1 // Boost.Units - A C++ library for zero-overhead dimensional analysis and
2 // unit/quantity manipulation and conversion
3 //
4 // Copyright (C) 2003-2008 Matthias Christian Schabel
5 // Copyright (C) 2008 Steven Watanabe
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See
8 // accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10
11 /**
12 \file
13
14 \brief complex.cpp
15
16 \details
17 Demonstrate a complex number class that functions correctly with quantities.
18
19 Output:
20 @verbatim
21
22 //[complex_output_1
23 +L = 2 + 1 i m
24 -L = -2 + -1 i m
25 L+L = 4 + 2 i m
26 L-L = 0 + 0 i m
27 L*L = 3 + 4 i m^2
28 L/L = 1 + 0 i dimensionless
29 L^3 = 2 + 11 i m^3
30 L^(3/2) = 2.56713 + 2.14247 i m^(3/2)
31 3vL = 1.29207 + 0.201294 i m^(1/3)
32 (3/2)vL = 1.62894 + 0.520175 i m^(2/3)
33 //]
34
35 //[complex_output_2
36 +L = 2 m + 1 m i
37 -L = -2 m + -1 m i
38 L+L = 4 m + 2 m i
39 L-L = 0 m + 0 m i
40 L*L = 3 m^2 + 4 m^2 i
41 L/L = 1 dimensionless + 0 dimensionless i
42 L^3 = 2 m^3 + 11 m^3 i
43 L^(3/2) = 2.56713 m^(3/2) + 2.14247 m^(3/2) i
44 3vL = 1.29207 m^(1/3) + 0.201294 m^(1/3) i
45 (3/2)vL = 1.62894 m^(2/3) + 0.520175 m^(2/3) i
46 //]
47
48 @endverbatim
49 **/
50
51 #include <cmath>
52 #include <complex>
53 #include <iostream>
54
55 #include <boost/mpl/list.hpp>
56
57 #include <boost/units/io.hpp>
58 #include <boost/units/pow.hpp>
59 #include <boost/units/quantity.hpp>
60
61 #include "test_system.hpp"
62
63 //[complex_class_snippet_1
64 namespace boost {
65
66 namespace units {
67
68 /// replacement complex class
69 template<class T>
70 class complex
71 {
72 public:
73 typedef complex<T> this_type;
74
complex(const T & r=0,const T & i=0)75 constexpr complex(const T& r = 0,const T& i = 0) : r_(r),i_(i) { }
complex(const this_type & source)76 constexpr complex(const this_type& source) : r_(source.r_),i_(source.i_) { }
77
operator =(const this_type & source)78 constexpr this_type& operator=(const this_type& source)
79 {
80 if (this == &source) return *this;
81
82 r_ = source.r_;
83 i_ = source.i_;
84
85 return *this;
86 }
87
real()88 constexpr T& real() { return r_; }
imag()89 constexpr T& imag() { return i_; }
90
real() const91 constexpr const T& real() const { return r_; }
imag() const92 constexpr const T& imag() const { return i_; }
93
operator +=(const T & val)94 constexpr this_type& operator+=(const T& val)
95 {
96 r_ += val;
97 return *this;
98 }
99
operator -=(const T & val)100 constexpr this_type& operator-=(const T& val)
101 {
102 r_ -= val;
103 return *this;
104 }
105
operator *=(const T & val)106 constexpr this_type& operator*=(const T& val)
107 {
108 r_ *= val;
109 i_ *= val;
110 return *this;
111 }
112
operator /=(const T & val)113 constexpr this_type& operator/=(const T& val)
114 {
115 r_ /= val;
116 i_ /= val;
117 return *this;
118 }
119
operator +=(const this_type & source)120 constexpr this_type& operator+=(const this_type& source)
121 {
122 r_ += source.r_;
123 i_ += source.i_;
124 return *this;
125 }
126
operator -=(const this_type & source)127 constexpr this_type& operator-=(const this_type& source)
128 {
129 r_ -= source.r_;
130 i_ -= source.i_;
131 return *this;
132 }
133
operator *=(const this_type & source)134 constexpr this_type& operator*=(const this_type& source)
135 {
136 *this = *this * source;
137 return *this;
138 }
139
operator /=(const this_type & source)140 constexpr this_type& operator/=(const this_type& source)
141 {
142 *this = *this / source;
143 return *this;
144 }
145
146 private:
147 T r_,i_;
148 };
149
150 }
151
152 }
153
154 #if BOOST_UNITS_HAS_BOOST_TYPEOF
155
156 #include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
157
158 BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::complex, 1)
159
160 #endif
161
162 namespace boost {
163
164 namespace units {
165
166 template<class X>
167 constexpr
168 complex<typename unary_plus_typeof_helper<X>::type>
operator +(const complex<X> & x)169 operator+(const complex<X>& x)
170 {
171 typedef typename unary_plus_typeof_helper<X>::type type;
172
173 return complex<type>(x.real(),x.imag());
174 }
175
176 template<class X>
177 constexpr
178 complex<typename unary_minus_typeof_helper<X>::type>
operator -(const complex<X> & x)179 operator-(const complex<X>& x)
180 {
181 typedef typename unary_minus_typeof_helper<X>::type type;
182
183 return complex<type>(-x.real(),-x.imag());
184 }
185
186 template<class X,class Y>
187 constexpr
188 complex<typename add_typeof_helper<X,Y>::type>
operator +(const complex<X> & x,const complex<Y> & y)189 operator+(const complex<X>& x,const complex<Y>& y)
190 {
191 typedef typename boost::units::add_typeof_helper<X,Y>::type type;
192
193 return complex<type>(x.real()+y.real(),x.imag()+y.imag());
194 }
195
196 template<class X,class Y>
197 constexpr
198 complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator -(const complex<X> & x,const complex<Y> & y)199 operator-(const complex<X>& x,const complex<Y>& y)
200 {
201 typedef typename boost::units::subtract_typeof_helper<X,Y>::type type;
202
203 return complex<type>(x.real()-y.real(),x.imag()-y.imag());
204 }
205
206 template<class X,class Y>
207 constexpr
208 complex<typename boost::units::multiply_typeof_helper<X,Y>::type>
operator *(const complex<X> & x,const complex<Y> & y)209 operator*(const complex<X>& x,const complex<Y>& y)
210 {
211 typedef typename boost::units::multiply_typeof_helper<X,Y>::type type;
212
213 return complex<type>(x.real()*y.real() - x.imag()*y.imag(),
214 x.real()*y.imag() + x.imag()*y.real());
215
216 // fully correct implementation has more complex return type
217 //
218 // typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
219 //
220 // typedef typename boost::units::add_typeof_helper<
221 // xy_type,xy_type>::type xy_plus_xy_type;
222 // typedef typename
223 // boost::units::subtract_typeof_helper<xy_type,xy_type>::type
224 // xy_minus_xy_type;
225 //
226 // BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_type,
227 // xy_minus_xy_type>::value == true));
228 //
229 // return complex<xy_plus_xy_type>(x.real()*y.real()-x.imag()*y.imag(),
230 // x.real()*y.imag()+x.imag()*y.real());
231 }
232
233 template<class X,class Y>
234 constexpr
235 complex<typename boost::units::divide_typeof_helper<X,Y>::type>
operator /(const complex<X> & x,const complex<Y> & y)236 operator/(const complex<X>& x,const complex<Y>& y)
237 {
238 // naive implementation of complex division
239 typedef typename boost::units::divide_typeof_helper<X,Y>::type type;
240
241 return complex<type>((x.real()*y.real()+x.imag()*y.imag())/
242 (y.real()*y.real()+y.imag()*y.imag()),
243 (x.imag()*y.real()-x.real()*y.imag())/
244 (y.real()*y.real()+y.imag()*y.imag()));
245
246 // fully correct implementation has more complex return type
247 //
248 // typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
249 // typedef typename boost::units::multiply_typeof_helper<Y,Y>::type yy_type;
250 //
251 // typedef typename boost::units::add_typeof_helper<xy_type, xy_type>::type
252 // xy_plus_xy_type;
253 // typedef typename boost::units::subtract_typeof_helper<
254 // xy_type,xy_type>::type xy_minus_xy_type;
255 //
256 // typedef typename boost::units::divide_typeof_helper<
257 // xy_plus_xy_type,yy_type>::type xy_plus_xy_over_yy_type;
258 // typedef typename boost::units::divide_typeof_helper<
259 // xy_minus_xy_type,yy_type>::type xy_minus_xy_over_yy_type;
260 //
261 // BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_over_yy_type,
262 // xy_minus_xy_over_yy_type>::value == true));
263 //
264 // return complex<xy_plus_xy_over_yy_type>(
265 // (x.real()*y.real()+x.imag()*y.imag())/
266 // (y.real()*y.real()+y.imag()*y.imag()),
267 // (x.imag()*y.real()-x.real()*y.imag())/
268 // (y.real()*y.real()+y.imag()*y.imag()));
269 }
270
271 template<class Y>
272 complex<Y>
pow(const complex<Y> & x,const Y & y)273 pow(const complex<Y>& x,const Y& y)
274 {
275 std::complex<Y> tmp(x.real(),x.imag());
276
277 tmp = std::pow(tmp,y);
278
279 return complex<Y>(tmp.real(),tmp.imag());
280 }
281
282 template<class Y>
operator <<(std::ostream & os,const complex<Y> & val)283 std::ostream& operator<<(std::ostream& os,const complex<Y>& val)
284 {
285 os << val.real() << " + " << val.imag() << " i";
286
287 return os;
288 }
289
290 /// specialize power typeof helper for complex<Y>
291 template<class Y,long N,long D>
292 struct power_typeof_helper<complex<Y>,static_rational<N,D> >
293 {
294 typedef complex<
295 typename power_typeof_helper<Y,static_rational<N,D> >::type
296 > type;
297
valueboost::units::power_typeof_helper298 static type value(const complex<Y>& x)
299 {
300 const static_rational<N,D> rat;
301
302 const Y m = Y(rat.numerator())/Y(rat.denominator());
303
304 return boost::units::pow(x,m);
305 }
306 };
307
308 /// specialize root typeof helper for complex<Y>
309 template<class Y,long N,long D>
310 struct root_typeof_helper<complex<Y>,static_rational<N,D> >
311 {
312 typedef complex<
313 typename root_typeof_helper<Y,static_rational<N,D> >::type
314 > type;
315
valueboost::units::root_typeof_helper316 static type value(const complex<Y>& x)
317 {
318 const static_rational<N,D> rat;
319
320 const Y m = Y(rat.denominator())/Y(rat.numerator());
321
322 return boost::units::pow(x,m);
323 }
324 };
325
326 /// specialize power typeof helper for complex<quantity<Unit,Y> >
327 template<class Y,class Unit,long N,long D>
328 struct power_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
329 {
330 typedef typename
331 power_typeof_helper<Y,static_rational<N,D> >::type value_type;
332 typedef typename
333 power_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
334 typedef quantity<unit_type,value_type> quantity_type;
335 typedef complex<quantity_type> type;
336
valueboost::units::power_typeof_helper337 static type value(const complex<quantity<Unit,Y> >& x)
338 {
339 const complex<value_type> tmp =
340 pow<static_rational<N,D> >(complex<Y>(x.real().value(),
341 x.imag().value()));
342
343 return type(quantity_type::from_value(tmp.real()),
344 quantity_type::from_value(tmp.imag()));
345 }
346 };
347
348 /// specialize root typeof helper for complex<quantity<Unit,Y> >
349 template<class Y,class Unit,long N,long D>
350 struct root_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
351 {
352 typedef typename
353 root_typeof_helper<Y,static_rational<N,D> >::type value_type;
354 typedef typename
355 root_typeof_helper<Unit,static_rational<N,D> >::type unit_type;
356 typedef quantity<unit_type,value_type> quantity_type;
357 typedef complex<quantity_type> type;
358
valueboost::units::root_typeof_helper359 static type value(const complex<quantity<Unit,Y> >& x)
360 {
361 const complex<value_type> tmp =
362 root<static_rational<N,D> >(complex<Y>(x.real().value(),
363 x.imag().value()));
364
365 return type(quantity_type::from_value(tmp.real()),
366 quantity_type::from_value(tmp.imag()));
367 }
368 };
369
370 } // namespace units
371
372 } // namespace boost
373 //]
374
main(void)375 int main(void)
376 {
377 using namespace boost::units;
378 using namespace boost::units::test;
379
380 {
381 //[complex_snippet_1
382 typedef quantity<length,complex<double> > length_dimension;
383
384 const length_dimension L(complex<double>(2.0,1.0)*meters);
385 //]
386
387 std::cout << "+L = " << +L << std::endl
388 << "-L = " << -L << std::endl
389 << "L+L = " << L+L << std::endl
390 << "L-L = " << L-L << std::endl
391 << "L*L = " << L*L << std::endl
392 << "L/L = " << L/L << std::endl
393 << "L^3 = " << pow<3>(L) << std::endl
394 << "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
395 << "3vL = " << root<3>(L) << std::endl
396 << "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
397 << std::endl;
398 }
399
400 {
401 //[complex_snippet_2
402 typedef complex<quantity<length> > length_dimension;
403
404 const length_dimension L(2.0*meters,1.0*meters);
405 //]
406
407 std::cout << "+L = " << +L << std::endl
408 << "-L = " << -L << std::endl
409 << "L+L = " << L+L << std::endl
410 << "L-L = " << L-L << std::endl
411 << "L*L = " << L*L << std::endl
412 << "L/L = " << L/L << std::endl
413 << "L^3 = " << pow<3>(L) << std::endl
414 << "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
415 << "3vL = " << root<3>(L) << std::endl
416 << "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
417 << std::endl;
418 }
419
420 return 0;
421 }
422