• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GStreamer
3  * Copyright (C) 2007-2009 Sebastian Dröge <sebastian.droege@collabora.co.uk>
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Library General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Library General Public License for more details.
14  *
15  * You should have received a copy of the GNU Library General Public
16  * License along with this library; if not, write to the
17  * Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
18  * Boston, MA 02110-1301, USA.
19  */
20 
21 /*
22  * Chebyshev type 1 filter design based on
23  * "The Scientist and Engineer's Guide to DSP", Chapter 20.
24  * http://www.dspguide.com/
25  *
26  * For type 2 and Chebyshev filters in general read
27  * http://en.wikipedia.org/wiki/Chebyshev_filter
28  *
29  * Transformation from lowpass to bandpass/bandreject:
30  * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandPassZ.htm
31  * http://docs.dewresearch.com/DspHelp/html/IDH_LinearSystems_LowpassToBandStopZ.htm
32  *
33  */
34 
35 /**
36  * SECTION:element-audiochebband
37  * @title: audiochebband
38  *
39  * Attenuates all frequencies outside (bandpass) or inside (bandreject) of a frequency
40  * band. The number of poles and the ripple parameter control the rolloff.
41  *
42  * This element has the advantage over the windowed sinc bandpass and bandreject filter that it is
43  * much faster and produces almost as good results. It's only disadvantages are the highly
44  * non-linear phase and the slower rolloff compared to a windowed sinc filter with a large kernel.
45  *
46  * For type 1 the ripple parameter specifies how much ripple in dB is allowed in the passband, i.e.
47  * some frequencies in the passband will be amplified by that value. A higher ripple value will allow
48  * a faster rolloff.
49  *
50  * For type 2 the ripple parameter specifies the stopband attenuation. In the stopband the gain will
51  * be at most this value. A lower ripple value will allow a faster rolloff.
52  *
53  * As a special case, a Chebyshev type 1 filter with no ripple is a Butterworth filter.
54  *
55  * > Be warned that a too large number of poles can produce noise. The most poles are possible with
56  * > a cutoff frequency at a quarter of the sampling rate.
57  *
58  * ## Example launch line
59  * |[
60  * gst-launch-1.0 audiotestsrc freq=1500 ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequency=6000 poles=4 ! audioconvert ! alsasink
61  * gst-launch-1.0 filesrc location="melo1.ogg" ! oggdemux ! vorbisdec ! audioconvert ! audiochebband mode=band-reject lower-frequency=1000 upper-frequency=4000 ripple=0.2 ! audioconvert ! alsasink
62  * gst-launch-1.0 audiotestsrc wave=white-noise ! audioconvert ! audiochebband mode=band-pass lower-frequency=1000 upper-frequency=4000 type=2 ! audioconvert ! alsasink
63  * ]|
64  *
65  */
66 
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70 
71 #include <string.h>
72 
73 #include <gst/gst.h>
74 #include <gst/base/gstbasetransform.h>
75 #include <gst/audio/audio.h>
76 #include <gst/audio/gstaudiofilter.h>
77 
78 #include <math.h>
79 
80 #include "math_compat.h"
81 
82 #include "audiochebband.h"
83 
84 #include "gst/glib-compat-private.h"
85 
86 #define GST_CAT_DEFAULT gst_audio_cheb_band_debug
87 GST_DEBUG_CATEGORY_STATIC (GST_CAT_DEFAULT);
88 
89 enum
90 {
91   PROP_0,
92   PROP_MODE,
93   PROP_TYPE,
94   PROP_LOWER_FREQUENCY,
95   PROP_UPPER_FREQUENCY,
96   PROP_RIPPLE,
97   PROP_POLES
98 };
99 
100 #define gst_audio_cheb_band_parent_class parent_class
101 G_DEFINE_TYPE (GstAudioChebBand, gst_audio_cheb_band,
102     GST_TYPE_AUDIO_FX_BASE_IIR_FILTER);
103 GST_ELEMENT_REGISTER_DEFINE (audiochebband, "audiochebband",
104     GST_RANK_NONE, GST_TYPE_AUDIO_CHEB_BAND);
105 
106 static void gst_audio_cheb_band_set_property (GObject * object,
107     guint prop_id, const GValue * value, GParamSpec * pspec);
108 static void gst_audio_cheb_band_get_property (GObject * object,
109     guint prop_id, GValue * value, GParamSpec * pspec);
110 static void gst_audio_cheb_band_finalize (GObject * object);
111 
112 static gboolean gst_audio_cheb_band_setup (GstAudioFilter * filter,
113     const GstAudioInfo * info);
114 
115 enum
116 {
117   MODE_BAND_PASS = 0,
118   MODE_BAND_REJECT
119 };
120 
121 #define GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE (gst_audio_cheb_band_mode_get_type ())
122 static GType
gst_audio_cheb_band_mode_get_type(void)123 gst_audio_cheb_band_mode_get_type (void)
124 {
125   static GType gtype = 0;
126 
127   if (gtype == 0) {
128     static const GEnumValue values[] = {
129       {MODE_BAND_PASS, "Band pass (default)",
130           "band-pass"},
131       {MODE_BAND_REJECT, "Band reject",
132           "band-reject"},
133       {0, NULL, NULL}
134     };
135 
136     gtype = g_enum_register_static ("GstAudioChebBandMode", values);
137   }
138   return gtype;
139 }
140 
141 /* GObject vmethod implementations */
142 
143 static void
gst_audio_cheb_band_class_init(GstAudioChebBandClass * klass)144 gst_audio_cheb_band_class_init (GstAudioChebBandClass * klass)
145 {
146   GObjectClass *gobject_class = (GObjectClass *) klass;
147   GstElementClass *gstelement_class = (GstElementClass *) klass;
148   GstAudioFilterClass *filter_class = (GstAudioFilterClass *) klass;
149 
150   GST_DEBUG_CATEGORY_INIT (gst_audio_cheb_band_debug, "audiochebband", 0,
151       "audiochebband element");
152 
153   gobject_class->set_property = gst_audio_cheb_band_set_property;
154   gobject_class->get_property = gst_audio_cheb_band_get_property;
155   gobject_class->finalize = gst_audio_cheb_band_finalize;
156 
157   g_object_class_install_property (gobject_class, PROP_MODE,
158       g_param_spec_enum ("mode", "Mode",
159           "Low pass or high pass mode", GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE,
160           MODE_BAND_PASS,
161           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
162   g_object_class_install_property (gobject_class, PROP_TYPE,
163       g_param_spec_int ("type", "Type", "Type of the chebychev filter", 1, 2, 1,
164           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
165 
166   /* FIXME: Don't use the complete possible range but restrict the upper boundary
167    * so automatically generated UIs can use a slider without */
168   g_object_class_install_property (gobject_class, PROP_LOWER_FREQUENCY,
169       g_param_spec_float ("lower-frequency", "Lower frequency",
170           "Start frequency of the band (Hz)", 0.0, 100000.0,
171           0.0,
172           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
173   g_object_class_install_property (gobject_class, PROP_UPPER_FREQUENCY,
174       g_param_spec_float ("upper-frequency", "Upper frequency",
175           "Stop frequency of the band (Hz)", 0.0, 100000.0, 0.0,
176           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
177   g_object_class_install_property (gobject_class, PROP_RIPPLE,
178       g_param_spec_float ("ripple", "Ripple", "Amount of ripple (dB)", 0.0,
179           200.0, 0.25,
180           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
181   /* FIXME: What to do about this upper boundary? With a frequencies near
182    * rate/4 32 poles are completely possible, with frequencies very low
183    * or very high 16 poles already produces only noise */
184   g_object_class_install_property (gobject_class, PROP_POLES,
185       g_param_spec_int ("poles", "Poles",
186           "Number of poles to use, will be rounded up to the next multiply of four",
187           4, 32, 4,
188           G_PARAM_READWRITE | GST_PARAM_CONTROLLABLE | G_PARAM_STATIC_STRINGS));
189 
190   gst_element_class_set_static_metadata (gstelement_class,
191       "Band pass & band reject filter", "Filter/Effect/Audio",
192       "Chebyshev band pass and band reject filter",
193       "Sebastian Dröge <sebastian.droege@collabora.co.uk>");
194 
195   filter_class->setup = GST_DEBUG_FUNCPTR (gst_audio_cheb_band_setup);
196 
197   gst_type_mark_as_plugin_api (GST_TYPE_AUDIO_CHEBYSHEV_FREQ_BAND_MODE, 0);
198 }
199 
200 static void
gst_audio_cheb_band_init(GstAudioChebBand * filter)201 gst_audio_cheb_band_init (GstAudioChebBand * filter)
202 {
203   filter->lower_frequency = filter->upper_frequency = 0.0;
204   filter->mode = MODE_BAND_PASS;
205   filter->type = 1;
206   filter->poles = 4;
207   filter->ripple = 0.25;
208 
209   g_mutex_init (&filter->lock);
210 }
211 
212 static void
generate_biquad_coefficients(GstAudioChebBand * filter,gint p,gint rate,gdouble * b0,gdouble * b1,gdouble * b2,gdouble * b3,gdouble * b4,gdouble * a1,gdouble * a2,gdouble * a3,gdouble * a4)213 generate_biquad_coefficients (GstAudioChebBand * filter,
214     gint p, gint rate, gdouble * b0, gdouble * b1, gdouble * b2, gdouble * b3,
215     gdouble * b4, gdouble * a1, gdouble * a2, gdouble * a3, gdouble * a4)
216 {
217   gint np = filter->poles / 2;
218   gdouble ripple = filter->ripple;
219 
220   /* pole location in s-plane */
221   gdouble rp, ip;
222 
223   /* zero location in s-plane */
224   gdouble iz = 0.0;
225 
226   /* transfer function coefficients for the z-plane */
227   gdouble x0, x1, x2, y1, y2;
228   gint type = filter->type;
229 
230   /* Calculate pole location for lowpass at frequency 1 */
231   {
232     gdouble angle = (G_PI / 2.0) * (2.0 * p - 1) / np;
233 
234     rp = -sin (angle);
235     ip = cos (angle);
236   }
237 
238   /* If we allow ripple, move the pole from the unit
239    * circle to an ellipse and keep cutoff at frequency 1 */
240   if (ripple > 0 && type == 1) {
241     gdouble es, vx;
242 
243     es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
244 
245     vx = (1.0 / np) * asinh (1.0 / es);
246     rp = rp * sinh (vx);
247     ip = ip * cosh (vx);
248   } else if (type == 2) {
249     gdouble es, vx;
250 
251     es = sqrt (pow (10.0, ripple / 10.0) - 1.0);
252     vx = (1.0 / np) * asinh (es);
253     rp = rp * sinh (vx);
254     ip = ip * cosh (vx);
255   }
256 
257   /* Calculate inverse of the pole location to move from
258    * type I to type II */
259   if (type == 2) {
260     gdouble mag2 = rp * rp + ip * ip;
261 
262     rp /= mag2;
263     ip /= mag2;
264   }
265 
266   /* Calculate zero location for frequency 1 on the
267    * unit circle for type 2 */
268   if (type == 2) {
269     gdouble angle = G_PI / (np * 2.0) + ((p - 1) * G_PI) / (np);
270     gdouble mag2;
271 
272     iz = cos (angle);
273     mag2 = iz * iz;
274     iz /= mag2;
275   }
276 
277   /* Convert from s-domain to z-domain by
278    * using the bilinear Z-transform, i.e.
279    * substitute s by (2/t)*((z-1)/(z+1))
280    * with t = 2 * tan(0.5).
281    */
282   if (type == 1) {
283     gdouble t, m, d;
284 
285     t = 2.0 * tan (0.5);
286     m = rp * rp + ip * ip;
287     d = 4.0 - 4.0 * rp * t + m * t * t;
288 
289     x0 = (t * t) / d;
290     x1 = 2.0 * x0;
291     x2 = x0;
292     y1 = (8.0 - 2.0 * m * t * t) / d;
293     y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
294   } else {
295     gdouble t, m, d;
296 
297     t = 2.0 * tan (0.5);
298     m = rp * rp + ip * ip;
299     d = 4.0 - 4.0 * rp * t + m * t * t;
300 
301     x0 = (t * t * iz * iz + 4.0) / d;
302     x1 = (-8.0 + 2.0 * iz * iz * t * t) / d;
303     x2 = x0;
304     y1 = (8.0 - 2.0 * m * t * t) / d;
305     y2 = (-4.0 - 4.0 * rp * t - m * t * t) / d;
306   }
307 
308   /* Convert from lowpass at frequency 1 to either bandpass
309    * or band reject.
310    *
311    * For bandpass substitute z^(-1) with:
312    *
313    *   -2            -1
314    * -z   + alpha * z   - beta
315    * ----------------------------
316    *         -2            -1
317    * beta * z   - alpha * z   + 1
318    *
319    * alpha = (2*a*b)/(1+b)
320    * beta = (b-1)/(b+1)
321    * a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
322    * b = tan(1/2) * cot((w1 - w0)/2)
323    *
324    * For bandreject substitute z^(-1) with:
325    *
326    *  -2            -1
327    * z   - alpha * z   + beta
328    * ----------------------------
329    *         -2            -1
330    * beta * z   - alpha * z   + 1
331    *
332    * alpha = (2*a)/(1+b)
333    * beta = (1-b)/(1+b)
334    * a = cos((w1 + w0)/2) / cos((w1 - w0)/2)
335    * b = tan(1/2) * tan((w1 - w0)/2)
336    *
337    */
338   {
339     gdouble a, b, d;
340     gdouble alpha, beta;
341     gdouble w0 = 2.0 * G_PI * (filter->lower_frequency / rate);
342     gdouble w1 = 2.0 * G_PI * (filter->upper_frequency / rate);
343 
344     if (filter->mode == MODE_BAND_PASS) {
345       a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
346       b = tan (1.0 / 2.0) / tan ((w1 - w0) / 2.0);
347 
348       alpha = (2.0 * a * b) / (1.0 + b);
349       beta = (b - 1.0) / (b + 1.0);
350 
351       d = 1.0 + beta * (y1 - beta * y2);
352 
353       *b0 = (x0 + beta * (-x1 + beta * x2)) / d;
354       *b1 = (alpha * (-2.0 * x0 + x1 + beta * x1 - 2.0 * beta * x2)) / d;
355       *b2 =
356           (-x1 - beta * beta * x1 + 2.0 * beta * (x0 + x2) +
357           alpha * alpha * (x0 - x1 + x2)) / d;
358       *b3 = (alpha * (x1 + beta * (-2.0 * x0 + x1) - 2.0 * x2)) / d;
359       *b4 = (beta * (beta * x0 - x1) + x2) / d;
360       *a1 = (alpha * (2.0 + y1 + beta * y1 - 2.0 * beta * y2)) / d;
361       *a2 =
362           (-y1 - beta * beta * y1 - alpha * alpha * (1.0 + y1 - y2) +
363           2.0 * beta * (-1.0 + y2)) / d;
364       *a3 = (alpha * (y1 + beta * (2.0 + y1) - 2.0 * y2)) / d;
365       *a4 = (-beta * beta - beta * y1 + y2) / d;
366     } else {
367       a = cos ((w1 + w0) / 2.0) / cos ((w1 - w0) / 2.0);
368       b = tan (1.0 / 2.0) * tan ((w1 - w0) / 2.0);
369 
370       alpha = (2.0 * a) / (1.0 + b);
371       beta = (1.0 - b) / (1.0 + b);
372 
373       d = -1.0 + beta * (beta * y2 + y1);
374 
375       *b0 = (-x0 - beta * x1 - beta * beta * x2) / d;
376       *b1 = (alpha * (2.0 * x0 + x1 + beta * x1 + 2.0 * beta * x2)) / d;
377       *b2 =
378           (-x1 - beta * beta * x1 - 2.0 * beta * (x0 + x2) -
379           alpha * alpha * (x0 + x1 + x2)) / d;
380       *b3 = (alpha * (x1 + beta * (2.0 * x0 + x1) + 2.0 * x2)) / d;
381       *b4 = (-beta * beta * x0 - beta * x1 - x2) / d;
382       *a1 = (alpha * (-2.0 + y1 + beta * y1 + 2.0 * beta * y2)) / d;
383       *a2 =
384           -(y1 + beta * beta * y1 + 2.0 * beta * (-1.0 + y2) +
385           alpha * alpha * (-1.0 + y1 + y2)) / d;
386       *a3 = (alpha * (beta * (-2.0 + y1) + y1 + 2.0 * y2)) / d;
387       *a4 = -(-beta * beta + beta * y1 + y2) / d;
388     }
389   }
390 }
391 
392 static void
generate_coefficients(GstAudioChebBand * filter,const GstAudioInfo * info)393 generate_coefficients (GstAudioChebBand * filter, const GstAudioInfo * info)
394 {
395   gint rate;
396 
397   if (info) {
398     rate = GST_AUDIO_INFO_RATE (info);
399   } else {
400     rate = GST_AUDIO_FILTER_RATE (filter);
401   }
402 
403   if (rate == 0) {
404     gdouble *a = g_new0 (gdouble, 1);
405     gdouble *b = g_new0 (gdouble, 1);
406 
407     a[0] = 1.0;
408     b[0] = 1.0;
409     gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
410         (filter), a, 1, b, 1);
411     GST_LOG_OBJECT (filter, "rate was not set yet");
412     return;
413   }
414 
415   if (filter->upper_frequency <= filter->lower_frequency) {
416     gdouble *a = g_new0 (gdouble, 1);
417     gdouble *b = g_new0 (gdouble, 1);
418 
419     a[0] = 1.0;
420     b[0] = (filter->mode == MODE_BAND_PASS) ? 0.0 : 1.0;
421     gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
422         (filter), a, 1, b, 1);
423 
424     GST_LOG_OBJECT (filter, "frequency band had no or negative dimension");
425     return;
426   }
427 
428   if (filter->upper_frequency > rate / 2) {
429     filter->upper_frequency = rate / 2;
430     GST_LOG_OBJECT (filter, "clipped upper frequency to nyquist frequency");
431   }
432 
433   if (filter->lower_frequency < 0.0) {
434     filter->lower_frequency = 0.0;
435     GST_LOG_OBJECT (filter, "clipped lower frequency to 0.0");
436   }
437 
438   /* Calculate coefficients for the chebyshev filter */
439   {
440     gint np = filter->poles;
441     gdouble *a, *b;
442     gint i, p;
443 
444     a = g_new0 (gdouble, np + 5);
445     b = g_new0 (gdouble, np + 5);
446 
447     /* Calculate transfer function coefficients */
448     a[4] = 1.0;
449     b[4] = 1.0;
450 
451     for (p = 1; p <= np / 4; p++) {
452       gdouble b0, b1, b2, b3, b4, a1, a2, a3, a4;
453       gdouble *ta = g_new0 (gdouble, np + 5);
454       gdouble *tb = g_new0 (gdouble, np + 5);
455 
456       generate_biquad_coefficients (filter, p, rate,
457           &b0, &b1, &b2, &b3, &b4, &a1, &a2, &a3, &a4);
458 
459       memcpy (ta, a, sizeof (gdouble) * (np + 5));
460       memcpy (tb, b, sizeof (gdouble) * (np + 5));
461 
462       /* add the new coefficients for the new two poles
463        * to the cascade by multiplication of the transfer
464        * functions */
465       for (i = 4; i < np + 5; i++) {
466         b[i] =
467             b0 * tb[i] + b1 * tb[i - 1] + b2 * tb[i - 2] + b3 * tb[i - 3] +
468             b4 * tb[i - 4];
469         a[i] =
470             ta[i] - a1 * ta[i - 1] - a2 * ta[i - 2] - a3 * ta[i - 3] -
471             a4 * ta[i - 4];
472       }
473       g_free (ta);
474       g_free (tb);
475     }
476 
477     /* Move coefficients to the beginning of the array to move from
478      * the transfer function's coefficients to the difference
479      * equation's coefficients */
480     for (i = 0; i <= np; i++) {
481       a[i] = a[i + 4];
482       b[i] = b[i + 4];
483     }
484 
485     /* Normalize to unity gain at frequency 0 and frequency
486      * 0.5 for bandreject and unity gain at band center frequency
487      * for bandpass */
488     if (filter->mode == MODE_BAND_REJECT) {
489       /* gain is sqrt(H(0)*H(0.5)) */
490 
491       gdouble gain1 =
492           gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
493           1.0, 0.0);
494       gdouble gain2 =
495           gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1,
496           -1.0, 0.0);
497 
498       gain1 = sqrt (gain1 * gain2);
499 
500       for (i = 0; i <= np; i++) {
501         b[i] /= gain1;
502       }
503     } else {
504       /* gain is H(wc), wc = center frequency */
505 
506       gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate);
507       gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate);
508       gdouble w0 = (w2 + w1) / 2.0;
509       gdouble zr = cos (w0), zi = sin (w0);
510       gdouble gain =
511           gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b, np + 1, zr,
512           zi);
513 
514       for (i = 0; i <= np; i++) {
515         b[i] /= gain;
516       }
517     }
518 
519     gst_audio_fx_base_iir_filter_set_coefficients (GST_AUDIO_FX_BASE_IIR_FILTER
520         (filter), a, np + 1, b, np + 1);
521 
522     GST_LOG_OBJECT (filter,
523         "Generated IIR coefficients for the Chebyshev filter");
524     GST_LOG_OBJECT (filter,
525         "mode: %s, type: %d, poles: %d, lower-frequency: %.2f Hz, upper-frequency: %.2f Hz, ripple: %.2f dB",
526         (filter->mode == MODE_BAND_PASS) ? "band-pass" : "band-reject",
527         filter->type, filter->poles, filter->lower_frequency,
528         filter->upper_frequency, filter->ripple);
529 
530     GST_LOG_OBJECT (filter, "%.2f dB gain @ 0Hz",
531         20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
532                 np + 1, 1.0, 0.0)));
533     {
534       gdouble w1 = 2.0 * G_PI * (filter->lower_frequency / rate);
535       gdouble w2 = 2.0 * G_PI * (filter->upper_frequency / rate);
536       gdouble w0 = (w2 + w1) / 2.0;
537       gdouble zr, zi;
538 
539       zr = cos (w1);
540       zi = sin (w1);
541       GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
542           20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
543                   b, np + 1, zr, zi)), (int) filter->lower_frequency);
544       zr = cos (w0);
545       zi = sin (w0);
546       GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
547           20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
548                   b, np + 1, zr, zi)),
549           (int) ((filter->lower_frequency + filter->upper_frequency) / 2.0));
550       zr = cos (w2);
551       zi = sin (w2);
552       GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
553           20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1,
554                   b, np + 1, zr, zi)), (int) filter->upper_frequency);
555     }
556     GST_LOG_OBJECT (filter, "%.2f dB gain @ %dHz",
557         20.0 * log10 (gst_audio_fx_base_iir_filter_calculate_gain (a, np + 1, b,
558                 np + 1, -1.0, 0.0)), rate / 2);
559   }
560 }
561 
562 static void
gst_audio_cheb_band_finalize(GObject * object)563 gst_audio_cheb_band_finalize (GObject * object)
564 {
565   GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
566 
567   g_mutex_clear (&filter->lock);
568 
569   G_OBJECT_CLASS (parent_class)->finalize (object);
570 }
571 
572 static void
gst_audio_cheb_band_set_property(GObject * object,guint prop_id,const GValue * value,GParamSpec * pspec)573 gst_audio_cheb_band_set_property (GObject * object, guint prop_id,
574     const GValue * value, GParamSpec * pspec)
575 {
576   GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
577 
578   switch (prop_id) {
579     case PROP_MODE:
580       g_mutex_lock (&filter->lock);
581       filter->mode = g_value_get_enum (value);
582       generate_coefficients (filter, NULL);
583       g_mutex_unlock (&filter->lock);
584       break;
585     case PROP_TYPE:
586       g_mutex_lock (&filter->lock);
587       filter->type = g_value_get_int (value);
588       generate_coefficients (filter, NULL);
589       g_mutex_unlock (&filter->lock);
590       break;
591     case PROP_LOWER_FREQUENCY:
592       g_mutex_lock (&filter->lock);
593       filter->lower_frequency = g_value_get_float (value);
594       generate_coefficients (filter, NULL);
595       g_mutex_unlock (&filter->lock);
596       break;
597     case PROP_UPPER_FREQUENCY:
598       g_mutex_lock (&filter->lock);
599       filter->upper_frequency = g_value_get_float (value);
600       generate_coefficients (filter, NULL);
601       g_mutex_unlock (&filter->lock);
602       break;
603     case PROP_RIPPLE:
604       g_mutex_lock (&filter->lock);
605       filter->ripple = g_value_get_float (value);
606       generate_coefficients (filter, NULL);
607       g_mutex_unlock (&filter->lock);
608       break;
609     case PROP_POLES:
610       g_mutex_lock (&filter->lock);
611       filter->poles = GST_ROUND_UP_4 (g_value_get_int (value));
612       generate_coefficients (filter, NULL);
613       g_mutex_unlock (&filter->lock);
614       break;
615     default:
616       G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
617       break;
618   }
619 }
620 
621 static void
gst_audio_cheb_band_get_property(GObject * object,guint prop_id,GValue * value,GParamSpec * pspec)622 gst_audio_cheb_band_get_property (GObject * object, guint prop_id,
623     GValue * value, GParamSpec * pspec)
624 {
625   GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (object);
626 
627   switch (prop_id) {
628     case PROP_MODE:
629       g_value_set_enum (value, filter->mode);
630       break;
631     case PROP_TYPE:
632       g_value_set_int (value, filter->type);
633       break;
634     case PROP_LOWER_FREQUENCY:
635       g_value_set_float (value, filter->lower_frequency);
636       break;
637     case PROP_UPPER_FREQUENCY:
638       g_value_set_float (value, filter->upper_frequency);
639       break;
640     case PROP_RIPPLE:
641       g_value_set_float (value, filter->ripple);
642       break;
643     case PROP_POLES:
644       g_value_set_int (value, filter->poles);
645       break;
646     default:
647       G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
648       break;
649   }
650 }
651 
652 /* GstAudioFilter vmethod implementations */
653 
654 static gboolean
gst_audio_cheb_band_setup(GstAudioFilter * base,const GstAudioInfo * info)655 gst_audio_cheb_band_setup (GstAudioFilter * base, const GstAudioInfo * info)
656 {
657   GstAudioChebBand *filter = GST_AUDIO_CHEB_BAND (base);
658 
659   generate_coefficients (filter, info);
660 
661   return GST_AUDIO_FILTER_CLASS (parent_class)->setup (base, info);
662 }
663