1 /* Boost example/findroot_demo.cpp
2 * find zero points of some function by dichotomy
3 *
4 * Copyright 2000 Jens Maurer
5 * Copyright 2002-2003 Guillaume Melquiond
6 *
7 * Distributed under the Boost Software License, Version 1.0.
8 * (See accompanying file LICENSE_1_0.txt or
9 * copy at http://www.boost.org/LICENSE_1_0.txt)
10 *
11 * The idea and the 2D function are based on RVInterval,
12 * which contains the following copyright notice:
13
14 This file is copyrighted 1996 by Ronald Van Iwaarden.
15
16 Permission is hereby granted, without written agreement and
17 without license or royalty fees, to use, copy, modify, and
18 distribute this software and its documentation for any
19 purpose, subject to the following conditions:
20
21 The above license notice and this permission notice shall
22 appear in all copies or substantial portions of this software.
23
24 The name "RVInterval" cannot be used for any modified form of
25 this software that does not originate from the authors.
26 Nevertheless, the name "RVInterval" may and should be used to
27 designate the optimization software implemented and described
28 in this package, even if embedded in any other system, as long
29 as any portion of this code remains.
30
31 The authors specifically disclaim any warranties, including,
32 but not limited to, the implied warranties of merchantability
33 and fitness for a particular purpose. The software provided
34 hereunder is on an "as is" basis, and the authors have no
35 obligation to provide maintenance, support, updates,
36 enhancements, or modifications. In no event shall the authors
37 be liable to any party for direct, indirect, special,
38 incidental, or consequential damages arising out of the use of
39 this software and its documentation.
40 */
41
42 #include <boost/numeric/interval.hpp> // must be first for <limits> workaround
43 #include <boost/numeric/interval/io.hpp>
44 #include <list>
45 #include <deque>
46 #include <vector>
47 #include <fstream>
48 #include <iostream>
49
50
51 template<class T>
52 struct test_func2d
53 {
operator ()test_func2d54 T operator()(T x, T y) const
55 {
56 return sin(x)*cos(y) - exp(x*y)/45.0 * (pow(x+y, 2)+100.0) -
57 cos(sin(y))*y/4.0;
58 }
59 };
60
61 template <class T>
62 struct test_func1d
63 {
operator ()test_func1d64 T operator()(T x) const
65 {
66 return sin(x)/(x*x+1.0);
67 }
68 };
69
70 template<class T>
71 struct test_func1d_2
72 {
operator ()test_func1d_273 T operator()(T x) const
74 {
75 using std::sqrt;
76 return sqrt(x*x-1.0);
77 }
78 };
79
80 template<class Function, class I>
find_zeros(std::ostream & os,Function f,I searchrange)81 void find_zeros(std::ostream & os, Function f, I searchrange)
82 {
83 std::list<I> l, done;
84 l.push_back(searchrange);
85 while(!l.empty()) {
86 I range = l.front();
87 l.pop_front();
88 I val = f(range);
89 if (zero_in(val)) {
90 if(width(range) < 1e-6) {
91 os << range << '\n';
92 continue;
93 }
94 // there's still a solution hidden somewhere
95 std::pair<I,I> p = bisect(range);
96 l.push_back(p.first);
97 l.push_back(p.second);
98 }
99 }
100 }
101
102 template<class T>
operator <<(std::ostream & os,const std::pair<T,T> & x)103 std::ostream &operator<<(std::ostream &os, const std::pair<T, T> &x) {
104 os << "(" << x.first << ", " << x.second << ")";
105 return os;
106 }
107
108 template<class T, class Policies>
operator <<(std::ostream & os,const boost::numeric::interval<T,Policies> & x)109 std::ostream &operator<<(std::ostream &os,
110 const boost::numeric::interval<T, Policies> &x) {
111 os << "[" << x.lower() << ", " << x.upper() << "]";
112 return os;
113 }
114
115 static const double epsilon = 5e-3;
116
117 template<class Function, class I>
find_zeros(std::ostream & os,Function f,I rx,I ry)118 void find_zeros(std::ostream & os, Function f, I rx, I ry)
119 {
120 typedef std::pair<I, I> rectangle;
121 typedef std::deque<rectangle> container;
122 container l, done;
123 // l.reserve(50);
124 l.push_back(std::make_pair(rx, ry));
125 for(int i = 1; !l.empty(); ++i) {
126 rectangle rect = l.front();
127 l.pop_front();
128 I val = f(rect.first, rect.second);
129 if (zero_in(val)) {
130 if(width(rect.first) < epsilon && width(rect.second) < epsilon) {
131 os << median(rect.first) << " " << median(rect.second) << " "
132 << lower(rect.first) << " " << upper(rect.first) << " "
133 << lower(rect.second) << " " << upper(rect.second)
134 << '\n';
135 } else {
136 if(width(rect.first) > width(rect.second)) {
137 std::pair<I,I> p = bisect(rect.first);
138 l.push_back(std::make_pair(p.first, rect.second));
139 l.push_back(std::make_pair(p.second, rect.second));
140 } else {
141 std::pair<I,I> p = bisect(rect.second);
142 l.push_back(std::make_pair(rect.first, p.first));
143 l.push_back(std::make_pair(rect.first, p.second));
144 }
145 }
146 }
147 if(i % 10000 == 0)
148 std::cerr << "\rIteration " << i << ", l.size() = " << l.size();
149 }
150 std::cerr << '\n';
151 }
152
main()153 int main()
154 {
155 using namespace boost;
156 using namespace numeric;
157 using namespace interval_lib;
158
159 typedef interval<double,
160 policies<save_state<rounded_transc_opp<double> >,
161 checking_base<double> > > I;
162
163 std::cout << "Zero points of sin(x)/(x*x+1)\n";
164 find_zeros(std::cout, test_func1d<I>(), I(-11, 10));
165 std::cout << "Zero points of sqrt(x*x-1)\n";
166 find_zeros(std::cout, test_func1d_2<I>(), I(-5, 6));
167 std::cout << "Zero points of Van Iwaarden's 2D function\n";
168 std::ofstream f("func2d.data");
169 find_zeros(f, test_func2d<I>(), I(-20, 20), I(-20, 20));
170 std::cout << "Use gnuplot, command 'plot \"func2d.data\" with dots' to plot\n";
171 }
172