1 // Copyright Jim Bosch 2011-2012. 2 // Distributed under the Boost Software License, Version 1.0. 3 // (See accompanying file LICENSE_1_0.txt or copy at 4 // http://www.boost.org/LICENSE_1_0.txt) 5 6 /** 7 * A simple example showing how to wrap a couple of C++ functions that 8 * operate on 2-d arrays into Python functions that take NumPy arrays 9 * as arguments. 10 * 11 * If you find have a lot of such functions to wrap, you may want to 12 * create a C++ array type (or use one of the many existing C++ array 13 * libraries) that maps well to NumPy arrays and create Boost.Python 14 * converters. There's more work up front than the approach here, 15 * but much less boilerplate per function. See the "Gaussian" example 16 * included with Boost.NumPy for an example of custom converters, or 17 * take a look at the "ndarray" project on GitHub for a more complete, 18 * high-level solution. 19 * 20 * Note that we're using embedded Python here only to make a convenient 21 * self-contained example; you could just as easily put the wrappers 22 * in a regular C++-compiled module and imported them in regular 23 * Python. Again, see the Gaussian demo for an example. 24 */ 25 26 #include <boost/python/numpy.hpp> 27 #include <boost/scoped_array.hpp> 28 #include <iostream> 29 30 namespace p = boost::python; 31 namespace np = boost::python::numpy; 32 33 // This is roughly the most efficient way to write a C/C++ function that operates 34 // on a 2-d NumPy array - operate directly on the array by incrementing a pointer 35 // with the strides. fill1(double * array,int rows,int cols,int row_stride,int col_stride)36 void fill1(double * array, int rows, int cols, int row_stride, int col_stride) { 37 double * row_iter = array; 38 double n = 0.0; // just a counter we'll fill the array with. 39 for (int i = 0; i < rows; ++i, row_iter += row_stride) { 40 double * col_iter = row_iter; 41 for (int j = 0; j < cols; ++j, col_iter += col_stride) { 42 *col_iter = ++n; 43 } 44 } 45 } 46 47 // Here's a simple wrapper function for fill1. It requires that the passed 48 // NumPy array be exactly what we're looking for - no conversion from nested 49 // sequences or arrays with other data types, because we want to modify it 50 // in-place. wrap_fill1(np::ndarray const & array)51 void wrap_fill1(np::ndarray const & array) { 52 if (array.get_dtype() != np::dtype::get_builtin<double>()) { 53 PyErr_SetString(PyExc_TypeError, "Incorrect array data type"); 54 p::throw_error_already_set(); 55 } 56 if (array.get_nd() != 2) { 57 PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions"); 58 p::throw_error_already_set(); 59 } 60 fill1(reinterpret_cast<double*>(array.get_data()), 61 array.shape(0), array.shape(1), 62 array.strides(0) / sizeof(double), array.strides(1) / sizeof(double)); 63 } 64 65 // Another fill function that takes a double**. This is less efficient, because 66 // it's not the native NumPy data layout, but it's common enough in C/C++ that 67 // it's worth its own example. This time we don't pass the strides, and instead 68 // in wrap_fill2 we'll require the C_CONTIGUOUS bitflag, which guarantees that 69 // the column stride is 1 and the row stride is the number of columns. That 70 // restricts the arrays that can be passed to fill2 (it won't work on most 71 // subarray views or transposes, for instance). fill2(double ** array,int rows,int cols)72 void fill2(double ** array, int rows, int cols) { 73 double n = 0.0; // just a counter we'll fill the array with. 74 for (int i = 0; i < rows; ++i) { 75 for (int j = 0; j < cols; ++j) { 76 array[i][j] = ++n; 77 } 78 } 79 } 80 // Here's the wrapper for fill2; it's a little more complicated because we need 81 // to check the flags and create the array of pointers. wrap_fill2(np::ndarray const & array)82 void wrap_fill2(np::ndarray const & array) { 83 if (array.get_dtype() != np::dtype::get_builtin<double>()) { 84 PyErr_SetString(PyExc_TypeError, "Incorrect array data type"); 85 p::throw_error_already_set(); 86 } 87 if (array.get_nd() != 2) { 88 PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions"); 89 p::throw_error_already_set(); 90 } 91 if (!(array.get_flags() & np::ndarray::C_CONTIGUOUS)) { 92 PyErr_SetString(PyExc_TypeError, "Array must be row-major contiguous"); 93 p::throw_error_already_set(); 94 } 95 double * iter = reinterpret_cast<double*>(array.get_data()); 96 int rows = array.shape(0); 97 int cols = array.shape(1); 98 boost::scoped_array<double*> ptrs(new double*[rows]); 99 for (int i = 0; i < rows; ++i, iter += cols) { 100 ptrs[i] = iter; 101 } 102 fill2(ptrs.get(), array.shape(0), array.shape(1)); 103 } 104 BOOST_PYTHON_MODULE(example)105 BOOST_PYTHON_MODULE(example) { 106 np::initialize(); // have to put this in any module that uses Boost.NumPy 107 p::def("fill1", wrap_fill1); 108 p::def("fill2", wrap_fill2); 109 } 110 main(int argc,char ** argv)111 int main(int argc, char **argv) 112 { 113 // This line makes our module available to the embedded Python intepreter. 114 # if PY_VERSION_HEX >= 0x03000000 115 PyImport_AppendInittab("example", &PyInit_example); 116 # else 117 PyImport_AppendInittab("example", &initexample); 118 # endif 119 // Initialize the Python runtime. 120 Py_Initialize(); 121 122 PyRun_SimpleString( 123 "import example\n" 124 "import numpy\n" 125 "z1 = numpy.zeros((5,6), dtype=float)\n" 126 "z2 = numpy.zeros((4,3), dtype=float)\n" 127 "example.fill1(z1)\n" 128 "example.fill2(z2)\n" 129 "print z1\n" 130 "print z2\n" 131 ); 132 Py_Finalize(); 133 } 134 135 136