• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Boost.Units - A C++ library for zero-overhead dimensional analysis and
2 // unit/quantity manipulation and conversion
3 //
4 // Copyright (C) 2003-2008 Matthias Christian Schabel
5 // Copyright (C) 2008 Steven Watanabe
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See
8 // accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10 
11 /**
12 \file
13 
14 \brief complex.cpp
15 
16 \details
17 Demonstrate a complex number class that functions correctly with quantities.
18 
19 Output:
20 @verbatim
21 
22 //[complex_output_1
23 +L      = 2 + 1 i m
24 -L      = -2 + -1 i m
25 L+L     = 4 + 2 i m
26 L-L     = 0 + 0 i m
27 L*L     = 3 + 4 i m^2
28 L/L     = 1 + 0 i dimensionless
29 L^3     = 2 + 11 i m^3
30 L^(3/2) = 2.56713 + 2.14247 i m^(3/2)
31 3vL     = 1.29207 + 0.201294 i m^(1/3)
32 (3/2)vL = 1.62894 + 0.520175 i m^(2/3)
33 //]
34 
35 //[complex_output_2
36 +L      = 2 m + 1 m i
37 -L      = -2 m + -1 m i
38 L+L     = 4 m + 2 m i
39 L-L     = 0 m + 0 m i
40 L*L     = 3 m^2 + 4 m^2 i
41 L/L     = 1 dimensionless + 0 dimensionless i
42 L^3     = 2 m^3 + 11 m^3 i
43 L^(3/2) = 2.56713 m^(3/2) + 2.14247 m^(3/2) i
44 3vL     = 1.29207 m^(1/3) + 0.201294 m^(1/3) i
45 (3/2)vL = 1.62894 m^(2/3) + 0.520175 m^(2/3) i
46 //]
47 
48 @endverbatim
49 **/
50 
51 #include <cmath>
52 #include <complex>
53 #include <iostream>
54 
55 #include <boost/mpl/list.hpp>
56 
57 #include <boost/units/io.hpp>
58 #include <boost/units/pow.hpp>
59 #include <boost/units/quantity.hpp>
60 
61 #include "test_system.hpp"
62 
63 //[complex_class_snippet_1
64 namespace boost {
65 
66 namespace units {
67 
68 /// replacement complex class
69 template<class T>
70 class complex
71 {
72     public:
73         typedef complex<T>  this_type;
74 
complex(const T & r=0,const T & i=0)75         constexpr complex(const T& r = 0,const T& i = 0) : r_(r),i_(i) { }
complex(const this_type & source)76         constexpr complex(const this_type& source) : r_(source.r_),i_(source.i_) { }
77 
operator =(const this_type & source)78         constexpr this_type& operator=(const this_type& source)
79         {
80             if (this == &source) return *this;
81 
82             r_ = source.r_;
83             i_ = source.i_;
84 
85             return *this;
86         }
87 
real()88         constexpr T& real()             { return r_; }
imag()89         constexpr T& imag()             { return i_; }
90 
real() const91         constexpr const T& real() const       { return r_; }
imag() const92         constexpr const T& imag() const       { return i_; }
93 
operator +=(const T & val)94         constexpr this_type& operator+=(const T& val)
95         {
96             r_ += val;
97             return *this;
98         }
99 
operator -=(const T & val)100         constexpr this_type& operator-=(const T& val)
101         {
102             r_ -= val;
103             return *this;
104         }
105 
operator *=(const T & val)106         constexpr this_type& operator*=(const T& val)
107         {
108             r_ *= val;
109             i_ *= val;
110             return *this;
111         }
112 
operator /=(const T & val)113         constexpr this_type& operator/=(const T& val)
114         {
115             r_ /= val;
116             i_ /= val;
117             return *this;
118         }
119 
operator +=(const this_type & source)120         constexpr this_type& operator+=(const this_type& source)
121         {
122             r_ += source.r_;
123             i_ += source.i_;
124             return *this;
125         }
126 
operator -=(const this_type & source)127         constexpr this_type& operator-=(const this_type& source)
128         {
129             r_ -= source.r_;
130             i_ -= source.i_;
131             return *this;
132         }
133 
operator *=(const this_type & source)134         constexpr this_type& operator*=(const this_type& source)
135         {
136             *this = *this * source;
137             return *this;
138         }
139 
operator /=(const this_type & source)140         constexpr this_type& operator/=(const this_type& source)
141         {
142             *this = *this / source;
143             return *this;
144         }
145 
146     private:
147         T   r_,i_;
148 };
149 
150 }
151 
152 }
153 
154 #if BOOST_UNITS_HAS_BOOST_TYPEOF
155 
156 #include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
157 
158 BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::complex, 1)
159 
160 #endif
161 
162 namespace boost {
163 
164 namespace units {
165 
166 template<class X>
167 constexpr
168 complex<typename unary_plus_typeof_helper<X>::type>
operator +(const complex<X> & x)169 operator+(const complex<X>& x)
170 {
171     typedef typename unary_plus_typeof_helper<X>::type  type;
172 
173     return complex<type>(x.real(),x.imag());
174 }
175 
176 template<class X>
177 constexpr
178 complex<typename unary_minus_typeof_helper<X>::type>
operator -(const complex<X> & x)179 operator-(const complex<X>& x)
180 {
181     typedef typename unary_minus_typeof_helper<X>::type type;
182 
183     return complex<type>(-x.real(),-x.imag());
184 }
185 
186 template<class X,class Y>
187 constexpr
188 complex<typename add_typeof_helper<X,Y>::type>
operator +(const complex<X> & x,const complex<Y> & y)189 operator+(const complex<X>& x,const complex<Y>& y)
190 {
191     typedef typename boost::units::add_typeof_helper<X,Y>::type type;
192 
193     return complex<type>(x.real()+y.real(),x.imag()+y.imag());
194 }
195 
196 template<class X,class Y>
197 constexpr
198 complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator -(const complex<X> & x,const complex<Y> & y)199 operator-(const complex<X>& x,const complex<Y>& y)
200 {
201     typedef typename boost::units::subtract_typeof_helper<X,Y>::type    type;
202 
203     return complex<type>(x.real()-y.real(),x.imag()-y.imag());
204 }
205 
206 template<class X,class Y>
207 constexpr
208 complex<typename boost::units::multiply_typeof_helper<X,Y>::type>
operator *(const complex<X> & x,const complex<Y> & y)209 operator*(const complex<X>& x,const complex<Y>& y)
210 {
211     typedef typename boost::units::multiply_typeof_helper<X,Y>::type    type;
212 
213     return complex<type>(x.real()*y.real() - x.imag()*y.imag(),
214                          x.real()*y.imag() + x.imag()*y.real());
215 
216 //  fully correct implementation has more complex return type
217 //
218 //    typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
219 //
220 //    typedef typename boost::units::add_typeof_helper<
221 //      xy_type,xy_type>::type         xy_plus_xy_type;
222 //    typedef typename
223 //        boost::units::subtract_typeof_helper<xy_type,xy_type>::type
224 //        xy_minus_xy_type;
225 //
226 //    BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_type,
227 //                                       xy_minus_xy_type>::value == true));
228 //
229 //    return complex<xy_plus_xy_type>(x.real()*y.real()-x.imag()*y.imag(),
230 //                                    x.real()*y.imag()+x.imag()*y.real());
231 }
232 
233 template<class X,class Y>
234 constexpr
235 complex<typename boost::units::divide_typeof_helper<X,Y>::type>
operator /(const complex<X> & x,const complex<Y> & y)236 operator/(const complex<X>& x,const complex<Y>& y)
237 {
238     // naive implementation of complex division
239     typedef typename boost::units::divide_typeof_helper<X,Y>::type type;
240 
241     return complex<type>((x.real()*y.real()+x.imag()*y.imag())/
242                             (y.real()*y.real()+y.imag()*y.imag()),
243                          (x.imag()*y.real()-x.real()*y.imag())/
244                             (y.real()*y.real()+y.imag()*y.imag()));
245 
246 //  fully correct implementation has more complex return type
247 //
248 //  typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
249 //  typedef typename boost::units::multiply_typeof_helper<Y,Y>::type yy_type;
250 //
251 //  typedef typename boost::units::add_typeof_helper<xy_type, xy_type>::type
252 //      xy_plus_xy_type;
253 //  typedef typename boost::units::subtract_typeof_helper<
254 //      xy_type,xy_type>::type xy_minus_xy_type;
255 //
256 //  typedef typename boost::units::divide_typeof_helper<
257 //      xy_plus_xy_type,yy_type>::type      xy_plus_xy_over_yy_type;
258 //  typedef typename boost::units::divide_typeof_helper<
259 //      xy_minus_xy_type,yy_type>::type     xy_minus_xy_over_yy_type;
260 //
261 //  BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_over_yy_type,
262 //                                  xy_minus_xy_over_yy_type>::value == true));
263 //
264 //  return complex<xy_plus_xy_over_yy_type>(
265 //      (x.real()*y.real()+x.imag()*y.imag())/
266 //          (y.real()*y.real()+y.imag()*y.imag()),
267 //      (x.imag()*y.real()-x.real()*y.imag())/
268 //          (y.real()*y.real()+y.imag()*y.imag()));
269 }
270 
271 template<class Y>
272 complex<Y>
pow(const complex<Y> & x,const Y & y)273 pow(const complex<Y>& x,const Y& y)
274 {
275     std::complex<Y> tmp(x.real(),x.imag());
276 
277     tmp = std::pow(tmp,y);
278 
279     return complex<Y>(tmp.real(),tmp.imag());
280 }
281 
282 template<class Y>
operator <<(std::ostream & os,const complex<Y> & val)283 std::ostream& operator<<(std::ostream& os,const complex<Y>& val)
284 {
285     os << val.real() << " + " << val.imag() << " i";
286 
287     return os;
288 }
289 
290 /// specialize power typeof helper for complex<Y>
291 template<class Y,long N,long D>
292 struct power_typeof_helper<complex<Y>,static_rational<N,D> >
293 {
294     typedef complex<
295         typename power_typeof_helper<Y,static_rational<N,D> >::type
296     > type;
297 
valueboost::units::power_typeof_helper298     static type value(const complex<Y>& x)
299     {
300         const static_rational<N,D>  rat;
301 
302         const Y    m = Y(rat.numerator())/Y(rat.denominator());
303 
304         return boost::units::pow(x,m);
305     }
306 };
307 
308 /// specialize root typeof helper for complex<Y>
309 template<class Y,long N,long D>
310 struct root_typeof_helper<complex<Y>,static_rational<N,D> >
311 {
312     typedef complex<
313         typename root_typeof_helper<Y,static_rational<N,D> >::type
314     > type;
315 
valueboost::units::root_typeof_helper316     static type value(const complex<Y>& x)
317     {
318         const static_rational<N,D>  rat;
319 
320         const Y    m = Y(rat.denominator())/Y(rat.numerator());
321 
322         return boost::units::pow(x,m);
323     }
324 };
325 
326 /// specialize power typeof helper for complex<quantity<Unit,Y> >
327 template<class Y,class Unit,long N,long D>
328 struct power_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
329 {
330     typedef typename
331         power_typeof_helper<Y,static_rational<N,D> >::type       value_type;
332     typedef typename
333         power_typeof_helper<Unit,static_rational<N,D> >::type    unit_type;
334     typedef quantity<unit_type,value_type>                      quantity_type;
335     typedef complex<quantity_type>                              type;
336 
valueboost::units::power_typeof_helper337     static type value(const complex<quantity<Unit,Y> >& x)
338     {
339         const complex<value_type>   tmp =
340             pow<static_rational<N,D> >(complex<Y>(x.real().value(),
341                                                   x.imag().value()));
342 
343         return type(quantity_type::from_value(tmp.real()),
344                     quantity_type::from_value(tmp.imag()));
345     }
346 };
347 
348 /// specialize root typeof helper for complex<quantity<Unit,Y> >
349 template<class Y,class Unit,long N,long D>
350 struct root_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
351 {
352     typedef typename
353         root_typeof_helper<Y,static_rational<N,D> >::type       value_type;
354     typedef typename
355         root_typeof_helper<Unit,static_rational<N,D> >::type    unit_type;
356     typedef quantity<unit_type,value_type>                      quantity_type;
357     typedef complex<quantity_type>                              type;
358 
valueboost::units::root_typeof_helper359     static type value(const complex<quantity<Unit,Y> >& x)
360     {
361         const complex<value_type>   tmp =
362             root<static_rational<N,D> >(complex<Y>(x.real().value(),
363                                                    x.imag().value()));
364 
365         return type(quantity_type::from_value(tmp.real()),
366                    quantity_type::from_value(tmp.imag()));
367     }
368 };
369 
370 } // namespace units
371 
372 } // namespace boost
373 //]
374 
main(void)375 int main(void)
376 {
377     using namespace boost::units;
378     using namespace boost::units::test;
379 
380     {
381     //[complex_snippet_1
382     typedef quantity<length,complex<double> >     length_dimension;
383 
384     const length_dimension    L(complex<double>(2.0,1.0)*meters);
385     //]
386 
387     std::cout << "+L      = " << +L << std::endl
388               << "-L      = " << -L << std::endl
389               << "L+L     = " << L+L << std::endl
390               << "L-L     = " << L-L << std::endl
391               << "L*L     = " << L*L << std::endl
392               << "L/L     = " << L/L << std::endl
393               << "L^3     = " << pow<3>(L) << std::endl
394               << "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
395               << "3vL     = " << root<3>(L) << std::endl
396               << "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
397               << std::endl;
398     }
399 
400     {
401     //[complex_snippet_2
402     typedef complex<quantity<length> >     length_dimension;
403 
404     const length_dimension    L(2.0*meters,1.0*meters);
405     //]
406 
407     std::cout << "+L      = " << +L << std::endl
408               << "-L      = " << -L << std::endl
409               << "L+L     = " << L+L << std::endl
410               << "L-L     = " << L-L << std::endl
411               << "L*L     = " << L*L << std::endl
412               << "L/L     = " << L/L << std::endl
413               << "L^3     = " << pow<3>(L) << std::endl
414               << "L^(3/2) = " << pow< static_rational<3,2> >(L) << std::endl
415               << "3vL     = " << root<3>(L) << std::endl
416               << "(3/2)vL = " << root< static_rational<3,2> >(L) << std::endl
417               << std::endl;
418     }
419 
420     return 0;
421 }
422