1[section:sf_implementation Additional Implementation Notes] 2 3The majority of the implementation notes are included with the documentation 4of each function or distribution. The notes here are of a more general nature, 5and reflect more the general implementation philosophy used. 6 7[h4 Implementation philosophy] 8 9"First be right, then be fast." 10 11There will always be potential compromises 12to be made between speed and accuracy. 13It may be possible to find faster methods, 14particularly for certain limited ranges of arguments, 15but for most applications of math functions and distributions, 16we judge that speed is rarely as important as accuracy. 17 18So our priority is accuracy. 19 20To permit evaluation of accuracy of the special functions, 21production of extremely accurate tables of test values 22has received considerable effort. 23 24(It also required much CPU effort - 25there was some danger of molten plastic dripping from the bottom of JM's laptop, 26so instead, PAB's Dual-core desktop was kept 50% busy for [*days] 27calculating some tables of test values!) 28 29For a specific RealType, say `float` or `double`, 30it may be possible to find approximations for some functions 31that are simpler and thus faster, but less accurate 32(perhaps because there are no refining iterations, 33for example, when calculating inverse functions). 34 35If these prove accurate enough to be "fit for his purpose", 36then a user may substitute his custom specialization. 37 38For example, there are approximations dating back from times 39when computation was a [*lot] more expensive: 40 41H Goldberg and H Levine, Approximate formulas for 42percentage points and normalisation of t and chi squared, 43Ann. Math. Stat., 17(4), 216 - 225 (Dec 1946). 44 45A H Carter, Approximations to percentage points of the z-distribution, 46Biometrika 34(2), 352 - 358 (Dec 1947). 47 48These could still provide sufficient accuracy for some speed-critical applications. 49 50[h4 Accuracy and Representation of Test Values] 51 52In order to be accurate enough for as many as possible real types, 53constant values are given to 50 decimal digits if available 54(though many sources proved only accurate near to 64-bit double precision). 55Values are specified as long double types by appending L, 56unless they are exactly representable, for example integers, or binary fractions like 0.125. 57This avoids the risk of loss of accuracy converting from double, the default type. 58Values are used after `static_cast<RealType>(1.2345L)` 59to provide the appropriate RealType for spot tests. 60 61Functions that return constants values, like kurtosis for example, are written as 62 63`static_cast<RealType>(-3) / 5;` 64 65to provide the most accurate value 66that the compiler can compute for the real type. 67(The denominator is an integer and so will be promoted exactly). 68 69So tests for one third, *not* exactly representable with radix two floating-point, 70(should) use, for example: 71 72`static_cast<RealType>(1) / 3;` 73 74If a function is very sensitive to changes in input, 75specifying an inexact value as input (such as 0.1) can throw 76the result off by a noticeable amount: 0.1f is "wrong" 77by ~1e-7 for example (because 0.1 has no exact binary representation). 78That is why exact binary values - halves, quarters, and eighths etc - 79are used in test code along with the occasional fraction `a/b` with `b` 80a power of two (in order to ensure that the result is an exactly 81representable binary value). 82 83[h4 Tolerance of Tests] 84 85The tolerances need to be set to the maximum of: 86 87* Some epsilon value. 88* The accuracy of the data (often only near 64-bit double). 89 90Otherwise when long double has more digits than the test data, then no 91amount of tweaking an epsilon based tolerance will work. 92 93A common problem is when tolerances that are suitable for implementations 94like Microsoft VS.NET where double and long double are the same size: 95tests fail on other systems where long double is more accurate than double. 96Check first that the suffix L is present, and then that the tolerance is big enough. 97 98[h4 Handling Unsuitable Arguments] 99 100In 101[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1665.pdf Errors in Mathematical Special Functions], J. Marraffino & M. Paterno 102it is proposed that signalling a domain error is mandatory 103when the argument would give an mathematically undefined result. 104 105*Guideline 1 106 107[:A mathematical function is said to be defined at a point a = (a1, a2, . . .) 108if the limits as x = (x1, x2, . . .) 'approaches a from all directions agree'. 109The defined value may be any number, or +infinity, or -infinity.] 110 111Put crudely, if the function goes to + infinity 112and then emerges 'round-the-back' with - infinity, 113it is NOT defined. 114 115[:The library function which approximates a mathematical function shall signal a domain error 116whenever evaluated with argument values for which the mathematical function is undefined.] 117 118*Guideline 2 119 120[:The library function which approximates a mathematical function 121shall signal a domain error whenever evaluated with argument values 122for which the mathematical function obtains a non-real value.] 123 124This implementation is believed to follow these proposals and to assist compatibility with 125['ISO/IEC 9899:1999 Programming languages - C] 126and with the 127[@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5]. 128[link math_toolkit.error_handling See also domain_error]. 129 130See __policy_ref for details of the error handling policies that should allow 131a user to comply with any of these recommendations, as well as other behaviour. 132 133See [link math_toolkit.error_handling error handling] 134for a detailed explanation of the mechanism, and 135[link math_toolkit.stat_tut.weg.error_eg error_handling example] 136and 137[@../../example/error_handling_example.cpp error_handling_example.cpp] 138 139[caution If you enable throw but do NOT have try & catch block, 140then the program will terminate with an uncaught exception and probably abort. 141Therefore to get the benefit of helpful error messages, enabling *all* exceptions 142*and* using try&catch is recommended for all applications. 143However, for simplicity, this is not done for most examples.] 144 145[h4 Handling of Functions that are Not Mathematically defined] 146 147Functions that are not mathematically defined, 148like the Cauchy mean, fail to compile by default. 149A [link math_toolkit.pol_ref.assert_undefined policy] 150allows control of this. 151 152If the policy is to permit undefined functions, then calling them 153throws a domain error, by default. But the error policy can be set 154to not throw, and to return NaN instead. For example, 155 156`#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error` 157 158appears before the first Boost include, 159then if the un-implemented function is called, 160mean(cauchy<>()) will return std::numeric_limits<T>::quiet_NaN(). 161 162[warning If `std::numeric_limits<T>::has_quiet_NaN` is false 163(for example, if T is a User-defined type without NaN support), 164then an exception will always be thrown when a domain error occurs. 165Catching exceptions is therefore strongly recommended.] 166 167[h4 Median of distributions] 168 169There are many distributions for which we have been unable to find an analytic formula, 170and this has deterred us from implementing 171[@http://en.wikipedia.org/wiki/Median median functions], the mid-point in a list of values. 172 173However a useful numerical approximation for distribution `dist` 174is available as usual as an accessor non-member function median using `median(dist)`, 175that may be evaluated (in the absence of an analytic formula) by calling 176 177`quantile(dist, 0.5)` (this is the /mathematical/ definition of course). 178 179[@http://www.amstat.org/publications/jse/v13n2/vonhippel.html Mean, Median, and Skew, Paul T von Hippel] 180 181[@http://documents.wolfram.co.jp/teachersedition/MathematicaBook/24.5.html Descriptive Statistics,] 182 183[@http://documents.wolfram.co.jp/v5/Add-onsLinks/StandardPackages/Statistics/DescriptiveStatistics.html and ] 184 185[@http://documents.wolfram.com/v5/TheMathematicaBook/AdvancedMathematicsInMathematica/NumericalOperationsOnData/3.8.1.html 186Mathematica Basic Statistics.] give more detail, in particular for discrete distributions. 187 188 189[h4 Handling of Floating-Point Infinity] 190 191Some functions and distributions are well defined with + or - infinity as 192argument(s), but after some experiments with handling infinite arguments 193as special cases, we concluded that it was generally more useful to forbid this, 194and instead to return the result of __domain_error. 195 196Handling infinity as special cases is additionally complicated 197because, unlike built-in types on most - but not all - platforms, 198not all User-Defined Types are 199specialized to provide `std::numeric_limits<RealType>::infinity()` 200and would return zero rather than any representation of infinity. 201 202The rationale is that non-finiteness may happen because of error 203or overflow in the users code, and it will be more helpful for this 204to be diagnosed promptly rather than just continuing. 205The code also became much more complicated, more error-prone, 206much more work to test, and much less readable. 207 208However in a few cases, for example normal, where we felt it obvious, 209we have permitted argument(s) to be infinity, 210provided infinity is implemented for the `RealType` on that implementation, 211and it is supported and tested by the distribution. 212 213The range for these distributions is set to infinity if supported by the platform, 214(by testing `std::numeric_limits<RealType>::has_infinity`) 215else the maximum value provided for the `RealType` by Boost.Math. 216 217Testing for has_infinity is obviously important for arbitrary precision types 218where infinity makes much less sense than for IEEE754 floating-point. 219 220So far we have not set `support()` function (only range) 221on the grounds that the PDF is uninteresting/zero for infinities. 222 223Users who require special handling of infinity (or other specific value) can, 224of course, always intercept this before calling a distribution or function 225and return their own choice of value, or other behavior. 226This will often be simpler than trying to handle the aftermath of the error policy. 227 228Overflow, underflow, denorm can be handled using __error_policy. 229 230We have also tried to catch boundary cases where the mathematical specification 231would result in divide by zero or overflow and signalling these similarly. 232What happens at (and near), poles can be controlled through __error_policy. 233 234[h4 Scale, Shape and Location] 235 236We considered adding location and scale to the list of functions, for example: 237 238 template <class RealType> 239 inline RealType scale(const triangular_distribution<RealType>& dist) 240 { 241 RealType lower = dist.lower(); 242 RealType mode = dist.mode(); 243 RealType upper = dist.upper(); 244 RealType result; // of checks. 245 if(false == detail::check_triangular(BOOST_CURRENT_FUNCTION, lower, mode, upper, &result)) 246 { 247 return result; 248 } 249 return (upper - lower); 250 } 251 252but found that these concepts are not defined (or their definition too contentious) 253for too many distributions to be generally applicable. 254Because they are non-member functions, they can be added if required. 255 256[h4 Notes on Implementation of Specific Functions & Distributions] 257 258* Default parameters for the Triangular Distribution. 259We are uncertain about the best default parameters. 260Some sources suggest that the Standard Triangular Distribution has 261lower = 0, mode = half and upper = 1. 262However as a approximation for the normal distribution, 263the most common usage, lower = -1, mode = 0 and upper = 1 would be more suitable. 264 265[h4 Rational Approximations Used] 266 267Some of the special functions in this library are implemented via 268rational approximations. These are either taken from the literature, 269or devised by John Maddock using 270[link math_toolkit.internals.minimax our Remez code]. 271 272Rational rather than Polynomial approximations are used to ensure 273accuracy: polynomial approximations are often wonderful up to 274a certain level of accuracy, but then quite often fail to provide much greater 275accuracy no matter how many more terms are added. 276 277Our own approximations were devised either for added accuracy 278(to support 128-bit long doubles for example), or because 279literature methods were unavailable or under non-BSL 280compatible license. Our Remez code is known to produce good 281agreement with literature results in fairly simple "toy" cases. 282All approximations were checked 283for convergence and to ensure that 284they were not ill-conditioned (the coefficients can give a 285theoretically good solution, but the resulting rational function 286may be un-computable at fixed precision). 287 288Recomputing using different 289Remez implementations may well produce differing coefficients: the 290problem is well known to be ill conditioned in general, and our Remez implementation 291often found a broad and ill-defined minima for many of these approximations 292(of course for simple "toy" examples like approximating `exp` the minima 293is well defined, and the coefficients should agree no matter whose Remez 294implementation is used). This should not in general effect the validity 295of the approximations: there's good literature supporting the idea that 296coefficients can be "in error" without necessarily adversely effecting 297the result. Note that "in error" has a special meaning in this context, 298see [@http://front.math.ucdavis.edu/0101.5042 299"Approximate construction of rational approximations and the effect 300of error autocorrection.", Grigori Litvinov, eprint arXiv:math/0101042]. 301Therefore the coefficients still need to be accurately calculated, even if they can 302be in error compared to the "true" minimax solution. 303 304[h4 Representation of Mathematical Constants] 305 306A macro BOOST_DEFINE_MATH_CONSTANT in constants.hpp is used 307to provide high accuracy constants to mathematical functions and distributions, 308since it is important to provide values uniformly for both built-in 309float, double and long double types, 310and for User Defined types in __multiprecision like __cpp_dec_float. 311and others like NTL::quad_float and NTL::RR. 312 313To permit calculations in this Math ToolKit and its tests, (and elsewhere) 314at about 100 decimal digits with NTL::RR type, 315it is obviously necessary to define constants to this accuracy. 316 317However, some compilers do not accept decimal digits strings as long as this. 318So the constant is split into two parts, with the 1st containing at least 319long double precision, and the 2nd zero if not needed or known. 320The 3rd part permits an exponent to be provided if necessary (use zero if none) - 321the other two parameters may only contain decimal digits (and sign and decimal point), 322and may NOT include an exponent like 1.234E99 (nor a trailing F or L). 323The second digit string is only used if T is a User-Defined Type, 324when the constant is converted to a long string literal and lexical_casted to type T. 325(This is necessary because you can't use a numeric constant 326since even a long double might not have enough digits). 327 328For example, pi is defined: 329 330 BOOST_DEFINE_MATH_CONSTANT(pi, 331 3.141592653589793238462643383279502884197169399375105820974944, 332 5923078164062862089986280348253421170679821480865132823066470938446095505, 333 0) 334 335And used thus: 336 337 using namespace boost::math::constants; 338 339 double diameter = 1.; 340 double radius = diameter * pi<double>(); 341 342 or boost::math::constants::pi<NTL::RR>() 343 344Note that it is necessary (if inconvenient) to specify the type explicitly. 345 346So you cannot write 347 348 double p = boost::math::constants::pi<>(); // could not deduce template argument for 'T' 349 350Neither can you write: 351 352 double p = boost::math::constants::pi; // Context does not allow for disambiguation of overloaded function 353 double p = boost::math::constants::pi(); // Context does not allow for disambiguation of overloaded function 354 355[h4 Thread safety] 356 357Reporting of error by setting `errno` should be thread-safe already 358(otherwise none of the std lib math functions would be thread safe?). 359If you turn on reporting of errors via exceptions, `errno` gets left unused anyway. 360 361For normal C++ usage, the Boost.Math `static const` constants are now thread-safe so 362for built-in real-number types: `float`, `double` and `long double` are all thread safe. 363 364For User_defined types, for example, __cpp_dec_float, 365the Boost.Math should also be thread-safe, 366(thought we are unsure how to rigorously prove this). 367 368(Thread safety has received attention in the C++11 Standard revision, 369so hopefully all compilers will do the right thing here at some point.) 370 371[h4 Sources of Test Data] 372 373We found a large number of sources of test data. 374We have assumed that these are /"known good"/ 375if they agree with the results from our test 376and only consulted other sources for their /'vote'/ 377in the case of serious disagreement. 378The accuracy, actual and claimed, vary very widely. 379Only [@http://functions.wolfram.com/ Wolfram Mathematica functions] 380provided a higher accuracy than 381C++ double (64-bit floating-point) and was regarded as 382the most-trusted source by far. 383The __R provided the widest range of distributions, 384but the usual Intel X86 distribution uses 64-but doubles, 385so our use was limited to the 15 to 17 decimal digit accuracy. 386 387A useful index of sources is: 388[@http://www.sal.hut.fi/Teaching/Resources/ProbStat/table.html 389Web-oriented Teaching Resources in Probability and Statistics] 390 391[@http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm Statlet]: 392Is a Javascript application that calculates and plots probability distributions, 393and provides the most complete range of distributions: 394 395[:Bernoulli, Binomial, discrete uniform, geometric, hypergeometric, 396negative binomial, Poisson, beta, Cauchy-Lorentz, chi-squared, Erlang, 397exponential, extreme value, Fisher, gamma, Laplace, logistic, 398lognormal, normal, Pareto, Student's t, triangular, uniform, and Weibull.] 399 400It calculates pdf, cdf, survivor, log survivor, hazard, tail areas, 401& critical values for 5 tail values. 402 403It is also the only independent source found for the Weibull distribution; 404unfortunately it appears to suffer from very poor accuracy in areas where 405the underlying special function is known to be difficult to implement. 406 407[h4 Testing for Invalid Parameters to Functions and Constructors] 408 409After finding that some 'bad' parameters (like NaN) were not throwing 410a `domain_error` exception as they should, a function 411 412`check_out_of_range` (in `test_out_of_range.hpp`) 413was devised by JM to check 414(using Boost.Test's BOOST_CHECK_THROW macro) 415that bad parameters passed to constructors and functions throw `domain_error` exceptions. 416 417Usage is `check_out_of_range< DistributionType >(list-of-params);` 418Where list-of-params is a list of *valid* parameters from which the distribution can be constructed 419- ie the same number of args are passed to the function, 420as are passed to the distribution constructor. 421 422The values of the parameters are not important, but must be *valid* to pass the constructor checks; 423the default values are suitable, but must be explicitly provided, for example: 424 425 check_out_of_range<extreme_value_distribution<RealType> >(1, 2); 426 427Checks made are: 428 429* Infinity or NaN (if available) passed in place of each of the valid params. 430* Infinity or NaN (if available) as a random variable. 431* Out-of-range random variable passed to pdf and cdf 432(ie outside of "range(DistributionType)"). 433* Out-of-range probability passed to quantile function and complement. 434 435but does *not* check finite but out-of-range parameters to the constructor 436because these are specific to each distribution, for example: 437 438 BOOST_CHECK_THROW(pdf(pareto_distribution<RealType>(0, 1), 0), std::domain_error); 439 BOOST_CHECK_THROW(pdf(pareto_distribution<RealType>(1, 0), 0), std::domain_error); 440 441checks `scale` and `shape` parameters are both > 0 442by checking that `domain_error` exception is thrown if either are == 0. 443 444(Use of `check_out_of_range` function may mean that some previous tests are now redundant). 445 446It was also noted that if more than one parameter is bad, 447then only the first detected will be reported by the error message. 448 449[h4 Creating and Managing the Equations] 450 451Equations that fit on a single line can most easily be produced by inline Quickbook code 452using templates for Unicode Greek and Unicode Math symbols. 453All Greek letter and small set of Math symbols is available at 454/boost-path/libs/math/doc/sf_and_dist/html4_symbols.qbk 455 456Where equations need to use more than one line, real Math editors were used. 457 458The primary source for the equations is now 459[@http://www.w3.org/Math/ MathML]: see the 460*.mml files in libs\/math\/doc\/sf_and_dist\/equations\/. 461 462These are most easily edited by a GUI editor such as 463[@http://mathcast.sourceforge.net/home.html Mathcast], 464please note that the equation editor supplied with Open Office 465currently mangles these files and should not currently be used. 466 467Conversion to SVG was achieved using 468[@https://sourceforge.net/projects/svgmath/ SVGMath] and a command line 469such as: 470 471[pre 472$for file in *.mml; do 473>/cygdrive/c/Python25/python.exe 'C:\download\open\SVGMath-0.3.1\math2svg.py' \\ 474>>$file > $(basename $file .mml).svg 475>done 476] 477 478See also the section on "Using Python to run Inkscape" and 479"Using inkscape to convert scalable vector SVG files to Portable Network graphic PNG". 480 481Note that SVGMath requires that the mml files are *not* wrapped in an XHTML 482XML wrapper - this is added by Mathcast by default - one workaround is to 483copy an existing mml file and then edit it with Mathcast: the existing 484format should then be preserved. This is a bug in the XML parser used by 485SVGMath which the author is aware of. 486 487If necessary the XHTML wrapper can be removed with: 488 489[pre cat filename | tr -d "\\r\\n" \| sed -e 's\/.*\\(<math\[^>\]\*>.\*<\/math>\\).\*\/\\1\/' > newfile] 490 491Setting up fonts for SVGMath is currently rather tricky, on a Windows XP system 492JM's font setup is the same as the sample config file provided with SVGMath 493but with: 494 495[pre 496 <!\-\- Double\-struck \-\-> 497 <mathvariant name\="double\-struck" family\="Mathematica7, Lucida Sans Unicode"\/> 498] 499 500changed to: 501 502[pre 503 <!\-\- Double\-struck \-\-> 504 <mathvariant name\="double\-struck" family\="Lucida Sans Unicode"\/> 505] 506 507Note that unlike the sample config file supplied with SVGMath, this does not 508make use of the [@http://support.wolfram.com/technotes/fonts/windows/latestfonts.html Mathematica 7 font] 509as this lacks sufficient Unicode information 510for it to be used with either SVGMath or XEP "as is". 511 512Also note that the SVG files in the repository are almost certainly 513Windows-specific since they reference various Windows Fonts. 514 515PNG files can be created from the SVGs using 516[@http://xmlgraphics.apache.org/batik/tools/rasterizer.html Batik] 517and a command such as: 518 519[pre java -jar 'C:\download\open\batik-1.7\batik-rasterizer.jar' -dpi 120 *.svg] 520 521Or using Inkscape (File, Export bitmap, Drawing tab, bitmap size (default size, 100 dpi), Filename (default). png) 522 523or Using Cygwin, a command such as: 524 525[pre for file in *.svg; do 526 /cygdrive/c/progra~1/Inkscape/inkscape -d 120 -e $(cygpath -a -w $(basename $file .svg).png) $(cygpath -a -w $file); 527done] 528 529Using BASH 530 531[pre # Convert single SVG to PNG file. 532# /c/progra~1/Inkscape/inkscape -d 120 -e a.png a.svg 533] 534 535or to convert All files in folder SVG to PNG. 536 537[pre 538for file in *.svg; do 539/c/progra~1/Inkscape/inkscape -d 120 -e $(basename $file .svg).png $file 540done 541] 542 543Currently Inkscape seems to generate the better looking PNGs. 544 545The PDF is generated into \pdf\math.pdf 546using a command from a shell or command window with current directory 547\math_toolkit\libs\math\doc\sf_and_dist, typically: 548 549[pre bjam -a pdf >math_pdf.log] 550 551Note that XEP will have to be configured to *use and embed* 552whatever fonts are used by the SVG equations 553(almost certainly editing the sample xep.xml provided by the XEP installation). 554If you fail to do this you will get XEP warnings in the log file like 555 556[pre \[warning\]could not find any font family matching "Times New Roman"; replaced by Helvetica] 557 558(html is the default so it is generated at libs\math\doc\html\index.html 559using command line >bjam -a > math_toolkit.docs.log). 560 561 <!-- Sample configuration for Windows TrueType fonts. --> 562is provided in the xep.xml downloaded, but the Windows TrueType fonts are commented out. 563 564JM's XEP config file \xep\xep.xml has the following font configuration section added: 565 566[pre 567 <font\-group xml:base\="file:\/C:\/Windows\/Fonts\/" label\="Windows TrueType" embed\="true" subset\="true"> 568 <font\-family name\="Arial"> 569 <font><font\-data ttf\="arial.ttf"\/><\/font> 570 <font style\="oblique"><font\-data ttf\="ariali.ttf"\/><\/font> 571 <font weight\="bold"><font\-data ttf\="arialbd.ttf"\/><\/font> 572 <font weight\="bold" style\="oblique"><font\-data ttf\="arialbi.ttf"\/><\/font> 573 <\/font\-family> 574 575 <font\-family name\="Times New Roman" ligatures\="fi fl"> 576 <font><font\-data ttf\="times.ttf"\/><\/font> 577 <font style\="italic"><font\-data ttf\="timesi.ttf"\/><\/font> 578 <font weight\="bold"><font\-data ttf\="timesbd.ttf"\/><\/font> 579 <font weight\="bold" style\="italic"><font\-data ttf\="timesbi.ttf"\/><\/font> 580 <\/font\-family> 581 582 <font\-family name\="Courier New"> 583 <font><font\-data ttf\="cour.ttf"\/><\/font> 584 <font style\="oblique"><font\-data ttf\="couri.ttf"\/><\/font> 585 <font weight\="bold"><font\-data ttf\="courbd.ttf"\/><\/font> 586 <font weight\="bold" style\="oblique"><font\-data ttf\="courbi.ttf"\/><\/font> 587 <\/font\-family> 588 589 <font\-family name\="Tahoma" embed\="true"> 590 <font><font\-data ttf\="tahoma.ttf"\/><\/font> 591 <font weight\="bold"><font\-data ttf\="tahomabd.ttf"\/><\/font> 592 <\/font\-family> 593 594 <font\-family name\="Verdana" embed\="true"> 595 <font><font\-data ttf\="verdana.ttf"\/><\/font> 596 <font style\="oblique"><font\-data ttf\="verdanai.ttf"\/><\/font> 597 <font weight\="bold"><font\-data ttf\="verdanab.ttf"\/><\/font> 598 <font weight\="bold" style\="oblique"><font\-data ttf\="verdanaz.ttf"\/><\/font> 599 <\/font\-family> 600 601 <font\-family name\="Palatino" embed\="true" ligatures\="ff fi fl ffi ffl"> 602 <font><font\-data ttf\="pala.ttf"\/><\/font> 603 <font style\="italic"><font\-data ttf\="palai.ttf"\/><\/font> 604 <font weight\="bold"><font\-data ttf\="palab.ttf"\/><\/font> 605 <font weight\="bold" style\="italic"><font\-data ttf\="palabi.ttf"\/><\/font> 606 <\/font\-family> 607 608 <font-family name="Lucida Sans Unicode"> 609 <!-- <font><font-data ttf="lsansuni.ttf"></font> --> 610 <!-- actually called l_10646.ttf on Windows 2000 and Vista Sp1 --> 611 <font><font-data ttf="l_10646.ttf"/></font> 612 </font-family> 613] 614 615PAB had to alter his because the Lucida Sans Unicode font had a different name. 616Other changes are very likely to be required if you are not using Windows. 617 618XZ authored his equations using the venerable Latex, JM converted these to 619MathML using [@http://gentoo-wiki.com/HOWTO_Convert_LaTeX_to_HTML_with_MathML mxlatex]. 620This process is currently unreliable and required some manual intervention: 621consequently Latex source is not considered a viable route for the automatic 622production of SVG versions of equations. 623 624Equations are embedded in the quickbook source using the /equation/ 625template defined in math.qbk. This outputs Docbook XML that looks like: 626 627[pre 628<inlinemediaobject> 629<imageobject role="html"> 630<imagedata fileref="../equations/myfile.png"></imagedata> 631</imageobject> 632<imageobject role="print"> 633<imagedata fileref="../equations/myfile.svg"></imagedata> 634</imageobject> 635</inlinemediaobject> 636] 637 638MathML is not currently present in the Docbook output, or in the 639generated HTML: this needs further investigation. 640 641[h4 Producing Graphs] 642 643Graphs were produced in SVG format and then converted to PNG's using the same 644process as the equations. 645 646The programs 647`/libs/math/doc/sf_and_dist/graphs/dist_graphs.cpp` 648and `/libs/math/doc/sf_and_dist/graphs/sf_graphs.cpp` 649generate the SVG's directly using the 650[@http://code.google.com/soc/2007/boost/about.html Google Summer of Code 2007] 651project of Jacob Voytko (whose work so far, 652considerably enhanced and now reasonably mature and usable, by Paul A. Bristow, 653is at .\boost-sandbox\SOC\2007\visualization). 654 655[endsect] [/section:sf_implementation Implementation Notes] 656 657[/ 658 Copyright 2006, 2007, 2010 John Maddock and Paul A. Bristow. 659 Distributed under the Boost Software License, Version 1.0. 660 (See accompanying file LICENSE_1_0.txt or copy at 661 http://www.boost.org/LICENSE_1_0.txt). 662] 663 664 665