• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include "least_square_impl.h"
17 #include "matrix3.h"
18 #include "matrix4.h"
19 #include "common_utilities_hpp.h"
20 
21 namespace OHOS::uitest {
GetLSMParams(std::vector<double> & params)22 bool LeastSquareImpl::GetLSMParams(std::vector<double>& params)
23 {
24     if (tVals_.size() <= ONE || (paramsNum_ != Matrix3::DIMENSION)) {
25         LOG_E("size is invalid, %{public}d, %{public}d", static_cast<int32_t>(tVals_.size()), paramsNum_);
26         return false;
27     }
28     params.resize(paramsNum_, ZERO);
29     if (isResolved_) {
30         params.assign(params_.begin(), params_.end());
31         return true;
32     }
33     auto countNum = std::min(countNum_, static_cast<int32_t>(std::distance(tVals_.begin(), tVals_.end())));
34     std::vector<double> xVals;
35     xVals.resize(countNum, ZERO);
36     std::vector<double> yVals;
37     yVals.resize(countNum, ZERO);
38     int32_t size = countNum - ONE;
39     for (auto iter = tVals_.rbegin(); iter != tVals_.rend(); iter++) {
40         xVals[size] = *iter;
41         size--;
42         if (size < ZERO) {
43             break;
44         }
45     }
46     size = countNum - ONE;
47     for (auto iter = pVals_.rbegin(); iter != pVals_.rend(); iter++) {
48         yVals[size] = *iter;
49         size--;
50         if (size < ZERO) {
51             break;
52         }
53     }
54     if (paramsNum_ == Matrix3::DIMENSION) {
55         MatrixN3 matrixn3 { countNum };
56         for (auto i = 0; i < countNum; i++) {
57             const auto& value = xVals[i];
58             matrixn3[i][TWO] = ONE;
59             matrixn3[i][ONE] = value;
60             matrixn3[i][ZERO] = value * value;
61         }
62         Matrix3 invert;
63         auto transpose = matrixn3.Transpose();
64         if (!(transpose * matrixn3).Invert(invert)) {
65             LOG_E("fail to invert");
66             return false;
67         }
68         auto matrix3n = invert * transpose;
69         auto ret = matrix3n.ScaleMapping(yVals, params);
70         if (ret) {
71             params_.assign(params.begin(), params.end());
72             isResolved_ = true;
73         }
74         return ret;
75     }
76     MatrixN4 matrixn4 { countNum };
77     for (auto i = 0; i < countNum; i++) {
78         const auto& value = xVals[i];
79         matrixn4[i][THREE] = ONE;
80         matrixn4[i][TWO] = value;
81         matrixn4[i][ONE] = value * value;
82         matrixn4[i][ZERO] = value * value * value;
83     }
84     auto transpose = matrixn4.Transpose();
85     auto inversMatrix4 = Matrix4::Invert(transpose * matrixn4);
86     auto matrix4n = inversMatrix4 * transpose;
87     auto ret = matrix4n.ScaleMapping(yVals, params);
88     if (ret) {
89         params_.assign(params.begin(), params.end());
90         isResolved_ = true;
91     }
92     return ret;
93 }
94 } // namespace OHOS::uitest
95