• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // Copyright Jim Bosch 2011-2012.
2  // Distributed under the Boost Software License, Version 1.0.
3  //    (See accompanying file LICENSE_1_0.txt or copy at
4  //          http://www.boost.org/LICENSE_1_0.txt)
5  
6  /**
7   *  A simple example showing how to wrap a couple of C++ functions that
8   *  operate on 2-d arrays into Python functions that take NumPy arrays
9   *  as arguments.
10   *
11   *  If you find have a lot of such functions to wrap, you may want to
12   *  create a C++ array type (or use one of the many existing C++ array
13   *  libraries) that maps well to NumPy arrays and create Boost.Python
14   *  converters.  There's more work up front than the approach here,
15   *  but much less boilerplate per function.  See the "Gaussian" example
16   *  included with Boost.NumPy for an example of custom converters, or
17   *  take a look at the "ndarray" project on GitHub for a more complete,
18   *  high-level solution.
19   *
20   *  Note that we're using embedded Python here only to make a convenient
21   *  self-contained example; you could just as easily put the wrappers
22   *  in a regular C++-compiled module and imported them in regular
23   *  Python.  Again, see the Gaussian demo for an example.
24   */
25  
26  #include <boost/python/numpy.hpp>
27  #include <boost/scoped_array.hpp>
28  #include <iostream>
29  
30  namespace p = boost::python;
31  namespace np = boost::python::numpy;
32  
33  // This is roughly the most efficient way to write a C/C++ function that operates
34  // on a 2-d NumPy array - operate directly on the array by incrementing a pointer
35  // with the strides.
fill1(double * array,int rows,int cols,int row_stride,int col_stride)36  void fill1(double * array, int rows, int cols, int row_stride, int col_stride) {
37      double * row_iter = array;
38      double n = 0.0; // just a counter we'll fill the array with.
39      for (int i = 0; i < rows; ++i, row_iter += row_stride) {
40          double * col_iter = row_iter;
41          for (int j = 0; j < cols; ++j, col_iter += col_stride) {
42              *col_iter = ++n;
43          }
44      }
45  }
46  
47  // Here's a simple wrapper function for fill1.  It requires that the passed
48  // NumPy array be exactly what we're looking for - no conversion from nested
49  // sequences or arrays with other data types, because we want to modify it
50  // in-place.
wrap_fill1(np::ndarray const & array)51  void wrap_fill1(np::ndarray const & array) {
52      if (array.get_dtype() != np::dtype::get_builtin<double>()) {
53          PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
54          p::throw_error_already_set();
55      }
56      if (array.get_nd() != 2) {
57          PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
58          p::throw_error_already_set();
59      }
60      fill1(reinterpret_cast<double*>(array.get_data()),
61            array.shape(0), array.shape(1),
62            array.strides(0) / sizeof(double), array.strides(1) / sizeof(double));
63  }
64  
65  // Another fill function that takes a double**.  This is less efficient, because
66  // it's not the native NumPy data layout, but it's common enough in C/C++ that
67  // it's worth its own example.  This time we don't pass the strides, and instead
68  // in wrap_fill2 we'll require the C_CONTIGUOUS bitflag, which guarantees that
69  // the column stride is 1 and the row stride is the number of columns.  That
70  // restricts the arrays that can be passed to fill2 (it won't work on most
71  // subarray views or transposes, for instance).
fill2(double ** array,int rows,int cols)72  void fill2(double ** array, int rows, int cols) {
73      double n = 0.0; // just a counter we'll fill the array with.
74      for (int i = 0; i < rows; ++i) {
75          for (int j = 0; j < cols; ++j) {
76              array[i][j] = ++n;
77          }
78      }
79  }
80  // Here's the wrapper for fill2; it's a little more complicated because we need
81  // to check the flags and create the array of pointers.
wrap_fill2(np::ndarray const & array)82  void wrap_fill2(np::ndarray const & array) {
83      if (array.get_dtype() != np::dtype::get_builtin<double>()) {
84          PyErr_SetString(PyExc_TypeError, "Incorrect array data type");
85          p::throw_error_already_set();
86      }
87      if (array.get_nd() != 2) {
88          PyErr_SetString(PyExc_TypeError, "Incorrect number of dimensions");
89          p::throw_error_already_set();
90      }
91      if (!(array.get_flags() & np::ndarray::C_CONTIGUOUS)) {
92          PyErr_SetString(PyExc_TypeError, "Array must be row-major contiguous");
93          p::throw_error_already_set();
94      }
95      double * iter = reinterpret_cast<double*>(array.get_data());
96      int rows = array.shape(0);
97      int cols = array.shape(1);
98      boost::scoped_array<double*> ptrs(new double*[rows]);
99      for (int i = 0; i < rows; ++i, iter += cols) {
100          ptrs[i] = iter;
101      }
102      fill2(ptrs.get(), array.shape(0), array.shape(1));
103  }
104  
BOOST_PYTHON_MODULE(example)105  BOOST_PYTHON_MODULE(example) {
106      np::initialize();  // have to put this in any module that uses Boost.NumPy
107      p::def("fill1", wrap_fill1);
108      p::def("fill2", wrap_fill2);
109  }
110  
main(int argc,char ** argv)111  int main(int argc, char **argv)
112  {
113      // This line makes our module available to the embedded Python intepreter.
114  # if PY_VERSION_HEX >= 0x03000000
115      PyImport_AppendInittab("example", &PyInit_example);
116  # else
117      PyImport_AppendInittab("example", &initexample);
118  # endif
119      // Initialize the Python runtime.
120      Py_Initialize();
121  
122      PyRun_SimpleString(
123          "import example\n"
124          "import numpy\n"
125          "z1 = numpy.zeros((5,6), dtype=float)\n"
126          "z2 = numpy.zeros((4,3), dtype=float)\n"
127          "example.fill1(z1)\n"
128          "example.fill2(z2)\n"
129          "print z1\n"
130          "print z2\n"
131      );
132      Py_Finalize();
133  }
134  
135  
136