• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:inverse_gamma_dist Inverse Gamma Distribution]
2
3``#include <boost/math/distributions/inverse_gamma.hpp>``
4
5   namespace boost{ namespace math{
6
7   template <class RealType = double,
8             class ``__Policy``   = ``__policy_class`` >
9   class inverse_gamma_distribution
10   {
11   public:
12      typedef RealType value_type;
13      typedef Policy   policy_type;
14
15      inverse_gamma_distribution(RealType shape, RealType scale = 1)
16
17      RealType shape()const;
18      RealType scale()const;
19   };
20
21   }} // namespaces
22
23The inverse_gamma distribution is a continuous probability distribution
24of the reciprocal of a variable distributed according to the gamma distribution.
25
26The inverse_gamma distribution is used in Bayesian statistics.
27
28See [@http://en.wikipedia.org/wiki/Inverse-gamma_distribution inverse gamma distribution].
29
30[@http://rss.acs.unt.edu/Rdoc/library/pscl/html/igamma.html R inverse gamma distribution functions].
31
32[@http://reference.wolfram.com/mathematica/ref/InverseGammaDistribution.html Wolfram inverse gamma distribution].
33
34See also __gamma_distrib.
35
36[note
37In spite of potential confusion with the inverse gamma function, this
38distribution *does* provide the typedef:
39
40``typedef inverse_gamma_distribution<double> gamma;``
41
42If you want a `double` precision gamma distribution you can use
43
44``boost::math::inverse_gamma_distribution<>``
45
46or you can write `inverse_gamma my_ig(2, 3);`]
47
48For shape parameter [alpha] and scale parameter [beta], it is defined
49by the probability density function (PDF):
50
51[expression f(x;[alpha], [beta]) = [beta][super [alpha]] * (1/x) [super [alpha]+1] exp(-[beta]/x) / [Gamma]([alpha])]
52
53and cumulative density function (CDF)
54
55[expression F(x;[alpha], [beta]) = [Gamma]([alpha], [beta]/x) / [Gamma]([alpha])]
56
57The following graphs illustrate how the PDF and CDF of the inverse gamma distribution
58varies as the parameters vary:
59
60[graph inverse_gamma_pdf]  [/png or svg]
61
62[graph inverse_gamma_cdf]
63
64[h4 Member Functions]
65
66   inverse_gamma_distribution(RealType shape = 1, RealType scale = 1);
67
68Constructs an inverse gamma distribution with shape [alpha] and scale [beta].
69
70Requires that the shape and scale parameters are greater than zero, otherwise calls
71__domain_error.
72
73   RealType shape()const;
74
75Returns the [alpha] shape parameter of this inverse gamma distribution.
76
77   RealType scale()const;
78
79Returns the [beta] scale parameter of this inverse gamma distribution.
80
81[h4 Non-member Accessors]
82
83All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions] that are generic to all
84distributions are supported: __usual_accessors.
85
86The domain of the random variate is \[0,+[infin]\].
87[note Unlike some definitions, this implementation supports a random variate
88equal to zero as a special case, returning zero for pdf and cdf.]
89
90[h4 Accuracy]
91
92The inverse gamma distribution is implemented in terms of the
93incomplete gamma functions __gamma_p and __gamma_q and their
94inverses __gamma_p_inv and __gamma_q_inv: refer to the accuracy
95data for those functions for more information.
96But in general, inverse_gamma results are accurate to a few epsilon,
97>14 decimal digits accuracy for 64-bit double.
98
99[h4 Implementation]
100
101In the following table [alpha] is the shape parameter of the distribution,
102[alpha] is its scale parameter, /x/ is the random variate, /p/ is the probability
103and /q = 1-p/.
104
105[table
106[[Function][Implementation Notes]]
107[[pdf][Using the relation: pdf = __gamma_p_derivative([alpha], [beta]/ x, [beta]) / x * x ]]
108[[cdf][Using the relation: p = __gamma_q([alpha], [beta] / x) ]]
109[[cdf complement][Using the relation: q = __gamma_p([alpha], [beta] / x) ]]
110[[quantile][Using the relation: x = [beta]/ __gamma_q_inv([alpha], p) ]]
111[[quantile from the complement][Using the relation: x = [alpha]/ __gamma_p_inv([alpha], q) ]]
112[[mode][[beta] / ([alpha] + 1) ]]
113[[median][no analytic equation is known, but is evaluated as quantile(0.5)]]
114[[mean][[beta] / ([alpha] - 1) for [alpha] > 1, else a __domain_error]]
115[[variance][([beta] * [beta]) / (([alpha] - 1) * ([alpha] - 1) * ([alpha] - 2)) for [alpha] >2, else a __domain_error]]
116[[skewness][4 * sqrt ([alpha] -2) / ([alpha] -3) for [alpha] >3, else a __domain_error]]
117[[kurtosis_excess][(30 * [alpha] - 66) / (([alpha]-3)*([alpha] - 4)) for [alpha] >4, else a __domain_error]]
118] [/table]
119
120[endsect] [/section:inverse_gamma_dist Inverse Gamma Distribution]
121
122[/
123  Copyright 2010 John Maddock and Paul A. Bristow.
124  Distributed under the Boost Software License, Version 1.0.
125  (See accompanying file LICENSE_1_0.txt or copy at
126  http://www.boost.org/LICENSE_1_0.txt).
127]
128
129