
1882 
1883 	if (dump_schedule(skb, admin))
1884 		goto admin_error;
1885 
1886 	nla_nest_end(skb, sched_nest);
1887 
1888 done:
1889 	rcu_read_unlock();
1890 
1891 	return nla_nest_end(skb, nest);
1892 
1893 admin_error:
1894 	nla_nest_cancel(skb, sched_nest);
1895 
1896 options_error:
1897 	nla_nest_cancel(skb, nest);
1898 
1899 start_error:
1900 	rcu_read_unlock();
1901 	return -ENOSPC;
1902 }
1903 
taprio_leaf(struct Qdisc * sch,unsigned long cl)1904 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1905 {
1906 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1907 
1908 	if (!dev_queue)
1909 		return NULL;
1910 
1911 	return dev_queue->qdisc_sleeping;
1912 }
1913 
taprio_find(struct Qdisc * sch,u32 classid)1914 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1915 {
1916 	unsigned int ntx = TC_H_MIN(classid);
1917 
1918 	if (!taprio_queue_get(sch, ntx))
1919 		return 0;
1920 	return ntx;
1921 }
1922 
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)1923 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1924 			     struct sk_buff *skb, struct tcmsg *tcm)
1925 {
1926 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1927 
1928 	tcm->tcm_parent = TC_H_ROOT;
1929 	tcm->tcm_handle |= TC_H_MIN(cl);
1930 	tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1931 
1932 	return 0;
1933 }
1934 
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)1935 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1936 				   struct gnet_dump *d)
1937 	__releases(d->lock)
1938 	__acquires(d->lock)
1939 {
1940 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1941 
1942 	sch = dev_queue->qdisc_sleeping;
1943 	if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1944 	    qdisc_qstats_copy(d, sch) < 0)
1945 		return -1;
1946 	return 0;
1947 }
1948 
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)1949 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1950 {
1951 	struct net_device *dev = qdisc_dev(sch);
1952 	unsigned long ntx;
1953 
1954 	if (arg->stop)
1955 		return;
1956 
1957 	arg->count = arg->skip;
1958 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1959 		if (arg->fn(sch, ntx + 1, arg) < 0) {
1960 			arg->stop = 1;
1961 			break;
1962 		}
1963 		arg->count++;
1964 	}
1965 }
1966 
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)1967 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1968 						struct tcmsg *tcm)
1969 {
1970 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1971 }
1972 
1973 static const struct Qdisc_class_ops taprio_class_ops = {
1974 	.graft		= taprio_graft,
1975 	.leaf		= taprio_leaf,
1976 	.find		= taprio_find,
1977 	.walk		= taprio_walk,
1978 	.dump		= taprio_dump_class,
1979 	.dump_stats	= taprio_dump_class_stats,
1980 	.select_queue	= taprio_select_queue,
1981 };
1982 
1983 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1984 	.cl_ops		= &taprio_class_ops,
1985 	.id		= "taprio",
1986 	.priv_size	= sizeof(struct taprio_sched),
1987 	.init		= taprio_init,
1988 	.change		= taprio_change,
1989 	.destroy	= taprio_destroy,
1990 	.reset		= taprio_reset,
1991 	.peek		= taprio_peek,
1992 	.dequeue	= taprio_dequeue,
1993 	.enqueue	= taprio_enqueue,
1994 	.dump		= taprio_dump,
1995 	.owner		= THIS_MODULE,
1996 };
1997 
1998 static struct notifier_block taprio_device_notifier = {
1999 	.notifier_call = taprio_dev_notifier,
2000 };
2001 
taprio_module_init(void)2002 static int __init taprio_module_init(void)
2003 {
2004 	int err = register_netdevice_notifier(&taprio_device_notifier);
2005 
2006 	if (err)
2007 		return err;
2008 
2009 	return register_qdisc(&taprio_qdisc_ops);
2010 }
2011 
taprio_module_exit(void)2012 static void __exit taprio_module_exit(void)
2013 {
2014 	unregister_qdisc(&taprio_qdisc_ops);
2015 	unregister_netdevice_notifier(&taprio_device_notifier);
2016 }
2017 
2018 module_init(taprio_module_init);
2019 module_exit(taprio_module_exit);
2020 MODULE_LICENSE("GPL");
2021