• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree maps: sorted associative containers mapping
20 // keys to values.
21 //
22 //     * `absl::btree_map<>`
23 //     * `absl::btree_multimap<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::map` and `std::multimap`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::map` and `std::multimap`, which are commonly implemented using
31 // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree maps perform better than their `std::map` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::map` and `std::multimap` as there are some API differences, which are
38 // noted in this header file.
39 //
40 // Importantly, insertions and deletions may invalidate outstanding iterators,
41 // pointers, and references to elements. Such invalidations are typically only
42 // an issue if insertion and deletion operations are interleaved with the use of
43 // more than one iterator, pointer, or reference simultaneously. For this
44 // reason, `insert()` and `erase()` return a valid iterator at the current
45 // position.
46 
47 #ifndef ABSL_CONTAINER_BTREE_MAP_H_
48 #define ABSL_CONTAINER_BTREE_MAP_H_
49 
50 #include "absl/container/internal/btree.h"  // IWYU pragma: export
51 #include "absl/container/internal/btree_container.h"  // IWYU pragma: export
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 // absl::btree_map<>
57 //
58 // An `absl::btree_map<K, V>` is an ordered associative container of
59 // unique keys and associated values designed to be a more efficient replacement
60 // for `std::map` (in most cases).
61 //
62 // Keys are sorted using an (optional) comparison function, which defaults to
63 // `std::less<K>`.
64 //
65 // An `absl::btree_map<K, V>` uses a default allocator of
66 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
67 // nodes, and construct and destruct values within those nodes. You may
68 // instead specify a custom allocator `A` (which in turn requires specifying a
69 // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.
70 //
71 template <typename Key, typename Value, typename Compare = std::less<Key>,
72           typename Alloc = std::allocator<std::pair<const Key, Value>>>
73 class btree_map
74     : public container_internal::btree_map_container<
75           container_internal::btree<container_internal::map_params<
76               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
77               /*Multi=*/false>>> {
78   using Base = typename btree_map::btree_map_container;
79 
80  public:
81   // Constructors and Assignment Operators
82   //
83   // A `btree_map` supports the same overload set as `std::map`
84   // for construction and assignment:
85   //
86   // * Default constructor
87   //
88   //   absl::btree_map<int, std::string> map1;
89   //
90   // * Initializer List constructor
91   //
92   //   absl::btree_map<int, std::string> map2 =
93   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
94   //
95   // * Copy constructor
96   //
97   //   absl::btree_map<int, std::string> map3(map2);
98   //
99   // * Copy assignment operator
100   //
101   //  absl::btree_map<int, std::string> map4;
102   //  map4 = map3;
103   //
104   // * Move constructor
105   //
106   //   // Move is guaranteed efficient
107   //   absl::btree_map<int, std::string> map5(std::move(map4));
108   //
109   // * Move assignment operator
110   //
111   //   // May be efficient if allocators are compatible
112   //   absl::btree_map<int, std::string> map6;
113   //   map6 = std::move(map5);
114   //
115   // * Range constructor
116   //
117   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
118   //   absl::btree_map<int, std::string> map7(v.begin(), v.end());
btree_map()119   btree_map() {}
120   using Base::Base;
121 
122   // btree_map::begin()
123   //
124   // Returns an iterator to the beginning of the `btree_map`.
125   using Base::begin;
126 
127   // btree_map::cbegin()
128   //
129   // Returns a const iterator to the beginning of the `btree_map`.
130   using Base::cbegin;
131 
132   // btree_map::end()
133   //
134   // Returns an iterator to the end of the `btree_map`.
135   using Base::end;
136 
137   // btree_map::cend()
138   //
139   // Returns a const iterator to the end of the `btree_map`.
140   using Base::cend;
141 
142   // btree_map::empty()
143   //
144   // Returns whether or not the `btree_map` is empty.
145   using Base::empty;
146 
147   // btree_map::max_size()
148   //
149   // Returns the largest theoretical possible number of elements within a
150   // `btree_map` under current memory constraints. This value can be thought
151   // of as the largest value of `std::distance(begin(), end())` for a
152   // `btree_map<Key, T>`.
153   using Base::max_size;
154 
155   // btree_map::size()
156   //
157   // Returns the number of elements currently within the `btree_map`.
158   using Base::size;
159 
160   // btree_map::clear()
161   //
162   // Removes all elements from the `btree_map`. Invalidates any references,
163   // pointers, or iterators referring to contained elements.
164   using Base::clear;
165 
166   // btree_map::erase()
167   //
168   // Erases elements within the `btree_map`. If an erase occurs, any references,
169   // pointers, or iterators are invalidated.
170   // Overloads are listed below.
171   //
172   // iterator erase(iterator position):
173   // iterator erase(const_iterator position):
174   //
175   //   Erases the element at `position` of the `btree_map`, returning
176   //   the iterator pointing to the element after the one that was erased
177   //   (or end() if none exists).
178   //
179   // iterator erase(const_iterator first, const_iterator last):
180   //
181   //   Erases the elements in the open interval [`first`, `last`), returning
182   //   the iterator pointing to the element after the interval that was erased
183   //   (or end() if none exists).
184   //
185   // template <typename K> size_type erase(const K& key):
186   //
187   //   Erases the element with the matching key, if it exists, returning the
188   //   number of elements erased (0 or 1).
189   using Base::erase;
190 
191   // btree_map::insert()
192   //
193   // Inserts an element of the specified value into the `btree_map`,
194   // returning an iterator pointing to the newly inserted element, provided that
195   // an element with the given key does not already exist. If an insertion
196   // occurs, any references, pointers, or iterators are invalidated.
197   // Overloads are listed below.
198   //
199   // std::pair<iterator,bool> insert(const value_type& value):
200   //
201   //   Inserts a value into the `btree_map`. Returns a pair consisting of an
202   //   iterator to the inserted element (or to the element that prevented the
203   //   insertion) and a bool denoting whether the insertion took place.
204   //
205   // std::pair<iterator,bool> insert(value_type&& value):
206   //
207   //   Inserts a moveable value into the `btree_map`. Returns a pair
208   //   consisting of an iterator to the inserted element (or to the element that
209   //   prevented the insertion) and a bool denoting whether the insertion took
210   //   place.
211   //
212   // iterator insert(const_iterator hint, const value_type& value):
213   // iterator insert(const_iterator hint, value_type&& value):
214   //
215   //   Inserts a value, using the position of `hint` as a non-binding suggestion
216   //   for where to begin the insertion search. Returns an iterator to the
217   //   inserted element, or to the existing element that prevented the
218   //   insertion.
219   //
220   // void insert(InputIterator first, InputIterator last):
221   //
222   //   Inserts a range of values [`first`, `last`).
223   //
224   // void insert(std::initializer_list<init_type> ilist):
225   //
226   //   Inserts the elements within the initializer list `ilist`.
227   using Base::insert;
228 
229   // btree_map::insert_or_assign()
230   //
231   // Inserts an element of the specified value into the `btree_map` provided
232   // that a value with the given key does not already exist, or replaces the
233   // corresponding mapped type with the forwarded `obj` argument if a key for
234   // that value already exists, returning an iterator pointing to the newly
235   // inserted element. Overloads are listed below.
236   //
237   // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):
238   // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):
239   //
240   //   Inserts/Assigns (or moves) the element of the specified key into the
241   //   `btree_map`. If the returned bool is true, insertion took place, and if
242   //   it's false, assignment took place.
243   //
244   // iterator insert_or_assign(const_iterator hint,
245   //                           const key_type& k, M&& obj):
246   // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):
247   //
248   //   Inserts/Assigns (or moves) the element of the specified key into the
249   //   `btree_map` using the position of `hint` as a non-binding suggestion
250   //   for where to begin the insertion search.
251   using Base::insert_or_assign;
252 
253   // btree_map::emplace()
254   //
255   // Inserts an element of the specified value by constructing it in-place
256   // within the `btree_map`, provided that no element with the given key
257   // already exists.
258   //
259   // The element may be constructed even if there already is an element with the
260   // key in the container, in which case the newly constructed element will be
261   // destroyed immediately. Prefer `try_emplace()` unless your key is not
262   // copyable or moveable.
263   //
264   // If an insertion occurs, any references, pointers, or iterators are
265   // invalidated.
266   using Base::emplace;
267 
268   // btree_map::emplace_hint()
269   //
270   // Inserts an element of the specified value by constructing it in-place
271   // within the `btree_map`, using the position of `hint` as a non-binding
272   // suggestion for where to begin the insertion search, and only inserts
273   // provided that no element with the given key already exists.
274   //
275   // The element may be constructed even if there already is an element with the
276   // key in the container, in which case the newly constructed element will be
277   // destroyed immediately. Prefer `try_emplace()` unless your key is not
278   // copyable or moveable.
279   //
280   // If an insertion occurs, any references, pointers, or iterators are
281   // invalidated.
282   using Base::emplace_hint;
283 
284   // btree_map::try_emplace()
285   //
286   // Inserts an element of the specified value by constructing it in-place
287   // within the `btree_map`, provided that no element with the given key
288   // already exists. Unlike `emplace()`, if an element with the given key
289   // already exists, we guarantee that no element is constructed.
290   //
291   // If an insertion occurs, any references, pointers, or iterators are
292   // invalidated.
293   //
294   // Overloads are listed below.
295   //
296   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
297   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
298   //
299   // Inserts (via copy or move) the element of the specified key into the
300   // `btree_map`.
301   //
302   //   iterator try_emplace(const_iterator hint,
303   //                        const key_type& k, Args&&... args):
304   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
305   //
306   // Inserts (via copy or move) the element of the specified key into the
307   // `btree_map` using the position of `hint` as a non-binding suggestion
308   // for where to begin the insertion search.
309   using Base::try_emplace;
310 
311   // btree_map::extract()
312   //
313   // Extracts the indicated element, erasing it in the process, and returns it
314   // as a C++17-compatible node handle. Overloads are listed below.
315   //
316   // node_type extract(const_iterator position):
317   //
318   //   Extracts the element at the indicated position and returns a node handle
319   //   owning that extracted data.
320   //
321   // template <typename K> node_type extract(const K& k):
322   //
323   //   Extracts the element with the key matching the passed key value and
324   //   returns a node handle owning that extracted data. If the `btree_map`
325   //   does not contain an element with a matching key, this function returns an
326   //   empty node handle.
327   //
328   // NOTE: when compiled in an earlier version of C++ than C++17,
329   // `node_type::key()` returns a const reference to the key instead of a
330   // mutable reference. We cannot safely return a mutable reference without
331   // std::launder (which is not available before C++17).
332   //
333   // NOTE: In this context, `node_type` refers to the C++17 concept of a
334   // move-only type that owns and provides access to the elements in associative
335   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
336   // It does NOT refer to the data layout of the underlying btree.
337   using Base::extract;
338 
339   // btree_map::merge()
340   //
341   // Extracts elements from a given `source` btree_map into this
342   // `btree_map`. If the destination `btree_map` already contains an
343   // element with an equivalent key, that element is not extracted.
344   using Base::merge;
345 
346   // btree_map::swap(btree_map& other)
347   //
348   // Exchanges the contents of this `btree_map` with those of the `other`
349   // btree_map, avoiding invocation of any move, copy, or swap operations on
350   // individual elements.
351   //
352   // All iterators and references on the `btree_map` remain valid, excepting
353   // for the past-the-end iterator, which is invalidated.
354   using Base::swap;
355 
356   // btree_map::at()
357   //
358   // Returns a reference to the mapped value of the element with key equivalent
359   // to the passed key.
360   using Base::at;
361 
362   // btree_map::contains()
363   //
364   // template <typename K> bool contains(const K& key) const:
365   //
366   // Determines whether an element comparing equal to the given `key` exists
367   // within the `btree_map`, returning `true` if so or `false` otherwise.
368   //
369   // Supports heterogeneous lookup, provided that the map is provided a
370   // compatible heterogeneous comparator.
371   using Base::contains;
372 
373   // btree_map::count()
374   //
375   // template <typename K> size_type count(const K& key) const:
376   //
377   // Returns the number of elements comparing equal to the given `key` within
378   // the `btree_map`. Note that this function will return either `1` or `0`
379   // since duplicate elements are not allowed within a `btree_map`.
380   //
381   // Supports heterogeneous lookup, provided that the map is provided a
382   // compatible heterogeneous comparator.
383   using Base::count;
384 
385   // btree_map::equal_range()
386   //
387   // Returns a closed range [first, last], defined by a `std::pair` of two
388   // iterators, containing all elements with the passed key in the
389   // `btree_map`.
390   using Base::equal_range;
391 
392   // btree_map::find()
393   //
394   // template <typename K> iterator find(const K& key):
395   // template <typename K> const_iterator find(const K& key) const:
396   //
397   // Finds an element with the passed `key` within the `btree_map`.
398   //
399   // Supports heterogeneous lookup, provided that the map is provided a
400   // compatible heterogeneous comparator.
401   using Base::find;
402 
403   // btree_map::operator[]()
404   //
405   // Returns a reference to the value mapped to the passed key within the
406   // `btree_map`, performing an `insert()` if the key does not already
407   // exist.
408   //
409   // If an insertion occurs, any references, pointers, or iterators are
410   // invalidated. Otherwise iterators are not affected and references are not
411   // invalidated. Overloads are listed below.
412   //
413   // T& operator[](key_type&& key):
414   // T& operator[](const key_type& key):
415   //
416   //   Inserts a value_type object constructed in-place if the element with the
417   //   given key does not exist.
418   using Base::operator[];
419 
420   // btree_map::get_allocator()
421   //
422   // Returns the allocator function associated with this `btree_map`.
423   using Base::get_allocator;
424 
425   // btree_map::key_comp();
426   //
427   // Returns the key comparator associated with this `btree_map`.
428   using Base::key_comp;
429 
430   // btree_map::value_comp();
431   //
432   // Returns the value comparator associated with this `btree_map`.
433   using Base::value_comp;
434 };
435 
436 // absl::swap(absl::btree_map<>, absl::btree_map<>)
437 //
438 // Swaps the contents of two `absl::btree_map` containers.
439 template <typename K, typename V, typename C, typename A>
swap(btree_map<K,V,C,A> & x,btree_map<K,V,C,A> & y)440 void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {
441   return x.swap(y);
442 }
443 
444 // absl::erase_if(absl::btree_map<>, Pred)
445 //
446 // Erases all elements that satisfy the predicate pred from the container.
447 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_map<K,V,C,A> & map,Pred pred)448 void erase_if(btree_map<K, V, C, A> &map, Pred pred) {
449   for (auto it = map.begin(); it != map.end();) {
450     if (pred(*it)) {
451       it = map.erase(it);
452     } else {
453       ++it;
454     }
455   }
456 }
457 
458 // absl::btree_multimap
459 //
460 // An `absl::btree_multimap<K, V>` is an ordered associative container of
461 // keys and associated values designed to be a more efficient replacement for
462 // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap
463 // allows multiple elements with equivalent keys.
464 //
465 // Keys are sorted using an (optional) comparison function, which defaults to
466 // `std::less<K>`.
467 //
468 // An `absl::btree_multimap<K, V>` uses a default allocator of
469 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
470 // nodes, and construct and destruct values within those nodes. You may
471 // instead specify a custom allocator `A` (which in turn requires specifying a
472 // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.
473 //
474 template <typename Key, typename Value, typename Compare = std::less<Key>,
475           typename Alloc = std::allocator<std::pair<const Key, Value>>>
476 class btree_multimap
477     : public container_internal::btree_multimap_container<
478           container_internal::btree<container_internal::map_params<
479               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
480               /*Multi=*/true>>> {
481   using Base = typename btree_multimap::btree_multimap_container;
482 
483  public:
484   // Constructors and Assignment Operators
485   //
486   // A `btree_multimap` supports the same overload set as `std::multimap`
487   // for construction and assignment:
488   //
489   // * Default constructor
490   //
491   //   absl::btree_multimap<int, std::string> map1;
492   //
493   // * Initializer List constructor
494   //
495   //   absl::btree_multimap<int, std::string> map2 =
496   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
497   //
498   // * Copy constructor
499   //
500   //   absl::btree_multimap<int, std::string> map3(map2);
501   //
502   // * Copy assignment operator
503   //
504   //  absl::btree_multimap<int, std::string> map4;
505   //  map4 = map3;
506   //
507   // * Move constructor
508   //
509   //   // Move is guaranteed efficient
510   //   absl::btree_multimap<int, std::string> map5(std::move(map4));
511   //
512   // * Move assignment operator
513   //
514   //   // May be efficient if allocators are compatible
515   //   absl::btree_multimap<int, std::string> map6;
516   //   map6 = std::move(map5);
517   //
518   // * Range constructor
519   //
520   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
521   //   absl::btree_multimap<int, std::string> map7(v.begin(), v.end());
btree_multimap()522   btree_multimap() {}
523   using Base::Base;
524 
525   // btree_multimap::begin()
526   //
527   // Returns an iterator to the beginning of the `btree_multimap`.
528   using Base::begin;
529 
530   // btree_multimap::cbegin()
531   //
532   // Returns a const iterator to the beginning of the `btree_multimap`.
533   using Base::cbegin;
534 
535   // btree_multimap::end()
536   //
537   // Returns an iterator to the end of the `btree_multimap`.
538   using Base::end;
539 
540   // btree_multimap::cend()
541   //
542   // Returns a const iterator to the end of the `btree_multimap`.
543   using Base::cend;
544 
545   // btree_multimap::empty()
546   //
547   // Returns whether or not the `btree_multimap` is empty.
548   using Base::empty;
549 
550   // btree_multimap::max_size()
551   //
552   // Returns the largest theoretical possible number of elements within a
553   // `btree_multimap` under current memory constraints. This value can be
554   // thought of as the largest value of `std::distance(begin(), end())` for a
555   // `btree_multimap<Key, T>`.
556   using Base::max_size;
557 
558   // btree_multimap::size()
559   //
560   // Returns the number of elements currently within the `btree_multimap`.
561   using Base::size;
562 
563   // btree_multimap::clear()
564   //
565   // Removes all elements from the `btree_multimap`. Invalidates any references,
566   // pointers, or iterators referring to contained elements.
567   using Base::clear;
568 
569   // btree_multimap::erase()
570   //
571   // Erases elements within the `btree_multimap`. If an erase occurs, any
572   // references, pointers, or iterators are invalidated.
573   // Overloads are listed below.
574   //
575   // iterator erase(iterator position):
576   // iterator erase(const_iterator position):
577   //
578   //   Erases the element at `position` of the `btree_multimap`, returning
579   //   the iterator pointing to the element after the one that was erased
580   //   (or end() if none exists).
581   //
582   // iterator erase(const_iterator first, const_iterator last):
583   //
584   //   Erases the elements in the open interval [`first`, `last`), returning
585   //   the iterator pointing to the element after the interval that was erased
586   //   (or end() if none exists).
587   //
588   // template <typename K> size_type erase(const K& key):
589   //
590   //   Erases the elements matching the key, if any exist, returning the
591   //   number of elements erased.
592   using Base::erase;
593 
594   // btree_multimap::insert()
595   //
596   // Inserts an element of the specified value into the `btree_multimap`,
597   // returning an iterator pointing to the newly inserted element.
598   // Any references, pointers, or iterators are invalidated.  Overloads are
599   // listed below.
600   //
601   // iterator insert(const value_type& value):
602   //
603   //   Inserts a value into the `btree_multimap`, returning an iterator to the
604   //   inserted element.
605   //
606   // iterator insert(value_type&& value):
607   //
608   //   Inserts a moveable value into the `btree_multimap`, returning an iterator
609   //   to the inserted element.
610   //
611   // iterator insert(const_iterator hint, const value_type& value):
612   // iterator insert(const_iterator hint, value_type&& value):
613   //
614   //   Inserts a value, using the position of `hint` as a non-binding suggestion
615   //   for where to begin the insertion search. Returns an iterator to the
616   //   inserted element.
617   //
618   // void insert(InputIterator first, InputIterator last):
619   //
620   //   Inserts a range of values [`first`, `last`).
621   //
622   // void insert(std::initializer_list<init_type> ilist):
623   //
624   //   Inserts the elements within the initializer list `ilist`.
625   using Base::insert;
626 
627   // btree_multimap::emplace()
628   //
629   // Inserts an element of the specified value by constructing it in-place
630   // within the `btree_multimap`. Any references, pointers, or iterators are
631   // invalidated.
632   using Base::emplace;
633 
634   // btree_multimap::emplace_hint()
635   //
636   // Inserts an element of the specified value by constructing it in-place
637   // within the `btree_multimap`, using the position of `hint` as a non-binding
638   // suggestion for where to begin the insertion search.
639   //
640   // Any references, pointers, or iterators are invalidated.
641   using Base::emplace_hint;
642 
643   // btree_multimap::extract()
644   //
645   // Extracts the indicated element, erasing it in the process, and returns it
646   // as a C++17-compatible node handle. Overloads are listed below.
647   //
648   // node_type extract(const_iterator position):
649   //
650   //   Extracts the element at the indicated position and returns a node handle
651   //   owning that extracted data.
652   //
653   // template <typename K> node_type extract(const K& k):
654   //
655   //   Extracts the element with the key matching the passed key value and
656   //   returns a node handle owning that extracted data. If the `btree_multimap`
657   //   does not contain an element with a matching key, this function returns an
658   //   empty node handle.
659   //
660   // NOTE: when compiled in an earlier version of C++ than C++17,
661   // `node_type::key()` returns a const reference to the key instead of a
662   // mutable reference. We cannot safely return a mutable reference without
663   // std::launder (which is not available before C++17).
664   //
665   // NOTE: In this context, `node_type` refers to the C++17 concept of a
666   // move-only type that owns and provides access to the elements in associative
667   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
668   // It does NOT refer to the data layout of the underlying btree.
669   using Base::extract;
670 
671   // btree_multimap::merge()
672   //
673   // Extracts elements from a given `source` btree_multimap into this
674   // `btree_multimap`. If the destination `btree_multimap` already contains an
675   // element with an equivalent key, that element is not extracted.
676   using Base::merge;
677 
678   // btree_multimap::swap(btree_multimap& other)
679   //
680   // Exchanges the contents of this `btree_multimap` with those of the `other`
681   // btree_multimap, avoiding invocation of any move, copy, or swap operations
682   // on individual elements.
683   //
684   // All iterators and references on the `btree_multimap` remain valid,
685   // excepting for the past-the-end iterator, which is invalidated.
686   using Base::swap;
687 
688   // btree_multimap::contains()
689   //
690   // template <typename K> bool contains(const K& key) const:
691   //
692   // Determines whether an element comparing equal to the given `key` exists
693   // within the `btree_multimap`, returning `true` if so or `false` otherwise.
694   //
695   // Supports heterogeneous lookup, provided that the map is provided a
696   // compatible heterogeneous comparator.
697   using Base::contains;
698 
699   // btree_multimap::count()
700   //
701   // template <typename K> size_type count(const K& key) const:
702   //
703   // Returns the number of elements comparing equal to the given `key` within
704   // the `btree_multimap`.
705   //
706   // Supports heterogeneous lookup, provided that the map is provided a
707   // compatible heterogeneous comparator.
708   using Base::count;
709 
710   // btree_multimap::equal_range()
711   //
712   // Returns a closed range [first, last], defined by a `std::pair` of two
713   // iterators, containing all elements with the passed key in the
714   // `btree_multimap`.
715   using Base::equal_range;
716 
717   // btree_multimap::find()
718   //
719   // template <typename K> iterator find(const K& key):
720   // template <typename K> const_iterator find(const K& key) const:
721   //
722   // Finds an element with the passed `key` within the `btree_multimap`.
723   //
724   // Supports heterogeneous lookup, provided that the map is provided a
725   // compatible heterogeneous comparator.
726   using Base::find;
727 
728   // btree_multimap::get_allocator()
729   //
730   // Returns the allocator function associated with this `btree_multimap`.
731   using Base::get_allocator;
732 
733   // btree_multimap::key_comp();
734   //
735   // Returns the key comparator associated with this `btree_multimap`.
736   using Base::key_comp;
737 
738   // btree_multimap::value_comp();
739   //
740   // Returns the value comparator associated with this `btree_multimap`.
741   using Base::value_comp;
742 };
743 
744 // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)
745 //
746 // Swaps the contents of two `absl::btree_multimap` containers.
747 template <typename K, typename V, typename C, typename A>
swap(btree_multimap<K,V,C,A> & x,btree_multimap<K,V,C,A> & y)748 void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {
749   return x.swap(y);
750 }
751 
752 // absl::erase_if(absl::btree_multimap<>, Pred)
753 //
754 // Erases all elements that satisfy the predicate pred from the container.
755 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_multimap<K,V,C,A> & map,Pred pred)756 void erase_if(btree_multimap<K, V, C, A> &map, Pred pred) {
757   for (auto it = map.begin(); it != map.end();) {
758     if (pred(*it)) {
759       it = map.erase(it);
760     } else {
761       ++it;
762     }
763   }
764 }
765 
766 ABSL_NAMESPACE_END
767 }  // namespace absl
768 
769 #endif  // ABSL_CONTAINER_BTREE_MAP_H_
770