1 /*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/gpu/GrBackendSurface.h"
9 #include "include/gpu/vk/GrVkBackendContext.h"
10 #include "include/gpu/vk/GrVkExtensions.h"
11 #include "src/gpu/GrRenderTarget.h"
12 #include "src/gpu/GrRenderTargetProxy.h"
13 #include "src/gpu/GrShaderCaps.h"
14 #include "src/gpu/GrUtil.h"
15 #include "src/gpu/SkGr.h"
16 #include "src/gpu/vk/GrVkCaps.h"
17 #include "src/gpu/vk/GrVkInterface.h"
18 #include "src/gpu/vk/GrVkTexture.h"
19 #include "src/gpu/vk/GrVkUniformHandler.h"
20 #include "src/gpu/vk/GrVkUtil.h"
21
22 #ifdef SK_BUILD_FOR_ANDROID
23 #include <sys/system_properties.h>
24 #endif
25
GrVkCaps(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)26 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
27 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
28 uint32_t instanceVersion, uint32_t physicalDeviceVersion,
29 const GrVkExtensions& extensions, GrProtected isProtected)
30 : INHERITED(contextOptions) {
31 /**************************************************************************
32 * GrCaps fields
33 **************************************************************************/
34 fMipMapSupport = true; // always available in Vulkan
35 fSRGBSupport = true; // always available in Vulkan
36 fNPOTTextureTileSupport = true; // always available in Vulkan
37 fReuseScratchTextures = true; //TODO: figure this out
38 fGpuTracingSupport = false; //TODO: figure this out
39 fOversizedStencilSupport = false; //TODO: figure this out
40 fInstanceAttribSupport = true;
41
42 fSemaphoreSupport = true; // always available in Vulkan
43 fFenceSyncSupport = true; // always available in Vulkan
44 fCrossContextTextureSupport = true;
45 fHalfFloatVertexAttributeSupport = true;
46
47 // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
48 fReadPixelsRowBytesSupport = true;
49 fWritePixelsRowBytesSupport = true;
50
51 fTransferBufferSupport = true;
52
53 fMaxRenderTargetSize = 4096; // minimum required by spec
54 fMaxTextureSize = 4096; // minimum required by spec
55
56 fDynamicStateArrayGeometryProcessorTextureSupport = true;
57
58 fShaderCaps.reset(new GrShaderCaps(contextOptions));
59
60 this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
61 isProtected);
62 }
63
64 namespace {
65 /**
66 * This comes from section 37.1.6 of the Vulkan spec. Format is
67 * (<bits>|<tag>)_<block_size>_<texels_per_block>.
68 */
69 enum class FormatCompatibilityClass {
70 k8_1_1,
71 k16_2_1,
72 k24_3_1,
73 k32_4_1,
74 k64_8_1,
75 k128_16_1,
76 kETC2_RGB_8_16,
77 };
78 } // anonymous namespace
79
format_compatibility_class(VkFormat format)80 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
81 switch (format) {
82 case VK_FORMAT_B8G8R8A8_UNORM:
83 case VK_FORMAT_R8G8B8A8_UNORM:
84 case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
85 case VK_FORMAT_R8G8B8A8_SRGB:
86 case VK_FORMAT_R16G16_UNORM:
87 case VK_FORMAT_R16G16_SFLOAT:
88 return FormatCompatibilityClass::k32_4_1;
89
90 case VK_FORMAT_R8_UNORM:
91 return FormatCompatibilityClass::k8_1_1;
92
93 case VK_FORMAT_R5G6B5_UNORM_PACK16:
94 case VK_FORMAT_R16_SFLOAT:
95 case VK_FORMAT_R8G8_UNORM:
96 case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
97 case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
98 case VK_FORMAT_R16_UNORM:
99 return FormatCompatibilityClass::k16_2_1;
100
101 case VK_FORMAT_R16G16B16A16_SFLOAT:
102 case VK_FORMAT_R16G16B16A16_UNORM:
103 return FormatCompatibilityClass::k64_8_1;
104
105 case VK_FORMAT_R8G8B8_UNORM:
106 return FormatCompatibilityClass::k24_3_1;
107
108 case VK_FORMAT_R32G32B32A32_SFLOAT:
109 return FormatCompatibilityClass::k128_16_1;
110 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
111 return FormatCompatibilityClass::kETC2_RGB_8_16;
112
113 default:
114 SK_ABORT("Unsupported VkFormat");
115 }
116 }
117
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const118 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
119 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
120 if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
121 return false;
122 }
123
124 if (dstHasYcbcr || srcHasYcbcr) {
125 return false;
126 }
127
128 // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
129 // as image usage flags.
130 return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
131 }
132
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const133 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
134 bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
135 bool srcIsLinear, bool srcHasYcbcr) const {
136 // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
137 // as image usage flags.
138 if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
139 !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
140 return false;
141 }
142
143 // We cannot blit images that are multisampled. Will need to figure out if we can blit the
144 // resolved msaa though.
145 if (dstSampleCnt > 1 || srcSampleCnt > 1) {
146 return false;
147 }
148
149 if (dstHasYcbcr || srcHasYcbcr) {
150 return false;
151 }
152
153 return true;
154 }
155
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const156 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
157 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
158 // The src surface must be multisampled.
159 if (srcSampleCnt <= 1) {
160 return false;
161 }
162
163 // The dst must not be multisampled.
164 if (dstSampleCnt > 1) {
165 return false;
166 }
167
168 // Surfaces must have the same format.
169 if (srcFormat != dstFormat) {
170 return false;
171 }
172
173 if (dstHasYcbcr || srcHasYcbcr) {
174 return false;
175 }
176
177 return true;
178 }
179
onCanCopySurface(const GrSurfaceProxy * dst,const GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint) const180 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const GrSurfaceProxy* src,
181 const SkIRect& srcRect, const SkIPoint& dstPoint) const {
182 if (src->isProtected() && !dst->isProtected()) {
183 return false;
184 }
185
186 // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
187 // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
188 // tracking of external or rectangle textures in GL? For now we don't create linear textures
189 // internally, and I don't believe anyone is wrapping them.
190 bool srcIsLinear = false;
191 bool dstIsLinear = false;
192
193 int dstSampleCnt = 0;
194 int srcSampleCnt = 0;
195 if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
196 // Copying to or from render targets that wrap a secondary command buffer is not allowed
197 // since they would require us to know the VkImage, which we don't have, as well as need us
198 // to stop and start the VkRenderPass which we don't have access to.
199 if (rtProxy->wrapsVkSecondaryCB()) {
200 return false;
201 }
202 dstSampleCnt = rtProxy->numSamples();
203 }
204 if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
205 // Copying to or from render targets that wrap a secondary command buffer is not allowed
206 // since they would require us to know the VkImage, which we don't have, as well as need us
207 // to stop and start the VkRenderPass which we don't have access to.
208 if (rtProxy->wrapsVkSecondaryCB()) {
209 return false;
210 }
211 srcSampleCnt = rtProxy->numSamples();
212 }
213 SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
214 SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
215
216 bool dstHasYcbcr = false;
217 if (auto ycbcr = dst->backendFormat().getVkYcbcrConversionInfo()) {
218 if (ycbcr->isValid()) {
219 dstHasYcbcr = true;
220 }
221 }
222
223 bool srcHasYcbcr = false;
224 if (auto ycbcr = src->backendFormat().getVkYcbcrConversionInfo()) {
225 if (ycbcr->isValid()) {
226 srcHasYcbcr = true;
227 }
228 }
229
230 VkFormat dstFormat, srcFormat;
231 SkAssertResult(dst->backendFormat().asVkFormat(&dstFormat));
232 SkAssertResult(src->backendFormat().asVkFormat(&srcFormat));
233
234 return this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
235 srcFormat, srcSampleCnt, srcHasYcbcr) ||
236 this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
237 srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr) ||
238 this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
239 srcFormat, srcSampleCnt, srcHasYcbcr);
240 }
241
get_extension_feature_struct(const VkPhysicalDeviceFeatures2 & features,VkStructureType type)242 template<typename T> T* get_extension_feature_struct(const VkPhysicalDeviceFeatures2& features,
243 VkStructureType type) {
244 // All Vulkan structs that could be part of the features chain will start with the
245 // structure type followed by the pNext pointer. We cast to the CommonVulkanHeader
246 // so we can get access to the pNext for the next struct.
247 struct CommonVulkanHeader {
248 VkStructureType sType;
249 void* pNext;
250 };
251
252 void* pNext = features.pNext;
253 while (pNext) {
254 CommonVulkanHeader* header = static_cast<CommonVulkanHeader*>(pNext);
255 if (header->sType == type) {
256 return static_cast<T*>(pNext);
257 }
258 pNext = header->pNext;
259 }
260 return nullptr;
261 }
262
init(const GrContextOptions & contextOptions,const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const GrVkExtensions & extensions,GrProtected isProtected)263 void GrVkCaps::init(const GrContextOptions& contextOptions, const GrVkInterface* vkInterface,
264 VkPhysicalDevice physDev, const VkPhysicalDeviceFeatures2& features,
265 uint32_t physicalDeviceVersion, const GrVkExtensions& extensions,
266 GrProtected isProtected) {
267 VkPhysicalDeviceProperties properties;
268 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
269
270 VkPhysicalDeviceMemoryProperties memoryProperties;
271 GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
272
273 SkASSERT(physicalDeviceVersion <= properties.apiVersion);
274
275 if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
276 fSupportsSwapchain = true;
277 }
278
279 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
280 extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
281 fSupportsPhysicalDeviceProperties2 = true;
282 }
283
284 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
285 extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
286 fSupportsMemoryRequirements2 = true;
287 }
288
289 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
290 extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
291 fSupportsBindMemory2 = true;
292 }
293
294 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
295 extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
296 fSupportsMaintenance1 = true;
297 }
298
299 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
300 extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
301 fSupportsMaintenance2 = true;
302 }
303
304 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
305 extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
306 fSupportsMaintenance3 = true;
307 }
308
309 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
310 (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
311 this->supportsMemoryRequirements2())) {
312 fSupportsDedicatedAllocation = true;
313 }
314
315 if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
316 (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
317 this->supportsPhysicalDeviceProperties2() &&
318 extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
319 this->supportsDedicatedAllocation())) {
320 fSupportsExternalMemory = true;
321 }
322
323 #ifdef SK_BUILD_FOR_ANDROID
324 // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
325 // do we don't explicitly require it here even the spec says it is required.
326 if (extensions.hasExtension(
327 VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
328 /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
329 this->supportsExternalMemory() &&
330 this->supportsBindMemory2()) {
331 fSupportsAndroidHWBExternalMemory = true;
332 fSupportsAHardwareBufferImages = true;
333 }
334 #endif
335
336 auto ycbcrFeatures =
337 get_extension_feature_struct<VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
338 features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
339 if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
340 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
341 (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
342 this->supportsMaintenance1() && this->supportsBindMemory2() &&
343 this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
344 fSupportsYcbcrConversion = true;
345 }
346
347 // We always push back the default GrVkYcbcrConversionInfo so that the case of no conversion
348 // will return a key of 0.
349 fYcbcrInfos.push_back(GrVkYcbcrConversionInfo());
350
351 if ((isProtected == GrProtected::kYes) &&
352 (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
353 fSupportsProtectedMemory = true;
354 fAvoidUpdateBuffers = true;
355 fShouldAlwaysUseDedicatedImageMemory = true;
356 }
357
358 this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
359 this->initShaderCaps(properties, features);
360
361 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
362 #if defined(SK_CPU_X86)
363 // We need to do this before initing the config table since it uses fSRGBSupport
364 if (kImagination_VkVendor == properties.vendorID) {
365 fSRGBSupport = false;
366 }
367 #endif
368 }
369
370 if (kQualcomm_VkVendor == properties.vendorID) {
371 // A "clear" load for the CCPR atlas runs faster on QC than a "discard" load followed by a
372 // scissored clear.
373 // On NVIDIA and Intel, the discard load followed by clear is faster.
374 // TODO: Evaluate on ARM, Imagination, and ATI.
375 fPreferFullscreenClears = true;
376 }
377
378 if (kQualcomm_VkVendor == properties.vendorID || kARM_VkVendor == properties.vendorID) {
379 // On Qualcomm and ARM mapping a gpu buffer and doing both reads and writes to it is slow.
380 // Thus for index and vertex buffers we will force to use a cpu side buffer and then copy
381 // the whole buffer up to the gpu.
382 fBufferMapThreshold = SK_MaxS32;
383 }
384
385 if (kQualcomm_VkVendor == properties.vendorID) {
386 // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
387 // even for small sizes.
388 fAvoidUpdateBuffers = true;
389 }
390
391 if (kARM_VkVendor == properties.vendorID) {
392 // ARM seems to do better with more fine triangles as opposed to using the sample mask.
393 // (At least in our current round rect op.)
394 fPreferTrianglesOverSampleMask = true;
395 }
396
397 this->initFormatTable(vkInterface, physDev, properties);
398 this->initStencilFormat(vkInterface, physDev);
399
400 if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
401 this->applyDriverCorrectnessWorkarounds(properties);
402 }
403
404 this->applyOptionsOverrides(contextOptions);
405 fShaderCaps->applyOptionsOverrides(contextOptions);
406 }
407
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)408 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
409 if (kQualcomm_VkVendor == properties.vendorID) {
410 fMustDoCopiesFromOrigin = true;
411 // Transfer doesn't support this workaround.
412 fTransferBufferSupport = false;
413 }
414
415 #if defined(SK_BUILD_FOR_WIN)
416 if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
417 fMustSleepOnTearDown = true;
418 }
419 #elif defined(SK_BUILD_FOR_ANDROID)
420 if (kImagination_VkVendor == properties.vendorID) {
421 fMustSleepOnTearDown = true;
422 }
423 #endif
424
425 #if defined(SK_BUILD_FOR_ANDROID)
426 // Protected memory features have problems in Android P and earlier.
427 if (fSupportsProtectedMemory && (kQualcomm_VkVendor == properties.vendorID)) {
428 char androidAPIVersion[PROP_VALUE_MAX];
429 int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersion);
430 if (strLength == 0 || atoi(androidAPIVersion) <= 28) {
431 fSupportsProtectedMemory = false;
432 }
433 }
434 #endif
435
436 // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
437 if (kARM_VkVendor == properties.vendorID) {
438 fShouldAlwaysUseDedicatedImageMemory = true;
439 }
440
441 ////////////////////////////////////////////////////////////////////////////
442 // GrCaps workarounds
443 ////////////////////////////////////////////////////////////////////////////
444
445 if (kARM_VkVendor == properties.vendorID) {
446 fInstanceAttribSupport = false;
447 fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
448 }
449
450 // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
451 if (kAMD_VkVendor == properties.vendorID) {
452 fMaxVertexAttributes = SkTMin(fMaxVertexAttributes, 32);
453 }
454
455 ////////////////////////////////////////////////////////////////////////////
456 // GrShaderCaps workarounds
457 ////////////////////////////////////////////////////////////////////////////
458
459 if (kImagination_VkVendor == properties.vendorID) {
460 fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
461 }
462 }
463
get_max_sample_count(VkSampleCountFlags flags)464 int get_max_sample_count(VkSampleCountFlags flags) {
465 SkASSERT(flags & VK_SAMPLE_COUNT_1_BIT);
466 if (!(flags & VK_SAMPLE_COUNT_2_BIT)) {
467 return 0;
468 }
469 if (!(flags & VK_SAMPLE_COUNT_4_BIT)) {
470 return 2;
471 }
472 if (!(flags & VK_SAMPLE_COUNT_8_BIT)) {
473 return 4;
474 }
475 if (!(flags & VK_SAMPLE_COUNT_16_BIT)) {
476 return 8;
477 }
478 if (!(flags & VK_SAMPLE_COUNT_32_BIT)) {
479 return 16;
480 }
481 if (!(flags & VK_SAMPLE_COUNT_64_BIT)) {
482 return 32;
483 }
484 return 64;
485 }
486
initGrCaps(const GrVkInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const GrVkExtensions & extensions)487 void GrVkCaps::initGrCaps(const GrVkInterface* vkInterface,
488 VkPhysicalDevice physDev,
489 const VkPhysicalDeviceProperties& properties,
490 const VkPhysicalDeviceMemoryProperties& memoryProperties,
491 const VkPhysicalDeviceFeatures2& features,
492 const GrVkExtensions& extensions) {
493 // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
494 // need for us ever to support that amount, and it makes tests which tests all the vertex
495 // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
496 // we ever find that need.
497 static const uint32_t kMaxVertexAttributes = 64;
498 fMaxVertexAttributes = SkTMin(properties.limits.maxVertexInputAttributes, kMaxVertexAttributes);
499
500 // We could actually query and get a max size for each config, however maxImageDimension2D will
501 // give the minimum max size across all configs. So for simplicity we will use that for now.
502 fMaxRenderTargetSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
503 fMaxTextureSize = SkTMin(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
504 if (fDriverBugWorkarounds.max_texture_size_limit_4096) {
505 fMaxTextureSize = SkTMin(fMaxTextureSize, 4096);
506 }
507 // Our render targets are always created with textures as the color
508 // attachment, hence this min:
509 fMaxRenderTargetSize = SkTMin(fMaxTextureSize, fMaxRenderTargetSize);
510
511 // TODO: check if RT's larger than 4k incur a performance cost on ARM.
512 fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
513
514 // Assuming since we will always map in the end to upload the data we might as well just map
515 // from the get go. There is no hard data to suggest this is faster or slower.
516 fBufferMapThreshold = 0;
517
518 fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
519
520 fOversizedStencilSupport = true;
521
522 if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
523 this->supportsPhysicalDeviceProperties2()) {
524
525 VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
526 blendProps.sType =
527 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
528 blendProps.pNext = nullptr;
529
530 VkPhysicalDeviceProperties2 props;
531 props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
532 props.pNext = &blendProps;
533
534 GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
535
536 if (blendProps.advancedBlendAllOperations == VK_TRUE) {
537 fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
538
539 auto blendFeatures =
540 get_extension_feature_struct<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
541 features,
542 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT);
543 if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
544 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
545 } else {
546 // TODO: Currently non coherent blends are not supported in our vulkan backend. They
547 // require us to support self dependencies in our render passes.
548 // fBlendEquationSupport = kAdvanced_BlendEquationSupport;
549 }
550 }
551 }
552 }
553
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)554 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
555 const VkPhysicalDeviceFeatures2& features) {
556 GrShaderCaps* shaderCaps = fShaderCaps.get();
557 shaderCaps->fVersionDeclString = "#version 330\n";
558
559 // Vulkan is based off ES 3.0 so the following should all be supported
560 shaderCaps->fUsesPrecisionModifiers = true;
561 shaderCaps->fFlatInterpolationSupport = true;
562 // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
563 // to be true with Vulkan as well.
564 shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
565
566 // GrShaderCaps
567
568 shaderCaps->fShaderDerivativeSupport = true;
569
570 // FIXME: http://skbug.com/7733: Disable geometry shaders until Intel/Radeon GMs draw correctly.
571 // shaderCaps->fGeometryShaderSupport =
572 // shaderCaps->fGSInvocationsSupport = features.features.geometryShader;
573
574 shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
575
576 shaderCaps->fIntegerSupport = true;
577 shaderCaps->fVertexIDSupport = true;
578 shaderCaps->fFPManipulationSupport = true;
579
580 // Assume the minimum precisions mandated by the SPIR-V spec.
581 shaderCaps->fFloatIs32Bits = true;
582 shaderCaps->fHalfIs32Bits = false;
583
584 shaderCaps->fMaxFragmentSamplers = SkTMin(
585 SkTMin(properties.limits.maxPerStageDescriptorSampledImages,
586 properties.limits.maxPerStageDescriptorSamplers),
587 (uint32_t)INT_MAX);
588 }
589
stencil_format_supported(const GrVkInterface * interface,VkPhysicalDevice physDev,VkFormat format)590 bool stencil_format_supported(const GrVkInterface* interface,
591 VkPhysicalDevice physDev,
592 VkFormat format) {
593 VkFormatProperties props;
594 memset(&props, 0, sizeof(VkFormatProperties));
595 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
596 return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
597 }
598
initStencilFormat(const GrVkInterface * interface,VkPhysicalDevice physDev)599 void GrVkCaps::initStencilFormat(const GrVkInterface* interface, VkPhysicalDevice physDev) {
600 // List of legal stencil formats (though perhaps not supported on
601 // the particular gpu/driver) from most preferred to least. We are guaranteed to have either
602 // VK_FORMAT_D24_UNORM_S8_UINT or VK_FORMAT_D32_SFLOAT_S8_UINT. VK_FORMAT_D32_SFLOAT_S8_UINT
603 // can optionally have 24 unused bits at the end so we assume the total bits is 64.
604 static const StencilFormat
605 // internal Format stencil bits total bits packed?
606 gS8 = { VK_FORMAT_S8_UINT, 8, 8, false },
607 gD24S8 = { VK_FORMAT_D24_UNORM_S8_UINT, 8, 32, true },
608 gD32S8 = { VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 64, true };
609
610 if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
611 fPreferredStencilFormat = gS8;
612 } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
613 fPreferredStencilFormat = gD24S8;
614 } else {
615 SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
616 fPreferredStencilFormat = gD32S8;
617 }
618 }
619
format_is_srgb(VkFormat format)620 static bool format_is_srgb(VkFormat format) {
621 SkASSERT(GrVkFormatIsSupported(format));
622
623 switch (format) {
624 case VK_FORMAT_R8G8B8A8_SRGB:
625 return true;
626 default:
627 return false;
628 }
629 }
630
631 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
632 // frequently used to least to improve look up times in arrays.
633 static constexpr VkFormat kVkFormats[] = {
634 VK_FORMAT_R8G8B8A8_UNORM,
635 VK_FORMAT_R8_UNORM,
636 VK_FORMAT_B8G8R8A8_UNORM,
637 VK_FORMAT_R5G6B5_UNORM_PACK16,
638 VK_FORMAT_R16G16B16A16_SFLOAT,
639 VK_FORMAT_R16_SFLOAT,
640 VK_FORMAT_R8G8B8_UNORM,
641 VK_FORMAT_R8G8_UNORM,
642 VK_FORMAT_A2B10G10R10_UNORM_PACK32,
643 VK_FORMAT_B4G4R4A4_UNORM_PACK16,
644 VK_FORMAT_R4G4B4A4_UNORM_PACK16,
645 VK_FORMAT_R32G32B32A32_SFLOAT,
646 VK_FORMAT_R8G8B8A8_SRGB,
647 VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
648 VK_FORMAT_R16_UNORM,
649 VK_FORMAT_R16G16_UNORM,
650 VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
651 VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
652 // Experimental (for Y416 and mutant P016/P010)
653 VK_FORMAT_R16G16B16A16_UNORM,
654 VK_FORMAT_R16G16_SFLOAT,
655 };
656
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)657 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
658 #ifdef SK_DEBUG
659 for (size_t i = 0; i < kNumVkFormats; ++i) {
660 const auto& formatInfo = fFormatTable[i];
661 for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
662 const auto& ctInfo = formatInfo.fColorTypeInfos[j];
663 if (ctInfo.fColorType == colorType &&
664 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
665 bool found = false;
666 for (auto it = formats.begin(); it != formats.end(); ++it) {
667 if (kVkFormats[i] == *it) {
668 found = true;
669 }
670 }
671 SkASSERT(found);
672 }
673 }
674 }
675 #endif
676 int idx = static_cast<int>(colorType);
677 for (auto it = formats.begin(); it != formats.end(); ++it) {
678 const auto& info = this->getFormatInfo(*it);
679 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
680 if (info.fColorTypeInfos[i].fColorType == colorType) {
681 fColorTypeToFormatTable[idx] = *it;
682 return;
683 }
684 }
685 }
686 }
687
getFormatInfo(VkFormat format) const688 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
689 GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
690 return nonConstThis->getFormatInfo(format);
691 }
692
getFormatInfo(VkFormat format)693 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
694 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
695 "Size of VkFormats array must match static value in header");
696 for (size_t i = 0; i < SK_ARRAY_COUNT(kVkFormats); ++i) {
697 if (kVkFormats[i] == format) {
698 return fFormatTable[i];
699 }
700 }
701 static FormatInfo kInvalidFormat;
702 return kInvalidFormat;
703 }
704
initFormatTable(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties)705 void GrVkCaps::initFormatTable(const GrVkInterface* interface, VkPhysicalDevice physDev,
706 const VkPhysicalDeviceProperties& properties) {
707 static_assert(SK_ARRAY_COUNT(kVkFormats) == GrVkCaps::kNumVkFormats,
708 "Size of VkFormats array must match static value in header");
709
710 std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
711
712 // Go through all the formats and init their support surface and data GrColorTypes.
713 // Format: VK_FORMAT_R8G8B8A8_UNORM
714 {
715 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
716 auto& info = this->getFormatInfo(format);
717 info.init(interface, physDev, properties, format);
718 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
719 info.fColorTypeInfoCount = 2;
720 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
721 int ctIdx = 0;
722 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
723 {
724 constexpr GrColorType ct = GrColorType::kRGBA_8888;
725 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
726 ctInfo.fColorType = ct;
727 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
728 }
729 // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
730 {
731 constexpr GrColorType ct = GrColorType::kRGB_888x;
732 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
733 ctInfo.fColorType = ct;
734 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
735 ctInfo.fTextureSwizzle = GrSwizzle::RGB1();
736 }
737 }
738 }
739
740 // Format: VK_FORMAT_R8_UNORM
741 {
742 constexpr VkFormat format = VK_FORMAT_R8_UNORM;
743 auto& info = this->getFormatInfo(format);
744 info.init(interface, physDev, properties, format);
745 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
746 info.fColorTypeInfoCount = 2;
747 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
748 int ctIdx = 0;
749 // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
750 {
751 constexpr GrColorType ct = GrColorType::kAlpha_8;
752 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
753 ctInfo.fColorType = ct;
754 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
755 ctInfo.fTextureSwizzle = GrSwizzle::RRRR();
756 ctInfo.fOutputSwizzle = GrSwizzle::AAAA();
757 }
758 // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
759 {
760 constexpr GrColorType ct = GrColorType::kGray_8;
761 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
762 ctInfo.fColorType = ct;
763 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
764 ctInfo.fTextureSwizzle = GrSwizzle("rrr1");
765 }
766 }
767 }
768 // Format: VK_FORMAT_B8G8R8A8_UNORM
769 {
770 constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
771 auto& info = this->getFormatInfo(format);
772 info.init(interface, physDev, properties, format);
773 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
774 info.fColorTypeInfoCount = 1;
775 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
776 int ctIdx = 0;
777 // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
778 {
779 constexpr GrColorType ct = GrColorType::kBGRA_8888;
780 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
781 ctInfo.fColorType = ct;
782 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
783 }
784 }
785 }
786 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
787 {
788 constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
789 auto& info = this->getFormatInfo(format);
790 info.init(interface, physDev, properties, format);
791 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
792 info.fColorTypeInfoCount = 1;
793 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
794 int ctIdx = 0;
795 // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
796 {
797 constexpr GrColorType ct = GrColorType::kBGR_565;
798 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
799 ctInfo.fColorType = ct;
800 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
801 }
802 }
803 }
804 // Format: VK_FORMAT_R16G16B16A16_SFLOAT
805 {
806 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
807 auto& info = this->getFormatInfo(format);
808 info.init(interface, physDev, properties, format);
809 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
810 info.fColorTypeInfoCount = 2;
811 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
812 int ctIdx = 0;
813 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
814 {
815 constexpr GrColorType ct = GrColorType::kRGBA_F16;
816 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
817 ctInfo.fColorType = ct;
818 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
819 }
820 // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
821 {
822 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
823 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
824 ctInfo.fColorType = ct;
825 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
826 }
827 }
828 }
829 // Format: VK_FORMAT_R16_SFLOAT
830 {
831 constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
832 auto& info = this->getFormatInfo(format);
833 info.init(interface, physDev, properties, format);
834 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
835 info.fColorTypeInfoCount = 1;
836 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
837 int ctIdx = 0;
838 // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
839 {
840 constexpr GrColorType ct = GrColorType::kAlpha_F16;
841 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
842 ctInfo.fColorType = ct;
843 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
844 ctInfo.fTextureSwizzle = GrSwizzle::RRRR();
845 ctInfo.fOutputSwizzle = GrSwizzle::AAAA();
846 }
847 }
848 }
849 // Format: VK_FORMAT_R8G8B8_UNORM
850 {
851 constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
852 auto& info = this->getFormatInfo(format);
853 info.init(interface, physDev, properties, format);
854 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
855 info.fColorTypeInfoCount = 1;
856 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
857 int ctIdx = 0;
858 // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
859 {
860 constexpr GrColorType ct = GrColorType::kRGB_888x;
861 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
862 ctInfo.fColorType = ct;
863 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
864 }
865 }
866 }
867 // Format: VK_FORMAT_R8G8_UNORM
868 {
869 constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
870 auto& info = this->getFormatInfo(format);
871 info.init(interface, physDev, properties, format);
872 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
873 info.fColorTypeInfoCount = 1;
874 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
875 int ctIdx = 0;
876 // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
877 {
878 constexpr GrColorType ct = GrColorType::kRG_88;
879 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
880 ctInfo.fColorType = ct;
881 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
882 }
883 }
884 }
885 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
886 {
887 constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
888 auto& info = this->getFormatInfo(format);
889 info.init(interface, physDev, properties, format);
890 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
891 info.fColorTypeInfoCount = 1;
892 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
893 int ctIdx = 0;
894 // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
895 {
896 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
897 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
898 ctInfo.fColorType = ct;
899 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
900 }
901 }
902 }
903 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
904 {
905 constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
906 auto& info = this->getFormatInfo(format);
907 info.init(interface, physDev, properties, format);
908 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
909 info.fColorTypeInfoCount = 1;
910 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
911 int ctIdx = 0;
912 // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
913 {
914 constexpr GrColorType ct = GrColorType::kABGR_4444;
915 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
916 ctInfo.fColorType = ct;
917 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
918 ctInfo.fTextureSwizzle = GrSwizzle::BGRA();
919 ctInfo.fOutputSwizzle = GrSwizzle::BGRA();
920 }
921 }
922 }
923 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
924 {
925 constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
926 auto& info = this->getFormatInfo(format);
927 info.init(interface, physDev, properties, format);
928 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
929 info.fColorTypeInfoCount = 1;
930 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
931 int ctIdx = 0;
932 // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
933 {
934 constexpr GrColorType ct = GrColorType::kABGR_4444;
935 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
936 ctInfo.fColorType = ct;
937 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
938 }
939 }
940 }
941 // Format: VK_FORMAT_R32G32B32A32_SFLOAT
942 {
943 constexpr VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT;
944 auto& info = this->getFormatInfo(format);
945 info.init(interface, physDev, properties, format);
946 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
947 info.fColorTypeInfoCount = 1;
948 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
949 int ctIdx = 0;
950 // Format: VK_FORMAT_R32G32B32A32_SFLOAT, Surface: kRGBA_F32
951 {
952 constexpr GrColorType ct = GrColorType::kRGBA_F32;
953 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
954 ctInfo.fColorType = ct;
955 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
956 }
957 }
958 }
959 // Format: VK_FORMAT_R8G8B8A8_SRGB
960 {
961 constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
962 auto& info = this->getFormatInfo(format);
963 if (fSRGBSupport) {
964 info.init(interface, physDev, properties, format);
965 }
966 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
967 info.fColorTypeInfoCount = 1;
968 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
969 int ctIdx = 0;
970 // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
971 {
972 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
973 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
974 ctInfo.fColorType = ct;
975 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
976 }
977 }
978 }
979 // Format: VK_FORMAT_R16_UNORM
980 {
981 constexpr VkFormat format = VK_FORMAT_R16_UNORM;
982 auto& info = this->getFormatInfo(format);
983 info.init(interface, physDev, properties, format);
984 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
985 info.fColorTypeInfoCount = 1;
986 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
987 int ctIdx = 0;
988 // Format: VK_FORMAT_R16_UNORM, Surface: kR_16
989 {
990 constexpr GrColorType ct = GrColorType::kR_16;
991 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
992 ctInfo.fColorType = ct;
993 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
994 }
995 }
996 }
997 // Format: VK_FORMAT_R16G16_UNORM
998 {
999 constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1000 auto& info = this->getFormatInfo(format);
1001 info.init(interface, physDev, properties, format);
1002 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1003 info.fColorTypeInfoCount = 1;
1004 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1005 int ctIdx = 0;
1006 // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1007 {
1008 constexpr GrColorType ct = GrColorType::kRG_1616;
1009 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1010 ctInfo.fColorType = ct;
1011 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1012 }
1013 }
1014 }
1015 // Format: VK_FORMAT_R16G16B16A16_UNORM
1016 {
1017 constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1018 auto& info = this->getFormatInfo(format);
1019 info.init(interface, physDev, properties, format);
1020 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1021 info.fColorTypeInfoCount = 1;
1022 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1023 int ctIdx = 0;
1024 // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1025 {
1026 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1027 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1028 ctInfo.fColorType = ct;
1029 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1030 }
1031 }
1032 }
1033 // Format: VK_FORMAT_R16G16_SFLOAT
1034 {
1035 constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1036 auto& info = this->getFormatInfo(format);
1037 info.init(interface, physDev, properties, format);
1038 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1039 info.fColorTypeInfoCount = 1;
1040 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1041 int ctIdx = 0;
1042 // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1043 {
1044 constexpr GrColorType ct = GrColorType::kRG_F16;
1045 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1046 ctInfo.fColorType = ct;
1047 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1048 }
1049 }
1050 }
1051 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1052 {
1053 constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1054 auto& info = this->getFormatInfo(format);
1055 if (fSupportsYcbcrConversion) {
1056 info.init(interface, physDev, properties, format);
1057 }
1058 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1059 info.fColorTypeInfoCount = 1;
1060 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1061 int ctIdx = 0;
1062 // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1063 {
1064 constexpr GrColorType ct = GrColorType::kRGB_888x;
1065 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1066 ctInfo.fColorType = ct;
1067 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1068 }
1069 }
1070 }
1071 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1072 {
1073 constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1074 auto& info = this->getFormatInfo(format);
1075 if (fSupportsYcbcrConversion) {
1076 info.init(interface, physDev, properties, format);
1077 }
1078 if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1079 info.fColorTypeInfoCount = 1;
1080 info.fColorTypeInfos.reset(new ColorTypeInfo[info.fColorTypeInfoCount]());
1081 int ctIdx = 0;
1082 // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1083 {
1084 constexpr GrColorType ct = GrColorType::kRGB_888x;
1085 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1086 ctInfo.fColorType = ct;
1087 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1088 }
1089 }
1090 }
1091 // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1092 {
1093 constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1094 auto& info = this->getFormatInfo(format);
1095 info.init(interface, physDev, properties, format);
1096 // No supported GrColorTypes.
1097 }
1098
1099 ////////////////////////////////////////////////////////////////////////////
1100 // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1101 // are passed into the setColorType function indicates the priority in selecting which format
1102 // we use for a given GrcolorType.
1103
1104 this->setColorType(GrColorType::kAlpha_8, { VK_FORMAT_R8_UNORM });
1105 this->setColorType(GrColorType::kBGR_565, { VK_FORMAT_R5G6B5_UNORM_PACK16 });
1106 this->setColorType(GrColorType::kABGR_4444, { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1107 VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1108 this->setColorType(GrColorType::kRGBA_8888, { VK_FORMAT_R8G8B8A8_UNORM });
1109 this->setColorType(GrColorType::kRGBA_8888_SRGB, { VK_FORMAT_R8G8B8A8_SRGB });
1110 this->setColorType(GrColorType::kRGB_888x, { VK_FORMAT_R8G8B8_UNORM,
1111 VK_FORMAT_R8G8B8A8_UNORM });
1112 this->setColorType(GrColorType::kRG_88, { VK_FORMAT_R8G8_UNORM });
1113 this->setColorType(GrColorType::kBGRA_8888, { VK_FORMAT_B8G8R8A8_UNORM });
1114 this->setColorType(GrColorType::kRGBA_1010102, { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1115 this->setColorType(GrColorType::kGray_8, { VK_FORMAT_R8_UNORM });
1116 this->setColorType(GrColorType::kAlpha_F16, { VK_FORMAT_R16_SFLOAT });
1117 this->setColorType(GrColorType::kRGBA_F16, { VK_FORMAT_R16G16B16A16_SFLOAT });
1118 this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1119 this->setColorType(GrColorType::kRGBA_F32, { VK_FORMAT_R32G32B32A32_SFLOAT });
1120 this->setColorType(GrColorType::kR_16, { VK_FORMAT_R16_UNORM });
1121 this->setColorType(GrColorType::kRG_1616, { VK_FORMAT_R16G16_UNORM });
1122 this->setColorType(GrColorType::kRGBA_16161616, { VK_FORMAT_R16G16B16A16_UNORM });
1123 this->setColorType(GrColorType::kRG_F16, { VK_FORMAT_R16G16_SFLOAT });
1124 }
1125
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1126 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1127 if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1128 SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1129 *flags = *flags | kTexturable_Flag;
1130
1131 // Ganesh assumes that all renderable surfaces are also texturable
1132 if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1133 *flags = *flags | kRenderable_Flag;
1134 }
1135 }
1136
1137 if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1138 *flags = *flags | kBlitSrc_Flag;
1139 }
1140
1141 if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1142 *flags = *flags | kBlitDst_Flag;
1143 }
1144 }
1145
initSampleCounts(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1146 void GrVkCaps::FormatInfo::initSampleCounts(const GrVkInterface* interface,
1147 VkPhysicalDevice physDev,
1148 const VkPhysicalDeviceProperties& physProps,
1149 VkFormat format) {
1150 VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1151 VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1152 VK_IMAGE_USAGE_SAMPLED_BIT |
1153 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1154 VkImageFormatProperties properties;
1155 GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1156 format,
1157 VK_IMAGE_TYPE_2D,
1158 VK_IMAGE_TILING_OPTIMAL,
1159 usage,
1160 0, // createFlags
1161 &properties));
1162 VkSampleCountFlags flags = properties.sampleCounts;
1163 if (flags & VK_SAMPLE_COUNT_1_BIT) {
1164 fColorSampleCounts.push_back(1);
1165 }
1166 if (kImagination_VkVendor == physProps.vendorID) {
1167 // MSAA does not work on imagination
1168 return;
1169 }
1170 if (kIntel_VkVendor == physProps.vendorID) {
1171 // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1172 return;
1173 }
1174 if (flags & VK_SAMPLE_COUNT_2_BIT) {
1175 fColorSampleCounts.push_back(2);
1176 }
1177 if (flags & VK_SAMPLE_COUNT_4_BIT) {
1178 fColorSampleCounts.push_back(4);
1179 }
1180 if (flags & VK_SAMPLE_COUNT_8_BIT) {
1181 fColorSampleCounts.push_back(8);
1182 }
1183 if (flags & VK_SAMPLE_COUNT_16_BIT) {
1184 fColorSampleCounts.push_back(16);
1185 }
1186 if (flags & VK_SAMPLE_COUNT_32_BIT) {
1187 fColorSampleCounts.push_back(32);
1188 }
1189 if (flags & VK_SAMPLE_COUNT_64_BIT) {
1190 fColorSampleCounts.push_back(64);
1191 }
1192 }
1193
init(const GrVkInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1194 void GrVkCaps::FormatInfo::init(const GrVkInterface* interface,
1195 VkPhysicalDevice physDev,
1196 const VkPhysicalDeviceProperties& properties,
1197 VkFormat format) {
1198 VkFormatProperties props;
1199 memset(&props, 0, sizeof(VkFormatProperties));
1200 GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1201 InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1202 InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1203 if (fOptimalFlags & kRenderable_Flag) {
1204 this->initSampleCounts(interface, physDev, properties, format);
1205 }
1206 }
1207
isFormatSRGB(const GrBackendFormat & format) const1208 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1209 VkFormat vkFormat;
1210 if (!format.asVkFormat(&vkFormat)) {
1211 return false;
1212 }
1213
1214 return format_is_srgb(vkFormat);
1215 }
1216
isFormatCompressed(const GrBackendFormat & format) const1217 bool GrVkCaps::isFormatCompressed(const GrBackendFormat& format) const {
1218 VkFormat vkFormat;
1219 if (!format.asVkFormat(&vkFormat)) {
1220 return false;
1221 }
1222
1223 SkASSERT(GrVkFormatIsSupported(vkFormat));
1224
1225 return vkFormat == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1226 }
1227
isFormatTexturableAndUploadable(GrColorType ct,const GrBackendFormat & format) const1228 bool GrVkCaps::isFormatTexturableAndUploadable(GrColorType ct,
1229 const GrBackendFormat& format) const {
1230 VkFormat vkFormat;
1231 if (!format.asVkFormat(&vkFormat)) {
1232 return false;
1233 }
1234
1235 uint32_t ctFlags = this->getFormatInfo(vkFormat).colorTypeFlags(ct);
1236 return this->isVkFormatTexturable(vkFormat) &&
1237 SkToBool(ctFlags & ColorTypeInfo::kUploadData_Flag);
1238 }
1239
isFormatTexturable(const GrBackendFormat & format) const1240 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format) const {
1241 VkFormat vkFormat;
1242 if (!format.asVkFormat(&vkFormat)) {
1243 return false;
1244 }
1245 return this->isVkFormatTexturable(vkFormat);
1246 }
1247
isVkFormatTexturable(VkFormat format) const1248 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1249 const FormatInfo& info = this->getFormatInfo(format);
1250 return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1251 }
1252
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1253 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1254 int sampleCount) const {
1255 if (!this->isFormatRenderable(format, sampleCount)) {
1256 return false;
1257 }
1258 VkFormat vkFormat;
1259 if (!format.asVkFormat(&vkFormat)) {
1260 return false;
1261 }
1262 const auto& info = this->getFormatInfo(vkFormat);
1263 if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1264 return false;
1265 }
1266 return true;
1267 }
1268
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1269 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1270 VkFormat vkFormat;
1271 if (!format.asVkFormat(&vkFormat)) {
1272 return false;
1273 }
1274 return this->isFormatRenderable(vkFormat, sampleCount);
1275 }
1276
isFormatRenderable(VkFormat format,int sampleCount) const1277 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1278 return sampleCount <= this->maxRenderTargetSampleCount(format);
1279 }
1280
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1281 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1282 const GrBackendFormat& format) const {
1283 VkFormat vkFormat;
1284 if (!format.asVkFormat(&vkFormat)) {
1285 return 0;
1286 }
1287
1288 return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1289 }
1290
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1291 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1292 requestedCount = SkTMax(1, requestedCount);
1293
1294 const FormatInfo& info = this->getFormatInfo(format);
1295
1296 int count = info.fColorSampleCounts.count();
1297
1298 if (!count) {
1299 return 0;
1300 }
1301
1302 if (1 == requestedCount) {
1303 SkASSERT(info.fColorSampleCounts.count() && info.fColorSampleCounts[0] == 1);
1304 return 1;
1305 }
1306
1307 for (int i = 0; i < count; ++i) {
1308 if (info.fColorSampleCounts[i] >= requestedCount) {
1309 return info.fColorSampleCounts[i];
1310 }
1311 }
1312 return 0;
1313 }
1314
maxRenderTargetSampleCount(const GrBackendFormat & format) const1315 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1316 VkFormat vkFormat;
1317 if (!format.asVkFormat(&vkFormat)) {
1318 return 0;
1319 }
1320 return this->maxRenderTargetSampleCount(vkFormat);
1321 }
1322
maxRenderTargetSampleCount(VkFormat format) const1323 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1324 const FormatInfo& info = this->getFormatInfo(format);
1325
1326 const auto& table = info.fColorSampleCounts;
1327 if (!table.count()) {
1328 return 0;
1329 }
1330 return table[table.count() - 1];
1331 }
1332
align_to_4(size_t v)1333 static inline size_t align_to_4(size_t v) {
1334 switch (v & 0b11) {
1335 // v is already a multiple of 4.
1336 case 0: return v;
1337 // v is a multiple of 2 but not 4.
1338 case 2: return 2 * v;
1339 // v is not a multiple of 2.
1340 default: return 4 * v;
1341 }
1342 }
1343
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1344 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1345 const GrBackendFormat& surfaceFormat,
1346 GrColorType srcColorType) const {
1347 VkFormat vkFormat;
1348 if (!surfaceFormat.asVkFormat(&vkFormat)) {
1349 return {GrColorType::kUnknown, 0};
1350 }
1351
1352
1353 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1354 return {GrColorType::kUnknown, 0};
1355 }
1356
1357 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1358 size_t offsetAlignment = align_to_4(GrVkBytesPerFormat(vkFormat));
1359
1360 const auto& info = this->getFormatInfo(vkFormat);
1361 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1362 const auto& ctInfo = info.fColorTypeInfos[i];
1363 if (ctInfo.fColorType == surfaceColorType) {
1364 return {surfaceColorType, offsetAlignment};
1365 }
1366 }
1367 return {GrColorType::kUnknown, 0};
1368 }
1369
surfaceSupportsReadPixels(const GrSurface * surface) const1370 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1371 const GrSurface* surface) const {
1372 if (surface->isProtected()) {
1373 return SurfaceReadPixelsSupport::kUnsupported;
1374 }
1375 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1376 // We can't directly read from a VkImage that has a ycbcr sampler.
1377 if (tex->ycbcrConversionInfo().isValid()) {
1378 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1379 }
1380 // We can't directly read from a compressed format
1381 SkImage::CompressionType compressionType;
1382 if (GrVkFormatToCompressionType(tex->imageFormat(), &compressionType)) {
1383 return SurfaceReadPixelsSupport::kCopyToTexture2D;
1384 }
1385 }
1386 return SurfaceReadPixelsSupport::kSupported;
1387 }
1388
onSurfaceSupportsWritePixels(const GrSurface * surface) const1389 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1390 if (auto rt = surface->asRenderTarget()) {
1391 return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1392 }
1393 // We can't write to a texture that has a ycbcr sampler.
1394 if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1395 // We can't directly read from a VkImage that has a ycbcr sampler.
1396 if (tex->ycbcrConversionInfo().isValid()) {
1397 return false;
1398 }
1399 }
1400 return true;
1401 }
1402
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1403 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1404 const GrBackendFormat& format) const {
1405 VkFormat vkFormat;
1406 if (!format.asVkFormat(&vkFormat)) {
1407 return false;
1408 }
1409 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1410 SkASSERT(ycbcrInfo);
1411
1412 if (ycbcrInfo->isValid() && !GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1413 // Format may be undefined for external images, which are required to have YCbCr conversion.
1414 if (VK_FORMAT_UNDEFINED == vkFormat) {
1415 return true;
1416 }
1417 return false;
1418 }
1419
1420 const auto& info = this->getFormatInfo(vkFormat);
1421 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1422 if (info.fColorTypeInfos[i].fColorType == ct) {
1423 return true;
1424 }
1425 }
1426 return false;
1427 }
1428
validate_image_info(VkFormat format,GrColorType ct,bool hasYcbcrConversion)1429 static GrPixelConfig validate_image_info(VkFormat format, GrColorType ct, bool hasYcbcrConversion) {
1430 if (hasYcbcrConversion) {
1431 if (GrVkFormatNeedsYcbcrSampler(format)) {
1432 return kRGB_888X_GrPixelConfig;
1433 }
1434
1435 // Format may be undefined for external images, which are required to have YCbCr conversion.
1436 if (VK_FORMAT_UNDEFINED == format) {
1437 // We don't actually care what the color type or config are since we won't use those
1438 // values for external textures. However, for read pixels we will draw to a non ycbcr
1439 // texture of this config so we set RGBA here for that.
1440 return kRGBA_8888_GrPixelConfig;
1441 }
1442
1443 return kUnknown_GrPixelConfig;
1444 }
1445
1446 if (VK_FORMAT_UNDEFINED == format) {
1447 return kUnknown_GrPixelConfig;
1448 }
1449
1450 switch (ct) {
1451 case GrColorType::kUnknown:
1452 break;
1453 case GrColorType::kAlpha_8:
1454 if (VK_FORMAT_R8_UNORM == format) {
1455 return kAlpha_8_as_Red_GrPixelConfig;
1456 }
1457 break;
1458 case GrColorType::kBGR_565:
1459 if (VK_FORMAT_R5G6B5_UNORM_PACK16 == format) {
1460 return kRGB_565_GrPixelConfig;
1461 }
1462 break;
1463 case GrColorType::kABGR_4444:
1464 if (VK_FORMAT_B4G4R4A4_UNORM_PACK16 == format ||
1465 VK_FORMAT_R4G4B4A4_UNORM_PACK16 == format) {
1466 return kRGBA_4444_GrPixelConfig;
1467 }
1468 break;
1469 case GrColorType::kRGBA_8888:
1470 if (VK_FORMAT_R8G8B8A8_UNORM == format) {
1471 return kRGBA_8888_GrPixelConfig;
1472 }
1473 break;
1474 case GrColorType::kRGBA_8888_SRGB:
1475 if (VK_FORMAT_R8G8B8A8_SRGB == format) {
1476 return kSRGBA_8888_GrPixelConfig;
1477 }
1478 break;
1479 case GrColorType::kRGB_888x:
1480 if (VK_FORMAT_R8G8B8_UNORM == format) {
1481 return kRGB_888_GrPixelConfig;
1482 } else if (VK_FORMAT_R8G8B8A8_UNORM == format) {
1483 return kRGB_888X_GrPixelConfig;
1484 } else if (VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK == format) {
1485 return kRGB_ETC1_GrPixelConfig;
1486 }
1487 break;
1488 case GrColorType::kRG_88:
1489 if (VK_FORMAT_R8G8_UNORM == format) {
1490 return kRG_88_GrPixelConfig;
1491 }
1492 break;
1493 case GrColorType::kBGRA_8888:
1494 if (VK_FORMAT_B8G8R8A8_UNORM == format) {
1495 return kBGRA_8888_GrPixelConfig;
1496 }
1497 break;
1498 case GrColorType::kRGBA_1010102:
1499 if (VK_FORMAT_A2B10G10R10_UNORM_PACK32 == format) {
1500 return kRGBA_1010102_GrPixelConfig;
1501 }
1502 break;
1503 case GrColorType::kGray_8:
1504 if (VK_FORMAT_R8_UNORM == format) {
1505 return kGray_8_as_Red_GrPixelConfig;
1506 }
1507 break;
1508 case GrColorType::kAlpha_F16:
1509 if (VK_FORMAT_R16_SFLOAT == format) {
1510 return kAlpha_half_as_Red_GrPixelConfig;
1511 }
1512 break;
1513 case GrColorType::kRGBA_F16:
1514 if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
1515 return kRGBA_half_GrPixelConfig;
1516 }
1517 break;
1518 case GrColorType::kRGBA_F16_Clamped:
1519 if (VK_FORMAT_R16G16B16A16_SFLOAT == format) {
1520 return kRGBA_half_Clamped_GrPixelConfig;
1521 }
1522 break;
1523 case GrColorType::kRGBA_F32:
1524 if (VK_FORMAT_R32G32B32A32_SFLOAT == format) {
1525 return kRGBA_float_GrPixelConfig;
1526 }
1527 break;
1528 case GrColorType::kR_16:
1529 if (VK_FORMAT_R16_UNORM == format) {
1530 return kR_16_GrPixelConfig;
1531 }
1532 break;
1533 case GrColorType::kRG_1616:
1534 if (VK_FORMAT_R16G16_UNORM == format) {
1535 return kRG_1616_GrPixelConfig;
1536 }
1537 break;
1538 case GrColorType::kRGBA_16161616:
1539 if (VK_FORMAT_R16G16B16A16_UNORM == format) {
1540 return kRGBA_16161616_GrPixelConfig;
1541 }
1542 break;
1543 case GrColorType::kRG_F16:
1544 if (VK_FORMAT_R16G16_SFLOAT == format) {
1545 return kRG_half_GrPixelConfig;
1546 }
1547 break;
1548 // These have no equivalent:
1549 case GrColorType::kAlpha_8xxx:
1550 case GrColorType::kAlpha_F32xxx:
1551 case GrColorType::kGray_8xxx:
1552 break;
1553 }
1554
1555 return kUnknown_GrPixelConfig;
1556 }
1557
onGetConfigFromBackendFormat(const GrBackendFormat & format,GrColorType ct) const1558 GrPixelConfig GrVkCaps::onGetConfigFromBackendFormat(const GrBackendFormat& format,
1559 GrColorType ct) const {
1560 VkFormat vkFormat;
1561 if (!format.asVkFormat(&vkFormat)) {
1562 return kUnknown_GrPixelConfig;
1563 }
1564 const GrVkYcbcrConversionInfo* ycbcrInfo = format.getVkYcbcrConversionInfo();
1565 SkASSERT(ycbcrInfo);
1566 return validate_image_info(vkFormat, ct, ycbcrInfo->isValid());
1567 }
1568
getYUVAColorTypeFromBackendFormat(const GrBackendFormat & format,bool isAlphaChannel) const1569 GrColorType GrVkCaps::getYUVAColorTypeFromBackendFormat(const GrBackendFormat& format,
1570 bool isAlphaChannel) const {
1571 VkFormat vkFormat;
1572 if (!format.asVkFormat(&vkFormat)) {
1573 return GrColorType::kUnknown;
1574 }
1575
1576 switch (vkFormat) {
1577 case VK_FORMAT_R8_UNORM: return isAlphaChannel ? GrColorType::kAlpha_8
1578 : GrColorType::kGray_8;
1579 case VK_FORMAT_R8G8B8A8_UNORM: return GrColorType::kRGBA_8888;
1580 case VK_FORMAT_R8G8B8_UNORM: return GrColorType::kRGB_888x;
1581 case VK_FORMAT_R8G8_UNORM: return GrColorType::kRG_88;
1582 case VK_FORMAT_B8G8R8A8_UNORM: return GrColorType::kBGRA_8888;
1583 case VK_FORMAT_A2B10G10R10_UNORM_PACK32: return GrColorType::kRGBA_1010102;
1584 case VK_FORMAT_R16_UNORM: return GrColorType::kR_16;
1585 case VK_FORMAT_R16G16_UNORM: return GrColorType::kRG_1616;
1586 // Experimental (for Y416 and mutant P016/P010)
1587 case VK_FORMAT_R16G16B16A16_UNORM: return GrColorType::kRGBA_16161616;
1588 case VK_FORMAT_R16G16_SFLOAT: return GrColorType::kRG_F16;
1589 default: return GrColorType::kUnknown;
1590 }
1591
1592 SkUNREACHABLE;
1593 }
1594
onGetDefaultBackendFormat(GrColorType ct,GrRenderable renderable) const1595 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct,
1596 GrRenderable renderable) const {
1597 VkFormat format = this->getFormatFromColorType(ct);
1598 if (format == VK_FORMAT_UNDEFINED) {
1599 return GrBackendFormat();
1600 }
1601 return GrBackendFormat::MakeVk(format);
1602 }
1603
getBackendFormatFromCompressionType(SkImage::CompressionType compressionType) const1604 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1605 SkImage::CompressionType compressionType) const {
1606 switch (compressionType) {
1607 case SkImage::kETC1_CompressionType:
1608 return GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1609 }
1610 SK_ABORT("Invalid compression type");
1611 }
1612
canClearTextureOnCreation() const1613 bool GrVkCaps::canClearTextureOnCreation() const { return true; }
1614
getTextureSwizzle(const GrBackendFormat & format,GrColorType colorType) const1615 GrSwizzle GrVkCaps::getTextureSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1616 VkFormat vkFormat;
1617 SkAssertResult(format.asVkFormat(&vkFormat));
1618 const auto& info = this->getFormatInfo(vkFormat);
1619 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1620 const auto& ctInfo = info.fColorTypeInfos[i];
1621 if (ctInfo.fColorType == colorType) {
1622 return ctInfo.fTextureSwizzle;
1623 }
1624 }
1625 return GrSwizzle::RGBA();
1626 }
1627
getOutputSwizzle(const GrBackendFormat & format,GrColorType colorType) const1628 GrSwizzle GrVkCaps::getOutputSwizzle(const GrBackendFormat& format, GrColorType colorType) const {
1629 VkFormat vkFormat;
1630 SkAssertResult(format.asVkFormat(&vkFormat));
1631 const auto& info = this->getFormatInfo(vkFormat);
1632 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1633 const auto& ctInfo = info.fColorTypeInfos[i];
1634 if (ctInfo.fColorType == colorType) {
1635 return ctInfo.fOutputSwizzle;
1636 }
1637 }
1638 return GrSwizzle::RGBA();
1639 }
1640
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1641 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1642 GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1643 GrColorType dstColorType) const {
1644 VkFormat vkFormat;
1645 if (!srcBackendFormat.asVkFormat(&vkFormat)) {
1646 return {GrColorType::kUnknown, 0};
1647 }
1648
1649 if (GrVkFormatNeedsYcbcrSampler(vkFormat)) {
1650 return {GrColorType::kUnknown, 0};
1651 }
1652
1653 // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1654 size_t offsetAlignment = align_to_4(GrVkBytesPerFormat(vkFormat));
1655
1656 const auto& info = this->getFormatInfo(vkFormat);
1657 for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1658 const auto& ctInfo = info.fColorTypeInfos[i];
1659 if (ctInfo.fColorType == srcColorType) {
1660 return {srcColorType, offsetAlignment};
1661 }
1662 }
1663 return {GrColorType::kUnknown, 0};
1664 }
1665
getFragmentUniformBinding() const1666 int GrVkCaps::getFragmentUniformBinding() const {
1667 return GrVkUniformHandler::kUniformBinding;
1668 }
1669
getFragmentUniformSet() const1670 int GrVkCaps::getFragmentUniformSet() const {
1671 return GrVkUniformHandler::kUniformBufferDescSet;
1672 }
1673
1674 #if GR_TEST_UTILS
getTestingCombinations() const1675 std::vector<GrCaps::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
1676 std::vector<GrCaps::TestFormatColorTypeCombination> combos = {
1677 { GrColorType::kAlpha_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1678 { GrColorType::kBGR_565, GrBackendFormat::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
1679 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
1680 { GrColorType::kABGR_4444, GrBackendFormat::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
1681 { GrColorType::kRGBA_8888, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1682 { GrColorType::kRGBA_8888_SRGB, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_SRGB) },
1683 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8A8_UNORM) },
1684 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_R8G8B8_UNORM) },
1685 { GrColorType::kRGB_888x, GrBackendFormat::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
1686 { GrColorType::kRG_88, GrBackendFormat::MakeVk(VK_FORMAT_R8G8_UNORM) },
1687 { GrColorType::kBGRA_8888, GrBackendFormat::MakeVk(VK_FORMAT_B8G8R8A8_UNORM) },
1688 { GrColorType::kRGBA_1010102, GrBackendFormat::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
1689 { GrColorType::kGray_8, GrBackendFormat::MakeVk(VK_FORMAT_R8_UNORM) },
1690 { GrColorType::kAlpha_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16_SFLOAT) },
1691 { GrColorType::kRGBA_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1692 { GrColorType::kRGBA_F16_Clamped, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
1693 { GrColorType::kRGBA_F32, GrBackendFormat::MakeVk(VK_FORMAT_R32G32B32A32_SFLOAT) },
1694 { GrColorType::kR_16, GrBackendFormat::MakeVk(VK_FORMAT_R16_UNORM) },
1695 { GrColorType::kRG_1616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_UNORM) },
1696 { GrColorType::kRGBA_16161616, GrBackendFormat::MakeVk(VK_FORMAT_R16G16B16A16_UNORM) },
1697 { GrColorType::kRG_F16, GrBackendFormat::MakeVk(VK_FORMAT_R16G16_SFLOAT) },
1698 };
1699
1700 return combos;
1701 }
1702 #endif
1703