1# -*- coding: utf-8 -*- 2# 3# Copyright (C) 2014 Intel Corporation 4# 5# Permission is hereby granted, free of charge, to any person obtaining a 6# copy of this software and associated documentation files (the "Software"), 7# to deal in the Software without restriction, including without limitation 8# the rights to use, copy, modify, merge, publish, distribute, sublicense, 9# and/or sell copies of the Software, and to permit persons to whom the 10# Software is furnished to do so, subject to the following conditions: 11# 12# The above copyright notice and this permission notice (including the next 13# paragraph) shall be included in all copies or substantial portions of the 14# Software. 15# 16# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22# IN THE SOFTWARE. 23# 24# Authors: 25# Jason Ekstrand (jason@jlekstrand.net) 26 27from collections import OrderedDict 28import nir_algebraic 29from nir_opcodes import type_sizes 30import itertools 31import struct 32from math import pi 33 34# Convenience variables 35a = 'a' 36b = 'b' 37c = 'c' 38d = 'd' 39e = 'e' 40 41signed_zero_inf_nan_preserve_16 = 'nir_is_float_control_signed_zero_inf_nan_preserve(info->float_controls_execution_mode, 16)' 42signed_zero_inf_nan_preserve_32 = 'nir_is_float_control_signed_zero_inf_nan_preserve(info->float_controls_execution_mode, 32)' 43 44# Written in the form (<search>, <replace>) where <search> is an expression 45# and <replace> is either an expression or a value. An expression is 46# defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>) 47# where each source is either an expression or a value. A value can be 48# either a numeric constant or a string representing a variable name. 49# 50# If the opcode in a search expression is prefixed by a '~' character, this 51# indicates that the operation is inexact. Such operations will only get 52# applied to SSA values that do not have the exact bit set. This should be 53# used by by any optimizations that are not bit-for-bit exact. It should not, 54# however, be used for backend-requested lowering operations as those need to 55# happen regardless of precision. 56# 57# Variable names are specified as "[#]name[@type][(cond)][.swiz]" where: 58# "#" indicates that the given variable will only match constants, 59# type indicates that the given variable will only match values from ALU 60# instructions with the given output type, 61# (cond) specifies an additional condition function (see nir_search_helpers.h), 62# swiz is a swizzle applied to the variable (only in the <replace> expression) 63# 64# For constants, you have to be careful to make sure that it is the right 65# type because python is unaware of the source and destination types of the 66# opcodes. 67# 68# All expression types can have a bit-size specified. For opcodes, this 69# looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a 70# type and size. In the search half of the expression this indicates that it 71# should only match that particular bit-size. In the replace half of the 72# expression this indicates that the constructed value should have that 73# bit-size. 74# 75# If the opcode in a replacement expression is prefixed by a '!' character, 76# this indicated that the new expression will be marked exact. 77# 78# A special condition "many-comm-expr" can be used with expressions to note 79# that the expression and its subexpressions have more commutative expressions 80# than nir_replace_instr can handle. If this special condition is needed with 81# another condition, the two can be separated by a comma (e.g., 82# "(many-comm-expr,is_used_once)"). 83 84# based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648 85def lowered_sincos(c): 86 x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0) 87 x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0) 88 return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x) 89 90def intBitsToFloat(i): 91 return struct.unpack('!f', struct.pack('!I', i))[0] 92 93optimizations = [ 94 95 (('imul', a, '#b(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'), 96 (('imul', 'a@8', 0x80), ('ishl', a, 7), '!options->lower_bitops'), 97 (('imul', 'a@16', 0x8000), ('ishl', a, 15), '!options->lower_bitops'), 98 (('imul', 'a@32', 0x80000000), ('ishl', a, 31), '!options->lower_bitops'), 99 (('imul', 'a@64', 0x8000000000000000), ('ishl', a, 63), '!options->lower_bitops'), 100 (('imul', a, '#b(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'), 101 (('ishl', a, '#b'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'), 102 103 (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)), 104 (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)), 105 (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'), 106 (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'), 107 (('udiv', a, 1), a), 108 (('idiv', a, 1), a), 109 (('umod', a, 1), 0), 110 (('imod', a, 1), 0), 111 (('imod', a, -1), 0), 112 (('irem', a, 1), 0), 113 (('irem', a, -1), 0), 114 (('udiv', a, '#b(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'), 115 (('idiv', a, '#b(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), '!options->lower_bitops'), 116 (('idiv', a, '#b(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), '!options->lower_bitops'), 117 (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1)), '!options->lower_bitops'), 118 (('imod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1)), '!options->lower_bitops'), 119 (('imod', a, '#b(is_neg_power_of_two)'), ('bcsel', ('ieq', ('ior', a, b), b), 0, ('ior', a, b)), '!options->lower_bitops'), 120 # 'irem(a, b)' -> 'a - ((a < 0 ? (a + b - 1) : a) & -b)' 121 (('irem', a, '#b(is_pos_power_of_two)'), 122 ('isub', a, ('iand', ('bcsel', ('ilt', a, 0), ('iadd', a, ('isub', b, 1)), a), ('ineg', b))), 123 '!options->lower_bitops'), 124 (('irem', a, '#b(is_neg_power_of_two)'), ('irem', a, ('iabs', b)), '!options->lower_bitops'), 125 126 (('~fneg', ('fneg', a)), a), 127 (('ineg', ('ineg', a)), a), 128 (('fabs', ('fneg', a)), ('fabs', a)), 129 (('fabs', ('u2f', a)), ('u2f', a)), 130 (('iabs', ('iabs', a)), ('iabs', a)), 131 (('iabs', ('ineg', a)), ('iabs', a)), 132 (('f2b', ('fneg', a)), ('f2b', a)), 133 (('i2b', ('ineg', a)), ('i2b', a)), 134 (('~fadd', a, 0.0), a), 135 # a+0.0 is 'a' unless 'a' is denormal or -0.0. If it's only used by a 136 # floating point instruction, they should flush any input denormals and we 137 # can replace -0.0 with 0.0 if the float execution mode allows it. 138 (('fadd(is_only_used_as_float)', 'a@16', 0.0), a, '!'+signed_zero_inf_nan_preserve_16), 139 (('fadd(is_only_used_as_float)', 'a@32', 0.0), a, '!'+signed_zero_inf_nan_preserve_32), 140 (('iadd', a, 0), a), 141 (('usadd_4x8_vc4', a, 0), a), 142 (('usadd_4x8_vc4', a, ~0), ~0), 143 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))), 144 (('~ffma', a, b, ('ffma(is_used_once)', a, c, d)), ('ffma', a, ('fadd', b, c), d)), 145 (('~ffma', a, b, ('fmul(is_used_once)', a, c)), ('fmul', a, ('fadd', b, c))), 146 (('~fadd', ('fmul(is_used_once)', a, b), ('ffma(is_used_once)', a, c, d)), ('ffma', a, ('fadd', b, c), d)), 147 (('~ffma', a, ('fmul(is_used_once)', b, c), ('fmul(is_used_once)', b, d)), ('fmul', b, ('ffma', a, c, d))), 148 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))), 149 (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))), 150 (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))), 151 (('~fadd', ('fneg', a), a), 0.0), 152 (('iadd', ('ineg', a), a), 0), 153 (('iadd', ('ineg', a), ('iadd', a, b)), b), 154 (('iadd', a, ('iadd', ('ineg', a), b)), b), 155 (('~fadd', ('fneg', a), ('fadd', a, b)), b), 156 (('~fadd', a, ('fadd', ('fneg', a), b)), b), 157 (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))), 158 (('~fmul', a, 0.0), 0.0), 159 # The only effect a*0.0 should have is when 'a' is infinity, -0.0 or NaN 160 (('fmul', 'a@16', 0.0), 0.0, '!'+signed_zero_inf_nan_preserve_16), 161 (('fmul', 'a@32', 0.0), 0.0, '!'+signed_zero_inf_nan_preserve_32), 162 (('imul', a, 0), 0), 163 (('umul_unorm_4x8_vc4', a, 0), 0), 164 (('umul_unorm_4x8_vc4', a, ~0), a), 165 (('~fmul', a, 1.0), a), 166 # The only effect a*1.0 can have is flushing denormals. If it's only used by 167 # a floating point instruction, they should flush any input denormals and 168 # this multiplication isn't needed. 169 (('fmul(is_only_used_as_float)', a, 1.0), a), 170 (('imul', a, 1), a), 171 (('fmul', a, -1.0), ('fneg', a)), 172 (('imul', a, -1), ('ineg', a)), 173 # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a 174 # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a 175 # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0 176 # If a != a: fsign(a)*a*a => 0*NaN*NaN => abs(NaN)*NaN 177 (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)), 178 (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)), 179 (('~ffma', 0.0, a, b), b), 180 (('ffma@16(is_only_used_as_float)', 0.0, a, b), b, '!'+signed_zero_inf_nan_preserve_16), 181 (('ffma@32(is_only_used_as_float)', 0.0, a, b), b, '!'+signed_zero_inf_nan_preserve_32), 182 (('~ffma', a, b, 0.0), ('fmul', a, b)), 183 (('ffma@16', a, b, 0.0), ('fmul', a, b), '!'+signed_zero_inf_nan_preserve_16), 184 (('ffma@32', a, b, 0.0), ('fmul', a, b), '!'+signed_zero_inf_nan_preserve_32), 185 (('ffma', 1.0, a, b), ('fadd', a, b)), 186 (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)), 187 (('~ffma', '#a', '#b', c), ('fadd', ('fmul', a, b), c)), 188 (('~flrp', a, b, 0.0), a), 189 (('~flrp', a, b, 1.0), b), 190 (('~flrp', a, a, b), a), 191 (('~flrp', 0.0, a, b), ('fmul', a, b)), 192 193 # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c) 194 (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)), 195 196 (('sdot_4x8_iadd', a, 0, b), b), 197 (('udot_4x8_uadd', a, 0, b), b), 198 (('sdot_4x8_iadd_sat', a, 0, b), b), 199 (('udot_4x8_uadd_sat', a, 0, b), b), 200 (('sdot_2x16_iadd', a, 0, b), b), 201 (('udot_2x16_uadd', a, 0, b), b), 202 (('sdot_2x16_iadd_sat', a, 0, b), b), 203 (('udot_2x16_uadd_sat', a, 0, b), b), 204 205 # sudot_4x8_iadd is not commutative at all, so the patterns must be 206 # duplicated with zeros on each of the first positions. 207 (('sudot_4x8_iadd', a, 0, b), b), 208 (('sudot_4x8_iadd', 0, a, b), b), 209 (('sudot_4x8_iadd_sat', a, 0, b), b), 210 (('sudot_4x8_iadd_sat', 0, a, b), b), 211 212 (('iadd', ('sdot_4x8_iadd(is_used_once)', a, b, '#c'), '#d'), ('sdot_4x8_iadd', a, b, ('iadd', c, d))), 213 (('iadd', ('udot_4x8_uadd(is_used_once)', a, b, '#c'), '#d'), ('udot_4x8_uadd', a, b, ('iadd', c, d))), 214 (('iadd', ('sudot_4x8_iadd(is_used_once)', a, b, '#c'), '#d'), ('sudot_4x8_iadd', a, b, ('iadd', c, d))), 215 (('iadd', ('sdot_2x16_iadd(is_used_once)', a, b, '#c'), '#d'), ('sdot_2x16_iadd', a, b, ('iadd', c, d))), 216 (('iadd', ('udot_2x16_uadd(is_used_once)', a, b, '#c'), '#d'), ('udot_2x16_uadd', a, b, ('iadd', c, d))), 217 218 # Try to let constant folding eliminate the dot-product part. These are 219 # safe because the dot product cannot overflow 32 bits. 220 (('iadd', ('sdot_4x8_iadd', 'a(is_not_const)', b, 0), c), ('sdot_4x8_iadd', a, b, c)), 221 (('iadd', ('udot_4x8_uadd', 'a(is_not_const)', b, 0), c), ('udot_4x8_uadd', a, b, c)), 222 (('iadd', ('sudot_4x8_iadd', 'a(is_not_const)', b, 0), c), ('sudot_4x8_iadd', a, b, c)), 223 (('iadd', ('sudot_4x8_iadd', a, 'b(is_not_const)', 0), c), ('sudot_4x8_iadd', a, b, c)), 224 (('iadd', ('sdot_2x16_iadd', 'a(is_not_const)', b, 0), c), ('sdot_2x16_iadd', a, b, c)), 225 (('iadd', ('udot_2x16_uadd', 'a(is_not_const)', b, 0), c), ('udot_2x16_uadd', a, b, c)), 226 (('sdot_4x8_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sdot_4x8_iadd', a, b, 0), c)), 227 (('udot_4x8_uadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('udot_4x8_uadd', a, b, 0), c)), 228 (('sudot_4x8_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sudot_4x8_iadd', a, b, 0), c)), 229 (('sdot_2x16_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sdot_2x16_iadd', a, b, 0), c)), 230 (('udot_2x16_uadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('udot_2x16_uadd', a, b, 0), c)), 231 (('sdot_4x8_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sdot_4x8_iadd', a, b, 0), c), '!options->lower_iadd_sat'), 232 (('udot_4x8_uadd_sat', '#a', '#b', 'c(is_not_const)'), ('uadd_sat', ('udot_4x8_uadd', a, b, 0), c), '!options->lower_uadd_sat'), 233 (('sudot_4x8_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sudot_4x8_iadd', a, b, 0), c), '!options->lower_iadd_sat'), 234 (('sdot_2x16_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sdot_2x16_iadd', a, b, 0), c), '!options->lower_iadd_sat'), 235 (('udot_2x16_uadd_sat', '#a', '#b', 'c(is_not_const)'), ('uadd_sat', ('udot_2x16_uadd', a, b, 0), c), '!options->lower_uadd_sat'), 236] 237 238# Shorthand for the expansion of just the dot product part of the [iu]dp4a 239# instructions. 240sdot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_i8', a, 0), ('extract_i8', b, 0)), 241 ('imul', ('extract_i8', a, 1), ('extract_i8', b, 1))), 242 ('iadd', ('imul', ('extract_i8', a, 2), ('extract_i8', b, 2)), 243 ('imul', ('extract_i8', a, 3), ('extract_i8', b, 3)))) 244udot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_u8', a, 0), ('extract_u8', b, 0)), 245 ('imul', ('extract_u8', a, 1), ('extract_u8', b, 1))), 246 ('iadd', ('imul', ('extract_u8', a, 2), ('extract_u8', b, 2)), 247 ('imul', ('extract_u8', a, 3), ('extract_u8', b, 3)))) 248sudot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_i8', a, 0), ('extract_u8', b, 0)), 249 ('imul', ('extract_i8', a, 1), ('extract_u8', b, 1))), 250 ('iadd', ('imul', ('extract_i8', a, 2), ('extract_u8', b, 2)), 251 ('imul', ('extract_i8', a, 3), ('extract_u8', b, 3)))) 252sdot_2x16_a_b = ('iadd', ('imul', ('extract_i16', a, 0), ('extract_i16', b, 0)), 253 ('imul', ('extract_i16', a, 1), ('extract_i16', b, 1))) 254udot_2x16_a_b = ('iadd', ('imul', ('extract_u16', a, 0), ('extract_u16', b, 0)), 255 ('imul', ('extract_u16', a, 1), ('extract_u16', b, 1))) 256 257optimizations.extend([ 258 (('sdot_4x8_iadd', a, b, c), ('iadd', sdot_4x8_a_b, c), '!options->has_dot_4x8'), 259 (('udot_4x8_uadd', a, b, c), ('iadd', udot_4x8_a_b, c), '!options->has_dot_4x8'), 260 (('sudot_4x8_iadd', a, b, c), ('iadd', sudot_4x8_a_b, c), '!options->has_sudot_4x8'), 261 (('sdot_2x16_iadd', a, b, c), ('iadd', sdot_2x16_a_b, c), '!options->has_dot_2x16'), 262 (('udot_2x16_uadd', a, b, c), ('iadd', udot_2x16_a_b, c), '!options->has_dot_2x16'), 263 264 # For the unsigned dot-product, the largest possible value 4*(255*255) = 265 # 0x3f804, so we don't have to worry about that intermediate result 266 # overflowing. 0x100000000 - 0x3f804 = 0xfffc07fc. If c is a constant 267 # that is less than 0xfffc07fc, then the result cannot overflow ever. 268 (('udot_4x8_uadd_sat', a, b, '#c(is_ult_0xfffc07fc)'), ('udot_4x8_uadd', a, b, c)), 269 (('udot_4x8_uadd_sat', a, b, c), ('uadd_sat', udot_4x8_a_b, c), '!options->has_dot_4x8'), 270 271 # For the signed dot-product, the largest positive value is 4*(-128*-128) = 272 # 0x10000, and the largest negative value is 4*(-128*127) = -0xfe00. We 273 # don't have to worry about that intermediate result overflowing or 274 # underflowing. 275 (('sdot_4x8_iadd_sat', a, b, c), ('iadd_sat', sdot_4x8_a_b, c), '!options->has_dot_4x8'), 276 277 (('sudot_4x8_iadd_sat', a, b, c), ('iadd_sat', sudot_4x8_a_b, c), '!options->has_sudot_4x8'), 278 279 (('udot_2x16_uadd_sat', a, b, c), ('uadd_sat', udot_2x16_a_b, c), '!options->has_dot_2x16'), 280 (('sdot_2x16_iadd_sat', a, b, c), ('iadd_sat', sdot_2x16_a_b, c), '!options->has_dot_2x16'), 281]) 282 283# Float sizes 284for s in [16, 32, 64]: 285 optimizations.extend([ 286 (('~flrp@{}'.format(s), a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)), 287 288 (('~flrp@{}'.format(s), a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp{}'.format(s)), 289 (('~flrp@{}'.format(s), ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp{}'.format(s)), 290 (('~flrp@{}'.format(s), a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp{}'.format(s)), 291 292 (('~fadd@{}'.format(s), ('fmul', a, ('fadd', 1.0, ('fneg', c))), ('fmul', b, c)), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)), 293 # These are the same as the previous three rules, but it depends on 294 # 1-fsat(x) <=> fsat(1-x). See below. 295 (('~fadd@{}'.format(s), ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c)))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp{}'.format(s)), 296 (('~fadd@{}'.format(s), a, ('fmul', c, ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)), 297 298 (('~fadd@{}'.format(s), ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f', c))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)), 299 (('~fadd@{}'.format(s), a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)), 300 301 (('~ffma@{}'.format(s), a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1'))), ('fmul', b, ('b2f', 'c@1'))), ('bcsel', c, b, a)), 302 (('~ffma@{}'.format(s), b, ('b2f', 'c@1'), ('ffma', ('fneg', a), ('b2f', 'c@1'), a)), ('bcsel', c, b, a)), 303 304 # These two aren't flrp lowerings, but do appear in some shaders. 305 (('~ffma@{}'.format(s), ('b2f', 'c@1'), ('fadd', b, ('fneg', a)), a), ('bcsel', c, b, a)), 306 (('~ffma@{}'.format(s), ('b2f', 'c@1'), ('ffma', ('fneg', a), b, d), ('fmul', a, b)), ('bcsel', c, d, ('fmul', a, b))), 307 308 # 1 - ((1 - a) * (1 - b)) 309 # 1 - (1 - a - b + a*b) 310 # 1 - 1 + a + b - a*b 311 # a + b - a*b 312 # a + b*(1 - a) 313 # b*(1 - a) + 1*a 314 # flrp(b, 1, a) 315 (('~fadd@{}'.format(s), 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))), ('flrp', b, 1.0, a), '!options->lower_flrp{}'.format(s)), 316 ]) 317 318optimizations.extend([ 319 (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)), 320 321 (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)), 322 (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'), 323 (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'), 324 (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'), 325 (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'), 326 (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'), 327 (('ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma16'), 328 (('ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma32'), 329 (('ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma64'), 330 # Always lower inexact ffma, because it will be fused back by late optimizations (nir_opt_algebraic_late). 331 (('~ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma16'), 332 (('~ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma32'), 333 (('~ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma64'), 334 335 (('~fmul', ('fadd', ('iand', ('ineg', ('b2i', 'a@bool')), ('fmul', b, c)), '#d'), '#e'), 336 ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))), 337 338 (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'), 339 340 (('fdot4', ('vec4', a, b, c, 1.0), d), ('fdph', ('vec3', a, b, c), d), '!options->lower_fdph'), 341 (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)), 342 (('fdot4', ('vec4', a, b, 0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)), 343 (('fdot4', ('vec4', a, b, c, 0.0), d), ('fdot3', ('vec3', a, b, c), d)), 344 345 (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)), 346 (('fdot3', ('vec3', a, b, 0.0), c), ('fdot2', ('vec2', a, b), c)), 347 348 (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)), 349 (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')), 350 351 # Lower fdot to fsum when it is available 352 (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'), 353 (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'), 354 (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'), 355 (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'), 356 357 # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially 358 # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1 359 # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0 360 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))), 361 362 # (a * #b + #c) << #d 363 # ((a * #b) << #d) + (#c << #d) 364 # (a * (#b << #d)) + (#c << #d) 365 (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'), 366 ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))), 367 368 # (a * #b) << #c 369 # a * (#b << #c) 370 (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))), 371]) 372 373# Care must be taken here. Shifts in NIR uses only the lower log2(bitsize) 374# bits of the second source. These replacements must correctly handle the 375# case where (b % bitsize) + (c % bitsize) >= bitsize. 376for s in [8, 16, 32, 64]: 377 mask = (1 << s) - 1 378 379 ishl = "ishl@{}".format(s) 380 ishr = "ishr@{}".format(s) 381 ushr = "ushr@{}".format(s) 382 383 in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s) 384 385 optimizations.extend([ 386 ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)), 387 ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)), 388 389 # To get get -1 for large shifts of negative values, ishr must instead 390 # clamp the shift count to the maximum value. 391 ((ishr, (ishr, a, '#b'), '#c'), 392 (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))), 393 ]) 394 395# Optimize a pattern of address calculation created by DXVK where the offset is 396# divided by 4 and then multipled by 4. This can be turned into an iand and the 397# additions before can be reassociated to CSE the iand instruction. 398 399for size, mask in ((8, 0xff), (16, 0xffff), (32, 0xffffffff), (64, 0xffffffffffffffff)): 400 a_sz = 'a@{}'.format(size) 401 402 optimizations.extend([ 403 # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)' 404 (('ishl', ('ushr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))), 405 (('ishl', ('ishr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))), 406 407 # This does not trivially work with ishr. 408 (('ushr', ('ishl', a_sz, '#b'), b), ('iand', a, ('ushr', mask, b))), 409 ]) 410 411for log2 in range(1, 7): # powers of two from 2 to 64 412 v = 1 << log2 413 mask = 0xffffffff & ~(v - 1) 414 b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v) 415 416 optimizations.extend([ 417 # Reassociate for improved CSE 418 (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)), 419 ]) 420 421# To save space in the state tables, reduce to the set that is known to help. 422# Previously, this was range(1, 32). In addition, a couple rules inside the 423# loop are commented out. Revisit someday, probably after mesa/#2635 has some 424# resolution. 425for i in [1, 2, 16, 24]: 426 lo_mask = 0xffffffff >> i 427 hi_mask = (0xffffffff << i) & 0xffffffff 428 429 optimizations.extend([ 430 # This pattern seems to only help in the soft-fp64 code. 431 (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)), 432# (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)), 433# (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)), 434 435 (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)), 436 (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)), 437# (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct 438 ]) 439 440optimizations.extend([ 441 # This is common for address calculations. Reassociating may enable the 442 # 'a<<c' to be CSE'd. It also helps architectures that have an ISHLADD 443 # instruction or a constant offset field for in load / store instructions. 444 (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))), 445 446 # (a + #b) * #c => (a * #c) + (#b * #c) 447 (('imul', ('iadd(is_used_once)', a, '#b'), '#c'), ('iadd', ('imul', a, c), ('imul', b, c))), 448 (('~fmul', ('fadd(is_used_once)', a, '#b'), '#c'), ('fadd', ('fmul', a, c), ('fmul', b, c)), 449 '!options->avoid_ternary_with_two_constants'), 450 451 # ((a + #b) + c) * #d => ((a + c) * #d) + (#b * #d) 452 (('imul', ('iadd(is_used_once)', ('iadd(is_used_once)', a, '#b'), c), '#d'), 453 ('iadd', ('imul', ('iadd', a, c), d), ('imul', b, d))), 454 (('ishl', ('iadd(is_used_once)', ('iadd(is_used_once)', a, '#b'), c), '#d'), 455 ('iadd', ('ishl', ('iadd', a, c), d), ('ishl', b, d))), 456 457 # Comparison simplifications 458 (('inot', ('flt(is_used_once)', 'a(is_a_number)', 'b(is_a_number)')), ('fge', a, b)), 459 (('inot', ('fge(is_used_once)', 'a(is_a_number)', 'b(is_a_number)')), ('flt', a, b)), 460 (('inot', ('feq(is_used_once)', a, b)), ('fneu', a, b)), 461 (('inot', ('fneu(is_used_once)', a, b)), ('feq', a, b)), 462 (('inot', ('ilt(is_used_once)', a, b)), ('ige', a, b)), 463 (('inot', ('ult(is_used_once)', a, b)), ('uge', a, b)), 464 (('inot', ('ige(is_used_once)', a, b)), ('ilt', a, b)), 465 (('inot', ('uge(is_used_once)', a, b)), ('ult', a, b)), 466 (('inot', ('ieq(is_used_once)', a, b)), ('ine', a, b)), 467 (('inot', ('ine(is_used_once)', a, b)), ('ieq', a, b)), 468 469 (('iand', ('feq', a, b), ('fneu', a, b)), False), 470 (('iand', ('flt', a, b), ('flt', b, a)), False), 471 (('iand', ('ieq', a, b), ('ine', a, b)), False), 472 (('iand', ('ilt', a, b), ('ilt', b, a)), False), 473 (('iand', ('ult', a, b), ('ult', b, a)), False), 474 475 # This helps some shaders because, after some optimizations, they end up 476 # with patterns like (-a < -b) || (b < a). In an ideal world, this sort of 477 # matching would be handled by CSE. 478 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)), 479 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)), 480 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)), 481 (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)), 482 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)), 483 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)), 484 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)), 485 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)), 486 (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)), 487 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)), 488 489 # b < fsat(NaN) -> b < 0 -> false, and b < Nan -> false. 490 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)), 491 492 # fsat(NaN) >= b -> 0 >= b -> false, and NaN >= b -> false. 493 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)), 494 495 # b == fsat(NaN) -> b == 0 -> false, and b == NaN -> false. 496 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)), 497 498 # b != fsat(NaN) -> b != 0 -> true, and b != NaN -> true. 499 (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)), 500 501 # fsat(NaN) >= 1 -> 0 >= 1 -> false, and NaN >= 1 -> false. 502 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)), 503 504 # 0 < fsat(NaN) -> 0 < 0 -> false, and 0 < NaN -> false. 505 (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)), 506 507 # 0.0 >= b2f(a) 508 # b2f(a) <= 0.0 509 # b2f(a) == 0.0 because b2f(a) can only be 0 or 1 510 # inot(a) 511 (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)), 512 513 (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)), 514 515 (('fneu', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)), 516 (('fneu', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('ior', a, b)), 517 (('fneu', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('ior', a, b)), 518 (('fneu', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)), 519 (('fneu', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('iand', a, b)), 520 (('fneu', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)), 521 (('fneu', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ixor', a, b)), 522 (('fneu', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ixor', a, b)), 523 (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))), 524 (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1')) , 0.0), ('inot', ('ior', a, b))), 525 (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), ('inot', ('ior', a, b))), 526 (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))), 527 (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0) , 0.0), ('inot', ('iand', a, b))), 528 (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)), 529 (('feq', ('b2f', 'a@1') , ('b2f', 'b@1') ), ('ieq', a, b)), 530 (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('ieq', a, b)), 531 532 # -(b2f(a) + b2f(b)) < 0 533 # 0 < b2f(a) + b2f(b) 534 # 0 != b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative 535 # a || b 536 (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)), 537 (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)), 538 539 # -(b2f(a) + b2f(b)) >= 0 540 # 0 >= b2f(a) + b2f(b) 541 # 0 == b2f(a) + b2f(b) b2f must be 0 or 1, so the sum is non-negative 542 # !(a || b) 543 (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))), 544 (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))), 545 546 (('flt', a, ('fneg', a)), ('flt', a, 0.0)), 547 (('fge', a, ('fneg', a)), ('fge', a, 0.0)), 548 549 # Some optimizations (below) convert things like (a < b || c < b) into 550 # (min(a, c) < b). However, this interfers with the previous optimizations 551 # that try to remove comparisons with negated sums of b2f. This just 552 # breaks that apart. 553 (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0), 554 ('ior', ('flt', c, 0.0), ('ior', a, b))), 555 556 (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)), 557 (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)), 558 (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)), 559 (('~fneu', ('fadd', a, b), a), ('fneu', b, 0.0)), 560 (('~flt', ('fadd(is_used_once)', a, '#b'), '#c'), ('flt', a, ('fadd', c, ('fneg', b)))), 561 (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)), 562 (('~fge', ('fadd(is_used_once)', a, '#b'), '#c'), ('fge', a, ('fadd', c, ('fneg', b)))), 563 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)), 564 (('~feq', ('fadd(is_used_once)', a, '#b'), '#c'), ('feq', a, ('fadd', c, ('fneg', b)))), 565 (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)), 566 (('~fneu', ('fadd(is_used_once)', a, '#b'), '#c'), ('fneu', a, ('fadd', c, ('fneg', b)))), 567 (('~fneu', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fneu', ('fneg', ('fadd', c, b)), a)), 568 569 # Cannot remove the addition from ilt or ige due to overflow. 570 (('ieq', ('iadd', a, b), a), ('ieq', b, 0)), 571 (('ine', ('iadd', a, b), a), ('ine', b, 0)), 572 573 (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)), 574 (('fneu', ('b2f', 'a@1'), 0.0), a), 575 (('ieq', ('b2i', 'a@1'), 0), ('inot', a)), 576 (('ine', ('b2i', 'a@1'), 0), a), 577 578 (('fneu', ('u2f', a), 0.0), ('ine', a, 0)), 579 (('feq', ('u2f', a), 0.0), ('ieq', a, 0)), 580 (('fge', ('u2f', a), 0.0), True), 581 (('fge', 0.0, ('u2f', a)), ('uge', 0, a)), # ieq instead? 582 (('flt', ('u2f', a), 0.0), False), 583 (('flt', 0.0, ('u2f', a)), ('ult', 0, a)), # ine instead? 584 (('fneu', ('i2f', a), 0.0), ('ine', a, 0)), 585 (('feq', ('i2f', a), 0.0), ('ieq', a, 0)), 586 (('fge', ('i2f', a), 0.0), ('ige', a, 0)), 587 (('fge', 0.0, ('i2f', a)), ('ige', 0, a)), 588 (('flt', ('i2f', a), 0.0), ('ilt', a, 0)), 589 (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)), 590 591 # 0.0 < fabs(a) 592 # fabs(a) > 0.0 593 # fabs(a) != 0.0 because fabs(a) must be >= 0 594 # a != 0.0 595 (('~flt', 0.0, ('fabs', a)), ('fneu', a, 0.0)), 596 597 # -fabs(a) < 0.0 598 # fabs(a) > 0.0 599 (('~flt', ('fneg', ('fabs', a)), 0.0), ('fneu', a, 0.0)), 600 601 # 0.0 >= fabs(a) 602 # 0.0 == fabs(a) because fabs(a) must be >= 0 603 # 0.0 == a 604 (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)), 605 606 # -fabs(a) >= 0.0 607 # 0.0 >= fabs(a) 608 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)), 609 610 # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a 611 # 612 # This should be NaN safe. 613 # 614 # NaN >= 0 && 1 >= NaN -> false && false -> false 615 # 616 # vs. 617 # 618 # NaN == fsat(NaN) -> NaN == 0 -> false 619 (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'), 620 621 # Note: fmin(-a, -b) == -fmax(a, b) 622 (('fmax', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('ior', a, b))), 623 (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))), 624 (('fmin', ('b2f(is_used_once)', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))), 625 (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))), 626 627 # fmin(b2f(a), b) 628 # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b)) 629 # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b)) 630 # bcsel(a, fmin(1.0, b), fmin(0.0, b)) 631 # 632 # Since b is a constant, constant folding will eliminate the fmin and the 633 # fmax. If b is > 1.0, the bcsel will be replaced with a b2f. 634 (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))), 635 636 (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)), 637 638 (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)), 639 (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)), 640 (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)), 641 (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)), 642 (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)), 643 (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)), 644 (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)), 645 (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)), 646 (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)), 647 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))), 648 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))), 649 (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)), 650 (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)), 651 (('bcsel', a, True, b), ('ior', a, b)), 652 (('bcsel', a, a, b), ('ior', a, b)), 653 (('bcsel', a, b, False), ('iand', a, b)), 654 (('bcsel', a, b, a), ('iand', a, b)), 655 (('~fmin', a, a), a), 656 (('~fmax', a, a), a), 657 (('imin', a, a), a), 658 (('imax', a, a), a), 659 (('umin', a, a), a), 660 (('umin', a, 0), 0), 661 (('umin', a, -1), a), 662 (('umax', a, a), a), 663 (('umax', a, 0), a), 664 (('umax', a, -1), -1), 665 (('fmax', ('fmax', a, b), b), ('fmax', a, b)), 666 (('umax', ('umax', a, b), b), ('umax', a, b)), 667 (('imax', ('imax', a, b), b), ('imax', a, b)), 668 (('fmin', ('fmin', a, b), b), ('fmin', a, b)), 669 (('umin', ('umin', a, b), b), ('umin', a, b)), 670 (('imin', ('imin', a, b), b), ('imin', a, b)), 671 (('fmax', ('fmax', ('fmax', a, b), c), a), ('fmax', ('fmax', a, b), c)), 672 (('umax', ('umax', ('umax', a, b), c), a), ('umax', ('umax', a, b), c)), 673 (('imax', ('imax', ('imax', a, b), c), a), ('imax', ('imax', a, b), c)), 674 (('fmin', ('fmin', ('fmin', a, b), c), a), ('fmin', ('fmin', a, b), c)), 675 (('umin', ('umin', ('umin', a, b), c), a), ('umin', ('umin', a, b), c)), 676 (('imin', ('imin', ('imin', a, b), c), a), ('imin', ('imin', a, b), c)), 677]) 678 679for N in [8, 16, 32, 64]: 680 b2iN = 'b2i{0}'.format(N) 681 optimizations.extend([ 682 (('ieq', (b2iN, 'a@1'), (b2iN, 'b@1')), ('ieq', a, b)), 683 (('ine', (b2iN, 'a@1'), (b2iN, 'b@1')), ('ine', a, b)), 684 ]) 685 686for N in [16, 32, 64]: 687 b2fN = 'b2f{0}'.format(N) 688 optimizations.extend([ 689 (('feq', (b2fN, 'a@1'), (b2fN, 'b@1')), ('ieq', a, b)), 690 (('fneu', (b2fN, 'a@1'), (b2fN, 'b@1')), ('ine', a, b)), 691 ]) 692 693# Integer sizes 694for s in [8, 16, 32, 64]: 695 optimizations.extend([ 696 (('iand@{}'.format(s), a, ('inot', ('ishr', a, s - 1))), ('imax', a, 0)), 697 698 # Simplify logic to detect sign of an integer. 699 (('ieq', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 0), ('ige', a, 0)), 700 (('ine', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 1 << (s - 1)), ('ige', a, 0)), 701 (('ine', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 0), ('ilt', a, 0)), 702 (('ieq', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 1 << (s - 1)), ('ilt', a, 0)), 703 (('ine', ('ushr', 'a@{}'.format(s), s - 1), 0), ('ilt', a, 0)), 704 (('ieq', ('ushr', 'a@{}'.format(s), s - 1), 0), ('ige', a, 0)), 705 (('ieq', ('ushr', 'a@{}'.format(s), s - 1), 1), ('ilt', a, 0)), 706 (('ine', ('ushr', 'a@{}'.format(s), s - 1), 1), ('ige', a, 0)), 707 (('ine', ('ishr', 'a@{}'.format(s), s - 1), 0), ('ilt', a, 0)), 708 (('ieq', ('ishr', 'a@{}'.format(s), s - 1), 0), ('ige', a, 0)), 709 (('ieq', ('ishr', 'a@{}'.format(s), s - 1), -1), ('ilt', a, 0)), 710 (('ine', ('ishr', 'a@{}'.format(s), s - 1), -1), ('ige', a, 0)), 711 ]) 712 713optimizations.extend([ 714 (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))), 715 (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))), 716 (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))), 717 (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))), 718 (('~fmin', a, ('fabs', a)), a), 719 (('imin', a, ('iabs', a)), a), 720 (('~fmax', a, ('fneg', ('fabs', a))), a), 721 (('imax', a, ('ineg', ('iabs', a))), a), 722 (('fmax', a, ('fabs', a)), ('fabs', a)), 723 (('imax', a, ('iabs', a)), ('iabs', a)), 724 (('fmax', a, ('fneg', a)), ('fabs', a)), 725 (('imax', a, ('ineg', a)), ('iabs', a), '!options->lower_iabs'), 726 (('~fmax', ('fabs', a), 0.0), ('fabs', a)), 727 (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'), 728 # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while 729 # fsat(a) returns 0.0. 730 (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'), 731 # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while 732 # fneg(fsat(fneg(a))) returns -0.0 on NaN. 733 (('~fmin', ('fmax', a, -1.0), 0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'), 734 # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while 735 # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if 736 # SignedZeroInfNanPreserve is set, but we don't currently have any way of 737 # representing this in the optimizations other than the usual ~. 738 (('~fmax', ('fmin', a, 0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'), 739 # fsat(fsign(NaN)) = fsat(0) = 0, and b2f(0 < NaN) = b2f(False) = 0. Mark 740 # the new comparison precise to prevent it being changed to 'a != 0'. 741 (('fsat', ('fsign', a)), ('b2f', ('!flt', 0.0, a))), 742 (('fsat', ('b2f', a)), ('b2f', a)), 743 (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'), 744 (('fsat', ('fsat', a)), ('fsat', a)), 745 (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'), 746 (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'), 747 (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'), 748 (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)), 749 (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)), 750 (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)), 751 # Both the left and right patterns are "b" when isnan(a), so this is exact. 752 (('fmax', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmax', a, b))), 753 # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) -> 754 # fmin(0.0, b)) while the right one is "b", so this optimization is inexact. 755 (('~fmin', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmin', a, b))), 756 757 # max(-min(b, a), b) -> max(abs(b), -a) 758 # min(-max(b, a), b) -> min(-abs(b), -a) 759 (('fmax', ('fneg', ('fmin', b, a)), b), ('fmax', ('fabs', b), ('fneg', a))), 760 (('fmin', ('fneg', ('fmax', b, a)), b), ('fmin', ('fneg', ('fabs', b)), ('fneg', a))), 761 762 # If a in [0,b] then b-a is also in [0,b]. Since b in [0,1], max(b-a, 0) = 763 # fsat(b-a). 764 # 765 # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0 766 # 767 # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0. 768 (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b(is_zero_to_one)'), 0.0), 769 ('fsat', ('fadd', ('fneg', a), b)), '!options->lower_fsat'), 770 771 (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)), 772 773 # The ior versions are exact because fmin and fmax will always pick a 774 # non-NaN value, if one exists. Therefore (a < NaN) || (a < c) == a < 775 # fmax(NaN, c) == a < c. Mark the fmin or fmax in the replacement as exact 776 # to prevent other optimizations from ruining the "NaN clensing" property 777 # of the fmin or fmax. 778 (('ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('!fmax', b, c))), 779 (('ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('!fmin', a, b), c)), 780 (('ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('!fmin', b, c))), 781 (('ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('!fmax', a, b), c)), 782 (('ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('!fmax', b, c))), 783 (('ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('!fmin', a, b), c)), 784 (('ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('!fmin', b, c))), 785 (('ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('!fmax', a, b), c)), 786 (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))), 787 (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)), 788 (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))), 789 (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)), 790 (('iand', ('flt', a, '#b(is_a_number)'), ('flt', a, '#c(is_a_number)')), ('flt', a, ('fmin', b, c))), 791 (('iand', ('flt', '#a(is_a_number)', c), ('flt', '#b(is_a_number)', c)), ('flt', ('fmax', a, b), c)), 792 (('iand', ('fge', a, '#b(is_a_number)'), ('fge', a, '#c(is_a_number)')), ('fge', a, ('fmax', b, c))), 793 (('iand', ('fge', '#a(is_a_number)', c), ('fge', '#b(is_a_number)', c)), ('fge', ('fmin', a, b), c)), 794 795 (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))), 796 (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)), 797 (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))), 798 (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)), 799 (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))), 800 (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)), 801 (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))), 802 (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)), 803 (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))), 804 (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)), 805 (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))), 806 (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)), 807 (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))), 808 (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)), 809 (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))), 810 (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)), 811 812 # A number of shaders contain a pattern like a.x < 0.0 || a.x > 1.0 || a.y 813 # < 0.0, || a.y > 1.0 || ... These patterns rearrange and replace in a 814 # single step. Doing just the replacement can lead to an infinite loop as 815 # the pattern is repeatedly applied to the result of the previous 816 # application of the pattern. 817 (('ior', ('ior(is_used_once)', ('flt(is_used_once)', a, c), d), ('flt', b, c)), ('ior', ('flt', ('!fmin', a, b), c), d)), 818 (('ior', ('ior(is_used_once)', ('flt', a, c), d), ('flt(is_used_once)', b, c)), ('ior', ('flt', ('!fmin', a, b), c), d)), 819 (('ior', ('ior(is_used_once)', ('flt(is_used_once)', a, b), d), ('flt', a, c)), ('ior', ('flt', a, ('!fmax', b, c)), d)), 820 (('ior', ('ior(is_used_once)', ('flt', a, b), d), ('flt(is_used_once)', a, c)), ('ior', ('flt', a, ('!fmax', b, c)), d)), 821 822 # This is how SpvOpFOrdNotEqual might be implemented. If both values are 823 # numbers, then it can be replaced with fneu. 824 (('ior', ('flt', 'a(is_a_number)', 'b(is_a_number)'), ('flt', b, a)), ('fneu', a, b)), 825]) 826 827# Float sizes 828for s in [16, 32, 64]: 829 optimizations.extend([ 830 # These derive from the previous patterns with the application of b < 0 <=> 831 # 0 < -b. The transformation should be applied if either comparison is 832 # used once as this ensures that the number of comparisons will not 833 # increase. The sources to the ior and iand are not symmetric, so the 834 # rules have to be duplicated to get this behavior. 835 (('ior', ('flt(is_used_once)', 0.0, 'a@{}'.format(s)), ('flt', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))), 836 (('ior', ('flt', 0.0, 'a@{}'.format(s)), ('flt(is_used_once)', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))), 837 (('ior', ('fge(is_used_once)', 0.0, 'a@{}'.format(s)), ('fge', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))), 838 (('ior', ('fge', 0.0, 'a@{}'.format(s)), ('fge(is_used_once)', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))), 839 (('~iand', ('flt(is_used_once)', 0.0, 'a@{}'.format(s)), ('flt', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))), 840 (('~iand', ('flt', 0.0, 'a@{}'.format(s)), ('flt(is_used_once)', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))), 841 (('~iand', ('fge(is_used_once)', 0.0, 'a@{}'.format(s)), ('fge', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))), 842 (('~iand', ('fge', 0.0, 'a@{}'.format(s)), ('fge(is_used_once)', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))), 843 844 # The (i2f32, ...) part is an open-coded fsign. When that is combined 845 # with the bcsel, it's basically copysign(1.0, a). There are some 846 # behavior differences between this pattern and copysign w.r.t. ±0 and 847 # NaN. copysign(x, y) blindly takes the sign bit from y and applies it 848 # to x, regardless of whether either or both values are NaN. 849 # 850 # If a != a: bcsel(False, 1.0, i2f(b2i(False) - b2i(False))) = 0, 851 # int(NaN >= 0.0) - int(NaN < 0.0) = 0 - 0 = 0 852 # If a == ±0: bcsel(True, 1.0, ...) = 1.0, 853 # int(±0.0 >= 0.0) - int(±0.0 < 0.0) = 1 - 0 = 1 854 # 855 # For all other values of 'a', the original and replacement behave as 856 # copysign. 857 # 858 # Marking the replacement comparisons as precise prevents any future 859 # optimizations from replacing either of the comparisons with the 860 # logical-not of the other. 861 # 862 # Note: Use b2i32 in the replacement because some platforms that 863 # support fp16 don't support int16. 864 (('bcsel@{}'.format(s), ('feq', a, 0.0), 1.0, ('i2f{}'.format(s), ('iadd', ('b2i{}'.format(s), ('flt', 0.0, 'a@{}'.format(s))), ('ineg', ('b2i{}'.format(s), ('flt', 'a@{}'.format(s), 0.0)))))), 865 ('i2f{}'.format(s), ('iadd', ('b2i32', ('!fge', a, 0.0)), ('ineg', ('b2i32', ('!flt', a, 0.0)))))), 866 867 (('bcsel', a, ('b2f(is_used_once)', 'b@{}'.format(s)), ('b2f', 'c@{}'.format(s))), ('b2f', ('bcsel', a, b, c))), 868 869 # The C spec says, "If the value of the integral part cannot be represented 870 # by the integer type, the behavior is undefined." "Undefined" can mean 871 # "the conversion doesn't happen at all." 872 (('~i2f{}'.format(s), ('f2i', 'a@{}'.format(s))), ('ftrunc', a)), 873 874 # Ironically, mark these as imprecise because removing the conversions may 875 # preserve more precision than doing the conversions (e.g., 876 # uint(float(0x81818181u)) == 0x81818200). 877 (('~f2i{}'.format(s), ('i2f', 'a@{}'.format(s))), a), 878 (('~f2i{}'.format(s), ('u2f', 'a@{}'.format(s))), a), 879 (('~f2u{}'.format(s), ('i2f', 'a@{}'.format(s))), a), 880 (('~f2u{}'.format(s), ('u2f', 'a@{}'.format(s))), a), 881 882 (('fadd', ('b2f{}'.format(s), ('flt', 0.0, 'a@{}'.format(s))), ('fneg', ('b2f{}'.format(s), ('flt', 'a@{}'.format(s), 0.0)))), ('fsign', a), '!options->lower_fsign'), 883 (('iadd', ('b2i{}'.format(s), ('flt', 0, 'a@{}'.format(s))), ('ineg', ('b2i{}'.format(s), ('flt', 'a@{}'.format(s), 0)))), ('f2i{}'.format(s), ('fsign', a)), '!options->lower_fsign'), 884 ]) 885 886 # float? -> float? -> floatS ==> float? -> floatS 887 (('~f2f{}'.format(s), ('f2f', a)), ('f2f{}'.format(s), a)), 888 889 # int? -> float? -> floatS ==> int? -> floatS 890 (('~f2f{}'.format(s), ('u2f', a)), ('u2f{}'.format(s), a)), 891 (('~f2f{}'.format(s), ('i2f', a)), ('i2f{}'.format(s), a)), 892 893 # float? -> float? -> intS ==> float? -> intS 894 (('~f2u{}'.format(s), ('f2f', a)), ('f2u{}'.format(s), a)), 895 (('~f2i{}'.format(s), ('f2f', a)), ('f2i{}'.format(s), a)), 896 897 for B in [32, 64]: 898 if s < B: 899 optimizations.extend([ 900 # S = smaller, B = bigger 901 # typeS -> typeB -> typeS ==> identity 902 (('f2f{}'.format(s), ('f2f{}'.format(B), 'a@{}'.format(s))), a), 903 (('i2i{}'.format(s), ('i2i{}'.format(B), 'a@{}'.format(s))), a), 904 (('u2u{}'.format(s), ('u2u{}'.format(B), 'a@{}'.format(s))), a), 905 906 # bool1 -> typeB -> typeS ==> bool1 -> typeS 907 (('f2f{}'.format(s), ('b2f{}'.format(B), 'a@1')), ('b2f{}'.format(s), a)), 908 (('i2i{}'.format(s), ('b2i{}'.format(B), 'a@1')), ('b2i{}'.format(s), a)), 909 (('u2u{}'.format(s), ('b2i{}'.format(B), 'a@1')), ('b2i{}'.format(s), a)), 910 911 # floatS -> floatB -> intB ==> floatS -> intB 912 (('f2u{}'.format(B), ('f2f{}'.format(B), 'a@{}'.format(s))), ('f2u{}'.format(B), a)), 913 (('f2i{}'.format(B), ('f2f{}'.format(B), 'a@{}'.format(s))), ('f2i{}'.format(B), a)), 914 915 # int? -> floatB -> floatS ==> int? -> floatS 916 (('f2f{}'.format(s), ('u2f{}'.format(B), a)), ('u2f{}'.format(s), a)), 917 (('f2f{}'.format(s), ('i2f{}'.format(B), a)), ('i2f{}'.format(s), a)), 918 919 # intS -> intB -> floatB ==> intS -> floatB 920 (('u2f{}'.format(B), ('u2u{}'.format(B), 'a@{}'.format(s))), ('u2f{}'.format(B), a)), 921 (('i2f{}'.format(B), ('i2i{}'.format(B), 'a@{}'.format(s))), ('i2f{}'.format(B), a)), 922 ]) 923 924# mediump variants of the above 925optimizations.extend([ 926 # int32 -> float32 -> float16 ==> int32 -> float16 927 (('f2fmp', ('u2f32', 'a@32')), ('u2fmp', a)), 928 (('f2fmp', ('i2f32', 'a@32')), ('i2fmp', a)), 929 930 # float32 -> float16 -> int16 ==> float32 -> int16 931 (('f2u16', ('f2fmp', 'a@32')), ('f2u16', a)), 932 (('f2i16', ('f2fmp', 'a@32')), ('f2i16', a)), 933 934 # float32 -> int32 -> int16 ==> float32 -> int16 935 (('i2imp', ('f2u32', 'a@32')), ('f2ump', a)), 936 (('i2imp', ('f2i32', 'a@32')), ('f2imp', a)), 937 938 # int32 -> int16 -> float16 ==> int32 -> float16 939 (('u2f16', ('i2imp', 'a@32')), ('u2f16', a)), 940 (('i2f16', ('i2imp', 'a@32')), ('i2f16', a)), 941]) 942 943# Clean up junk left from 8-bit integer to 16-bit integer lowering. 944optimizations.extend([ 945 # The u2u16(u2u8(X)) just masks off the upper 8-bits of X. This can be 946 # accomplished by mask the upper 8-bit of the immediate operand to the 947 # iand instruction. Often times, both patterns will end up being applied 948 # to the same original expression tree. 949 (('iand', ('u2u16', ('u2u8', 'a@16')), '#b'), ('iand', a, ('iand', b, 0xff))), 950 (('u2u16', ('u2u8(is_used_once)', ('iand', 'a@16', '#b'))), ('iand', a, ('iand', b, 0xff))), 951]) 952 953for op in ['iand', 'ior', 'ixor']: 954 optimizations.extend([ 955 (('u2u8', (op, ('u2u16', ('u2u8', 'a@16')), ('u2u16', ('u2u8', 'b@16')))), ('u2u8', (op, a, b))), 956 (('u2u8', (op, ('u2u16', ('u2u8', 'a@32')), ('u2u16', ('u2u8', 'b@32')))), ('u2u8', (op, a, b))), 957 958 # Undistribute extract from a logic op 959 ((op, ('extract_i8', a, '#b'), ('extract_i8', c, b)), ('extract_i8', (op, a, c), b)), 960 ((op, ('extract_u8', a, '#b'), ('extract_u8', c, b)), ('extract_u8', (op, a, c), b)), 961 ((op, ('extract_i16', a, '#b'), ('extract_i16', c, b)), ('extract_i16', (op, a, c), b)), 962 ((op, ('extract_u16', a, '#b'), ('extract_u16', c, b)), ('extract_u16', (op, a, c), b)), 963 964 # Undistribute shifts from a logic op 965 ((op, ('ushr(is_used_once)', a, '#b'), ('ushr', c, b)), ('ushr', (op, a, c), b)), 966 ((op, ('ishr(is_used_once)', a, '#b'), ('ishr', c, b)), ('ishr', (op, a, c), b)), 967 ((op, ('ishl(is_used_once)', a, '#b'), ('ishl', c, b)), ('ishl', (op, a, c), b)), 968 ]) 969 970# Integer sizes 971for s in [8, 16, 32, 64]: 972 optimizations.extend([ 973 (('iand', ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('ior', a, b), 0), 'options->lower_umax'), 974 (('ior', ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('ior', a, b), 0), 'options->lower_umin'), 975 (('iand', ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umax', a, b), 0), '!options->lower_umax'), 976 (('ior', ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umin', a, b), 0), '!options->lower_umin'), 977 (('iand', ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umin', a, b), 0), '!options->lower_umin'), 978 (('ior', ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umax', a, b), 0), '!options->lower_umax'), 979 980 # True/False are ~0 and 0 in NIR. b2i of True is 1, and -1 is ~0 (True). 981 (('ineg', ('b2i{}'.format(s), 'a@{}'.format(s))), a), 982 983 # SM5 32-bit shifts are defined to use the 5 least significant bits (or 4 bits for 16 bits) 984 (('ishl', 'a@{}'.format(s), ('iand', s - 1, b)), ('ishl', a, b)), 985 (('ishr', 'a@{}'.format(s), ('iand', s - 1, b)), ('ishr', a, b)), 986 (('ushr', 'a@{}'.format(s), ('iand', s - 1, b)), ('ushr', a, b)), 987 ]) 988 989optimizations.extend([ 990 # Common pattern like 'if (i == 0 || i == 1 || ...)' 991 (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)), 992 (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)), 993 (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)), 994 995 (('ior', a, ('ieq', a, False)), True), 996 (('ior', a, ('inot', a)), -1), 997 998 (('ine', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), ('ine', a, b)), 999 (('b2i', ('ine', 'a@1', 'b@1')), ('b2i', ('ixor', a, b))), 1000 1001 # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code. 1002 # The first part of the iand comes from the !__feq64_nonnan. 1003 # 1004 # The second pattern is a reformulation of the first based on the relation 1005 # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation 1006 # happens to be y == 0. 1007 (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0), b), c)), ('ilt', a, 0)), 1008 ('iand', ('inot', ('iand', b , c)), ('ilt', a, 0))), 1009 (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)), 1010 ('iand', ('inot', ('iand', ('ieq', b , 0), c)), ('ilt', a, 0))), 1011 1012 # These patterns can result when (a < b || a < c) => (a < min(b, c)) 1013 # transformations occur before constant propagation and loop-unrolling. 1014 # 1015 # The flt versions are exact. If isnan(a), the original pattern is 1016 # trivially false, and the replacements are false too. If isnan(b): 1017 # 1018 # a < fmax(NaN, a) => a < a => false vs a < NaN => false 1019 (('flt', a, ('fmax', b, a)), ('flt', a, b)), 1020 (('flt', ('fmin', a, b), a), ('flt', b, a)), 1021 (('~fge', a, ('fmin', b, a)), True), 1022 (('~fge', ('fmax', a, b), a), True), 1023 (('flt', a, ('fmin', b, a)), False), 1024 (('flt', ('fmax', a, b), a), False), 1025 (('~fge', a, ('fmax', b, a)), ('fge', a, b)), 1026 (('~fge', ('fmin', a, b), a), ('fge', b, a)), 1027 1028 (('ilt', a, ('imax', b, a)), ('ilt', a, b)), 1029 (('ilt', ('imin', a, b), a), ('ilt', b, a)), 1030 (('ige', a, ('imin', b, a)), True), 1031 (('ige', ('imax', a, b), a), True), 1032 (('ult', a, ('umax', b, a)), ('ult', a, b)), 1033 (('ult', ('umin', a, b), a), ('ult', b, a)), 1034 (('uge', a, ('umin', b, a)), True), 1035 (('uge', ('umax', a, b), a), True), 1036 (('ilt', a, ('imin', b, a)), False), 1037 (('ilt', ('imax', a, b), a), False), 1038 (('ige', a, ('imax', b, a)), ('ige', a, b)), 1039 (('ige', ('imin', a, b), a), ('ige', b, a)), 1040 (('ult', a, ('umin', b, a)), False), 1041 (('ult', ('umax', a, b), a), False), 1042 (('uge', a, ('umax', b, a)), ('uge', a, b)), 1043 (('uge', ('umin', a, b), a), ('uge', b, a)), 1044 (('ult', a, ('iand', b, a)), False), 1045 (('ult', ('ior', a, b), a), False), 1046 (('uge', a, ('iand', b, a)), True), 1047 (('uge', ('ior', a, b), a), True), 1048 1049 (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))), 1050 (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))), 1051 (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))), 1052 (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))), 1053 (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))), 1054 (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))), 1055 (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))), 1056 (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))), 1057 (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))), 1058 (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))), 1059 (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))), 1060 (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))), 1061 (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))), 1062 (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))), 1063 (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))), 1064 (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))), 1065 1066 # Thanks to sign extension, the ishr(a, b) is negative if and only if a is 1067 # negative. 1068 (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)), 1069 ('iabs', ('ishr', a, b))), 1070 (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)), 1071 1072 (('fabs', ('slt', a, b)), ('slt', a, b)), 1073 (('fabs', ('sge', a, b)), ('sge', a, b)), 1074 (('fabs', ('seq', a, b)), ('seq', a, b)), 1075 (('fabs', ('sne', a, b)), ('sne', a, b)), 1076 (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'), 1077 (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'), 1078 (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'), 1079 (('sne', a, b), ('b2f', ('fneu', a, b)), 'options->lower_scmp'), 1080 (('seq', ('seq', a, b), 1.0), ('seq', a, b)), 1081 (('seq', ('sne', a, b), 1.0), ('sne', a, b)), 1082 (('seq', ('slt', a, b), 1.0), ('slt', a, b)), 1083 (('seq', ('sge', a, b), 1.0), ('sge', a, b)), 1084 (('sne', ('seq', a, b), 0.0), ('seq', a, b)), 1085 (('sne', ('sne', a, b), 0.0), ('sne', a, b)), 1086 (('sne', ('slt', a, b), 0.0), ('slt', a, b)), 1087 (('sne', ('sge', a, b), 0.0), ('sge', a, b)), 1088 (('seq', ('seq', a, b), 0.0), ('sne', a, b)), 1089 (('seq', ('sne', a, b), 0.0), ('seq', a, b)), 1090 (('seq', ('slt', a, b), 0.0), ('sge', a, b)), 1091 (('seq', ('sge', a, b), 0.0), ('slt', a, b)), 1092 (('sne', ('seq', a, b), 1.0), ('sne', a, b)), 1093 (('sne', ('sne', a, b), 1.0), ('seq', a, b)), 1094 (('sne', ('slt', a, b), 1.0), ('sge', a, b)), 1095 (('sne', ('sge', a, b), 1.0), ('slt', a, b)), 1096 (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1097 (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'), 1098 (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'), 1099 (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1100 (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'), 1101 (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'), 1102 1103 (('ball_iequal2', a, b), ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1104 (('ball_iequal3', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('ieq', 'a.z', 'b.z')), 'options->lower_vector_cmp'), 1105 (('ball_iequal4', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('iand', ('ieq', 'a.z', 'b.z'), ('ieq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'), 1106 1107 (('bany_inequal2', a, b), ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1108 (('bany_inequal3', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ine', 'a.z', 'b.z')), 'options->lower_vector_cmp'), 1109 (('bany_inequal4', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ior', ('ine', 'a.z', 'b.z'), ('ine', 'a.w', 'b.w'))), 'options->lower_vector_cmp'), 1110 1111 (('ball_fequal2', a, b), ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1112 (('ball_fequal3', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('feq', 'a.z', 'b.z')), 'options->lower_vector_cmp'), 1113 (('ball_fequal4', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('iand', ('feq', 'a.z', 'b.z'), ('feq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'), 1114 1115 (('bany_fnequal2', a, b), ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), 'options->lower_vector_cmp'), 1116 (('bany_fnequal3', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('fneu', 'a.z', 'b.z')), 'options->lower_vector_cmp'), 1117 (('bany_fnequal4', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('ior', ('fneu', 'a.z', 'b.z'), ('fneu', 'a.w', 'b.w'))), 'options->lower_vector_cmp'), 1118 1119 (('fneu', ('fneg', a), a), ('fneu', a, 0.0)), 1120 (('feq', ('fneg', a), a), ('feq', a, 0.0)), 1121 # Emulating booleans 1122 (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))), 1123 (('iand', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))), 1124 (('ior', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('ior', a, b))), 1125 (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))), 1126 (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))), 1127 (('iand', 'a@bool16', 1.0), ('b2f', a)), 1128 (('iand', 'a@bool32', 1.0), ('b2f', a)), 1129 (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF. 1130 # Comparison with the same args. Note that these are only done for the 1131 # float versions when the source must be a number. Generally, NaN cmp NaN 1132 # produces the opposite result of X cmp X. flt is the outlier. NaN < NaN 1133 # is false, and, for any number X, X < X is also false. 1134 (('ilt', a, a), False), 1135 (('ige', a, a), True), 1136 (('ieq', a, a), True), 1137 (('ine', a, a), False), 1138 (('ult', a, a), False), 1139 (('uge', a, a), True), 1140 (('flt', a, a), False), 1141 (('fge', 'a(is_a_number)', a), True), 1142 (('feq', 'a(is_a_number)', a), True), 1143 (('fneu', 'a(is_a_number)', a), False), 1144 # Logical and bit operations 1145 (('iand', a, a), a), 1146 (('iand', a, ~0), a), 1147 (('iand', a, 0), 0), 1148 (('ior', a, a), a), 1149 (('ior', a, 0), a), 1150 (('ior', a, True), True), 1151 (('ixor', a, a), 0), 1152 (('ixor', a, 0), a), 1153 (('inot', ('inot', a)), a), 1154 (('ior', ('iand', a, b), b), b), 1155 (('ior', ('ior', a, b), b), ('ior', a, b)), 1156 (('iand', ('ior', a, b), b), b), 1157 (('iand', ('iand', a, b), b), ('iand', a, b)), 1158 # DeMorgan's Laws 1159 (('iand', ('inot', a), ('inot', b)), ('inot', ('ior', a, b))), 1160 (('ior', ('inot', a), ('inot', b)), ('inot', ('iand', a, b))), 1161 # Shift optimizations 1162 (('ishl', 0, a), 0), 1163 (('ishl', a, 0), a), 1164 (('ishr', 0, a), 0), 1165 (('ishr', a, 0), a), 1166 (('ushr', 0, a), 0), 1167 (('ushr', a, 0), a), 1168 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'), 1169 (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'), 1170 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'), 1171 (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'), 1172 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'), 1173 (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'), 1174 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'), 1175 (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'), 1176 (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'), 1177 (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'), 1178 (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'), 1179 (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'), 1180 # Exponential/logarithmic identities 1181 (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a 1182 (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a 1183 (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b) 1184 (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b 1185 (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))), 1186 ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d 1187 (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)), 1188 (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)), 1189 (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))), 1190 (('~fpow', a, 1.0), a), 1191 (('~fpow', a, 2.0), ('fmul', a, a)), 1192 (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))), 1193 (('~fpow', 2.0, a), ('fexp2', a)), 1194 (('~fpow', ('fpow', a, 2.2), 0.454545), a), 1195 (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)), 1196 (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))), 1197 (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))), 1198 (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))), 1199 (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))), 1200 (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))), 1201 (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))), 1202 (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))), 1203 (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))), 1204 (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))), 1205 (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)), 1206 # Division and reciprocal 1207 (('~fdiv', 1.0, a), ('frcp', a)), 1208 (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'), 1209 (('~frcp', ('frcp', a)), a), 1210 (('~frcp', ('fsqrt', a)), ('frsq', a)), 1211 (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'), 1212 (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'), 1213 # Trig 1214 (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'), 1215 (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'), 1216 # Boolean simplifications 1217 (('i2b16(is_used_by_if)', a), ('ine16', a, 0)), 1218 (('i2b32(is_used_by_if)', a), ('ine32', a, 0)), 1219 (('i2b1(is_used_by_if)', a), ('ine', a, 0)), 1220 (('ieq', a, True), a), 1221 (('ine(is_not_used_by_if)', a, True), ('inot', a)), 1222 (('ine', a, False), a), 1223 (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')), 1224 (('bcsel', a, True, False), a), 1225 (('bcsel', a, False, True), ('inot', a)), 1226 (('bcsel', True, b, c), b), 1227 (('bcsel', False, b, c), c), 1228 1229 (('bcsel@16', a, 1.0, 0.0), ('b2f', a)), 1230 (('bcsel@16', a, 0.0, 1.0), ('b2f', ('inot', a))), 1231 (('bcsel@16', a, -1.0, -0.0), ('fneg', ('b2f', a))), 1232 (('bcsel@16', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))), 1233 (('bcsel@32', a, 1.0, 0.0), ('b2f', a)), 1234 (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))), 1235 (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))), 1236 (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))), 1237 (('bcsel@64', a, 1.0, 0.0), ('b2f', a), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'), 1238 (('bcsel@64', a, 0.0, 1.0), ('b2f', ('inot', a)), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'), 1239 (('bcsel@64', a, -1.0, -0.0), ('fneg', ('b2f', a)), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'), 1240 (('bcsel@64', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a))), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'), 1241 1242 (('bcsel', a, b, b), b), 1243 (('~fcsel', a, b, b), b), 1244 1245 # D3D Boolean emulation 1246 (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))), 1247 (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))), 1248 (('bcsel', a, 1, 0), ('b2i', 'a@1')), 1249 (('bcsel', a, 0, 1), ('b2i', ('inot', a))), 1250 (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), 1251 ('ineg', ('b2i', ('iand', a, b)))), 1252 (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))), 1253 ('ineg', ('b2i', ('ior', a, b)))), 1254 (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)), 1255 (('ieq', ('ineg', ('b2i', 'a@1')), -1), a), 1256 (('ine', ('ineg', ('b2i', 'a@1')), 0), a), 1257 (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)), 1258 (('ige', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)), 1259 (('ilt', ('ineg', ('b2i', 'a@1')), 0), a), 1260 (('ult', 0, ('ineg', ('b2i', 'a@1'))), a), 1261 (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)), 1262 (('iand', ('ineg', ('b2i', a)), 1), ('b2i', a)), 1263 1264 # With D3D booleans, imax is AND and umax is OR 1265 (('imax', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), 1266 ('ineg', ('b2i', ('iand', a, b)))), 1267 (('imin', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), 1268 ('ineg', ('b2i', ('ior', a, b)))), 1269 (('umax', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), 1270 ('ineg', ('b2i', ('ior', a, b)))), 1271 (('umin', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), 1272 ('ineg', ('b2i', ('iand', a, b)))), 1273 1274 # Conversions 1275 (('i2b16', ('b2i', 'a@16')), a), 1276 (('i2b32', ('b2i', 'a@32')), a), 1277 (('f2i', ('ftrunc', a)), ('f2i', a)), 1278 (('f2u', ('ftrunc', a)), ('f2u', a)), 1279 (('i2b', ('ineg', a)), ('i2b', a)), 1280 (('i2b', ('iabs', a)), ('i2b', a)), 1281 (('inot', ('f2b1', a)), ('feq', a, 0.0)), 1282 1283 # Conversions from 16 bits to 32 bits and back can always be removed 1284 (('f2fmp', ('f2f32', 'a@16')), a), 1285 (('i2imp', ('i2i32', 'a@16')), a), 1286 (('i2imp', ('u2u32', 'a@16')), a), 1287 1288 (('f2imp', ('f2f32', 'a@16')), ('f2i16', a)), 1289 (('f2ump', ('f2f32', 'a@16')), ('f2u16', a)), 1290 (('i2fmp', ('i2i32', 'a@16')), ('i2f16', a)), 1291 (('u2fmp', ('u2u32', 'a@16')), ('u2f16', a)), 1292 1293 (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)), 1294 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)), 1295 (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)), 1296 1297 (('f2imp', ('b2f32', 'a@1')), ('b2i16', a)), 1298 (('f2ump', ('b2f32', 'a@1')), ('b2i16', a)), 1299 (('i2fmp', ('b2i32', 'a@1')), ('b2f16', a)), 1300 (('u2fmp', ('b2i32', 'a@1')), ('b2f16', a)), 1301 1302 # Conversions to 16 bits would be lossy so they should only be removed if 1303 # the instruction was generated by the precision lowering pass. 1304 (('f2f32', ('f2fmp', 'a@32')), a), 1305 (('i2i32', ('i2imp', 'a@32')), a), 1306 (('u2u32', ('i2imp', 'a@32')), a), 1307 1308 (('i2i32', ('f2imp', 'a@32')), ('f2i32', a)), 1309 (('u2u32', ('f2ump', 'a@32')), ('f2u32', a)), 1310 (('f2f32', ('i2fmp', 'a@32')), ('i2f32', a)), 1311 (('f2f32', ('u2fmp', 'a@32')), ('u2f32', a)), 1312 1313 # Conversions from float32 to float64 and back can be removed as long as 1314 # it doesn't need to be precise, since the conversion may e.g. flush denorms 1315 (('~f2f32', ('f2f64', 'a@32')), a), 1316 1317 (('ffloor', 'a(is_integral)'), a), 1318 (('fceil', 'a(is_integral)'), a), 1319 (('ftrunc', 'a(is_integral)'), a), 1320 # fract(x) = x - floor(x), so fract(NaN) = NaN 1321 (('~ffract', 'a(is_integral)'), 0.0), 1322 (('fabs', 'a(is_not_negative)'), a), 1323 (('iabs', 'a(is_not_negative)'), a), 1324 (('fsat', 'a(is_not_positive)'), 0.0), 1325 1326 (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'), 1327 1328 # The result of the multiply must be in [-1, 0], so the result of the ffma 1329 # must be in [0, 1]. 1330 (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False), 1331 (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False), 1332 (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)), 1333 (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)), 1334 1335 (('fneu', 'a(is_not_zero)', 0.0), True), 1336 (('feq', 'a(is_not_zero)', 0.0), False), 1337 1338 # In this chart, + means value > 0 and - means value < 0. 1339 # 1340 # + >= + -> unknown 0 >= + -> false - >= + -> false 1341 # + >= 0 -> true 0 >= 0 -> true - >= 0 -> false 1342 # + >= - -> true 0 >= - -> true - >= - -> unknown 1343 # 1344 # Using grouping conceptually similar to a Karnaugh map... 1345 # 1346 # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true 1347 # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false 1348 # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false 1349 # 1350 # The flt / ilt cases just invert the expected result. 1351 # 1352 # The results expecting true, must be marked imprecise. The results 1353 # expecting false are fine because NaN compared >= or < anything is false. 1354 1355 (('fge', 'a(is_a_number_not_negative)', 'b(is_a_number_not_positive)'), True), 1356 (('fge', 'a(is_not_positive)', 'b(is_gt_zero)'), False), 1357 (('fge', 'a(is_lt_zero)', 'b(is_not_negative)'), False), 1358 1359 (('flt', 'a(is_not_negative)', 'b(is_not_positive)'), False), 1360 (('flt', 'a(is_a_number_not_positive)', 'b(is_a_number_gt_zero)'), True), 1361 (('flt', 'a(is_a_number_lt_zero)', 'b(is_a_number_not_negative)'), True), 1362 1363 (('ine', 'a(is_not_zero)', 0), True), 1364 (('ieq', 'a(is_not_zero)', 0), False), 1365 1366 (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True), 1367 (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'), False), 1368 (('ige', 'a(is_lt_zero)', 'b(is_not_negative)'), False), 1369 1370 (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False), 1371 (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'), True), 1372 (('ilt', 'a(is_lt_zero)', 'b(is_not_negative)'), True), 1373 1374 (('ult', 0, 'a(is_gt_zero)'), True), 1375 (('ult', a, 0), False), 1376 1377 # Packing and then unpacking does nothing 1378 (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a), 1379 (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b), 1380 (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)), 1381 (('unpack_64_2x32', ('pack_64_2x32', a)), a), 1382 (('unpack_double_2x32_dxil', ('pack_double_2x32_dxil', a)), a), 1383 (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a), 1384 ('unpack_64_2x32_split_y', a)), a), 1385 (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a), 1386 ('unpack_64_2x32_split_y', a))), a), 1387 (('pack_64_2x32', ('unpack_64_2x32', a)), a), 1388 (('pack_double_2x32_dxil', ('unpack_double_2x32_dxil', a)), a), 1389 1390 # Comparing two halves of an unpack separately. While this optimization 1391 # should be correct for non-constant values, it's less obvious that it's 1392 # useful in that case. For constant values, the pack will fold and we're 1393 # guaranteed to reduce the whole tree to one instruction. 1394 (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'), 1395 ('ieq', ('unpack_32_2x16_split_y', a), '#c')), 1396 ('ieq', a, ('pack_32_2x16_split', b, c))), 1397 1398 # Byte extraction 1399 (('ushr', 'a@16', 8), ('extract_u8', a, 1), '!options->lower_extract_byte'), 1400 (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'), 1401 (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'), 1402 (('ishr', 'a@16', 8), ('extract_i8', a, 1), '!options->lower_extract_byte'), 1403 (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'), 1404 (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'), 1405 (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'), 1406 1407 # Common pattern in many Vulkan CTS tests that read 8-bit integers from a 1408 # storage buffer. 1409 (('u2u8', ('extract_u16', a, 1)), ('u2u8', ('extract_u8', a, 2)), '!options->lower_extract_byte'), 1410 (('u2u8', ('ushr', a, 8)), ('u2u8', ('extract_u8', a, 1)), '!options->lower_extract_byte'), 1411 1412 # Common pattern after lowering 8-bit integers to 16-bit. 1413 (('i2i16', ('u2u8', ('extract_u8', a, b))), ('i2i16', ('extract_i8', a, b))), 1414 (('u2u16', ('u2u8', ('extract_u8', a, b))), ('u2u16', ('extract_u8', a, b))), 1415 1416 (('ubfe', a, 0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'), 1417 (('ubfe', a, 8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'), 1418 (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'), 1419 (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'), 1420 (('ibfe', a, 0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'), 1421 (('ibfe', a, 8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'), 1422 (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'), 1423 (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'), 1424 1425 (('extract_u8', ('extract_i8', a, b), 0), ('extract_u8', a, b)), 1426 (('extract_u8', ('extract_u8', a, b), 0), ('extract_u8', a, b)), 1427 1428 # Word extraction 1429 (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'), 1430 (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'), 1431 (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'), 1432 (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'), 1433 (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'), 1434 1435 (('ubfe', a, 0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'), 1436 (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'), 1437 (('ibfe', a, 0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'), 1438 (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'), 1439 1440 # Packing a u8vec4 to write to an SSBO. 1441 (('ior', ('ishl', ('u2u32', 'a@8'), 24), ('ior', ('ishl', ('u2u32', 'b@8'), 16), ('ior', ('ishl', ('u2u32', 'c@8'), 8), ('u2u32', 'd@8')))), 1442 ('pack_32_4x8', ('vec4', d, c, b, a)), 'options->has_pack_32_4x8'), 1443 1444 (('extract_u16', ('extract_i16', a, b), 0), ('extract_u16', a, b)), 1445 (('extract_u16', ('extract_u16', a, b), 0), ('extract_u16', a, b)), 1446 1447 # Lower pack/unpack 1448 (('pack_64_2x32_split', a, b), ('ior', ('u2u64', a), ('ishl', ('u2u64', b), 32)), 'options->lower_pack_64_2x32_split'), 1449 (('pack_32_2x16_split', a, b), ('ior', ('u2u32', a), ('ishl', ('u2u32', b), 16)), 'options->lower_pack_32_2x16_split'), 1450 (('unpack_64_2x32_split_x', a), ('u2u32', a), 'options->lower_unpack_64_2x32_split'), 1451 (('unpack_64_2x32_split_y', a), ('u2u32', ('ushr', a, 32)), 'options->lower_unpack_64_2x32_split'), 1452 (('unpack_32_2x16_split_x', a), ('u2u16', a), 'options->lower_unpack_32_2x16_split'), 1453 (('unpack_32_2x16_split_y', a), ('u2u16', ('ushr', a, 16)), 'options->lower_unpack_32_2x16_split'), 1454 1455 # Useless masking before unpacking 1456 (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)), 1457 (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)), 1458 (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)), 1459 (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)), 1460 (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)), 1461 (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)), 1462 1463 (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)), 1464 (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)), 1465 (('unpack_half_2x16_split_x', ('ushr', a, 16)), ('unpack_half_2x16_split_y', a)), 1466 (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)), 1467 (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)), 1468 1469 # Optimize half packing 1470 (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))), 1471 (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))), 1472 1473 (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))), 1474 ('pack_half_2x16', ('vec2', a, b))), 1475 (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))), 1476 ('pack_half_2x16', ('vec2', a, b))), 1477 1478 (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)), 1479 (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)), 1480 (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)), 1481 1482 (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)), 1483 (('ior', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)), 1484 1485 (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 0), ('i2i', a)), 1486 (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 1), ('i2i', b)), 1487 (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 2), ('i2i', c)), 1488 (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 3), ('i2i', d)), 1489 (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 0), ('u2u', a)), 1490 (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 1), ('u2u', b)), 1491 (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 2), ('u2u', c)), 1492 (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 3), ('u2u', d)), 1493]) 1494 1495# After the ('extract_u8', a, 0) pattern, above, triggers, there will be 1496# patterns like those below. 1497for op in ('ushr', 'ishr'): 1498 optimizations.extend([(('extract_u8', (op, 'a@16', 8), 0), ('extract_u8', a, 1))]) 1499 optimizations.extend([(('extract_u8', (op, 'a@32', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)]) 1500 optimizations.extend([(('extract_u8', (op, 'a@64', 8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)]) 1501 1502optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))]) 1503 1504# After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be 1505# patterns like those below. 1506for op in ('extract_u8', 'extract_i8'): 1507 optimizations.extend([((op, ('ishl', 'a@16', 8), 1), (op, a, 0))]) 1508 optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)]) 1509 optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)]) 1510 1511optimizations.extend([ 1512 # Subtracts 1513 (('ussub_4x8_vc4', a, 0), a), 1514 (('ussub_4x8_vc4', a, ~0), 0), 1515 # Lower all Subtractions first - they can get recombined later 1516 (('fsub', a, b), ('fadd', a, ('fneg', b))), 1517 (('isub', a, b), ('iadd', a, ('ineg', b))), 1518 (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))), 1519 # This is correct. We don't need isub_sat because the result type is unsigned, so it cannot overflow. 1520 (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))), 1521 1522 # Propagate negation up multiplication chains 1523 (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))), 1524 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)), 1525 (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))), 1526 1527 # Propagate constants up multiplication chains 1528 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)), 1529 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)), 1530 (('~ffma', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c', d), ('ffma', ('fmul', a, c), b, d)), 1531 # Prefer moving out a multiplication for more MAD/FMA-friendly code 1532 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_fmul)'), '#c'), ('fadd', ('fadd', a, c), b)), 1533 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)), 1534 (('~fadd(is_used_once)', ('ffma(is_used_once)', 'a(is_not_const)', b, 'c(is_not_const)'), '#d'), ('fadd', ('ffma', a, b, d), c)), 1535 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)), 1536 1537 # Reassociate constants in add/mul chains so they can be folded together. 1538 # For now, we mostly only handle cases where the constants are separated by 1539 # a single non-constant. We could do better eventually. 1540 (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)), 1541 (('~ffma', '#a', ('fmul', 'b(is_not_const)', '#c'), d), ('ffma', ('fmul', a, c), b, d)), 1542 (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)), 1543 (('~fadd', '#a', ('fadd', 'b(is_not_const)', '#c')), ('fadd', ('fadd', a, c), b)), 1544 (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))), 1545 (('~fadd', '#a', ('ffma', 'b(is_not_const)', 'c(is_not_const)', '#d')), ('ffma', b, c, ('fadd', a, d))), 1546 (('~fadd', '#a', ('fneg', ('ffma', 'b(is_not_const)', 'c(is_not_const)', '#d'))), ('ffma', ('fneg', b), c, ('fadd', a, ('fneg', d)))), 1547 (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)), 1548 (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)), 1549 (('ior', '#a', ('ior', 'b(is_not_const)', '#c')), ('ior', ('ior', a, c), b)), 1550 (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)), 1551 1552 # Reassociate add chains for more MAD/FMA-friendly code 1553 (('~fadd', ('fadd(is_used_once)', 'a(is_fmul)', 'b(is_fmul)'), 'c(is_not_fmul)'), ('fadd', ('fadd', a, c), b)), 1554 1555 # Drop mul-div by the same value when there's no wrapping. 1556 (('idiv', ('imul(no_signed_wrap)', a, b), b), a), 1557 1558 # By definition... 1559 (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)), 1560 (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)), 1561 (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)), 1562 1563 (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)), 1564 (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)), 1565 (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)), 1566 1567 (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)), 1568 1569 (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)), 1570 (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))), 1571 (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)), 1572 1573 (('bcsel', a, ('bcsel', b, c, d), d), ('bcsel', ('iand', a, b), c, d)), 1574 (('bcsel', a, b, ('bcsel', c, b, d)), ('bcsel', ('ior', a, c), b, d)), 1575 1576 # Misc. lowering 1577 (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'), 1578 (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'), 1579 (('uadd_carry', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'), 1580 (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'), 1581 1582 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'), 1583 ('bcsel', ('ult', 31, 'bits'), 'insert', 1584 ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')), 1585 'options->lower_bitfield_insert'), 1586 (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'), 1587 (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'), 1588 (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'), 1589 (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'), 1590 (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1591 (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1592 (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1593 (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1594 1595 (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_uadd_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1596 (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_uadd_sat'), 1597 (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_uadd_sat'), 1598 (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'), 1599 1600 # int64_t sum = a + b; 1601 # 1602 # if (a < 0 && b < 0 && a < sum) 1603 # sum = INT64_MIN; 1604 # } else if (a >= 0 && b >= 0 && sum < a) 1605 # sum = INT64_MAX; 1606 # } 1607 # 1608 # A couple optimizations are applied. 1609 # 1610 # 1. a < sum => sum >= 0. This replacement works because it is known that 1611 # a < 0 and b < 0, so sum should also be < 0 unless there was 1612 # underflow. 1613 # 1614 # 2. sum < a => sum < 0. This replacement works because it is known that 1615 # a >= 0 and b >= 0, so sum should also be >= 0 unless there was 1616 # overflow. 1617 # 1618 # 3. Invert the second if-condition and swap the order of parameters for 1619 # the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >= 1620 # 0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0) 1621 # 1622 # On Intel Gen11, this saves ~11 instructions. 1623 (('iadd_sat@64', a, b), ('bcsel', 1624 ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)), 1625 0x8000000000000000, 1626 ('bcsel', 1627 ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)), 1628 ('iadd', a, b), 1629 0x7fffffffffffffff)), 1630 '(options->lower_int64_options & nir_lower_iadd64) != 0'), 1631 1632 # int64_t sum = a - b; 1633 # 1634 # if (a < 0 && b >= 0 && a < sum) 1635 # sum = INT64_MIN; 1636 # } else if (a >= 0 && b < 0 && a >= sum) 1637 # sum = INT64_MAX; 1638 # } 1639 # 1640 # Optimizations similar to the iadd_sat case are applied here. 1641 (('isub_sat@64', a, b), ('bcsel', 1642 ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)), 1643 0x8000000000000000, 1644 ('bcsel', 1645 ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)), 1646 ('isub', a, b), 1647 0x7fffffffffffffff)), 1648 '(options->lower_int64_options & nir_lower_iadd64) != 0'), 1649 1650 # These are done here instead of in the backend because the int64 lowering 1651 # pass will make a mess of the patterns. The first patterns are 1652 # conditioned on nir_lower_minmax64 because it was not clear that it was 1653 # always an improvement on platforms that have real int64 support. No 1654 # shaders in shader-db hit this, so it was hard to say one way or the 1655 # other. 1656 (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'), 1657 (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'), 1658 (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'), 1659 (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'), 1660 (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'), 1661 (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'), 1662 1663 (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'), 1664 (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'), 1665 # 0u < uint(a) <=> uint(a) != 0u 1666 (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'), 1667 1668 # Alternative lowering that doesn't rely on bfi. 1669 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'), 1670 ('bcsel', ('ult', 31, 'bits'), 1671 'insert', 1672 (('ior', 1673 ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))), 1674 ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))), 1675 'options->lower_bitfield_insert_to_shifts'), 1676 1677 # Alternative lowering that uses bitfield_select. 1678 (('bitfield_insert', 'base', 'insert', 'offset', 'bits'), 1679 ('bcsel', ('ult', 31, 'bits'), 'insert', 1680 ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')), 1681 'options->lower_bitfield_insert_to_bitfield_select'), 1682 1683 (('ibitfield_extract', 'value', 'offset', 'bits'), 1684 ('bcsel', ('ult', 31, 'bits'), 'value', 1685 ('ibfe', 'value', 'offset', 'bits')), 1686 'options->lower_bitfield_extract'), 1687 1688 (('ubitfield_extract', 'value', 'offset', 'bits'), 1689 ('bcsel', ('ult', 31, 'bits'), 'value', 1690 ('ubfe', 'value', 'offset', 'bits')), 1691 'options->lower_bitfield_extract'), 1692 1693 # (src0 & src1) | (~src0 & src2). Constant fold if src2 is 0. 1694 (('bitfield_select', a, b, 0), ('iand', a, b)), 1695 (('bitfield_select', a, ('iand', a, b), c), ('bitfield_select', a, b, c)), 1696 1697 # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits' 1698 (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')), 1699 (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')), 1700 (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')), 1701 (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')), 1702 (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')), 1703 (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')), 1704 1705 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says: 1706 # 1707 # If bits is zero, the result will be zero. 1708 # 1709 # These patterns prevent other patterns from generating invalid results 1710 # when count is zero. 1711 (('ubfe', a, b, 0), 0), 1712 (('ibfe', a, b, 0), 0), 1713 1714 (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))), 1715 1716 (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)), 1717 (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct 1718 (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)), 1719 (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)), 1720 (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)), 1721 (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)), 1722 1723 (('ibitfield_extract', 'value', 'offset', 'bits'), 1724 ('bcsel', ('ieq', 0, 'bits'), 1725 0, 1726 ('ishr', 1727 ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')), 1728 ('isub', 32, 'bits'))), 1729 'options->lower_bitfield_extract_to_shifts'), 1730 1731 (('ubitfield_extract', 'value', 'offset', 'bits'), 1732 ('iand', 1733 ('ushr', 'value', 'offset'), 1734 ('bcsel', ('ieq', 'bits', 32), 1735 0xffffffff, 1736 ('isub', ('ishl', 1, 'bits'), 1))), 1737 'options->lower_bitfield_extract_to_shifts'), 1738 1739 (('ifind_msb', 'value'), 1740 ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')), 1741 'options->lower_ifind_msb'), 1742 1743 (('ifind_msb', 'value'), 1744 ('bcsel', ('ige', ('ifind_msb_rev', 'value'), 0), 1745 ('isub', 31, ('ifind_msb_rev', 'value')), 1746 ('ifind_msb_rev', 'value')), 1747 'options->lower_find_msb_to_reverse'), 1748 1749 (('ufind_msb', 'value'), 1750 ('bcsel', ('ige', ('ufind_msb_rev', 'value'), 0), 1751 ('isub', 31, ('ufind_msb_rev', 'value')), 1752 ('ufind_msb_rev', 'value')), 1753 'options->lower_find_msb_to_reverse'), 1754 1755 (('find_lsb', 'value'), 1756 ('ufind_msb', ('iand', 'value', ('ineg', 'value'))), 1757 'options->lower_find_lsb'), 1758 1759 (('extract_i8', a, 'b@32'), 1760 ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24), 1761 'options->lower_extract_byte'), 1762 1763 (('extract_u8', a, 'b@32'), 1764 ('iand', ('ushr', a, ('imul', b, 8)), 0xff), 1765 'options->lower_extract_byte'), 1766 1767 (('extract_i16', a, 'b@32'), 1768 ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16), 1769 'options->lower_extract_word'), 1770 1771 (('extract_u16', a, 'b@32'), 1772 ('iand', ('ushr', a, ('imul', b, 16)), 0xffff), 1773 'options->lower_extract_word'), 1774 1775 (('pack_unorm_2x16', 'v'), 1776 ('pack_uvec2_to_uint', 1777 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))), 1778 'options->lower_pack_unorm_2x16'), 1779 1780 (('pack_unorm_4x8', 'v'), 1781 ('pack_uvec4_to_uint', 1782 ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))), 1783 'options->lower_pack_unorm_4x8'), 1784 1785 (('pack_snorm_2x16', 'v'), 1786 ('pack_uvec2_to_uint', 1787 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))), 1788 'options->lower_pack_snorm_2x16'), 1789 1790 (('pack_snorm_4x8', 'v'), 1791 ('pack_uvec4_to_uint', 1792 ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))), 1793 'options->lower_pack_snorm_4x8'), 1794 1795 (('unpack_unorm_2x16', 'v'), 1796 ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0), 1797 ('extract_u16', 'v', 1))), 1798 65535.0), 1799 'options->lower_unpack_unorm_2x16'), 1800 1801 (('unpack_unorm_4x8', 'v'), 1802 ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0), 1803 ('extract_u8', 'v', 1), 1804 ('extract_u8', 'v', 2), 1805 ('extract_u8', 'v', 3))), 1806 255.0), 1807 'options->lower_unpack_unorm_4x8'), 1808 1809 (('unpack_snorm_2x16', 'v'), 1810 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0), 1811 ('extract_i16', 'v', 1))), 1812 32767.0))), 1813 'options->lower_unpack_snorm_2x16'), 1814 1815 (('unpack_snorm_4x8', 'v'), 1816 ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0), 1817 ('extract_i8', 'v', 1), 1818 ('extract_i8', 'v', 2), 1819 ('extract_i8', 'v', 3))), 1820 127.0))), 1821 'options->lower_unpack_snorm_4x8'), 1822 1823 (('pack_half_2x16_split', 'a@32', 'b@32'), 1824 ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))), 1825 'options->lower_pack_split'), 1826 1827 (('unpack_half_2x16_split_x', 'a@32'), 1828 ('f2f32', ('u2u16', a)), 1829 'options->lower_pack_split'), 1830 1831 (('unpack_half_2x16_split_y', 'a@32'), 1832 ('f2f32', ('u2u16', ('ushr', a, 16))), 1833 'options->lower_pack_split'), 1834 1835 (('pack_32_2x16_split', 'a@16', 'b@16'), 1836 ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)), 1837 'options->lower_pack_split'), 1838 1839 (('unpack_32_2x16_split_x', 'a@32'), 1840 ('u2u16', a), 1841 'options->lower_pack_split'), 1842 1843 (('unpack_32_2x16_split_y', 'a@32'), 1844 ('u2u16', ('ushr', 'a', 16)), 1845 'options->lower_pack_split'), 1846 1847 (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'), 1848 (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'), 1849 (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'), 1850 # float(0 < NaN) - float(NaN < 0) = float(False) - float(False) = 0 - 0 = 0 1851 # Mark the new comparisons precise to prevent them being changed to 'a != 1852 # 0' or 'a == 0'. 1853 (('fsign', a), ('fsub', ('b2f', ('!flt', 0.0, a)), ('b2f', ('!flt', a, 0.0))), 'options->lower_fsign'), 1854 1855 # Address/offset calculations: 1856 # Drivers supporting imul24 should use the nir_lower_amul() pass, this 1857 # rule converts everyone else to imul: 1858 (('amul', a, b), ('imul', a, b), '!options->has_imul24'), 1859 1860 (('umul24', a, b), 1861 ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), 1862 '!options->has_umul24'), 1863 (('umad24', a, b, c), 1864 ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c), 1865 '!options->has_umad24'), 1866 1867 # Relaxed 24bit ops 1868 (('imul24_relaxed', a, b), ('imul24', a, b), 'options->has_imul24'), 1869 (('imul24_relaxed', a, b), ('imul', a, b), '!options->has_imul24'), 1870 (('umad24_relaxed', a, b, c), ('umad24', a, b, c), 'options->has_umad24'), 1871 (('umad24_relaxed', a, b, c), ('iadd', ('umul24_relaxed', a, b), c), '!options->has_umad24'), 1872 (('umul24_relaxed', a, b), ('umul24', a, b), 'options->has_umul24'), 1873 (('umul24_relaxed', a, b), ('imul', a, b), '!options->has_umul24'), 1874 1875 (('imad24_ir3', a, b, 0), ('imul24', a, b)), 1876 (('imad24_ir3', a, 0, c), (c)), 1877 (('imad24_ir3', a, 1, c), ('iadd', a, c)), 1878 1879 # if first two srcs are const, crack apart the imad so constant folding 1880 # can clean up the imul: 1881 # TODO ffma should probably get a similar rule: 1882 (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)), 1883 1884 # These will turn 24b address/offset calc back into 32b shifts, but 1885 # it should be safe to get back some of the bits of precision that we 1886 # already decided were no necessary: 1887 (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'), 1888 (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'), 1889 (('imul24', a, 0), (0)), 1890 1891 (('fcsel', ('slt', 0, a), b, c), ('fcsel_gt', a, b, c), "options->has_fused_comp_and_csel"), 1892 (('fcsel', ('slt', a, 0), b, c), ('fcsel_ge', a, c, b), "options->has_fused_comp_and_csel"), 1893 (('fcsel', ('sge', a, 0), b, c), ('fcsel_ge', a, b, c), "options->has_fused_comp_and_csel"), 1894 (('fcsel', ('sge', 0, a), b, c), ('fcsel_gt', a, c, b), "options->has_fused_comp_and_csel"), 1895 1896 (('bcsel', ('ilt', 0, 'a@32'), 'b@32', 'c@32'), ('i32csel_gt', a, b, c), "options->has_fused_comp_and_csel"), 1897 (('bcsel', ('ilt', 'a@32', 0), 'b@32', 'c@32'), ('i32csel_ge', a, c, b), "options->has_fused_comp_and_csel"), 1898 (('bcsel', ('ige', 'a@32', 0), 'b@32', 'c@32'), ('i32csel_ge', a, b, c), "options->has_fused_comp_and_csel"), 1899 (('bcsel', ('ige', 0, 'a@32'), 'b@32', 'c@32'), ('i32csel_gt', a, c, b), "options->has_fused_comp_and_csel"), 1900 1901 (('bcsel', ('flt', 0, 'a@32'), 'b@32', 'c@32'), ('fcsel_gt', a, b, c), "options->has_fused_comp_and_csel"), 1902 (('bcsel', ('flt', 'a@32', 0), 'b@32', 'c@32'), ('fcsel_ge', a, c, b), "options->has_fused_comp_and_csel"), 1903 (('bcsel', ('fge', 'a@32', 0), 'b@32', 'c@32'), ('fcsel_ge', a, b, c), "options->has_fused_comp_and_csel"), 1904 (('bcsel', ('fge', 0, 'a@32'), 'b@32', 'c@32'), ('fcsel_gt', a, c, b), "options->has_fused_comp_and_csel"), 1905 1906]) 1907 1908# bit_size dependent lowerings 1909for bit_size in [8, 16, 32, 64]: 1910 # convenience constants 1911 intmax = (1 << (bit_size - 1)) - 1 1912 intmin = 1 << (bit_size - 1) 1913 1914 optimizations += [ 1915 (('iadd_sat@' + str(bit_size), a, b), 1916 ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)), 1917 ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_iadd_sat'), 1918 (('isub_sat@' + str(bit_size), a, b), 1919 ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)), 1920 ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_iadd_sat'), 1921 ] 1922 1923invert = OrderedDict([('feq', 'fneu'), ('fneu', 'feq')]) 1924 1925for left, right in itertools.combinations_with_replacement(invert.keys(), 2): 1926 optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))), 1927 ('iand', (invert[left], a, b), (invert[right], c, d)))) 1928 optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))), 1929 ('ior', (invert[left], a, b), (invert[right], c, d)))) 1930 1931# Optimize x2bN(b2x(x)) -> x 1932for size in type_sizes('bool'): 1933 aN = 'a@' + str(size) 1934 f2bN = 'f2b' + str(size) 1935 i2bN = 'i2b' + str(size) 1936 optimizations.append(((f2bN, ('b2f', aN)), a)) 1937 optimizations.append(((i2bN, ('b2i', aN)), a)) 1938 1939# Optimize x2yN(b2x(x)) -> b2y 1940for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']): 1941 if x != 'f' and y != 'f' and x != y: 1942 continue 1943 1944 b2x = 'b2f' if x == 'f' else 'b2i' 1945 b2y = 'b2f' if y == 'f' else 'b2i' 1946 x2yN = '{}2{}'.format(x, y) 1947 optimizations.append(((x2yN, (b2x, a)), (b2y, a))) 1948 1949# Optimize away x2xN(a@N) 1950for t in ['int', 'uint', 'float', 'bool']: 1951 for N in type_sizes(t): 1952 x2xN = '{0}2{0}{1}'.format(t[0], N) 1953 aN = 'a@{0}'.format(N) 1954 optimizations.append(((x2xN, aN), a)) 1955 1956# Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers 1957# In particular, we can optimize away everything except upcast of downcast and 1958# upcasts where the type differs from the other cast 1959for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')): 1960 if N < M: 1961 # The outer cast is a down-cast. It doesn't matter what the size of the 1962 # argument of the inner cast is because we'll never been in the upcast 1963 # of downcast case. Regardless of types, we'll always end up with y2yN 1964 # in the end. 1965 for x, y in itertools.product(['i', 'u'], ['i', 'u']): 1966 x2xN = '{0}2{0}{1}'.format(x, N) 1967 y2yM = '{0}2{0}{1}'.format(y, M) 1968 y2yN = '{0}2{0}{1}'.format(y, N) 1969 optimizations.append(((x2xN, (y2yM, a)), (y2yN, a))) 1970 elif N > M: 1971 # If the outer cast is an up-cast, we have to be more careful about the 1972 # size of the argument of the inner cast and with types. In this case, 1973 # the type is always the type of type up-cast which is given by the 1974 # outer cast. 1975 for P in type_sizes('uint'): 1976 # We can't optimize away up-cast of down-cast. 1977 if M < P: 1978 continue 1979 1980 # Because we're doing down-cast of down-cast, the types always have 1981 # to match between the two casts 1982 for x in ['i', 'u']: 1983 x2xN = '{0}2{0}{1}'.format(x, N) 1984 x2xM = '{0}2{0}{1}'.format(x, M) 1985 aP = 'a@{0}'.format(P) 1986 optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a))) 1987 else: 1988 # The N == M case is handled by other optimizations 1989 pass 1990 1991# Downcast operations should be able to see through pack 1992for t in ['i', 'u']: 1993 for N in [8, 16, 32]: 1994 x2xN = '{0}2{0}{1}'.format(t, N) 1995 optimizations += [ 1996 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)), 1997 ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)), 1998 ] 1999 2000# Optimize comparisons with up-casts 2001for t in ['int', 'uint', 'float']: 2002 for N, M in itertools.product(type_sizes(t), repeat=2): 2003 if N == 1 or N >= M: 2004 continue 2005 2006 cond = 'true' 2007 if N == 8: 2008 cond = 'options->support_8bit_alu' 2009 elif N == 16: 2010 cond = 'options->support_16bit_alu' 2011 x2xM = '{0}2{0}{1}'.format(t[0], M) 2012 x2xN = '{0}2{0}{1}'.format(t[0], N) 2013 aN = 'a@' + str(N) 2014 bN = 'b@' + str(N) 2015 xeq = 'feq' if t == 'float' else 'ieq' 2016 xne = 'fneu' if t == 'float' else 'ine' 2017 xge = '{0}ge'.format(t[0]) 2018 xlt = '{0}lt'.format(t[0]) 2019 2020 # Up-casts are lossless so for correctly signed comparisons of 2021 # up-casted values we can do the comparison at the largest of the two 2022 # original sizes and drop one or both of the casts. (We have 2023 # optimizations to drop the no-op casts which this may generate.) 2024 for P in type_sizes(t): 2025 if P == 1 or P > N: 2026 continue 2027 2028 bP = 'b@' + str(P) 2029 optimizations += [ 2030 ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond), 2031 ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond), 2032 ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond), 2033 ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond), 2034 ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond), 2035 ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond), 2036 ] 2037 2038 # The next bit doesn't work on floats because the range checks would 2039 # get way too complicated. 2040 if t in ['int', 'uint']: 2041 if t == 'int': 2042 xN_min = -(1 << (N - 1)) 2043 xN_max = (1 << (N - 1)) - 1 2044 elif t == 'uint': 2045 xN_min = 0 2046 xN_max = (1 << N) - 1 2047 else: 2048 assert False 2049 2050 # If we're up-casting and comparing to a constant, we can unfold 2051 # the comparison into a comparison with the shrunk down constant 2052 # and a check that the constant fits in the smaller bit size. 2053 optimizations += [ 2054 ((xeq, (x2xM, aN), '#b'), 2055 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond), 2056 ((xne, (x2xM, aN), '#b'), 2057 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond), 2058 ((xlt, (x2xM, aN), '#b'), 2059 ('iand', (xlt, xN_min, b), 2060 ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond), 2061 ((xlt, '#a', (x2xM, bN)), 2062 ('iand', (xlt, a, xN_max), 2063 ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond), 2064 ((xge, (x2xM, aN), '#b'), 2065 ('iand', (xge, xN_max, b), 2066 ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond), 2067 ((xge, '#a', (x2xM, bN)), 2068 ('iand', (xge, a, xN_min), 2069 ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond), 2070 ] 2071 2072# Convert masking followed by signed downcast to just unsigned downcast 2073optimizations += [ 2074 (('i2i32', ('iand', 'a@64', 0xffffffff)), ('u2u32', a)), 2075 (('i2i16', ('iand', 'a@32', 0xffff)), ('u2u16', a)), 2076 (('i2i16', ('iand', 'a@64', 0xffff)), ('u2u16', a)), 2077 (('i2i8', ('iand', 'a@16', 0xff)), ('u2u8', a)), 2078 (('i2i8', ('iand', 'a@32', 0xff)), ('u2u8', a)), 2079 (('i2i8', ('iand', 'a@64', 0xff)), ('u2u8', a)), 2080] 2081 2082# Some operations such as iadd have the property that the bottom N bits of the 2083# output only depends on the bottom N bits of each of the inputs so we can 2084# remove casts 2085for N in [16, 32]: 2086 for M in [8, 16]: 2087 if M >= N: 2088 continue 2089 2090 aN = 'a@' + str(N) 2091 u2uM = 'u2u{0}'.format(M) 2092 i2iM = 'i2i{0}'.format(M) 2093 2094 for x in ['u', 'i']: 2095 x2xN = '{0}2{0}{1}'.format(x, N) 2096 extract_xM = 'extract_{0}{1}'.format(x, M) 2097 2098 x2xN_M_bits = '{0}(only_lower_{1}_bits_used)'.format(x2xN, M) 2099 extract_xM_M_bits = \ 2100 '{0}(only_lower_{1}_bits_used)'.format(extract_xM, M) 2101 optimizations += [ 2102 ((x2xN_M_bits, (u2uM, aN)), a), 2103 ((extract_xM_M_bits, aN, 0), a), 2104 ] 2105 2106 bcsel_M_bits = 'bcsel(only_lower_{0}_bits_used)'.format(M) 2107 optimizations += [ 2108 ((bcsel_M_bits, c, (x2xN, (u2uM, aN)), b), ('bcsel', c, a, b)), 2109 ((bcsel_M_bits, c, (x2xN, (i2iM, aN)), b), ('bcsel', c, a, b)), 2110 ((bcsel_M_bits, c, (extract_xM, aN, 0), b), ('bcsel', c, a, b)), 2111 ] 2112 2113 for op in ['iadd', 'imul', 'iand', 'ior', 'ixor']: 2114 op_M_bits = '{0}(only_lower_{1}_bits_used)'.format(op, M) 2115 optimizations += [ 2116 ((op_M_bits, (x2xN, (u2uM, aN)), b), (op, a, b)), 2117 ((op_M_bits, (x2xN, (i2iM, aN)), b), (op, a, b)), 2118 ((op_M_bits, (extract_xM, aN, 0), b), (op, a, b)), 2119 ] 2120 2121def fexp2i(exp, bits): 2122 # Generate an expression which constructs value 2.0^exp or 0.0. 2123 # 2124 # We assume that exp is already in a valid range: 2125 # 2126 # * [-15, 15] for 16-bit float 2127 # * [-127, 127] for 32-bit float 2128 # * [-1023, 1023] for 16-bit float 2129 # 2130 # If exp is the lowest value in the valid range, a value of 0.0 is 2131 # constructed. Otherwise, the value 2.0^exp is constructed. 2132 if bits == 16: 2133 return ('i2i16', ('ishl', ('iadd', exp, 15), 10)) 2134 elif bits == 32: 2135 return ('ishl', ('iadd', exp, 127), 23) 2136 elif bits == 64: 2137 return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20)) 2138 else: 2139 assert False 2140 2141def ldexp(f, exp, bits): 2142 # The maximum possible range for a normal exponent is [-126, 127] and, 2143 # throwing in denormals, you get a maximum range of [-149, 127]. This 2144 # means that we can potentially have a swing of +-276. If you start with 2145 # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush 2146 # all the way to zero. The GLSL spec only requires that we handle a subset 2147 # of this range. From version 4.60 of the spec: 2148 # 2149 # "If exp is greater than +128 (single-precision) or +1024 2150 # (double-precision), the value returned is undefined. If exp is less 2151 # than -126 (single-precision) or -1022 (double-precision), the value 2152 # returned may be flushed to zero. Additionally, splitting the value 2153 # into a significand and exponent using frexp() and then reconstructing 2154 # a floating-point value using ldexp() should yield the original input 2155 # for zero and all finite non-denormalized values." 2156 # 2157 # The SPIR-V spec has similar language. 2158 # 2159 # In order to handle the maximum value +128 using the fexp2i() helper 2160 # above, we have to split the exponent in half and do two multiply 2161 # operations. 2162 # 2163 # First, we clamp exp to a reasonable range. Specifically, we clamp to 2164 # twice the full range that is valid for the fexp2i() function above. If 2165 # exp/2 is the bottom value of that range, the fexp2i() expression will 2166 # yield 0.0f which, when multiplied by f, will flush it to zero which is 2167 # allowed by the GLSL and SPIR-V specs for low exponent values. If the 2168 # value is clamped from above, then it must have been above the supported 2169 # range of the GLSL built-in and therefore any return value is acceptable. 2170 if bits == 16: 2171 exp = ('imin', ('imax', exp, -30), 30) 2172 elif bits == 32: 2173 exp = ('imin', ('imax', exp, -254), 254) 2174 elif bits == 64: 2175 exp = ('imin', ('imax', exp, -2046), 2046) 2176 else: 2177 assert False 2178 2179 # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2. 2180 # (We use ishr which isn't the same for -1, but the -1 case still works 2181 # since we use exp-exp/2 as the second exponent.) While the spec 2182 # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't 2183 # work with denormals and doesn't allow for the full swing in exponents 2184 # that you can get with normalized values. Instead, we create two powers 2185 # of two and multiply by them each in turn. That way the effective range 2186 # of our exponent is doubled. 2187 pow2_1 = fexp2i(('ishr', exp, 1), bits) 2188 pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits) 2189 return ('fmul', ('fmul', f, pow2_1), pow2_2) 2190 2191optimizations += [ 2192 (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'), 2193 (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'), 2194 (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'), 2195] 2196 2197# Unreal Engine 4 demo applications open-codes bitfieldReverse() 2198def bitfield_reverse(u): 2199 step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16)) 2200 step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8)) 2201 step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4)) 2202 step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2)) 2203 step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1)) 2204 2205 return step5 2206 2207optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')] 2208 2209# "all_equal(eq(a, b), vec(~0))" is the same as "all_equal(a, b)" 2210# "any_nequal(neq(a, b), vec(0))" is the same as "any_nequal(a, b)" 2211for ncomp in [2, 3, 4, 8, 16]: 2212 optimizations += [ 2213 (('ball_iequal' + str(ncomp), ('ieq', a, b), ~0), ('ball_iequal' + str(ncomp), a, b)), 2214 (('ball_iequal' + str(ncomp), ('feq', a, b), ~0), ('ball_fequal' + str(ncomp), a, b)), 2215 (('bany_inequal' + str(ncomp), ('ine', a, b), 0), ('bany_inequal' + str(ncomp), a, b)), 2216 (('bany_inequal' + str(ncomp), ('fneu', a, b), 0), ('bany_fnequal' + str(ncomp), a, b)), 2217 ] 2218 2219# For any float comparison operation, "cmp", if you have "a == a && a cmp b" 2220# then the "a == a" is redundant because it's equivalent to "a is not NaN" 2221# and, if a is a NaN then the second comparison will fail anyway. 2222for op in ['flt', 'fge', 'feq']: 2223 optimizations += [ 2224 (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)), 2225 (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)), 2226 ] 2227 2228# Add optimizations to handle the case where the result of a ternary is 2229# compared to a constant. This way we can take things like 2230# 2231# (a ? 0 : 1) > 0 2232# 2233# and turn it into 2234# 2235# a ? (0 > 0) : (1 > 0) 2236# 2237# which constant folding will eat for lunch. The resulting ternary will 2238# further get cleaned up by the boolean reductions above and we will be 2239# left with just the original variable "a". 2240for op in ['feq', 'fneu', 'ieq', 'ine']: 2241 optimizations += [ 2242 ((op, ('bcsel', 'a', '#b', '#c'), '#d'), 2243 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))), 2244 ] 2245 2246for op in ['flt', 'fge', 'ilt', 'ige', 'ult', 'uge']: 2247 optimizations += [ 2248 ((op, ('bcsel', 'a', '#b', '#c'), '#d'), 2249 ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))), 2250 ((op, '#d', ('bcsel', a, '#b', '#c')), 2251 ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))), 2252 ] 2253 2254 2255# For example, this converts things like 2256# 2257# 1 + mix(0, a - 1, condition) 2258# 2259# into 2260# 2261# mix(1, (a-1)+1, condition) 2262# 2263# Other optimizations will rearrange the constants. 2264for op in ['fadd', 'fmul', 'iadd', 'imul']: 2265 optimizations += [ 2266 ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d))) 2267 ] 2268 2269# For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives 2270# states: 2271# 2272# If neither layout qualifier is specified, derivatives in compute shaders 2273# return zero, which is consistent with the handling of built-in texture 2274# functions like texture() in GLSL 4.50 compute shaders. 2275for op in ['fddx', 'fddx_fine', 'fddx_coarse', 2276 'fddy', 'fddy_fine', 'fddy_coarse']: 2277 optimizations += [ 2278 ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE') 2279] 2280 2281# Some optimizations for ir3-specific instructions. 2282optimizations += [ 2283 # 'al * bl': If either 'al' or 'bl' is zero, return zero. 2284 (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)), 2285 # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'. 2286 (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')), 2287 (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')), 2288] 2289 2290# These kinds of sequences can occur after nir_opt_peephole_select. 2291# 2292# NOTE: fadd is not handled here because that gets in the way of ffma 2293# generation in the i965 driver. Instead, fadd and ffma are handled in 2294# late_optimizations. 2295 2296for op in ['flrp']: 2297 optimizations += [ 2298 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))), 2299 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))), 2300 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)), 2301 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)), 2302 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)), 2303 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)), 2304 ] 2305 2306for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']: 2307 optimizations += [ 2308 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))), 2309 (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))), 2310 (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))), 2311 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))), 2312 ] 2313 2314for op in ['fpow']: 2315 optimizations += [ 2316 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))), 2317 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))), 2318 (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)), 2319 (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)), 2320 ] 2321 2322for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']: 2323 optimizations += [ 2324 (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))), 2325 ] 2326 2327for op in ['ineg', 'iabs', 'inot', 'isign']: 2328 optimizations += [ 2329 ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))), 2330 ] 2331 2332optimizations.extend([ 2333 (('fisnormal', 'a@32'), ('ult', 0x1ffffff, ('iadd', ('ishl', a, 1), 0x1000000)), 'options->lower_fisnormal') 2334 ]) 2335 2336# This section contains optimizations to propagate downsizing conversions of 2337# constructed vectors into vectors of downsized components. Whether this is 2338# useful depends on the SIMD semantics of the backend. On a true SIMD machine, 2339# this reduces the register pressure of the vector itself and often enables the 2340# conversions to be eliminated via other algebraic rules or constant folding. 2341# In the worst case on a SIMD architecture, the propagated conversions may be 2342# revectorized via nir_opt_vectorize so instruction count is minimally 2343# impacted. 2344# 2345# On a machine with SIMD-within-a-register only, this actually 2346# counterintuitively hurts instruction count. These machines are the same that 2347# require vectorize_vec2_16bit, so we predicate the optimizations on that flag 2348# not being set. 2349# 2350# Finally for scalar architectures, there should be no difference in generated 2351# code since it all ends up scalarized at the end, but it might minimally help 2352# compile-times. 2353 2354for i in range(2, 4 + 1): 2355 for T in ('f', 'u', 'i'): 2356 vec_inst = ('vec' + str(i),) 2357 2358 indices = ['a', 'b', 'c', 'd'] 2359 suffix_in = tuple((indices[j] + '@32') for j in range(i)) 2360 2361 to_16 = '{}2{}16'.format(T, T) 2362 to_mp = '{}2{}mp'.format(T, T) 2363 2364 out_16 = tuple((to_16, indices[j]) for j in range(i)) 2365 out_mp = tuple((to_mp, indices[j]) for j in range(i)) 2366 2367 optimizations += [ 2368 ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'), 2369 ] 2370 # u2ump doesn't exist, because it's equal to i2imp 2371 if T in ['f', 'i']: 2372 optimizations += [ 2373 ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit') 2374 ] 2375 2376# This section contains "late" optimizations that should be run before 2377# creating ffmas and calling regular optimizations for the final time. 2378# Optimizations should go here if they help code generation and conflict 2379# with the regular optimizations. 2380before_ffma_optimizations = [ 2381 # Propagate constants down multiplication chains 2382 (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)), 2383 (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)), 2384 (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)), 2385 (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)), 2386 2387 (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))), 2388 (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))), 2389 (('~fadd', ('fneg', a), a), 0.0), 2390 (('iadd', ('ineg', a), a), 0), 2391 (('iadd', ('ineg', a), ('iadd', a, b)), b), 2392 (('iadd', a, ('iadd', ('ineg', a), b)), b), 2393 (('~fadd', ('fneg', a), ('fadd', a, b)), b), 2394 (('~fadd', a, ('fadd', ('fneg', a), b)), b), 2395 2396 (('~flrp', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a, 1.0), d), ('fadd', ('flrp', -1.0, 1.0, d), a)), 2397 (('~flrp', ('fadd(is_used_once)', a, 1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp', 1.0, -1.0, d), a)), 2398 (('~flrp', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))), 2399] 2400 2401# This section contains "late" optimizations that should be run after the 2402# regular optimizations have finished. Optimizations should go here if 2403# they help code generation but do not necessarily produce code that is 2404# more easily optimizable. 2405late_optimizations = [ 2406 # The rearrangements are fine w.r.t. NaN. However, they produce incorrect 2407 # results if one operand is +Inf and the other is -Inf. 2408 # 2409 # 1. Inf + -Inf = NaN 2410 # 2. ∀x: x + NaN = NaN and x - NaN = NaN 2411 # 3. ∀x: x != NaN = true 2412 # 4. ∀x, ∀ cmp ∈ {<, >, ≤, ≥, =}: x cmp NaN = false 2413 # 2414 # a=Inf, b=-Inf a=-Inf, b=Inf a=NaN b=NaN 2415 # (a+b) < 0 false false false false 2416 # a < -b false false false false 2417 # -(a+b) < 0 false false false false 2418 # -a < b false false false false 2419 # (a+b) >= 0 false false false false 2420 # a >= -b true true false false 2421 # -(a+b) >= 0 false false false false 2422 # -a >= b true true false false 2423 # (a+b) == 0 false false false false 2424 # a == -b true true false false 2425 # (a+b) != 0 true true true true 2426 # a != -b false false true true 2427 (('flt', ('fadd(is_used_once)', a, b), 0.0), ('flt', a, ('fneg', b))), 2428 (('flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b)), 0.0), ('flt', ('fneg', a), b)), 2429 (('flt', 0.0, ('fadd(is_used_once)', a, b) ), ('flt', ('fneg', a), b)), 2430 (('flt', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('flt', a, ('fneg', b))), 2431 (('~fge', ('fadd(is_used_once)', a, b), 0.0), ('fge', a, ('fneg', b))), 2432 (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b)), 0.0), ('fge', ('fneg', a), b)), 2433 (('~fge', 0.0, ('fadd(is_used_once)', a, b) ), ('fge', ('fneg', a), b)), 2434 (('~fge', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fge', a, ('fneg', b))), 2435 (('~feq', ('fadd(is_used_once)', a, b), 0.0), ('feq', a, ('fneg', b))), 2436 (('~fneu', ('fadd(is_used_once)', a, b), 0.0), ('fneu', a, ('fneg', b))), 2437 2438 # If either source must be finite, then the original (a+b) cannot produce 2439 # NaN due to Inf-Inf. The patterns and the replacements produce the same 2440 # result if b is NaN. Therefore, the replacements are exact. 2441 (('fge', ('fadd(is_used_once)', 'a(is_finite)', b), 0.0), ('fge', a, ('fneg', b))), 2442 (('fge', ('fneg(is_used_once)', ('fadd(is_used_once)', 'a(is_finite)', b)), 0.0), ('fge', ('fneg', a), b)), 2443 (('fge', 0.0, ('fadd(is_used_once)', 'a(is_finite)', b) ), ('fge', ('fneg', a), b)), 2444 (('fge', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', 'a(is_finite)', b))), ('fge', a, ('fneg', b))), 2445 (('feq', ('fadd(is_used_once)', 'a(is_finite)', b), 0.0), ('feq', a, ('fneg', b))), 2446 (('fneu', ('fadd(is_used_once)', 'a(is_finite)', b), 0.0), ('fneu', a, ('fneg', b))), 2447 2448 # This is how SpvOpFOrdNotEqual might be implemented. Replace it with 2449 # SpvOpLessOrGreater. 2450 (('iand', ('fneu', a, b), ('iand', ('feq', a, a), ('feq', b, b))), ('ior', ('!flt', a, b), ('!flt', b, a))), 2451 (('iand', ('fneu', a, 0.0), ('feq', a, a) ), ('!flt', 0.0, ('fabs', a))), 2452 2453 # This is how SpvOpFUnordEqual might be implemented. Replace it with 2454 # !SpvOpLessOrGreater. 2455 (('ior', ('feq', a, b), ('ior', ('fneu', a, a), ('fneu', b, b))), ('inot', ('ior', ('!flt', a, b), ('!flt', b, a)))), 2456 (('ior', ('feq', a, 0.0), ('fneu', a, a), ), ('inot', ('!flt', 0.0, ('fabs', a)))), 2457 2458 # nir_lower_to_source_mods will collapse this, but its existence during the 2459 # optimization loop can prevent other optimizations. 2460 (('fneg', ('fneg', a)), a), 2461 2462 # Subtractions get lowered during optimization, so we need to recombine them 2463 (('fadd', a, ('fneg', 'b')), ('fsub', 'a', 'b'), 'options->has_fsub'), 2464 (('fneg', a), ('fmul', a, -1.0), 'options->lower_fneg'), 2465 (('iadd', a, ('ineg', 'b')), ('isub', 'a', 'b'), 'options->has_isub || options->lower_ineg'), 2466 (('ineg', a), ('isub', 0, a), 'options->lower_ineg'), 2467 (('iabs', a), ('imax', a, ('ineg', a)), 'options->lower_iabs'), 2468 (('~fadd@16', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma16'), 2469 (('~fadd@32', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma32'), 2470 (('~fadd@64', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma64'), 2471 2472 (('iadd', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, b, c), 'options->has_iadd3'), 2473 (('iadd', ('isub(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, ('ineg', b), c), 'options->has_iadd3'), 2474 (('isub', ('isub(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, ('ineg', b), ('ineg', c)), 'options->has_iadd3'), 2475 2476 # These are duplicated from the main optimizations table. The late 2477 # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create 2478 # new patterns like these. The patterns that compare with zero are removed 2479 # because they are unlikely to be created in by anything in 2480 # late_optimizations. 2481 (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)), 2482 (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)), 2483 (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)), 2484 (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)), 2485 2486 (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)), 2487 2488 (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))), 2489 2490 (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)), 2491 (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)), 2492 (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)), 2493 (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)), 2494 (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)), 2495 (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)), 2496 (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)), 2497 (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)), 2498 (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)), 2499 (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)), 2500 2501 (('ior', a, a), a), 2502 (('iand', a, a), a), 2503 2504 (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))), 2505 2506 (('fdot2', a, b), ('fdot2_replicated', a, b), 'options->fdot_replicates'), 2507 (('fdot3', a, b), ('fdot3_replicated', a, b), 'options->fdot_replicates'), 2508 (('fdot4', a, b), ('fdot4_replicated', a, b), 'options->fdot_replicates'), 2509 (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'), 2510 2511 (('~flrp', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)), 2512 2513 # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this 2514 # particular operation is common for expanding values stored in a texture 2515 # from [0,1] to [-1,1]. 2516 (('~ffma@32', a, 2.0, -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'), 2517 (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'), 2518 (('~ffma@32', a, -2.0, 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'), 2519 (('~ffma@32', a, 2.0, 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'), 2520 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), -1.0), ('flrp', -1.0, 1.0, a ), '!options->lower_flrp32'), 2521 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0, 1.0, ('fneg', a)), '!options->lower_flrp32'), 2522 (('~fadd@32', ('fmul(is_used_once)', -2.0, a), 1.0), ('flrp', 1.0, -1.0, a ), '!options->lower_flrp32'), 2523 (('~fadd@32', ('fmul(is_used_once)', 2.0, a), 1.0), ('flrp', 1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'), 2524 2525 # flrp(a, b, a) 2526 # a*(1-a) + b*a 2527 # a + -a*a + a*b (1) 2528 # a + a*(b - a) 2529 # Option 1: ffma(a, (b-a), a) 2530 # 2531 # Alternately, after (1): 2532 # a*(1+b) + -a*a 2533 # a*((1+b) + -a) 2534 # 2535 # Let b=1 2536 # 2537 # Option 2: ffma(a, 2, -(a*a)) 2538 # Option 3: ffma(a, 2, (-a)*a) 2539 # Option 4: ffma(a, -a, (2*a) 2540 # Option 5: a * (2 - a) 2541 # 2542 # There are a lot of other possible combinations. 2543 (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'), 2544 (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'), 2545 (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'), 2546 (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'), 2547 (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'), 2548 2549 # we do these late so that we don't get in the way of creating ffmas 2550 (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))), 2551 (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))), 2552 2553 # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c), 2554 # op(b, d)) => op(b, bcsel(a, c, d)) transformations. I do not know why. 2555 (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)), 2556 ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))), 2557 2558 # Things that look like DPH in the source shader may get expanded to 2559 # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets 2560 # to NIR. After FFMA is generated, this can look like: 2561 # 2562 # fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w) 2563 # 2564 # Reassociate the last addition into the first multiplication. 2565 # 2566 # Some shaders do not use 'invariant' in vertex and (possibly) geometry 2567 # shader stages on some outputs that are intended to be invariant. For 2568 # various reasons, this optimization may not be fully applied in all 2569 # shaders used for different rendering passes of the same geometry. This 2570 # can result in Z-fighting artifacts (at best). For now, disable this 2571 # optimization in these stages. See bugzilla #111490. In tessellation 2572 # stages applications seem to use 'precise' when necessary, so allow the 2573 # optimization in those stages. 2574 (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul(is_used_once)', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'), 2575 ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'), 2576 (('~fadd', ('ffma(is_used_once)', a, b, ('fmul(is_used_once)', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'), 2577 ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'), 2578 (('~fadd', ('fneg', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul(is_used_once)', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)')))), 'g(is_not_const)'), 2579 ('ffma', ('fneg', a), b, ('ffma', ('fneg', c), d, ('ffma', ('fneg', e), 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'), 2580 2581 # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says: 2582 # 2583 # If bits is zero, the result will be zero. 2584 # 2585 # These prevent the next two lowerings generating incorrect results when 2586 # count is zero. 2587 (('ubfe', a, b, 0), 0), 2588 (('ibfe', a, b, 0), 0), 2589 2590 # On Intel GPUs, BFE is a 3-source instruction. Like all 3-source 2591 # instructions on Intel GPUs, it cannot have an immediate values as 2592 # sources. There are also limitations on source register strides. As a 2593 # result, it is very easy for 3-source instruction combined with either 2594 # loads of immediate values or copies from weird register strides to be 2595 # more expensive than the primitive instructions it represents. 2596 (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->avoid_ternary_with_two_constants'), 2597 2598 # b is the lowest order bit to be extracted and c is the number of bits to 2599 # extract. The inner shift removes the bits above b + c by shifting left 2600 # 32 - (b + c). ishl only sees the low 5 bits of the shift count, which is 2601 # -(b + c). The outer shift moves the bit that was at b to bit zero. 2602 # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c. 2603 # This means that it must be shifted right by 32 - c or -c bits. 2604 (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->avoid_ternary_with_two_constants'), 2605 2606 # Clean up no-op shifts that may result from the bfe lowerings. 2607 (('ishl', a, 0), a), 2608 (('ishl', a, -32), a), 2609 (('ishr', a, 0), a), 2610 (('ishr', a, -32), a), 2611 (('ushr', a, 0), a), 2612 2613 (('extract_i8', ('extract_i8', a, b), 0), ('extract_i8', a, b)), 2614 (('extract_i8', ('extract_u8', a, b), 0), ('extract_i8', a, b)), 2615 (('extract_u8', ('extract_i8', a, b), 0), ('extract_u8', a, b)), 2616 (('extract_u8', ('extract_u8', a, b), 0), ('extract_u8', a, b)), 2617] 2618 2619# A few more extract cases we'd rather leave late 2620for N in [16, 32]: 2621 aN = 'a@{0}'.format(N) 2622 u2uM = 'u2u{0}'.format(M) 2623 i2iM = 'i2i{0}'.format(M) 2624 2625 for x in ['u', 'i']: 2626 x2xN = '{0}2{0}{1}'.format(x, N) 2627 extract_x8 = 'extract_{0}8'.format(x) 2628 extract_x16 = 'extract_{0}16'.format(x) 2629 2630 late_optimizations.extend([ 2631 ((x2xN, ('u2u8', aN)), (extract_x8, a, 0), '!options->lower_extract_byte'), 2632 ((x2xN, ('i2i8', aN)), (extract_x8, a, 0), '!options->lower_extract_byte'), 2633 ]) 2634 2635 if N > 16: 2636 late_optimizations.extend([ 2637 ((x2xN, ('u2u16', aN)), (extract_x16, a, 0), '!options->lower_extract_word'), 2638 ((x2xN, ('i2i16', aN)), (extract_x16, a, 0), '!options->lower_extract_word'), 2639 ]) 2640 2641# Byte insertion 2642late_optimizations.extend([(('ishl', ('extract_u8', 'a@32', 0), 8 * i), ('insert_u8', a, i), '!options->lower_insert_byte') for i in range(1, 4)]) 2643late_optimizations.extend([(('iand', ('ishl', 'a@32', 8 * i), 0xff << (8 * i)), ('insert_u8', a, i), '!options->lower_insert_byte') for i in range(1, 4)]) 2644late_optimizations.append((('ishl', 'a@32', 24), ('insert_u8', a, 3), '!options->lower_insert_byte')) 2645 2646late_optimizations += [ 2647 # Word insertion 2648 (('ishl', 'a@32', 16), ('insert_u16', a, 1), '!options->lower_insert_word'), 2649 2650 # Extract and then insert 2651 (('insert_u8', ('extract_u8', 'a', 0), b), ('insert_u8', a, b)), 2652 (('insert_u16', ('extract_u16', 'a', 0), b), ('insert_u16', a, b)), 2653] 2654 2655# Integer sizes 2656for s in [8, 16, 32, 64]: 2657 late_optimizations.extend([ 2658 (('iand', ('ine(is_used_once)', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umin', a, b), 0)), 2659 (('ior', ('ieq(is_used_once)', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umin', a, b), 0)), 2660 ]) 2661 2662# Float sizes 2663for s in [16, 32, 64]: 2664 late_optimizations.extend([ 2665 (('~fadd@{}'.format(s), 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp{}'.format(s)), 2666 (('bcsel', a, 0, ('b2f{}'.format(s), ('inot', 'b@bool'))), ('b2f{}'.format(s), ('inot', ('ior', a, b)))), 2667 ]) 2668 2669for op in ['fadd']: 2670 late_optimizations += [ 2671 (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))), 2672 (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))), 2673 ] 2674 2675for op in ['ffma']: 2676 late_optimizations += [ 2677 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))), 2678 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))), 2679 2680 (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)), 2681 (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)), 2682 ] 2683 2684# mediump: If an opcode is surrounded by conversions, remove the conversions. 2685# The rationale is that type conversions + the low precision opcode are more 2686# expensive that the same arithmetic opcode at higher precision. 2687# 2688# This must be done in late optimizations, because we need normal optimizations to 2689# first eliminate temporary up-conversions such as in op1(f2fmp(f2f32(op2()))). 2690# 2691# Unary opcodes 2692for op in ['fabs', 'fceil', 'fcos', 'fddx', 'fddx_coarse', 'fddx_fine', 'fddy', 2693 'fddy_coarse', 'fddy_fine', 'fexp2', 'ffloor', 'ffract', 'flog2', 'fneg', 2694 'frcp', 'fround_even', 'frsq', 'fsat', 'fsign', 'fsin', 'fsqrt']: 2695 late_optimizations += [(('~f2f32', (op, ('f2fmp', a))), (op, a))] 2696 2697# Binary opcodes 2698for op in ['fadd', 'fdiv', 'fmax', 'fmin', 'fmod', 'fmul', 'fpow', 'frem']: 2699 late_optimizations += [(('~f2f32', (op, ('f2fmp', a), ('f2fmp', b))), (op, a, b))] 2700 2701# Ternary opcodes 2702for op in ['ffma', 'flrp']: 2703 late_optimizations += [(('~f2f32', (op, ('f2fmp', a), ('f2fmp', b), ('f2fmp', c))), (op, a, b, c))] 2704 2705# Comparison opcodes 2706for op in ['feq', 'fge', 'flt', 'fneu']: 2707 late_optimizations += [(('~' + op, ('f2fmp', a), ('f2fmp', b)), (op, a, b))] 2708 2709# Do this last, so that the f2fmp patterns above have effect. 2710late_optimizations += [ 2711 # Convert *2*mp instructions to concrete *2*16 instructions. At this point 2712 # any conversions that could have been removed will have been removed in 2713 # nir_opt_algebraic so any remaining ones are required. 2714 (('f2fmp', a), ('f2f16', a)), 2715 (('f2imp', a), ('f2i16', a)), 2716 (('f2ump', a), ('f2u16', a)), 2717 (('i2imp', a), ('i2i16', a)), 2718 (('i2fmp', a), ('i2f16', a)), 2719 (('i2imp', a), ('u2u16', a)), 2720 (('u2fmp', a), ('u2f16', a)), 2721 (('fisfinite', a), ('flt', ('fabs', a), float("inf"))), 2722] 2723 2724distribute_src_mods = [ 2725 # Try to remove some spurious negations rather than pushing them down. 2726 (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)), 2727 (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)), 2728 (('fdot2_replicated', ('fneg', a), ('fneg', b)), ('fdot2_replicated', a, b)), 2729 (('fdot3_replicated', ('fneg', a), ('fneg', b)), ('fdot3_replicated', a, b)), 2730 (('fdot4_replicated', ('fneg', a), ('fneg', b)), ('fdot4_replicated', a, b)), 2731 (('fneg', ('fneg', a)), a), 2732 2733 (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)), 2734 (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))), 2735 2736 (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))), 2737 (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)), 2738 (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))), 2739 2740 # Note that fmin <-> fmax. I don't think there is a way to distribute 2741 # fabs() into fmin or fmax. 2742 (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))), 2743 (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))), 2744 2745 (('fneg', ('fdot2_replicated(is_used_once)', a, b)), ('fdot2_replicated', ('fneg', a), b)), 2746 (('fneg', ('fdot3_replicated(is_used_once)', a, b)), ('fdot3_replicated', ('fneg', a), b)), 2747 (('fneg', ('fdot4_replicated(is_used_once)', a, b)), ('fdot4_replicated', ('fneg', a), b)), 2748 2749 # fdph works mostly like fdot, but to get the correct result, the negation 2750 # must be applied to the second source. 2751 (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))), 2752 2753 (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))), 2754 (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))), 2755] 2756 2757print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render()) 2758print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma", 2759 before_ffma_optimizations).render()) 2760print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late", 2761 late_optimizations).render()) 2762print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods", 2763 distribute_src_mods).render()) 2764