• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 <HTML>
2 <!--
3      Copyright (c) Jeremy Siek 2000
4 
5      Distributed under the Boost Software License, Version 1.0.
6      (See accompanying file LICENSE_1_0.txt or copy at
7      http://www.boost.org/LICENSE_1_0.txt)
8   -->
9 <Head>
10 <Title>Boost Graph Library: Dijkstra's Shortest Paths</Title>
11 <BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
12         ALINK="#ff0000">
13 <IMG SRC="../../../boost.png"
14      ALT="C++ Boost" width="277" height="86">
15 
16 <BR Clear>
17 
18 <H1><A NAME="sec:dijkstra"></A><img src="figs/python.gif" alt="(Python)"/>
19 <TT>dijkstra_shortest_paths</TT>
20 </H1>
21 
22 <P>
23 <PRE>
24 <i>// named parameter version</i>
25 template &lt;typename Graph, typename P, typename T, typename R&gt;
26 void
27 dijkstra_shortest_paths(Graph&amp; g,
28   typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
29   const bgl_named_params&lt;P, T, R&gt;&amp; params);
30 
31 <i>// non-named parameter version</i>
32 template &lt;typename Graph, typename <a href="DijkstraVisitor.html">DijkstraVisitor</a>,
33 	  typename PredecessorMap, typename DistanceMap,
34 	  typename WeightMap, typename VertexIndexMap, typename <a href="http://www.boost.org/sgi/stl/BinaryPredicate.html">CompareFunction</a>, typename <a href="http://www.boost.org/sgi/stl/BinaryFunction.html">CombineFunction</a>,
35 	  typename DistInf, typename DistZero, typename ColorMap = <i>default</i>&gt;
36 void dijkstra_shortest_paths
37   (const Graph&amp; g,
38    typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
39    PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
40    VertexIndexMap index_map,
41    CompareFunction compare, CombineFunction combine, DistInf inf, DistZero zero,
42    DijkstraVisitor vis, ColorMap color = <i>default</i>)
43 
44 <i>// version that does not initialize the property maps (except for the default color map)</i>
45 template &lt;class Graph, class DijkstraVisitor,
46           class PredecessorMap, class DistanceMap,
47           class WeightMap, class IndexMap, class Compare, class Combine,
48           class DistZero, class ColorMap&gt;
49 void
50 dijkstra_shortest_paths_no_init
51   (const Graph&amp; g,
52    typename graph_traits&lt;Graph&gt;::vertex_descriptor s,
53    PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
54    IndexMap index_map,
55    Compare compare, Combine combine, DistZero zero,
56    DijkstraVisitor vis, ColorMap color = <i>default</i>);
57 </PRE>
58 
59 <P>
60 This algorithm&nbsp;[<A HREF="bibliography.html#dijkstra59">10</A>,<A
61 HREF="bibliography.html#clr90">8</A>] solves the single-source
62 shortest-paths problem on a weighted, directed or undirected graph for
63 the case where all edge weights are nonnegative.  Use the Bellman-Ford
64 algorithm for the case when some edge weights are negative.  Use
65 breadth-first search instead of Dijkstra's algorithm when all edge
66 weights are equal to one.  For the definition of the shortest-path
67 problem see Section <A
68 HREF="graph_theory_review.html#sec:shortest-paths-algorithms">Shortest-Paths
69 Algorithms</A> for some background to the shortest-path problem.
70 </P>
71 
72 <P>
73 There are two main options for obtaining output from the
74 <tt>dijkstra_shortest_paths()</tt> function. If you provide a
75 distance property map through the <tt>distance_map()</tt> parameter
76 then the shortest distance from the source vertex to every other
77 vertex in the graph will be recorded in the distance map. Also you can
78 record the shortest paths tree in a predecessor map: for each vertex
79 <i>u in V</i>, <i>p[u]</i> will be the predecessor of <i>u</i> in
80 the shortest paths tree (unless <i>p[u] = u</i>, in which case <i>u</i> is
81 either the source or a vertex unreachable from the source).  In
82 addition to these two options, the user can provide their own
83 custom-made visitor that takes actions during any of the
84 algorithm's event points.</P>
85 
86 <P>
87 Dijkstra's algorithm finds all the shortest paths from the source
88 vertex to every other vertex by iteratively ``growing'' the set of
89 vertices <i>S</i> to which it knows the shortest path. At each step of
90 the algorithm, the next vertex added to <i>S</i> is determined by a
91 priority queue.  The queue contains the vertices in <i>V - S</i><a
92 href="#1">[1]</a> prioritized by their distance label, which is the
93 length of the shortest path seen so far for each vertex. The vertex
94 <i>u</i> at the top of the priority queue is then added to <i>S</i>,
95 and each of its out-edges is relaxed: if the distance to <i>u</i> plus
96 the weight of the out-edge <i>(u,v)</i> is less than the distance
97 label for <i>v</i> then the estimated distance for vertex <i>v</i> is
98 reduced.  The algorithm then loops back, processing the next vertex at
99 the top of the priority queue. The algorithm finishes when the
100 priority queue is empty.
101 </P>
102 <P>
103 The algorithm uses color markers (white, gray, and black) to keep
104 track of which set each vertex is in. Vertices colored black are in
105 <i>S</i>. Vertices colored white or gray are in <i>V-S</i>. White vertices have
106 not yet been discovered and gray vertices are in the priority queue.
107 By default, the algorithm will allocate an array to store a color
108 marker for each vertex in the graph. You can provide your own storage
109 and access for colors with the <tt>color_map()</tt> parameter.
110 </P>
111 <p>
112 The following is the pseudo-code for Dijkstra's single-source shortest
113 paths algorithm. <i>w</i> is the edge weight, <i>d</i> is the distance label,
114 and <i>p</i> is the predecessor of each vertex which is used to encode
115 the shortest paths tree. <i>Q</i> is a priority queue that supports the
116 DECREASE-KEY operation.  The visitor event points for the algorithm are
117 indicated by the labels on the right.
118 </p>
119 
120 <table>
121 <tr>
122 <td valign="top">
123 <pre>
124 DIJKSTRA(<i>G</i>, <i>s</i>, <i>w</i>)
125   <b>for</b> each vertex <i>u in V</i> <b>(This loop is not run in dijkstra_shortest_paths_no_init)</b>
126     <i>d[u] := infinity</i>
127     <i>p[u] := u</i>
128     <i>color[u] :=</i> WHITE
129   <b>end for</b>
130   <i>color[s] := </i>GRAY
131   <i>d[s] := 0</i>
132   INSERT(<i>Q</i>, <i>s</i>)
133   <b>while</b> (<i>Q != &Oslash;</i>)
134     <i>u :=</i> EXTRACT-MIN(<i>Q</i>)
135     <i>S := S U { u }</i>
136     <b>for</b> each vertex <i>v in Adj[u]</i>
137       <b>if</b> (<i>w(u,v) + d[u] < d[v]</i>)
138         <i>d[v] := w(u,v) + d[u]</i>
139         <i>p[v] := u</i>
140         <b>if</b> (<i>color[v] =</i> WHITE)
141           <i>color[v] :=</i> GRAY
142           INSERT(<i>Q</i>, <i>v</i>)
143         <b>else if</b> (<i>color[v] =</i> GRAY)
144           DECREASE-KEY(<i>Q</i>, <i>v</i>)
145       <b>else</b>
146         <i>...</i>
147     <b>end for</b>
148     <i>color[u] :=</i> BLACK
149   <b>end while</b>
150   return (<i>d</i>, <i>p</i>)
151 </pre>
152 </td>
153 <td valign="top">
154 <pre>
155 
156 initialize vertex <i>u</i>
157 
158 
159 
160 
161 
162 
163 discover vertex <i>s</i>
164 
165 examine vertex <i>u</i>
166 
167 examine edge <i>(u,v)</i>
168 
169 edge <i>(u,v)</i> relaxed
170 
171 
172 
173 discover vertex <i>v</i>
174 
175 
176 
177 edge <i>(u,v)</i> not relaxed
178 
179 finish vertex <i>u</i>
180 </pre>
181 </td>
182 </tr>
183 </table>
184 
185 <h3>Where Defined</h3>
186 
187 <a href="../../../boost/graph/dijkstra_shortest_paths.hpp"><tt>boost/graph/dijkstra_shortest_paths.hpp</tt></a>
188 
189 <h3>Parameters</h3>
190 
191 IN: <tt>const Graph&amp; g</tt>
192 <blockquote>
193   The graph object on which the algorithm will be applied.
194   The type <tt>Graph</tt> must be a model of
195   <a href="./VertexListGraph.html">Vertex List Graph</a>
196   and <a href="./IncidenceGraph.html">Incidence Graph</a>.<br>
197 
198   <b>Python</b>: The parameter is named <tt>graph</tt>.
199 </blockquote>
200 
201 IN: <tt>vertex_descriptor s</tt>
202 <blockquote>
203   The source vertex. All distance will be calculated from this vertex,
204   and the shortest paths tree will be rooted at this vertex.<br>
205 
206   <b>Python</b>: The parameter is named <tt>root_vertex</tt>.
207 </blockquote>
208 
209 <h3>Named Parameters</h3>
210 
211 IN: <tt>weight_map(WeightMap w_map)</tt>
212 <blockquote>
213   The weight or ``length'' of each edge in the graph. The weights
214   must all be non-negative, and the algorithm will throw a
215   <a href="./exception.html#negative_edge"><tt>negative_edge</tt></a>
216   exception is one of the edges is negative.
217   The type <tt>WeightMap</tt> must be a model of
218   <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The edge descriptor type of
219   the graph needs to be usable as the key type for the weight
220   map. The value type for this map must be
221   the same as the value type of the distance map.<br>
222   <b>Default:</b>  <tt>get(edge_weight, g)</tt><br>
223 
224   <b>Python</b>: Must be an <tt>edge_double_map</tt> for the graph.<br>
225   <b>Python default</b>: <tt>graph.get_edge_double_map("weight")</tt>
226 </blockquote>
227 
228 IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
229 <blockquote>
230   This maps each vertex to an integer in the range <tt>[0,
231     num_vertices(g))</tt>. This is necessary for efficient updates of the
232   heap data structure&nbsp;[<A
233   HREF="bibliography.html#driscoll88">61</A>] when an edge is relaxed.
234   The type
235   <tt>VertexIndexMap</tt> must be a model of
236   <a href="../../property_map/doc/ReadablePropertyMap.html">Readable Property Map</a>. The value type of the map must be an
237   integer type. The vertex descriptor type of the graph needs to be
238   usable as the key type of the map.<br>
239   <b>Default:</b> <tt>get(vertex_index, g)</tt>.
240     Note: if you use this default, make sure your graph has
241     an internal <tt>vertex_index</tt> property. For example,
242     <tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
243     not have an internal <tt>vertex_index</tt> property.
244    <br>
245 
246   <b>Python</b>: Unsupported parameter.
247 </blockquote>
248 
249 OUT: <tt>predecessor_map(PredecessorMap p_map)</tt>
250 <blockquote>
251   The predecessor map records the edges in the shortest path tree, the tree computed
252   by the traversal of the graph. Upon completion of the algorithm, the edges
253   <i>(p[u],u)</i> for all <i>u in V</i> are in the tree.  The shortest path
254   from vertex <i>s</i> to each vertex <i>v</i> in the graph consists of the
255   vertices <i>v</i>, <i>p[v]</i>, <i>p[p[v]]</i>, and so on until <i>s</i> is
256   reached, in reverse order.  The
257   tree is not guaranteed to be a minimum spanning tree. If <i>p[u] =
258   u</i> then <i>u</i> is either the source vertex or a vertex that is
259   not reachable from the source.  The <tt>PredecessorMap</tt> type
260   must be a <a
261   href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
262   Property Map</a> whose key and value types are the same as the vertex
263   descriptor type of the graph.<br>
264   <b>Default:</b> <tt>dummy_property_map</tt><br>
265 
266   <b>Python</b>: Must be a <tt>vertex_vertex_map</tt> for the graph.<br>
267 </blockquote>
268 
269 UTIL/OUT: <tt>distance_map(DistanceMap d_map)</tt>
270 <blockquote>
271   The shortest path weight from the source vertex <tt>s</tt> to each
272   vertex in the graph <tt>g</tt> is recorded in this property map. The
273   shortest path weight is the sum of the edge weights along the
274   shortest path.  The type <tt>DistanceMap</tt> must be a model of <a
275   href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
276   Property Map</a>. The vertex descriptor type of the graph needs to
277   be usable as the key type of the distance map.
278 
279   The value type of the distance map is the element type of a <a
280   href="./Monoid.html">Monoid</a> formed with the <tt>combine</tt>
281   function object and the <tt>zero</tt> object for the identity
282   element. Also the distance value type must have a <a
283   href="http://www.boost.org/sgi/stl/StrictWeakOrdering.html">
284   StrictWeakOrdering</a> provided by the <tt>compare</tt> function
285   object.<br>
286   <b>Default:</b> <a
287   href="../../property_map/doc/iterator_property_map.html">
288   <tt>iterator_property_map</tt></a> created from a
289   <tt>std::vector</tt> of the <tt>WeightMap</tt>'s value type of size
290   <tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index
291   map.<br>
292 
293   <b>Python</b>: Must be a <tt>vertex_double_map</tt> for the graph.<br>
294 </blockquote>
295 
296 IN: <tt>distance_compare(CompareFunction cmp)</tt>
297 <blockquote>
298   This function is use to compare distances to determine which vertex
299   is closer to the source vertex.  The <tt>CompareFunction</tt> type
300   must be a model of <a
301   href="http://www.boost.org/sgi/stl/BinaryPredicate.html">Binary
302   Predicate</a> and have argument types that match the value type of
303   the <tt>DistanceMap</tt> property map.<br>
304 
305   <b>Default:</b>
306   <tt>std::less&lt;D&gt;</tt> with <tt>D=typename
307   property_traits&lt;DistanceMap&gt;::value_type</tt><br>
308 
309   <b>Python</b>: Unsupported parameter.
310 </blockquote>
311 
312 IN: <tt>distance_combine(CombineFunction cmb)</tt>
313 <blockquote>
314   This function is used to combine distances to compute the distance
315   of a path. The <tt>CombineFunction</tt> type must be a model of <a
316   href="http://www.boost.org/sgi/stl/BinaryFunction.html">Binary
317   Function</a>. The first argument type of the binary function must
318   match the value type of the <tt>DistanceMap</tt> property map and
319   the second argument type must match the value type of the
320   <tt>WeightMap</tt> property map.  The result type must be the same
321   type as the distance value type.<br>
322 
323   <b>Default:</b> <tt>std::plus&lt;D&gt;</tt> with
324    <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
325 
326   <b>Python</b>: Unsupported parameter.
327 </blockquote>
328 
329 IN: <tt>distance_inf(D inf)</tt>
330 <blockquote>
331   The <tt>inf</tt> object must be the greatest value of any <tt>D</tt> object.
332   That is, <tt>compare(d, inf) == true</tt> for any <tt>d != inf</tt>.
333   The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.  Edges
334   are assumed to have a weight less than (using <tt>distance_compare</tt> for
335   comparison) this value.<br>
336   <b>Default:</b> <tt>std::numeric_limits&lt;D&gt;::max()</tt><br>
337 
338   <b>Python</b>: Unsupported parameter.
339 </blockquote>
340 
341 IN: <tt>distance_zero(D zero)</tt>
342 <blockquote>
343   The <tt>zero</tt> value must be the identity element for the
344   <a href="./Monoid.html">Monoid</a> formed by the distance values
345   and the <tt>combine</tt> function object.
346   The type <tt>D</tt> is the value type of the <tt>DistanceMap</tt>.<br>
347   <b>Default:</b> <tt>D()</tt>with
348    <tt>D=typename property_traits&lt;DistanceMap&gt;::value_type</tt><br>
349 
350   <b>Python</b>: Unsupported parameter.
351 </blockquote>
352 
353 UTIL/OUT: <tt>color_map(ColorMap c_map)</tt>
354 <blockquote>
355   This is used during the execution of the algorithm to mark the
356   vertices. The vertices start out white and become gray when they are
357   inserted in the queue. They then turn black when they are removed
358   from the queue. At the end of the algorithm, vertices reachable from
359   the source vertex will have been colored black. All other vertices
360   will still be white. The type <tt>ColorMap</tt> must be a model of
361   <a href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
362   Property Map</a>. A vertex descriptor must be usable as the key type
363   of the map, and the value type of the map must be a model of
364   <a href="./ColorValue.html">Color Value</a>.<br>
365   <b>Default:</b> an <a
366   href="../../property_map/doc/iterator_property_map.html">
367   <tt>iterator_property_map</tt></a> created from a <tt>std::vector</tt>
368   of <tt>default_color_type</tt> of size <tt>num_vertices(g)</tt> and
369   using the <tt>i_map</tt> for the index map.<br>
370 
371   <b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for
372   the graph.
373 </blockquote>
374 
375 OUT: <tt>visitor(DijkstraVisitor v)</tt>
376 <blockquote>
377   Use this to specify actions that you would like to happen
378   during certain event points within the algorithm.
379   The type <tt>DijkstraVisitor</tt> must be a model of the
380   <a href="./DijkstraVisitor.html">Dijkstra Visitor</a> concept.
381  The visitor object is passed by value <a
382   href="#2">[2]</a>.<br>
383   <b>Default:</b> <tt>dijkstra_visitor&lt;null_visitor&gt;</tt><br>
384 
385   <b>Python</b>: The parameter should be an object that derives from
386   the <a
387   href="DijkstraVisitor.html#python"><tt>DijkstraVisitor</tt></a> type
388   of the graph.
389 </blockquote>
390 
391 
392 <H3>Complexity</H3>
393 
394 <P>
395 The time complexity is <i>O(V log V + E)</i>.
396 
397 
398 <h3>Visitor Event Points</h3>
399 
400 <ul>
401 <li><b><tt>vis.initialize_vertex(u, g)</tt></b>
402   is invoked on each vertex in the graph before the start of the
403   algorithm.
404 <li><b><tt>vis.examine_vertex(u, g)</tt></b>
405   is invoked on a vertex as it is removed from the priority queue
406   and added to set <i>S</i>. At this point we know that <i>(p[u],u)</i>
407   is a shortest-paths tree edge so
408   <i>d[u] = delta(s,u) = d[p[u]] + w(p[u],u)</i>. Also, the distances
409   of the examined vertices is monotonically increasing
410   <i>d[u<sub>1</sub>] <= d[u<sub>2</sub>] <= d[u<sub>n</sub>]</i>.
411 <li><b><tt>vis.examine_edge(e, g)</tt></b>
412   is invoked on each out-edge of a vertex immediately after it has
413   been added to set <i>S</i>.
414 <li><b><tt>vis.edge_relaxed(e, g)</tt></b>
415   is invoked on edge <i>(u,v)</i> if <i>d[u] + w(u,v) < d[v]</i>.
416   The edge <i>(u,v)</i> that participated in the last
417   relaxation for vertex <i>v</i> is an edge in the shortest paths tree.
418 <li><b><tt>vis.discover_vertex(v, g)</tt></b>
419   is invoked on vertex <i>v</i> when the edge
420   <i>(u,v)</i> is examined and <i>v</i> is WHITE. Since
421   a vertex is colored GRAY when it is discovered,
422   each reachable vertex is discovered exactly once. This
423   is also when the vertex is inserted into the priority queue.
424 <li><b><tt>vis.edge_not_relaxed(e, g)</tt></b>
425   is invoked if the edge is not relaxed (see above).
426 <li><b><tt>vis.finish_vertex(u, g)</tt></b>
427    is invoked on a vertex after all of its out edges have
428   been examined.
429 </ul>
430 
431 <H3>Example</H3>
432 
433 <P>
434 See <a href="../example/dijkstra-example.cpp">
435 <TT>example/dijkstra-example.cpp</TT></a> for an example of using Dijkstra's
436 algorithm.
437 
438 <H3>See also</H3> <a href="dijkstra_shortest_paths_no_color_map.html">dijkstra_shortest_paths_no_color_map</a> for a version of Dijkstra's shortest path that does not use a color map.
439 
440 <H3>Notes</H3>
441 
442 <a name="1">[1]</a>
443 The algorithm used here saves a little space by not putting all <i>V -
444 S</i> vertices in the priority queue at once, but instead only those
445 vertices in <i>V - S</i> that are discovered and therefore have a
446 distance less than infinity.
447 
448 <p><a name="2">[2]</a>
449   Since the visitor parameter is passed by value, if your visitor
450   contains state then any changes to the state during the algorithm
451   will be made to a copy of the visitor object, not the visitor object
452   passed in. Therefore you may want the visitor to hold this state by
453   pointer or reference.
454 
455 <br>
456 <HR>
457 <TABLE>
458 <TR valign=top>
459 <TD nowrap>Copyright &copy; 2000-2001</TD><TD>
460 <A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>, Indiana University (<A HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)
461 </TD></TR></TABLE>
462 
463 </BODY>
464 </HTML>
465