• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/types.h>
89 #include <linux/bitops.h>
90 #include <linux/cred.h>
91 #include <linux/init.h>
92 #include <linux/io.h>
93 #include <linux/kernel.h>
94 #include <linux/sched/signal.h>
95 #include <linux/kmod.h>
96 #include <linux/list.h>
97 #include <linux/miscdevice.h>
98 #include <linux/module.h>
99 #include <linux/mutex.h>
100 #include <linux/net.h>
101 #include <linux/poll.h>
102 #include <linux/random.h>
103 #include <linux/skbuff.h>
104 #include <linux/smp.h>
105 #include <linux/socket.h>
106 #include <linux/stddef.h>
107 #include <linux/unistd.h>
108 #include <linux/wait.h>
109 #include <linux/workqueue.h>
110 #include <net/sock.h>
111 #include <net/af_vsock.h>
112 
113 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
114 static void vsock_sk_destruct(struct sock *sk);
115 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
116 
117 /* Protocol family. */
118 static struct proto vsock_proto = {
119 	.name = "AF_VSOCK",
120 	.owner = THIS_MODULE,
121 	.obj_size = sizeof(struct vsock_sock),
122 };
123 
124 /* The default peer timeout indicates how long we will wait for a peer response
125  * to a control message.
126  */
127 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
128 
129 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
130 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
132 
133 /* Transport used for host->guest communication */
134 static const struct vsock_transport *transport_h2g;
135 /* Transport used for guest->host communication */
136 static const struct vsock_transport *transport_g2h;
137 /* Transport used for DGRAM communication */
138 static const struct vsock_transport *transport_dgram;
139 /* Transport used for local communication */
140 static const struct vsock_transport *transport_local;
141 static DEFINE_MUTEX(vsock_register_mutex);
142 
143 /**** UTILS ****/
144 
145 /* Each bound VSocket is stored in the bind hash table and each connected
146  * VSocket is stored in the connected hash table.
147  *
148  * Unbound sockets are all put on the same list attached to the end of the hash
149  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
150  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
151  * represents the list that addr hashes to).
152  *
153  * Specifically, we initialize the vsock_bind_table array to a size of
154  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
155  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
156  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
157  * mods with VSOCK_HASH_SIZE to ensure this.
158  */
159 #define MAX_PORT_RETRIES        24
160 
161 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
162 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
163 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
164 
165 /* XXX This can probably be implemented in a better way. */
166 #define VSOCK_CONN_HASH(src, dst)				\
167 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
168 #define vsock_connected_sockets(src, dst)		\
169 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
170 #define vsock_connected_sockets_vsk(vsk)				\
171 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
172 
173 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
174 EXPORT_SYMBOL_GPL(vsock_bind_table);
175 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
176 EXPORT_SYMBOL_GPL(vsock_connected_table);
177 DEFINE_SPINLOCK(vsock_table_lock);
178 EXPORT_SYMBOL_GPL(vsock_table_lock);
179 
180 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)181 static int vsock_auto_bind(struct vsock_sock *vsk)
182 {
183 	struct sock *sk = sk_vsock(vsk);
184 	struct sockaddr_vm local_addr;
185 
186 	if (vsock_addr_bound(&vsk->local_addr))
187 		return 0;
188 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
189 	return __vsock_bind(sk, &local_addr);
190 }
191 
vsock_init_tables(void)192 static void vsock_init_tables(void)
193 {
194 	int i;
195 
196 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
197 		INIT_LIST_HEAD(&vsock_bind_table[i]);
198 
199 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
200 		INIT_LIST_HEAD(&vsock_connected_table[i]);
201 }
202 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)203 static void __vsock_insert_bound(struct list_head *list,
204 				 struct vsock_sock *vsk)
205 {
206 	sock_hold(&vsk->sk);
207 	list_add(&vsk->bound_table, list);
208 }
209 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_connected(struct list_head *list,
211 				     struct vsock_sock *vsk)
212 {
213 	sock_hold(&vsk->sk);
214 	list_add(&vsk->connected_table, list);
215 }
216 
__vsock_remove_bound(struct vsock_sock * vsk)217 static void __vsock_remove_bound(struct vsock_sock *vsk)
218 {
219 	list_del_init(&vsk->bound_table);
220 	sock_put(&vsk->sk);
221 }
222 
__vsock_remove_connected(struct vsock_sock * vsk)223 static void __vsock_remove_connected(struct vsock_sock *vsk)
224 {
225 	list_del_init(&vsk->connected_table);
226 	sock_put(&vsk->sk);
227 }
228 
__vsock_find_bound_socket(struct sockaddr_vm * addr)229 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
230 {
231 	struct vsock_sock *vsk;
232 
233 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
234 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
235 			return sk_vsock(vsk);
236 
237 		if (addr->svm_port == vsk->local_addr.svm_port &&
238 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
239 		     addr->svm_cid == VMADDR_CID_ANY))
240 			return sk_vsock(vsk);
241 	}
242 
243 	return NULL;
244 }
245 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)246 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
247 						  struct sockaddr_vm *dst)
248 {
249 	struct vsock_sock *vsk;
250 
251 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
252 			    connected_table) {
253 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
254 		    dst->svm_port == vsk->local_addr.svm_port) {
255 			return sk_vsock(vsk);
256 		}
257 	}
258 
259 	return NULL;
260 }
261 
vsock_insert_unbound(struct vsock_sock * vsk)262 static void vsock_insert_unbound(struct vsock_sock *vsk)
263 {
264 	spin_lock_bh(&vsock_table_lock);
265 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
266 	spin_unlock_bh(&vsock_table_lock);
267 }
268 
vsock_insert_connected(struct vsock_sock * vsk)269 void vsock_insert_connected(struct vsock_sock *vsk)
270 {
271 	struct list_head *list = vsock_connected_sockets(
272 		&vsk->remote_addr, &vsk->local_addr);
273 
274 	spin_lock_bh(&vsock_table_lock);
275 	__vsock_insert_connected(list, vsk);
276 	spin_unlock_bh(&vsock_table_lock);
277 }
278 EXPORT_SYMBOL_GPL(vsock_insert_connected);
279 
vsock_remove_bound(struct vsock_sock * vsk)280 void vsock_remove_bound(struct vsock_sock *vsk)
281 {
282 	spin_lock_bh(&vsock_table_lock);
283 	if (__vsock_in_bound_table(vsk))
284 		__vsock_remove_bound(vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288 
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_connected_table(vsk))
293 		__vsock_remove_connected(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_connected);
297 
vsock_find_bound_socket(struct sockaddr_vm * addr)298 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
299 {
300 	struct sock *sk;
301 
302 	spin_lock_bh(&vsock_table_lock);
303 	sk = __vsock_find_bound_socket(addr);
304 	if (sk)
305 		sock_hold(sk);
306 
307 	spin_unlock_bh(&vsock_table_lock);
308 
309 	return sk;
310 }
311 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
312 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)313 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
314 					 struct sockaddr_vm *dst)
315 {
316 	struct sock *sk;
317 
318 	spin_lock_bh(&vsock_table_lock);
319 	sk = __vsock_find_connected_socket(src, dst);
320 	if (sk)
321 		sock_hold(sk);
322 
323 	spin_unlock_bh(&vsock_table_lock);
324 
325 	return sk;
326 }
327 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
328 
vsock_remove_sock(struct vsock_sock * vsk)329 void vsock_remove_sock(struct vsock_sock *vsk)
330 {
331 	vsock_remove_bound(vsk);
332 	vsock_remove_connected(vsk);
333 }
334 EXPORT_SYMBOL_GPL(vsock_remove_sock);
335 
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))336 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
337 {
338 	int i;
339 
340 	spin_lock_bh(&vsock_table_lock);
341 
342 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
343 		struct vsock_sock *vsk;
344 		list_for_each_entry(vsk, &vsock_connected_table[i],
345 				    connected_table)
346 			fn(sk_vsock(vsk));
347 	}
348 
349 	spin_unlock_bh(&vsock_table_lock);
350 }
351 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
352 
vsock_add_pending(struct sock * listener,struct sock * pending)353 void vsock_add_pending(struct sock *listener, struct sock *pending)
354 {
355 	struct vsock_sock *vlistener;
356 	struct vsock_sock *vpending;
357 
358 	vlistener = vsock_sk(listener);
359 	vpending = vsock_sk(pending);
360 
361 	sock_hold(pending);
362 	sock_hold(listener);
363 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
364 }
365 EXPORT_SYMBOL_GPL(vsock_add_pending);
366 
vsock_remove_pending(struct sock * listener,struct sock * pending)367 void vsock_remove_pending(struct sock *listener, struct sock *pending)
368 {
369 	struct vsock_sock *vpending = vsock_sk(pending);
370 
371 	list_del_init(&vpending->pending_links);
372 	sock_put(listener);
373 	sock_put(pending);
374 }
375 EXPORT_SYMBOL_GPL(vsock_remove_pending);
376 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)377 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
378 {
379 	struct vsock_sock *vlistener;
380 	struct vsock_sock *vconnected;
381 
382 	vlistener = vsock_sk(listener);
383 	vconnected = vsock_sk(connected);
384 
385 	sock_hold(connected);
386 	sock_hold(listener);
387 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
388 }
389 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
390 
vsock_use_local_transport(unsigned int remote_cid)391 static bool vsock_use_local_transport(unsigned int remote_cid)
392 {
393 	if (!transport_local)
394 		return false;
395 
396 	if (remote_cid == VMADDR_CID_LOCAL)
397 		return true;
398 
399 	if (transport_g2h) {
400 		return remote_cid == transport_g2h->get_local_cid();
401 	} else {
402 		return remote_cid == VMADDR_CID_HOST;
403 	}
404 }
405 
vsock_deassign_transport(struct vsock_sock * vsk)406 static void vsock_deassign_transport(struct vsock_sock *vsk)
407 {
408 	if (!vsk->transport)
409 		return;
410 
411 	vsk->transport->destruct(vsk);
412 	module_put(vsk->transport->module);
413 	vsk->transport = NULL;
414 }
415 
416 /* Assign a transport to a socket and call the .init transport callback.
417  *
418  * Note: for stream socket this must be called when vsk->remote_addr is set
419  * (e.g. during the connect() or when a connection request on a listener
420  * socket is received).
421  * The vsk->remote_addr is used to decide which transport to use:
422  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
423  *    g2h is not loaded, will use local transport;
424  *  - remote CID <= VMADDR_CID_HOST will use guest->host transport;
425  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
426  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)427 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
428 {
429 	const struct vsock_transport *new_transport;
430 	struct sock *sk = sk_vsock(vsk);
431 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
432 	int ret;
433 
434 	switch (sk->sk_type) {
435 	case SOCK_DGRAM:
436 		new_transport = transport_dgram;
437 		break;
438 	case SOCK_STREAM:
439 		if (vsock_use_local_transport(remote_cid))
440 			new_transport = transport_local;
441 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g)
442 			new_transport = transport_g2h;
443 		else
444 			new_transport = transport_h2g;
445 		break;
446 	default:
447 		return -ESOCKTNOSUPPORT;
448 	}
449 
450 	if (vsk->transport) {
451 		if (vsk->transport == new_transport)
452 			return 0;
453 
454 		/* transport->release() must be called with sock lock acquired.
455 		 * This path can only be taken during vsock_stream_connect(),
456 		 * where we have already held the sock lock.
457 		 * In the other cases, this function is called on a new socket
458 		 * which is not assigned to any transport.
459 		 */
460 		vsk->transport->release(vsk);
461 		vsock_deassign_transport(vsk);
462 	}
463 
464 	/* We increase the module refcnt to prevent the transport unloading
465 	 * while there are open sockets assigned to it.
466 	 */
467 	if (!new_transport || !try_module_get(new_transport->module))
468 		return -ENODEV;
469 
470 	ret = new_transport->init(vsk, psk);
471 	if (ret) {
472 		module_put(new_transport->module);
473 		return ret;
474 	}
475 
476 	vsk->transport = new_transport;
477 
478 	return 0;
479 }
480 EXPORT_SYMBOL_GPL(vsock_assign_transport);
481 
vsock_find_cid(unsigned int cid)482 bool vsock_find_cid(unsigned int cid)
483 {
484 	if (transport_g2h && cid == transport_g2h->get_local_cid())
485 		return true;
486 
487 	if (transport_h2g && cid == VMADDR_CID_HOST)
488 		return true;
489 
490 	if (transport_local && cid == VMADDR_CID_LOCAL)
491 		return true;
492 
493 	return false;
494 }
495 EXPORT_SYMBOL_GPL(vsock_find_cid);
496 
vsock_dequeue_accept(struct sock * listener)497 static struct sock *vsock_dequeue_accept(struct sock *listener)
498 {
499 	struct vsock_sock *vlistener;
500 	struct vsock_sock *vconnected;
501 
502 	vlistener = vsock_sk(listener);
503 
504 	if (list_empty(&vlistener->accept_queue))
505 		return NULL;
506 
507 	vconnected = list_entry(vlistener->accept_queue.next,
508 				struct vsock_sock, accept_queue);
509 
510 	list_del_init(&vconnected->accept_queue);
511 	sock_put(listener);
512 	/* The caller will need a reference on the connected socket so we let
513 	 * it call sock_put().
514 	 */
515 
516 	return sk_vsock(vconnected);
517 }
518 
vsock_is_accept_queue_empty(struct sock * sk)519 static bool vsock_is_accept_queue_empty(struct sock *sk)
520 {
521 	struct vsock_sock *vsk = vsock_sk(sk);
522 	return list_empty(&vsk->accept_queue);
523 }
524 
vsock_is_pending(struct sock * sk)525 static bool vsock_is_pending(struct sock *sk)
526 {
527 	struct vsock_sock *vsk = vsock_sk(sk);
528 	return !list_empty(&vsk->pending_links);
529 }
530 
vsock_send_shutdown(struct sock * sk,int mode)531 static int vsock_send_shutdown(struct sock *sk, int mode)
532 {
533 	struct vsock_sock *vsk = vsock_sk(sk);
534 
535 	if (!vsk->transport)
536 		return -ENODEV;
537 
538 	return vsk->transport->shutdown(vsk, mode);
539 }
540 
vsock_pending_work(struct work_struct * work)541 static void vsock_pending_work(struct work_struct *work)
542 {
543 	struct sock *sk;
544 	struct sock *listener;
545 	struct vsock_sock *vsk;
546 	bool cleanup;
547 
548 	vsk = container_of(work, struct vsock_sock, pending_work.work);
549 	sk = sk_vsock(vsk);
550 	listener = vsk->listener;
551 	cleanup = true;
552 
553 	lock_sock(listener);
554 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
555 
556 	if (vsock_is_pending(sk)) {
557 		vsock_remove_pending(listener, sk);
558 
559 		sk_acceptq_removed(listener);
560 	} else if (!vsk->rejected) {
561 		/* We are not on the pending list and accept() did not reject
562 		 * us, so we must have been accepted by our user process.  We
563 		 * just need to drop our references to the sockets and be on
564 		 * our way.
565 		 */
566 		cleanup = false;
567 		goto out;
568 	}
569 
570 	/* We need to remove ourself from the global connected sockets list so
571 	 * incoming packets can't find this socket, and to reduce the reference
572 	 * count.
573 	 */
574 	vsock_remove_connected(vsk);
575 
576 	sk->sk_state = TCP_CLOSE;
577 
578 out:
579 	release_sock(sk);
580 	release_sock(listener);
581 	if (cleanup)
582 		sock_put(sk);
583 
584 	sock_put(sk);
585 	sock_put(listener);
586 }
587 
588 /**** SOCKET OPERATIONS ****/
589 
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)590 static int __vsock_bind_stream(struct vsock_sock *vsk,
591 			       struct sockaddr_vm *addr)
592 {
593 	static u32 port;
594 	struct sockaddr_vm new_addr;
595 
596 	if (!port)
597 		port = LAST_RESERVED_PORT + 1 +
598 			prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
599 
600 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
601 
602 	if (addr->svm_port == VMADDR_PORT_ANY) {
603 		bool found = false;
604 		unsigned int i;
605 
606 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
607 			if (port <= LAST_RESERVED_PORT)
608 				port = LAST_RESERVED_PORT + 1;
609 
610 			new_addr.svm_port = port++;
611 
612 			if (!__vsock_find_bound_socket(&new_addr)) {
613 				found = true;
614 				break;
615 			}
616 		}
617 
618 		if (!found)
619 			return -EADDRNOTAVAIL;
620 	} else {
621 		/* If port is in reserved range, ensure caller
622 		 * has necessary privileges.
623 		 */
624 		if (addr->svm_port <= LAST_RESERVED_PORT &&
625 		    !capable(CAP_NET_BIND_SERVICE)) {
626 			return -EACCES;
627 		}
628 
629 		if (__vsock_find_bound_socket(&new_addr))
630 			return -EADDRINUSE;
631 	}
632 
633 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
634 
635 	/* Remove stream sockets from the unbound list and add them to the hash
636 	 * table for easy lookup by its address.  The unbound list is simply an
637 	 * extra entry at the end of the hash table, a trick used by AF_UNIX.
638 	 */
639 	__vsock_remove_bound(vsk);
640 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
641 
642 	return 0;
643 }
644 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)645 static int __vsock_bind_dgram(struct vsock_sock *vsk,
646 			      struct sockaddr_vm *addr)
647 {
648 	return vsk->transport->dgram_bind(vsk, addr);
649 }
650 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)651 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
652 {
653 	struct vsock_sock *vsk = vsock_sk(sk);
654 	int retval;
655 
656 	/* First ensure this socket isn't already bound. */
657 	if (vsock_addr_bound(&vsk->local_addr))
658 		return -EINVAL;
659 
660 	/* Now bind to the provided address or select appropriate values if
661 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
662 	 * like AF_INET prevents binding to a non-local IP address (in most
663 	 * cases), we only allow binding to a local CID.
664 	 */
665 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
666 		return -EADDRNOTAVAIL;
667 
668 	switch (sk->sk_socket->type) {
669 	case SOCK_STREAM:
670 		spin_lock_bh(&vsock_table_lock);
671 		retval = __vsock_bind_stream(vsk, addr);
672 		spin_unlock_bh(&vsock_table_lock);
673 		break;
674 
675 	case SOCK_DGRAM:
676 		retval = __vsock_bind_dgram(vsk, addr);
677 		break;
678 
679 	default:
680 		retval = -EINVAL;
681 		break;
682 	}
683 
684 	return retval;
685 }
686 
687 static void vsock_connect_timeout(struct work_struct *work);
688 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)689 static struct sock *__vsock_create(struct net *net,
690 				   struct socket *sock,
691 				   struct sock *parent,
692 				   gfp_t priority,
693 				   unsigned short type,
694 				   int kern)
695 {
696 	struct sock *sk;
697 	struct vsock_sock *psk;
698 	struct vsock_sock *vsk;
699 
700 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
701 	if (!sk)
702 		return NULL;
703 
704 	sock_init_data(sock, sk);
705 
706 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
707 	 * non-NULL. We make sure that our sockets always have a type by
708 	 * setting it here if needed.
709 	 */
710 	if (!sock)
711 		sk->sk_type = type;
712 
713 	vsk = vsock_sk(sk);
714 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
715 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
716 
717 	sk->sk_destruct = vsock_sk_destruct;
718 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
719 	sock_reset_flag(sk, SOCK_DONE);
720 
721 	INIT_LIST_HEAD(&vsk->bound_table);
722 	INIT_LIST_HEAD(&vsk->connected_table);
723 	vsk->listener = NULL;
724 	INIT_LIST_HEAD(&vsk->pending_links);
725 	INIT_LIST_HEAD(&vsk->accept_queue);
726 	vsk->rejected = false;
727 	vsk->sent_request = false;
728 	vsk->ignore_connecting_rst = false;
729 	vsk->peer_shutdown = 0;
730 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
731 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
732 
733 	psk = parent ? vsock_sk(parent) : NULL;
734 	if (parent) {
735 		vsk->trusted = psk->trusted;
736 		vsk->owner = get_cred(psk->owner);
737 		vsk->connect_timeout = psk->connect_timeout;
738 		vsk->buffer_size = psk->buffer_size;
739 		vsk->buffer_min_size = psk->buffer_min_size;
740 		vsk->buffer_max_size = psk->buffer_max_size;
741 		security_sk_clone(parent, sk);
742 	} else {
743 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
744 		vsk->owner = get_current_cred();
745 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
746 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
747 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
748 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
749 	}
750 
751 	return sk;
752 }
753 
__vsock_release(struct sock * sk,int level)754 static void __vsock_release(struct sock *sk, int level)
755 {
756 	if (sk) {
757 		struct sock *pending;
758 		struct vsock_sock *vsk;
759 
760 		vsk = vsock_sk(sk);
761 		pending = NULL;	/* Compiler warning. */
762 
763 		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
764 		 * version to avoid the warning "possible recursive locking
765 		 * detected". When "level" is 0, lock_sock_nested(sk, level)
766 		 * is the same as lock_sock(sk).
767 		 */
768 		lock_sock_nested(sk, level);
769 
770 		if (vsk->transport)
771 			vsk->transport->release(vsk);
772 		else if (sk->sk_type == SOCK_STREAM)
773 			vsock_remove_sock(vsk);
774 
775 		sock_orphan(sk);
776 		sk->sk_shutdown = SHUTDOWN_MASK;
777 
778 		skb_queue_purge(&sk->sk_receive_queue);
779 
780 		/* Clean up any sockets that never were accepted. */
781 		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
782 			__vsock_release(pending, SINGLE_DEPTH_NESTING);
783 			sock_put(pending);
784 		}
785 
786 		release_sock(sk);
787 		sock_put(sk);
788 	}
789 }
790 
vsock_sk_destruct(struct sock * sk)791 static void vsock_sk_destruct(struct sock *sk)
792 {
793 	struct vsock_sock *vsk = vsock_sk(sk);
794 
795 	vsock_deassign_transport(vsk);
796 
797 	/* When clearing these addresses, there's no need to set the family and
798 	 * possibly register the address family with the kernel.
799 	 */
800 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
801 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
802 
803 	put_cred(vsk->owner);
804 }
805 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)806 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
807 {
808 	int err;
809 
810 	err = sock_queue_rcv_skb(sk, skb);
811 	if (err)
812 		kfree_skb(skb);
813 
814 	return err;
815 }
816 
vsock_create_connected(struct sock * parent)817 struct sock *vsock_create_connected(struct sock *parent)
818 {
819 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
820 			      parent->sk_type, 0);
821 }
822 EXPORT_SYMBOL_GPL(vsock_create_connected);
823 
vsock_stream_has_data(struct vsock_sock * vsk)824 s64 vsock_stream_has_data(struct vsock_sock *vsk)
825 {
826 	return vsk->transport->stream_has_data(vsk);
827 }
828 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
829 
vsock_stream_has_space(struct vsock_sock * vsk)830 s64 vsock_stream_has_space(struct vsock_sock *vsk)
831 {
832 	return vsk->transport->stream_has_space(vsk);
833 }
834 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
835 
vsock_release(struct socket * sock)836 static int vsock_release(struct socket *sock)
837 {
838 	__vsock_release(sock->sk, 0);
839 	sock->sk = NULL;
840 	sock->state = SS_FREE;
841 
842 	return 0;
843 }
844 
845 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)846 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
847 {
848 	int err;
849 	struct sock *sk;
850 	struct sockaddr_vm *vm_addr;
851 
852 	sk = sock->sk;
853 
854 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
855 		return -EINVAL;
856 
857 	lock_sock(sk);
858 	err = __vsock_bind(sk, vm_addr);
859 	release_sock(sk);
860 
861 	return err;
862 }
863 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)864 static int vsock_getname(struct socket *sock,
865 			 struct sockaddr *addr, int peer)
866 {
867 	int err;
868 	struct sock *sk;
869 	struct vsock_sock *vsk;
870 	struct sockaddr_vm *vm_addr;
871 
872 	sk = sock->sk;
873 	vsk = vsock_sk(sk);
874 	err = 0;
875 
876 	lock_sock(sk);
877 
878 	if (peer) {
879 		if (sock->state != SS_CONNECTED) {
880 			err = -ENOTCONN;
881 			goto out;
882 		}
883 		vm_addr = &vsk->remote_addr;
884 	} else {
885 		vm_addr = &vsk->local_addr;
886 	}
887 
888 	if (!vm_addr) {
889 		err = -EINVAL;
890 		goto out;
891 	}
892 
893 	/* sys_getsockname() and sys_getpeername() pass us a
894 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
895 	 * that macro is defined in socket.c instead of .h, so we hardcode its
896 	 * value here.
897 	 */
898 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
899 	memcpy(addr, vm_addr, sizeof(*vm_addr));
900 	err = sizeof(*vm_addr);
901 
902 out:
903 	release_sock(sk);
904 	return err;
905 }
906 
vsock_shutdown(struct socket * sock,int mode)907 static int vsock_shutdown(struct socket *sock, int mode)
908 {
909 	int err;
910 	struct sock *sk;
911 
912 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
913 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
914 	 * here like the other address families do.  Note also that the
915 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
916 	 * which is what we want.
917 	 */
918 	mode++;
919 
920 	if ((mode & ~SHUTDOWN_MASK) || !mode)
921 		return -EINVAL;
922 
923 	/* If this is a STREAM socket and it is not connected then bail out
924 	 * immediately.  If it is a DGRAM socket then we must first kick the
925 	 * socket so that it wakes up from any sleeping calls, for example
926 	 * recv(), and then afterwards return the error.
927 	 */
928 
929 	sk = sock->sk;
930 
931 	lock_sock(sk);
932 	if (sock->state == SS_UNCONNECTED) {
933 		err = -ENOTCONN;
934 		if (sk->sk_type == SOCK_STREAM)
935 			goto out;
936 	} else {
937 		sock->state = SS_DISCONNECTING;
938 		err = 0;
939 	}
940 
941 	/* Receive and send shutdowns are treated alike. */
942 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
943 	if (mode) {
944 		sk->sk_shutdown |= mode;
945 		sk->sk_state_change(sk);
946 
947 		if (sk->sk_type == SOCK_STREAM) {
948 			sock_reset_flag(sk, SOCK_DONE);
949 			vsock_send_shutdown(sk, mode);
950 		}
951 	}
952 
953 out:
954 	release_sock(sk);
955 	return err;
956 }
957 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)958 static __poll_t vsock_poll(struct file *file, struct socket *sock,
959 			       poll_table *wait)
960 {
961 	struct sock *sk;
962 	__poll_t mask;
963 	struct vsock_sock *vsk;
964 
965 	sk = sock->sk;
966 	vsk = vsock_sk(sk);
967 
968 	poll_wait(file, sk_sleep(sk), wait);
969 	mask = 0;
970 
971 	if (sk->sk_err)
972 		/* Signify that there has been an error on this socket. */
973 		mask |= EPOLLERR;
974 
975 	/* INET sockets treat local write shutdown and peer write shutdown as a
976 	 * case of EPOLLHUP set.
977 	 */
978 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
979 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
980 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
981 		mask |= EPOLLHUP;
982 	}
983 
984 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
985 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
986 		mask |= EPOLLRDHUP;
987 	}
988 
989 	if (sock->type == SOCK_DGRAM) {
990 		/* For datagram sockets we can read if there is something in
991 		 * the queue and write as long as the socket isn't shutdown for
992 		 * sending.
993 		 */
994 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
995 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
996 			mask |= EPOLLIN | EPOLLRDNORM;
997 		}
998 
999 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1000 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1001 
1002 	} else if (sock->type == SOCK_STREAM) {
1003 		const struct vsock_transport *transport;
1004 
1005 		lock_sock(sk);
1006 
1007 		transport = vsk->transport;
1008 
1009 		/* Listening sockets that have connections in their accept
1010 		 * queue can be read.
1011 		 */
1012 		if (sk->sk_state == TCP_LISTEN
1013 		    && !vsock_is_accept_queue_empty(sk))
1014 			mask |= EPOLLIN | EPOLLRDNORM;
1015 
1016 		/* If there is something in the queue then we can read. */
1017 		if (transport && transport->stream_is_active(vsk) &&
1018 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1019 			bool data_ready_now = false;
1020 			int ret = transport->notify_poll_in(
1021 					vsk, 1, &data_ready_now);
1022 			if (ret < 0) {
1023 				mask |= EPOLLERR;
1024 			} else {
1025 				if (data_ready_now)
1026 					mask |= EPOLLIN | EPOLLRDNORM;
1027 
1028 			}
1029 		}
1030 
1031 		/* Sockets whose connections have been closed, reset, or
1032 		 * terminated should also be considered read, and we check the
1033 		 * shutdown flag for that.
1034 		 */
1035 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1036 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1037 			mask |= EPOLLIN | EPOLLRDNORM;
1038 		}
1039 
1040 		/* Connected sockets that can produce data can be written. */
1041 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1042 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1043 				bool space_avail_now = false;
1044 				int ret = transport->notify_poll_out(
1045 						vsk, 1, &space_avail_now);
1046 				if (ret < 0) {
1047 					mask |= EPOLLERR;
1048 				} else {
1049 					if (space_avail_now)
1050 						/* Remove EPOLLWRBAND since INET
1051 						 * sockets are not setting it.
1052 						 */
1053 						mask |= EPOLLOUT | EPOLLWRNORM;
1054 
1055 				}
1056 			}
1057 		}
1058 
1059 		/* Simulate INET socket poll behaviors, which sets
1060 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1061 		 * but local send is not shutdown.
1062 		 */
1063 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1064 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1065 				mask |= EPOLLOUT | EPOLLWRNORM;
1066 
1067 		}
1068 
1069 		release_sock(sk);
1070 	}
1071 
1072 	return mask;
1073 }
1074 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1075 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1076 			       size_t len)
1077 {
1078 	int err;
1079 	struct sock *sk;
1080 	struct vsock_sock *vsk;
1081 	struct sockaddr_vm *remote_addr;
1082 	const struct vsock_transport *transport;
1083 
1084 	if (msg->msg_flags & MSG_OOB)
1085 		return -EOPNOTSUPP;
1086 
1087 	/* For now, MSG_DONTWAIT is always assumed... */
1088 	err = 0;
1089 	sk = sock->sk;
1090 	vsk = vsock_sk(sk);
1091 
1092 	lock_sock(sk);
1093 
1094 	transport = vsk->transport;
1095 
1096 	err = vsock_auto_bind(vsk);
1097 	if (err)
1098 		goto out;
1099 
1100 
1101 	/* If the provided message contains an address, use that.  Otherwise
1102 	 * fall back on the socket's remote handle (if it has been connected).
1103 	 */
1104 	if (msg->msg_name &&
1105 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1106 			    &remote_addr) == 0) {
1107 		/* Ensure this address is of the right type and is a valid
1108 		 * destination.
1109 		 */
1110 
1111 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1112 			remote_addr->svm_cid = transport->get_local_cid();
1113 
1114 		if (!vsock_addr_bound(remote_addr)) {
1115 			err = -EINVAL;
1116 			goto out;
1117 		}
1118 	} else if (sock->state == SS_CONNECTED) {
1119 		remote_addr = &vsk->remote_addr;
1120 
1121 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1122 			remote_addr->svm_cid = transport->get_local_cid();
1123 
1124 		/* XXX Should connect() or this function ensure remote_addr is
1125 		 * bound?
1126 		 */
1127 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1128 			err = -EINVAL;
1129 			goto out;
1130 		}
1131 	} else {
1132 		err = -EINVAL;
1133 		goto out;
1134 	}
1135 
1136 	if (!transport->dgram_allow(remote_addr->svm_cid,
1137 				    remote_addr->svm_port)) {
1138 		err = -EINVAL;
1139 		goto out;
1140 	}
1141 
1142 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1143 
1144 out:
1145 	release_sock(sk);
1146 	return err;
1147 }
1148 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1149 static int vsock_dgram_connect(struct socket *sock,
1150 			       struct sockaddr *addr, int addr_len, int flags)
1151 {
1152 	int err;
1153 	struct sock *sk;
1154 	struct vsock_sock *vsk;
1155 	struct sockaddr_vm *remote_addr;
1156 
1157 	sk = sock->sk;
1158 	vsk = vsock_sk(sk);
1159 
1160 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1161 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1162 		lock_sock(sk);
1163 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1164 				VMADDR_PORT_ANY);
1165 		sock->state = SS_UNCONNECTED;
1166 		release_sock(sk);
1167 		return 0;
1168 	} else if (err != 0)
1169 		return -EINVAL;
1170 
1171 	lock_sock(sk);
1172 
1173 	err = vsock_auto_bind(vsk);
1174 	if (err)
1175 		goto out;
1176 
1177 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1178 					 remote_addr->svm_port)) {
1179 		err = -EINVAL;
1180 		goto out;
1181 	}
1182 
1183 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1184 	sock->state = SS_CONNECTED;
1185 
1186 out:
1187 	release_sock(sk);
1188 	return err;
1189 }
1190 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1191 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1192 			       size_t len, int flags)
1193 {
1194 	struct vsock_sock *vsk = vsock_sk(sock->sk);
1195 
1196 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1197 }
1198 
1199 static const struct proto_ops vsock_dgram_ops = {
1200 	.family = PF_VSOCK,
1201 	.owner = THIS_MODULE,
1202 	.release = vsock_release,
1203 	.bind = vsock_bind,
1204 	.connect = vsock_dgram_connect,
1205 	.socketpair = sock_no_socketpair,
1206 	.accept = sock_no_accept,
1207 	.getname = vsock_getname,
1208 	.poll = vsock_poll,
1209 	.ioctl = sock_no_ioctl,
1210 	.listen = sock_no_listen,
1211 	.shutdown = vsock_shutdown,
1212 	.sendmsg = vsock_dgram_sendmsg,
1213 	.recvmsg = vsock_dgram_recvmsg,
1214 	.mmap = sock_no_mmap,
1215 	.sendpage = sock_no_sendpage,
1216 };
1217 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1218 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1219 {
1220 	const struct vsock_transport *transport = vsk->transport;
1221 
1222 	if (!transport || !transport->cancel_pkt)
1223 		return -EOPNOTSUPP;
1224 
1225 	return transport->cancel_pkt(vsk);
1226 }
1227 
vsock_connect_timeout(struct work_struct * work)1228 static void vsock_connect_timeout(struct work_struct *work)
1229 {
1230 	struct sock *sk;
1231 	struct vsock_sock *vsk;
1232 
1233 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1234 	sk = sk_vsock(vsk);
1235 
1236 	lock_sock(sk);
1237 	if (sk->sk_state == TCP_SYN_SENT &&
1238 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1239 		sk->sk_state = TCP_CLOSE;
1240 		sk->sk_err = ETIMEDOUT;
1241 		sk->sk_error_report(sk);
1242 		vsock_transport_cancel_pkt(vsk);
1243 	}
1244 	release_sock(sk);
1245 
1246 	sock_put(sk);
1247 }
1248 
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1249 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1250 				int addr_len, int flags)
1251 {
1252 	int err;
1253 	struct sock *sk;
1254 	struct vsock_sock *vsk;
1255 	const struct vsock_transport *transport;
1256 	struct sockaddr_vm *remote_addr;
1257 	long timeout;
1258 	DEFINE_WAIT(wait);
1259 
1260 	err = 0;
1261 	sk = sock->sk;
1262 	vsk = vsock_sk(sk);
1263 
1264 	lock_sock(sk);
1265 
1266 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1267 	switch (sock->state) {
1268 	case SS_CONNECTED:
1269 		err = -EISCONN;
1270 		goto out;
1271 	case SS_DISCONNECTING:
1272 		err = -EINVAL;
1273 		goto out;
1274 	case SS_CONNECTING:
1275 		/* This continues on so we can move sock into the SS_CONNECTED
1276 		 * state once the connection has completed (at which point err
1277 		 * will be set to zero also).  Otherwise, we will either wait
1278 		 * for the connection or return -EALREADY should this be a
1279 		 * non-blocking call.
1280 		 */
1281 		err = -EALREADY;
1282 		if (flags & O_NONBLOCK)
1283 			goto out;
1284 		break;
1285 	default:
1286 		if ((sk->sk_state == TCP_LISTEN) ||
1287 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1288 			err = -EINVAL;
1289 			goto out;
1290 		}
1291 
1292 		/* Set the remote address that we are connecting to. */
1293 		memcpy(&vsk->remote_addr, remote_addr,
1294 		       sizeof(vsk->remote_addr));
1295 
1296 		err = vsock_assign_transport(vsk, NULL);
1297 		if (err)
1298 			goto out;
1299 
1300 		transport = vsk->transport;
1301 
1302 		/* The hypervisor and well-known contexts do not have socket
1303 		 * endpoints.
1304 		 */
1305 		if (!transport ||
1306 		    !transport->stream_allow(remote_addr->svm_cid,
1307 					     remote_addr->svm_port)) {
1308 			err = -ENETUNREACH;
1309 			goto out;
1310 		}
1311 
1312 		err = vsock_auto_bind(vsk);
1313 		if (err)
1314 			goto out;
1315 
1316 		sk->sk_state = TCP_SYN_SENT;
1317 
1318 		err = transport->connect(vsk);
1319 		if (err < 0)
1320 			goto out;
1321 
1322 		/* Mark sock as connecting and set the error code to in
1323 		 * progress in case this is a non-blocking connect.
1324 		 */
1325 		sock->state = SS_CONNECTING;
1326 		err = -EINPROGRESS;
1327 	}
1328 
1329 	/* The receive path will handle all communication until we are able to
1330 	 * enter the connected state.  Here we wait for the connection to be
1331 	 * completed or a notification of an error.
1332 	 */
1333 	timeout = vsk->connect_timeout;
1334 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1335 
1336 	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1337 		if (flags & O_NONBLOCK) {
1338 			/* If we're not going to block, we schedule a timeout
1339 			 * function to generate a timeout on the connection
1340 			 * attempt, in case the peer doesn't respond in a
1341 			 * timely manner. We hold on to the socket until the
1342 			 * timeout fires.
1343 			 */
1344 			sock_hold(sk);
1345 
1346 			/* If the timeout function is already scheduled,
1347 			 * reschedule it, then ungrab the socket refcount to
1348 			 * keep it balanced.
1349 			 */
1350 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1351 					     timeout))
1352 				sock_put(sk);
1353 
1354 			/* Skip ahead to preserve error code set above. */
1355 			goto out_wait;
1356 		}
1357 
1358 		release_sock(sk);
1359 		timeout = schedule_timeout(timeout);
1360 		lock_sock(sk);
1361 
1362 		if (signal_pending(current)) {
1363 			err = sock_intr_errno(timeout);
1364 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1365 			sock->state = SS_UNCONNECTED;
1366 			vsock_transport_cancel_pkt(vsk);
1367 			goto out_wait;
1368 		} else if (timeout == 0) {
1369 			err = -ETIMEDOUT;
1370 			sk->sk_state = TCP_CLOSE;
1371 			sock->state = SS_UNCONNECTED;
1372 			vsock_transport_cancel_pkt(vsk);
1373 			goto out_wait;
1374 		}
1375 
1376 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1377 	}
1378 
1379 	if (sk->sk_err) {
1380 		err = -sk->sk_err;
1381 		sk->sk_state = TCP_CLOSE;
1382 		sock->state = SS_UNCONNECTED;
1383 	} else {
1384 		err = 0;
1385 	}
1386 
1387 out_wait:
1388 	finish_wait(sk_sleep(sk), &wait);
1389 out:
1390 	release_sock(sk);
1391 	return err;
1392 }
1393 
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1394 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1395 			bool kern)
1396 {
1397 	struct sock *listener;
1398 	int err;
1399 	struct sock *connected;
1400 	struct vsock_sock *vconnected;
1401 	long timeout;
1402 	DEFINE_WAIT(wait);
1403 
1404 	err = 0;
1405 	listener = sock->sk;
1406 
1407 	lock_sock(listener);
1408 
1409 	if (sock->type != SOCK_STREAM) {
1410 		err = -EOPNOTSUPP;
1411 		goto out;
1412 	}
1413 
1414 	if (listener->sk_state != TCP_LISTEN) {
1415 		err = -EINVAL;
1416 		goto out;
1417 	}
1418 
1419 	/* Wait for children sockets to appear; these are the new sockets
1420 	 * created upon connection establishment.
1421 	 */
1422 	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1423 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1424 
1425 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1426 	       listener->sk_err == 0) {
1427 		release_sock(listener);
1428 		timeout = schedule_timeout(timeout);
1429 		finish_wait(sk_sleep(listener), &wait);
1430 		lock_sock(listener);
1431 
1432 		if (signal_pending(current)) {
1433 			err = sock_intr_errno(timeout);
1434 			goto out;
1435 		} else if (timeout == 0) {
1436 			err = -EAGAIN;
1437 			goto out;
1438 		}
1439 
1440 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1441 	}
1442 	finish_wait(sk_sleep(listener), &wait);
1443 
1444 	if (listener->sk_err)
1445 		err = -listener->sk_err;
1446 
1447 	if (connected) {
1448 		sk_acceptq_removed(listener);
1449 
1450 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1451 		vconnected = vsock_sk(connected);
1452 
1453 		/* If the listener socket has received an error, then we should
1454 		 * reject this socket and return.  Note that we simply mark the
1455 		 * socket rejected, drop our reference, and let the cleanup
1456 		 * function handle the cleanup; the fact that we found it in
1457 		 * the listener's accept queue guarantees that the cleanup
1458 		 * function hasn't run yet.
1459 		 */
1460 		if (err) {
1461 			vconnected->rejected = true;
1462 		} else {
1463 			newsock->state = SS_CONNECTED;
1464 			sock_graft(connected, newsock);
1465 		}
1466 
1467 		release_sock(connected);
1468 		sock_put(connected);
1469 	}
1470 
1471 out:
1472 	release_sock(listener);
1473 	return err;
1474 }
1475 
vsock_listen(struct socket * sock,int backlog)1476 static int vsock_listen(struct socket *sock, int backlog)
1477 {
1478 	int err;
1479 	struct sock *sk;
1480 	struct vsock_sock *vsk;
1481 
1482 	sk = sock->sk;
1483 
1484 	lock_sock(sk);
1485 
1486 	if (sock->type != SOCK_STREAM) {
1487 		err = -EOPNOTSUPP;
1488 		goto out;
1489 	}
1490 
1491 	if (sock->state != SS_UNCONNECTED) {
1492 		err = -EINVAL;
1493 		goto out;
1494 	}
1495 
1496 	vsk = vsock_sk(sk);
1497 
1498 	if (!vsock_addr_bound(&vsk->local_addr)) {
1499 		err = -EINVAL;
1500 		goto out;
1501 	}
1502 
1503 	sk->sk_max_ack_backlog = backlog;
1504 	sk->sk_state = TCP_LISTEN;
1505 
1506 	err = 0;
1507 
1508 out:
1509 	release_sock(sk);
1510 	return err;
1511 }
1512 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1513 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1514 				     const struct vsock_transport *transport,
1515 				     u64 val)
1516 {
1517 	if (val > vsk->buffer_max_size)
1518 		val = vsk->buffer_max_size;
1519 
1520 	if (val < vsk->buffer_min_size)
1521 		val = vsk->buffer_min_size;
1522 
1523 	if (val != vsk->buffer_size &&
1524 	    transport && transport->notify_buffer_size)
1525 		transport->notify_buffer_size(vsk, &val);
1526 
1527 	vsk->buffer_size = val;
1528 }
1529 
vsock_stream_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1530 static int vsock_stream_setsockopt(struct socket *sock,
1531 				   int level,
1532 				   int optname,
1533 				   sockptr_t optval,
1534 				   unsigned int optlen)
1535 {
1536 	int err;
1537 	struct sock *sk;
1538 	struct vsock_sock *vsk;
1539 	const struct vsock_transport *transport;
1540 	u64 val;
1541 
1542 	if (level != AF_VSOCK)
1543 		return -ENOPROTOOPT;
1544 
1545 #define COPY_IN(_v)                                       \
1546 	do {						  \
1547 		if (optlen < sizeof(_v)) {		  \
1548 			err = -EINVAL;			  \
1549 			goto exit;			  \
1550 		}					  \
1551 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1552 			err = -EFAULT;					\
1553 			goto exit;					\
1554 		}							\
1555 	} while (0)
1556 
1557 	err = 0;
1558 	sk = sock->sk;
1559 	vsk = vsock_sk(sk);
1560 
1561 	lock_sock(sk);
1562 
1563 	transport = vsk->transport;
1564 
1565 	switch (optname) {
1566 	case SO_VM_SOCKETS_BUFFER_SIZE:
1567 		COPY_IN(val);
1568 		vsock_update_buffer_size(vsk, transport, val);
1569 		break;
1570 
1571 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1572 		COPY_IN(val);
1573 		vsk->buffer_max_size = val;
1574 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1575 		break;
1576 
1577 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1578 		COPY_IN(val);
1579 		vsk->buffer_min_size = val;
1580 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1581 		break;
1582 
1583 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1584 		struct __kernel_old_timeval tv;
1585 		COPY_IN(tv);
1586 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1587 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1588 			vsk->connect_timeout = tv.tv_sec * HZ +
1589 			    DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1590 			if (vsk->connect_timeout == 0)
1591 				vsk->connect_timeout =
1592 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1593 
1594 		} else {
1595 			err = -ERANGE;
1596 		}
1597 		break;
1598 	}
1599 
1600 	default:
1601 		err = -ENOPROTOOPT;
1602 		break;
1603 	}
1604 
1605 #undef COPY_IN
1606 
1607 exit:
1608 	release_sock(sk);
1609 	return err;
1610 }
1611 
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1612 static int vsock_stream_getsockopt(struct socket *sock,
1613 				   int level, int optname,
1614 				   char __user *optval,
1615 				   int __user *optlen)
1616 {
1617 	int err;
1618 	int len;
1619 	struct sock *sk;
1620 	struct vsock_sock *vsk;
1621 	u64 val;
1622 
1623 	if (level != AF_VSOCK)
1624 		return -ENOPROTOOPT;
1625 
1626 	err = get_user(len, optlen);
1627 	if (err != 0)
1628 		return err;
1629 
1630 #define COPY_OUT(_v)                            \
1631 	do {					\
1632 		if (len < sizeof(_v))		\
1633 			return -EINVAL;		\
1634 						\
1635 		len = sizeof(_v);		\
1636 		if (copy_to_user(optval, &_v, len) != 0)	\
1637 			return -EFAULT;				\
1638 								\
1639 	} while (0)
1640 
1641 	err = 0;
1642 	sk = sock->sk;
1643 	vsk = vsock_sk(sk);
1644 
1645 	switch (optname) {
1646 	case SO_VM_SOCKETS_BUFFER_SIZE:
1647 		val = vsk->buffer_size;
1648 		COPY_OUT(val);
1649 		break;
1650 
1651 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1652 		val = vsk->buffer_max_size;
1653 		COPY_OUT(val);
1654 		break;
1655 
1656 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1657 		val = vsk->buffer_min_size;
1658 		COPY_OUT(val);
1659 		break;
1660 
1661 	case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1662 		struct __kernel_old_timeval tv;
1663 		tv.tv_sec = vsk->connect_timeout / HZ;
1664 		tv.tv_usec =
1665 		    (vsk->connect_timeout -
1666 		     tv.tv_sec * HZ) * (1000000 / HZ);
1667 		COPY_OUT(tv);
1668 		break;
1669 	}
1670 	default:
1671 		return -ENOPROTOOPT;
1672 	}
1673 
1674 	err = put_user(len, optlen);
1675 	if (err != 0)
1676 		return -EFAULT;
1677 
1678 #undef COPY_OUT
1679 
1680 	return 0;
1681 }
1682 
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1683 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1684 				size_t len)
1685 {
1686 	struct sock *sk;
1687 	struct vsock_sock *vsk;
1688 	const struct vsock_transport *transport;
1689 	ssize_t total_written;
1690 	long timeout;
1691 	int err;
1692 	struct vsock_transport_send_notify_data send_data;
1693 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1694 
1695 	sk = sock->sk;
1696 	vsk = vsock_sk(sk);
1697 	total_written = 0;
1698 	err = 0;
1699 
1700 	if (msg->msg_flags & MSG_OOB)
1701 		return -EOPNOTSUPP;
1702 
1703 	lock_sock(sk);
1704 
1705 	transport = vsk->transport;
1706 
1707 	/* Callers should not provide a destination with stream sockets. */
1708 	if (msg->msg_namelen) {
1709 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1710 		goto out;
1711 	}
1712 
1713 	/* Send data only if both sides are not shutdown in the direction. */
1714 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1715 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1716 		err = -EPIPE;
1717 		goto out;
1718 	}
1719 
1720 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1721 	    !vsock_addr_bound(&vsk->local_addr)) {
1722 		err = -ENOTCONN;
1723 		goto out;
1724 	}
1725 
1726 	if (!vsock_addr_bound(&vsk->remote_addr)) {
1727 		err = -EDESTADDRREQ;
1728 		goto out;
1729 	}
1730 
1731 	/* Wait for room in the produce queue to enqueue our user's data. */
1732 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1733 
1734 	err = transport->notify_send_init(vsk, &send_data);
1735 	if (err < 0)
1736 		goto out;
1737 
1738 	while (total_written < len) {
1739 		ssize_t written;
1740 
1741 		add_wait_queue(sk_sleep(sk), &wait);
1742 		while (vsock_stream_has_space(vsk) == 0 &&
1743 		       sk->sk_err == 0 &&
1744 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1745 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1746 
1747 			/* Don't wait for non-blocking sockets. */
1748 			if (timeout == 0) {
1749 				err = -EAGAIN;
1750 				remove_wait_queue(sk_sleep(sk), &wait);
1751 				goto out_err;
1752 			}
1753 
1754 			err = transport->notify_send_pre_block(vsk, &send_data);
1755 			if (err < 0) {
1756 				remove_wait_queue(sk_sleep(sk), &wait);
1757 				goto out_err;
1758 			}
1759 
1760 			release_sock(sk);
1761 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1762 			lock_sock(sk);
1763 			if (signal_pending(current)) {
1764 				err = sock_intr_errno(timeout);
1765 				remove_wait_queue(sk_sleep(sk), &wait);
1766 				goto out_err;
1767 			} else if (timeout == 0) {
1768 				err = -EAGAIN;
1769 				remove_wait_queue(sk_sleep(sk), &wait);
1770 				goto out_err;
1771 			}
1772 		}
1773 		remove_wait_queue(sk_sleep(sk), &wait);
1774 
1775 		/* These checks occur both as part of and after the loop
1776 		 * conditional since we need to check before and after
1777 		 * sleeping.
1778 		 */
1779 		if (sk->sk_err) {
1780 			err = -sk->sk_err;
1781 			goto out_err;
1782 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1783 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1784 			err = -EPIPE;
1785 			goto out_err;
1786 		}
1787 
1788 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1789 		if (err < 0)
1790 			goto out_err;
1791 
1792 		/* Note that enqueue will only write as many bytes as are free
1793 		 * in the produce queue, so we don't need to ensure len is
1794 		 * smaller than the queue size.  It is the caller's
1795 		 * responsibility to check how many bytes we were able to send.
1796 		 */
1797 
1798 		written = transport->stream_enqueue(
1799 				vsk, msg,
1800 				len - total_written);
1801 		if (written < 0) {
1802 			err = -ENOMEM;
1803 			goto out_err;
1804 		}
1805 
1806 		total_written += written;
1807 
1808 		err = transport->notify_send_post_enqueue(
1809 				vsk, written, &send_data);
1810 		if (err < 0)
1811 			goto out_err;
1812 
1813 	}
1814 
1815 out_err:
1816 	if (total_written > 0)
1817 		err = total_written;
1818 out:
1819 	release_sock(sk);
1820 	return err;
1821 }
1822 
1823 
1824 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1825 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1826 		     int flags)
1827 {
1828 	struct sock *sk;
1829 	struct vsock_sock *vsk;
1830 	const struct vsock_transport *transport;
1831 	int err;
1832 	size_t target;
1833 	ssize_t copied;
1834 	long timeout;
1835 	struct vsock_transport_recv_notify_data recv_data;
1836 
1837 	DEFINE_WAIT(wait);
1838 
1839 	sk = sock->sk;
1840 	vsk = vsock_sk(sk);
1841 	err = 0;
1842 
1843 	lock_sock(sk);
1844 
1845 	transport = vsk->transport;
1846 
1847 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
1848 		/* Recvmsg is supposed to return 0 if a peer performs an
1849 		 * orderly shutdown. Differentiate between that case and when a
1850 		 * peer has not connected or a local shutdown occured with the
1851 		 * SOCK_DONE flag.
1852 		 */
1853 		if (sock_flag(sk, SOCK_DONE))
1854 			err = 0;
1855 		else
1856 			err = -ENOTCONN;
1857 
1858 		goto out;
1859 	}
1860 
1861 	if (flags & MSG_OOB) {
1862 		err = -EOPNOTSUPP;
1863 		goto out;
1864 	}
1865 
1866 	/* We don't check peer_shutdown flag here since peer may actually shut
1867 	 * down, but there can be data in the queue that a local socket can
1868 	 * receive.
1869 	 */
1870 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
1871 		err = 0;
1872 		goto out;
1873 	}
1874 
1875 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
1876 	 * is not an error.  We may as well bail out now.
1877 	 */
1878 	if (!len) {
1879 		err = 0;
1880 		goto out;
1881 	}
1882 
1883 	/* We must not copy less than target bytes into the user's buffer
1884 	 * before returning successfully, so we wait for the consume queue to
1885 	 * have that much data to consume before dequeueing.  Note that this
1886 	 * makes it impossible to handle cases where target is greater than the
1887 	 * queue size.
1888 	 */
1889 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1890 	if (target >= transport->stream_rcvhiwat(vsk)) {
1891 		err = -ENOMEM;
1892 		goto out;
1893 	}
1894 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1895 	copied = 0;
1896 
1897 	err = transport->notify_recv_init(vsk, target, &recv_data);
1898 	if (err < 0)
1899 		goto out;
1900 
1901 
1902 	while (1) {
1903 		s64 ready;
1904 
1905 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1906 		ready = vsock_stream_has_data(vsk);
1907 
1908 		if (ready == 0) {
1909 			if (sk->sk_err != 0 ||
1910 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1911 			    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1912 				finish_wait(sk_sleep(sk), &wait);
1913 				break;
1914 			}
1915 			/* Don't wait for non-blocking sockets. */
1916 			if (timeout == 0) {
1917 				err = -EAGAIN;
1918 				finish_wait(sk_sleep(sk), &wait);
1919 				break;
1920 			}
1921 
1922 			err = transport->notify_recv_pre_block(
1923 					vsk, target, &recv_data);
1924 			if (err < 0) {
1925 				finish_wait(sk_sleep(sk), &wait);
1926 				break;
1927 			}
1928 			release_sock(sk);
1929 			timeout = schedule_timeout(timeout);
1930 			lock_sock(sk);
1931 
1932 			if (signal_pending(current)) {
1933 				err = sock_intr_errno(timeout);
1934 				finish_wait(sk_sleep(sk), &wait);
1935 				break;
1936 			} else if (timeout == 0) {
1937 				err = -EAGAIN;
1938 				finish_wait(sk_sleep(sk), &wait);
1939 				break;
1940 			}
1941 		} else {
1942 			ssize_t read;
1943 
1944 			finish_wait(sk_sleep(sk), &wait);
1945 
1946 			if (ready < 0) {
1947 				/* Invalid queue pair content. XXX This should
1948 				* be changed to a connection reset in a later
1949 				* change.
1950 				*/
1951 
1952 				err = -ENOMEM;
1953 				goto out;
1954 			}
1955 
1956 			err = transport->notify_recv_pre_dequeue(
1957 					vsk, target, &recv_data);
1958 			if (err < 0)
1959 				break;
1960 
1961 			read = transport->stream_dequeue(
1962 					vsk, msg,
1963 					len - copied, flags);
1964 			if (read < 0) {
1965 				err = -ENOMEM;
1966 				break;
1967 			}
1968 
1969 			copied += read;
1970 
1971 			err = transport->notify_recv_post_dequeue(
1972 					vsk, target, read,
1973 					!(flags & MSG_PEEK), &recv_data);
1974 			if (err < 0)
1975 				goto out;
1976 
1977 			if (read >= target || flags & MSG_PEEK)
1978 				break;
1979 
1980 			target -= read;
1981 		}
1982 	}
1983 
1984 	if (sk->sk_err)
1985 		err = -sk->sk_err;
1986 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
1987 		err = 0;
1988 
1989 	if (copied > 0)
1990 		err = copied;
1991 
1992 out:
1993 	release_sock(sk);
1994 	return err;
1995 }
1996 
1997 static const struct proto_ops vsock_stream_ops = {
1998 	.family = PF_VSOCK,
1999 	.owner = THIS_MODULE,
2000 	.release = vsock_release,
2001 	.bind = vsock_bind,
2002 	.connect = vsock_stream_connect,
2003 	.socketpair = sock_no_socketpair,
2004 	.accept = vsock_accept,
2005 	.getname = vsock_getname,
2006 	.poll = vsock_poll,
2007 	.ioctl = sock_no_ioctl,
2008 	.listen = vsock_listen,
2009 	.shutdown = vsock_shutdown,
2010 	.setsockopt = vsock_stream_setsockopt,
2011 	.getsockopt = vsock_stream_getsockopt,
2012 	.sendmsg = vsock_stream_sendmsg,
2013 	.recvmsg = vsock_stream_recvmsg,
2014 	.mmap = sock_no_mmap,
2015 	.sendpage = sock_no_sendpage,
2016 };
2017 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2018 static int vsock_create(struct net *net, struct socket *sock,
2019 			int protocol, int kern)
2020 {
2021 	struct vsock_sock *vsk;
2022 	struct sock *sk;
2023 	int ret;
2024 
2025 	if (!sock)
2026 		return -EINVAL;
2027 
2028 	if (protocol && protocol != PF_VSOCK)
2029 		return -EPROTONOSUPPORT;
2030 
2031 	switch (sock->type) {
2032 	case SOCK_DGRAM:
2033 		sock->ops = &vsock_dgram_ops;
2034 		break;
2035 	case SOCK_STREAM:
2036 		sock->ops = &vsock_stream_ops;
2037 		break;
2038 	default:
2039 		return -ESOCKTNOSUPPORT;
2040 	}
2041 
2042 	sock->state = SS_UNCONNECTED;
2043 
2044 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2045 	if (!sk)
2046 		return -ENOMEM;
2047 
2048 	vsk = vsock_sk(sk);
2049 
2050 	if (sock->type == SOCK_DGRAM) {
2051 		ret = vsock_assign_transport(vsk, NULL);
2052 		if (ret < 0) {
2053 			sock_put(sk);
2054 			return ret;
2055 		}
2056 	}
2057 
2058 	vsock_insert_unbound(vsk);
2059 
2060 	return 0;
2061 }
2062 
2063 static const struct net_proto_family vsock_family_ops = {
2064 	.family = AF_VSOCK,
2065 	.create = vsock_create,
2066 	.owner = THIS_MODULE,
2067 };
2068 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2069 static long vsock_dev_do_ioctl(struct file *filp,
2070 			       unsigned int cmd, void __user *ptr)
2071 {
2072 	u32 __user *p = ptr;
2073 	u32 cid = VMADDR_CID_ANY;
2074 	int retval = 0;
2075 
2076 	switch (cmd) {
2077 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2078 		/* To be compatible with the VMCI behavior, we prioritize the
2079 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2080 		 */
2081 		if (transport_g2h)
2082 			cid = transport_g2h->get_local_cid();
2083 		else if (transport_h2g)
2084 			cid = transport_h2g->get_local_cid();
2085 
2086 		if (put_user(cid, p) != 0)
2087 			retval = -EFAULT;
2088 		break;
2089 
2090 	default:
2091 		pr_err("Unknown ioctl %d\n", cmd);
2092 		retval = -EINVAL;
2093 	}
2094 
2095 	return retval;
2096 }
2097 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2098 static long vsock_dev_ioctl(struct file *filp,
2099 			    unsigned int cmd, unsigned long arg)
2100 {
2101 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2102 }
2103 
2104 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2105 static long vsock_dev_compat_ioctl(struct file *filp,
2106 				   unsigned int cmd, unsigned long arg)
2107 {
2108 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2109 }
2110 #endif
2111 
2112 static const struct file_operations vsock_device_ops = {
2113 	.owner		= THIS_MODULE,
2114 	.unlocked_ioctl	= vsock_dev_ioctl,
2115 #ifdef CONFIG_COMPAT
2116 	.compat_ioctl	= vsock_dev_compat_ioctl,
2117 #endif
2118 	.open		= nonseekable_open,
2119 };
2120 
2121 static struct miscdevice vsock_device = {
2122 	.name		= "vsock",
2123 	.fops		= &vsock_device_ops,
2124 };
2125 
vsock_init(void)2126 static int __init vsock_init(void)
2127 {
2128 	int err = 0;
2129 
2130 	vsock_init_tables();
2131 
2132 	vsock_proto.owner = THIS_MODULE;
2133 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2134 	err = misc_register(&vsock_device);
2135 	if (err) {
2136 		pr_err("Failed to register misc device\n");
2137 		goto err_reset_transport;
2138 	}
2139 
2140 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2141 	if (err) {
2142 		pr_err("Cannot register vsock protocol\n");
2143 		goto err_deregister_misc;
2144 	}
2145 
2146 	err = sock_register(&vsock_family_ops);
2147 	if (err) {
2148 		pr_err("could not register af_vsock (%d) address family: %d\n",
2149 		       AF_VSOCK, err);
2150 		goto err_unregister_proto;
2151 	}
2152 
2153 	return 0;
2154 
2155 err_unregister_proto:
2156 	proto_unregister(&vsock_proto);
2157 err_deregister_misc:
2158 	misc_deregister(&vsock_device);
2159 err_reset_transport:
2160 	return err;
2161 }
2162 
vsock_exit(void)2163 static void __exit vsock_exit(void)
2164 {
2165 	misc_deregister(&vsock_device);
2166 	sock_unregister(AF_VSOCK);
2167 	proto_unregister(&vsock_proto);
2168 }
2169 
vsock_core_get_transport(struct vsock_sock * vsk)2170 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2171 {
2172 	return vsk->transport;
2173 }
2174 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2175 
vsock_core_register(const struct vsock_transport * t,int features)2176 int vsock_core_register(const struct vsock_transport *t, int features)
2177 {
2178 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2179 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2180 
2181 	if (err)
2182 		return err;
2183 
2184 	t_h2g = transport_h2g;
2185 	t_g2h = transport_g2h;
2186 	t_dgram = transport_dgram;
2187 	t_local = transport_local;
2188 
2189 	if (features & VSOCK_TRANSPORT_F_H2G) {
2190 		if (t_h2g) {
2191 			err = -EBUSY;
2192 			goto err_busy;
2193 		}
2194 		t_h2g = t;
2195 	}
2196 
2197 	if (features & VSOCK_TRANSPORT_F_G2H) {
2198 		if (t_g2h) {
2199 			err = -EBUSY;
2200 			goto err_busy;
2201 		}
2202 		t_g2h = t;
2203 	}
2204 
2205 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2206 		if (t_dgram) {
2207 			err = -EBUSY;
2208 			goto err_busy;
2209 		}
2210 		t_dgram = t;
2211 	}
2212 
2213 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2214 		if (t_local) {
2215 			err = -EBUSY;
2216 			goto err_busy;
2217 		}
2218 		t_local = t;
2219 	}
2220 
2221 	transport_h2g = t_h2g;
2222 	transport_g2h = t_g2h;
2223 	transport_dgram = t_dgram;
2224 	transport_local = t_local;
2225 
2226 err_busy:
2227 	mutex_unlock(&vsock_register_mutex);
2228 	return err;
2229 }
2230 EXPORT_SYMBOL_GPL(vsock_core_register);
2231 
vsock_core_unregister(const struct vsock_transport * t)2232 void vsock_core_unregister(const struct vsock_transport *t)
2233 {
2234 	mutex_lock(&vsock_register_mutex);
2235 
2236 	if (transport_h2g == t)
2237 		transport_h2g = NULL;
2238 
2239 	if (transport_g2h == t)
2240 		transport_g2h = NULL;
2241 
2242 	if (transport_dgram == t)
2243 		transport_dgram = NULL;
2244 
2245 	if (transport_local == t)
2246 		transport_local = NULL;
2247 
2248 	mutex_unlock(&vsock_register_mutex);
2249 }
2250 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2251 
2252 module_init(vsock_init);
2253 module_exit(vsock_exit);
2254 
2255 MODULE_AUTHOR("VMware, Inc.");
2256 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2257 MODULE_VERSION("1.0.2.0-k");
2258 MODULE_LICENSE("GPL v2");
2259