• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# -*- coding: utf-8 -*-
2#
3# Copyright (C) 2014 Intel Corporation
4#
5# Permission is hereby granted, free of charge, to any person obtaining a
6# copy of this software and associated documentation files (the "Software"),
7# to deal in the Software without restriction, including without limitation
8# the rights to use, copy, modify, merge, publish, distribute, sublicense,
9# and/or sell copies of the Software, and to permit persons to whom the
10# Software is furnished to do so, subject to the following conditions:
11#
12# The above copyright notice and this permission notice (including the next
13# paragraph) shall be included in all copies or substantial portions of the
14# Software.
15#
16# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22# IN THE SOFTWARE.
23#
24# Authors:
25#    Jason Ekstrand (jason@jlekstrand.net)
26
27from collections import OrderedDict
28import nir_algebraic
29from nir_opcodes import type_sizes
30import itertools
31import struct
32from math import pi
33
34# Convenience variables
35a = 'a'
36b = 'b'
37c = 'c'
38d = 'd'
39e = 'e'
40
41signed_zero_inf_nan_preserve_16 = 'nir_is_float_control_signed_zero_inf_nan_preserve(info->float_controls_execution_mode, 16)'
42signed_zero_inf_nan_preserve_32 = 'nir_is_float_control_signed_zero_inf_nan_preserve(info->float_controls_execution_mode, 32)'
43
44# Written in the form (<search>, <replace>) where <search> is an expression
45# and <replace> is either an expression or a value.  An expression is
46# defined as a tuple of the form ([~]<op>, <src0>, <src1>, <src2>, <src3>)
47# where each source is either an expression or a value.  A value can be
48# either a numeric constant or a string representing a variable name.
49#
50# If the opcode in a search expression is prefixed by a '~' character, this
51# indicates that the operation is inexact.  Such operations will only get
52# applied to SSA values that do not have the exact bit set.  This should be
53# used by by any optimizations that are not bit-for-bit exact.  It should not,
54# however, be used for backend-requested lowering operations as those need to
55# happen regardless of precision.
56#
57# Variable names are specified as "[#]name[@type][(cond)][.swiz]" where:
58# "#" indicates that the given variable will only match constants,
59# type indicates that the given variable will only match values from ALU
60#    instructions with the given output type,
61# (cond) specifies an additional condition function (see nir_search_helpers.h),
62# swiz is a swizzle applied to the variable (only in the <replace> expression)
63#
64# For constants, you have to be careful to make sure that it is the right
65# type because python is unaware of the source and destination types of the
66# opcodes.
67#
68# All expression types can have a bit-size specified.  For opcodes, this
69# looks like "op@32", for variables it is "a@32" or "a@uint32" to specify a
70# type and size.  In the search half of the expression this indicates that it
71# should only match that particular bit-size.  In the replace half of the
72# expression this indicates that the constructed value should have that
73# bit-size.
74#
75# If the opcode in a replacement expression is prefixed by a '!' character,
76# this indicated that the new expression will be marked exact.
77#
78# A special condition "many-comm-expr" can be used with expressions to note
79# that the expression and its subexpressions have more commutative expressions
80# than nir_replace_instr can handle.  If this special condition is needed with
81# another condition, the two can be separated by a comma (e.g.,
82# "(many-comm-expr,is_used_once)").
83
84# based on https://web.archive.org/web/20180105155939/http://forum.devmaster.net/t/fast-and-accurate-sine-cosine/9648
85def lowered_sincos(c):
86    x = ('fsub', ('fmul', 2.0, ('ffract', ('fadd', ('fmul', 0.5 / pi, a), c))), 1.0)
87    x = ('fmul', ('fsub', x, ('fmul', x, ('fabs', x))), 4.0)
88    return ('ffma', ('ffma', x, ('fabs', x), ('fneg', x)), 0.225, x)
89
90def intBitsToFloat(i):
91    return struct.unpack('!f', struct.pack('!I', i))[0]
92
93optimizations = [
94
95   (('imul', a, '#b(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
96   (('imul', 'a@8', 0x80), ('ishl', a, 7), '!options->lower_bitops'),
97   (('imul', 'a@16', 0x8000), ('ishl', a, 15), '!options->lower_bitops'),
98   (('imul', 'a@32', 0x80000000), ('ishl', a, 31), '!options->lower_bitops'),
99   (('imul', 'a@64', 0x8000000000000000), ('ishl', a, 63), '!options->lower_bitops'),
100   (('imul', a, '#b(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
101   (('ishl', a, '#b'), ('imul', a, ('ishl', 1, b)), 'options->lower_bitops'),
102
103   (('unpack_64_2x32_split_x', ('imul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
104   (('unpack_64_2x32_split_x', ('umul_2x32_64(is_used_once)', a, b)), ('imul', a, b)),
105   (('imul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('imul_high', a, b)), 'options->lower_mul_2x32_64'),
106   (('umul_2x32_64', a, b), ('pack_64_2x32_split', ('imul', a, b), ('umul_high', a, b)), 'options->lower_mul_2x32_64'),
107   (('udiv', a, 1), a),
108   (('idiv', a, 1), a),
109   (('umod', a, 1), 0),
110   (('imod', a, 1), 0),
111   (('imod', a, -1), 0),
112   (('irem', a, 1), 0),
113   (('irem', a, -1), 0),
114   (('udiv', a, '#b(is_pos_power_of_two)'), ('ushr', a, ('find_lsb', b)), '!options->lower_bitops'),
115   (('idiv', a, '#b(is_pos_power_of_two)'), ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', b))), '!options->lower_bitops'),
116   (('idiv', a, '#b(is_neg_power_of_two)'), ('ineg', ('imul', ('isign', a), ('ushr', ('iabs', a), ('find_lsb', ('iabs', b))))), '!options->lower_bitops'),
117   (('umod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1)), '!options->lower_bitops'),
118   (('imod', a, '#b(is_pos_power_of_two)'), ('iand', a, ('isub', b, 1)), '!options->lower_bitops'),
119   (('imod', a, '#b(is_neg_power_of_two)'), ('bcsel', ('ieq', ('ior', a, b), b), 0, ('ior', a, b)), '!options->lower_bitops'),
120   # 'irem(a, b)' -> 'a - ((a < 0 ? (a + b - 1) : a) & -b)'
121   (('irem', a, '#b(is_pos_power_of_two)'),
122    ('isub', a, ('iand', ('bcsel', ('ilt', a, 0), ('iadd', a, ('isub', b, 1)), a), ('ineg', b))),
123    '!options->lower_bitops'),
124   (('irem', a, '#b(is_neg_power_of_two)'), ('irem', a, ('iabs', b)), '!options->lower_bitops'),
125
126   (('~fneg', ('fneg', a)), a),
127   (('ineg', ('ineg', a)), a),
128   (('fabs', ('fneg', a)), ('fabs', a)),
129   (('fabs', ('u2f', a)), ('u2f', a)),
130   (('iabs', ('iabs', a)), ('iabs', a)),
131   (('iabs', ('ineg', a)), ('iabs', a)),
132   (('f2b', ('fneg', a)), ('f2b', a)),
133   (('i2b', ('ineg', a)), ('i2b', a)),
134   (('~fadd', a, 0.0), a),
135   # a+0.0 is 'a' unless 'a' is denormal or -0.0. If it's only used by a
136   # floating point instruction, they should flush any input denormals and we
137   # can replace -0.0 with 0.0 if the float execution mode allows it.
138   (('fadd(is_only_used_as_float)', 'a@16', 0.0), a, '!'+signed_zero_inf_nan_preserve_16),
139   (('fadd(is_only_used_as_float)', 'a@32', 0.0), a, '!'+signed_zero_inf_nan_preserve_32),
140   (('iadd', a, 0), a),
141   (('usadd_4x8_vc4', a, 0), a),
142   (('usadd_4x8_vc4', a, ~0), ~0),
143   (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
144   (('~ffma', a, b, ('ffma(is_used_once)', a, c, d)), ('ffma', a, ('fadd', b, c), d)),
145   (('~ffma', a, b, ('fmul(is_used_once)', a, c)), ('fmul', a, ('fadd', b, c))),
146   (('~fadd', ('fmul(is_used_once)', a, b), ('ffma(is_used_once)', a, c, d)), ('ffma', a, ('fadd', b, c), d)),
147   (('~ffma', a, ('fmul(is_used_once)', b, c), ('fmul(is_used_once)', b, d)), ('fmul', b, ('ffma', a, c, d))),
148   (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
149   (('iand', ('ior', a, b), ('ior', a, c)), ('ior', a, ('iand', b, c))),
150   (('ior', ('iand', a, b), ('iand', a, c)), ('iand', a, ('ior', b, c))),
151   (('~fadd', ('fneg', a), a), 0.0),
152   (('iadd', ('ineg', a), a), 0),
153   (('iadd', ('ineg', a), ('iadd', a, b)), b),
154   (('iadd', a, ('iadd', ('ineg', a), b)), b),
155   (('~fadd', ('fneg', a), ('fadd', a, b)), b),
156   (('~fadd', a, ('fadd', ('fneg', a), b)), b),
157   (('fadd', ('fsat', a), ('fsat', ('fneg', a))), ('fsat', ('fabs', a))),
158   (('~fmul', a, 0.0), 0.0),
159   # The only effect a*0.0 should have is when 'a' is infinity, -0.0 or NaN
160   (('fmul', 'a@16', 0.0), 0.0, '!'+signed_zero_inf_nan_preserve_16),
161   (('fmul', 'a@32', 0.0), 0.0, '!'+signed_zero_inf_nan_preserve_32),
162   (('imul', a, 0), 0),
163   (('umul_unorm_4x8_vc4', a, 0), 0),
164   (('umul_unorm_4x8_vc4', a, ~0), a),
165   (('~fmul', a, 1.0), a),
166   # The only effect a*1.0 can have is flushing denormals. If it's only used by
167   # a floating point instruction, they should flush any input denormals and
168   # this multiplication isn't needed.
169   (('fmul(is_only_used_as_float)', a, 1.0), a),
170   (('imul', a, 1), a),
171   (('fmul', a, -1.0), ('fneg', a)),
172   (('imul', a, -1), ('ineg', a)),
173   # If a < 0: fsign(a)*a*a => -1*a*a => -a*a => abs(a)*a
174   # If a > 0: fsign(a)*a*a => 1*a*a => a*a => abs(a)*a
175   # If a == 0: fsign(a)*a*a => 0*0*0 => abs(0)*0
176   # If a != a: fsign(a)*a*a => 0*NaN*NaN => abs(NaN)*NaN
177   (('fmul', ('fsign', a), ('fmul', a, a)), ('fmul', ('fabs', a), a)),
178   (('fmul', ('fmul', ('fsign', a), a), a), ('fmul', ('fabs', a), a)),
179   (('~ffma', 0.0, a, b), b),
180   (('ffma@16(is_only_used_as_float)', 0.0, a, b), b, '!'+signed_zero_inf_nan_preserve_16),
181   (('ffma@32(is_only_used_as_float)', 0.0, a, b), b, '!'+signed_zero_inf_nan_preserve_32),
182   (('~ffma', a, b, 0.0), ('fmul', a, b)),
183   (('ffma@16', a, b, 0.0), ('fmul', a, b), '!'+signed_zero_inf_nan_preserve_16),
184   (('ffma@32', a, b, 0.0), ('fmul', a, b), '!'+signed_zero_inf_nan_preserve_32),
185   (('ffma', 1.0, a, b), ('fadd', a, b)),
186   (('ffma', -1.0, a, b), ('fadd', ('fneg', a), b)),
187   (('~ffma', '#a', '#b', c), ('fadd', ('fmul', a, b), c)),
188   (('~flrp', a, b, 0.0), a),
189   (('~flrp', a, b, 1.0), b),
190   (('~flrp', a, a, b), a),
191   (('~flrp', 0.0, a, b), ('fmul', a, b)),
192
193   # flrp(a, a + b, c) => a + flrp(0, b, c) => a + (b * c)
194   (('~flrp', a, ('fadd(is_used_once)', a, b), c), ('fadd', ('fmul', b, c), a)),
195
196   (('sdot_4x8_iadd', a, 0, b), b),
197   (('udot_4x8_uadd', a, 0, b), b),
198   (('sdot_4x8_iadd_sat', a, 0, b), b),
199   (('udot_4x8_uadd_sat', a, 0, b), b),
200   (('sdot_2x16_iadd', a, 0, b), b),
201   (('udot_2x16_uadd', a, 0, b), b),
202   (('sdot_2x16_iadd_sat', a, 0, b), b),
203   (('udot_2x16_uadd_sat', a, 0, b), b),
204
205   # sudot_4x8_iadd is not commutative at all, so the patterns must be
206   # duplicated with zeros on each of the first positions.
207   (('sudot_4x8_iadd', a, 0, b), b),
208   (('sudot_4x8_iadd', 0, a, b), b),
209   (('sudot_4x8_iadd_sat', a, 0, b), b),
210   (('sudot_4x8_iadd_sat', 0, a, b), b),
211
212   (('iadd', ('sdot_4x8_iadd(is_used_once)', a, b, '#c'), '#d'), ('sdot_4x8_iadd', a, b, ('iadd', c, d))),
213   (('iadd', ('udot_4x8_uadd(is_used_once)', a, b, '#c'), '#d'), ('udot_4x8_uadd', a, b, ('iadd', c, d))),
214   (('iadd', ('sudot_4x8_iadd(is_used_once)', a, b, '#c'), '#d'), ('sudot_4x8_iadd', a, b, ('iadd', c, d))),
215   (('iadd', ('sdot_2x16_iadd(is_used_once)', a, b, '#c'), '#d'), ('sdot_2x16_iadd', a, b, ('iadd', c, d))),
216   (('iadd', ('udot_2x16_uadd(is_used_once)', a, b, '#c'), '#d'), ('udot_2x16_uadd', a, b, ('iadd', c, d))),
217
218   # Try to let constant folding eliminate the dot-product part.  These are
219   # safe because the dot product cannot overflow 32 bits.
220   (('iadd', ('sdot_4x8_iadd', 'a(is_not_const)', b, 0), c), ('sdot_4x8_iadd', a, b, c)),
221   (('iadd', ('udot_4x8_uadd', 'a(is_not_const)', b, 0), c), ('udot_4x8_uadd', a, b, c)),
222   (('iadd', ('sudot_4x8_iadd', 'a(is_not_const)', b, 0), c), ('sudot_4x8_iadd', a, b, c)),
223   (('iadd', ('sudot_4x8_iadd', a, 'b(is_not_const)', 0), c), ('sudot_4x8_iadd', a, b, c)),
224   (('iadd', ('sdot_2x16_iadd', 'a(is_not_const)', b, 0), c), ('sdot_2x16_iadd', a, b, c)),
225   (('iadd', ('udot_2x16_uadd', 'a(is_not_const)', b, 0), c), ('udot_2x16_uadd', a, b, c)),
226   (('sdot_4x8_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sdot_4x8_iadd', a, b, 0), c)),
227   (('udot_4x8_uadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('udot_4x8_uadd', a, b, 0), c)),
228   (('sudot_4x8_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sudot_4x8_iadd', a, b, 0), c)),
229   (('sdot_2x16_iadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('sdot_2x16_iadd', a, b, 0), c)),
230   (('udot_2x16_uadd', '#a', '#b', 'c(is_not_const)'), ('iadd', ('udot_2x16_uadd', a, b, 0), c)),
231   (('sdot_4x8_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sdot_4x8_iadd', a, b, 0), c), '!options->lower_iadd_sat'),
232   (('udot_4x8_uadd_sat', '#a', '#b', 'c(is_not_const)'), ('uadd_sat', ('udot_4x8_uadd', a, b, 0), c), '!options->lower_uadd_sat'),
233   (('sudot_4x8_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sudot_4x8_iadd', a, b, 0), c), '!options->lower_iadd_sat'),
234   (('sdot_2x16_iadd_sat', '#a', '#b', 'c(is_not_const)'), ('iadd_sat', ('sdot_2x16_iadd', a, b, 0), c), '!options->lower_iadd_sat'),
235   (('udot_2x16_uadd_sat', '#a', '#b', 'c(is_not_const)'), ('uadd_sat', ('udot_2x16_uadd', a, b, 0), c), '!options->lower_uadd_sat'),
236]
237
238# Shorthand for the expansion of just the dot product part of the [iu]dp4a
239# instructions.
240sdot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_i8', a, 0), ('extract_i8', b, 0)),
241                                 ('imul', ('extract_i8', a, 1), ('extract_i8', b, 1))),
242                        ('iadd', ('imul', ('extract_i8', a, 2), ('extract_i8', b, 2)),
243                                 ('imul', ('extract_i8', a, 3), ('extract_i8', b, 3))))
244udot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_u8', a, 0), ('extract_u8', b, 0)),
245                                 ('imul', ('extract_u8', a, 1), ('extract_u8', b, 1))),
246                        ('iadd', ('imul', ('extract_u8', a, 2), ('extract_u8', b, 2)),
247                                 ('imul', ('extract_u8', a, 3), ('extract_u8', b, 3))))
248sudot_4x8_a_b = ('iadd', ('iadd', ('imul', ('extract_i8', a, 0), ('extract_u8', b, 0)),
249                                  ('imul', ('extract_i8', a, 1), ('extract_u8', b, 1))),
250                         ('iadd', ('imul', ('extract_i8', a, 2), ('extract_u8', b, 2)),
251                                  ('imul', ('extract_i8', a, 3), ('extract_u8', b, 3))))
252sdot_2x16_a_b = ('iadd', ('imul', ('extract_i16', a, 0), ('extract_i16', b, 0)),
253                         ('imul', ('extract_i16', a, 1), ('extract_i16', b, 1)))
254udot_2x16_a_b = ('iadd', ('imul', ('extract_u16', a, 0), ('extract_u16', b, 0)),
255                         ('imul', ('extract_u16', a, 1), ('extract_u16', b, 1)))
256
257optimizations.extend([
258   (('sdot_4x8_iadd', a, b, c), ('iadd', sdot_4x8_a_b, c), '!options->has_dot_4x8'),
259   (('udot_4x8_uadd', a, b, c), ('iadd', udot_4x8_a_b, c), '!options->has_dot_4x8'),
260   (('sudot_4x8_iadd', a, b, c), ('iadd', sudot_4x8_a_b, c), '!options->has_sudot_4x8'),
261   (('sdot_2x16_iadd', a, b, c), ('iadd', sdot_2x16_a_b, c), '!options->has_dot_2x16'),
262   (('udot_2x16_uadd', a, b, c), ('iadd', udot_2x16_a_b, c), '!options->has_dot_2x16'),
263
264   # For the unsigned dot-product, the largest possible value 4*(255*255) =
265   # 0x3f804, so we don't have to worry about that intermediate result
266   # overflowing.  0x100000000 - 0x3f804 = 0xfffc07fc.  If c is a constant
267   # that is less than 0xfffc07fc, then the result cannot overflow ever.
268   (('udot_4x8_uadd_sat', a, b, '#c(is_ult_0xfffc07fc)'), ('udot_4x8_uadd', a, b, c)),
269   (('udot_4x8_uadd_sat', a, b, c), ('uadd_sat', udot_4x8_a_b, c), '!options->has_dot_4x8'),
270
271   # For the signed dot-product, the largest positive value is 4*(-128*-128) =
272   # 0x10000, and the largest negative value is 4*(-128*127) = -0xfe00.  We
273   # don't have to worry about that intermediate result overflowing or
274   # underflowing.
275   (('sdot_4x8_iadd_sat', a, b, c), ('iadd_sat', sdot_4x8_a_b, c), '!options->has_dot_4x8'),
276
277   (('sudot_4x8_iadd_sat', a, b, c), ('iadd_sat', sudot_4x8_a_b, c), '!options->has_sudot_4x8'),
278
279   (('udot_2x16_uadd_sat', a, b, c), ('uadd_sat', udot_2x16_a_b, c), '!options->has_dot_2x16'),
280   (('sdot_2x16_iadd_sat', a, b, c), ('iadd_sat', sdot_2x16_a_b, c), '!options->has_dot_2x16'),
281])
282
283# Float sizes
284for s in [16, 32, 64]:
285    optimizations.extend([
286       (('~flrp@{}'.format(s), a, b, ('b2f', 'c@1')), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)),
287
288       (('~flrp@{}'.format(s), a, ('fadd', a, b), c), ('fadd', ('fmul', b, c), a), 'options->lower_flrp{}'.format(s)),
289       (('~flrp@{}'.format(s), ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a), 'options->lower_flrp{}'.format(s)),
290       (('~flrp@{}'.format(s), a, ('fmul(is_used_once)', a, b), c), ('fmul', ('flrp', 1.0, b, c), a), 'options->lower_flrp{}'.format(s)),
291
292       (('~fadd@{}'.format(s), ('fmul', a, ('fadd', 1.0, ('fneg', c))), ('fmul', b, c)), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)),
293       # These are the same as the previous three rules, but it depends on
294       # 1-fsat(x) <=> fsat(1-x).  See below.
295       (('~fadd@{}'.format(s), ('fmul', a, ('fsat', ('fadd', 1.0, ('fneg', c)))), ('fmul', b, ('fsat', c))), ('flrp', a, b, ('fsat', c)), '!options->lower_flrp{}'.format(s)),
296       (('~fadd@{}'.format(s), a, ('fmul', c, ('fadd', b, ('fneg', a)))), ('flrp', a, b, c), '!options->lower_flrp{}'.format(s)),
297
298       (('~fadd@{}'.format(s),    ('fmul', a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1')))), ('fmul', b, ('b2f',  c))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)),
299       (('~fadd@{}'.format(s), a, ('fmul', ('b2f', 'c@1'), ('fadd', b, ('fneg', a)))), ('bcsel', c, b, a), 'options->lower_flrp{}'.format(s)),
300
301       (('~ffma@{}'.format(s), a, ('fadd', 1.0, ('fneg', ('b2f', 'c@1'))), ('fmul', b, ('b2f', 'c@1'))), ('bcsel', c, b, a)),
302       (('~ffma@{}'.format(s), b, ('b2f', 'c@1'), ('ffma', ('fneg', a), ('b2f', 'c@1'), a)), ('bcsel', c, b, a)),
303
304       # These two aren't flrp lowerings, but do appear in some shaders.
305       (('~ffma@{}'.format(s), ('b2f', 'c@1'), ('fadd', b, ('fneg', a)), a), ('bcsel', c, b, a)),
306       (('~ffma@{}'.format(s), ('b2f', 'c@1'), ('ffma', ('fneg', a), b, d), ('fmul', a, b)), ('bcsel', c, d, ('fmul', a, b))),
307
308       # 1 - ((1 - a) * (1 - b))
309       # 1 - (1 - a - b + a*b)
310       # 1 - 1 + a + b - a*b
311       # a + b - a*b
312       # a + b*(1 - a)
313       # b*(1 - a) + 1*a
314       # flrp(b, 1, a)
315       (('~fadd@{}'.format(s), 1.0, ('fneg', ('fmul', ('fadd', 1.0, ('fneg', a)), ('fadd', 1.0, ('fneg', b))))), ('flrp', b, 1.0, a), '!options->lower_flrp{}'.format(s)),
316    ])
317
318optimizations.extend([
319   (('~flrp', ('fmul(is_used_once)', a, b), ('fmul(is_used_once)', a, c), d), ('fmul', ('flrp', b, c, d), a)),
320
321   (('~flrp', a, 0.0, c), ('fadd', ('fmul', ('fneg', a), c), a)),
322   (('ftrunc', a), ('bcsel', ('flt', a, 0.0), ('fneg', ('ffloor', ('fabs', a))), ('ffloor', ('fabs', a))), 'options->lower_ftrunc'),
323   (('ffloor', a), ('fsub', a, ('ffract', a)), 'options->lower_ffloor'),
324   (('fadd', a, ('fneg', ('ffract', a))), ('ffloor', a), '!options->lower_ffloor'),
325   (('ffract', a), ('fsub', a, ('ffloor', a)), 'options->lower_ffract'),
326   (('fceil', a), ('fneg', ('ffloor', ('fneg', a))), 'options->lower_fceil'),
327   (('ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma16'),
328   (('ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma32'),
329   (('ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->lower_ffma64'),
330   # Always lower inexact ffma, because it will be fused back by late optimizations (nir_opt_algebraic_late).
331   (('~ffma@16', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma16'),
332   (('~ffma@32', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma32'),
333   (('~ffma@64', a, b, c), ('fadd', ('fmul', a, b), c), 'options->fuse_ffma64'),
334
335   (('~fmul', ('fadd', ('iand', ('ineg', ('b2i', 'a@bool')), ('fmul', b, c)), '#d'), '#e'),
336    ('bcsel', a, ('fmul', ('fadd', ('fmul', b, c), d), e), ('fmul', d, e))),
337
338   (('fdph', a, b), ('fdot4', ('vec4', 'a.x', 'a.y', 'a.z', 1.0), b), 'options->lower_fdph'),
339
340   (('fdot4', ('vec4', a, b,   c,   1.0), d), ('fdph',  ('vec3', a, b, c), d), '!options->lower_fdph'),
341   (('fdot4', ('vec4', a, 0.0, 0.0, 0.0), b), ('fmul', a, b)),
342   (('fdot4', ('vec4', a, b,   0.0, 0.0), c), ('fdot2', ('vec2', a, b), c)),
343   (('fdot4', ('vec4', a, b,   c,   0.0), d), ('fdot3', ('vec3', a, b, c), d)),
344
345   (('fdot3', ('vec3', a, 0.0, 0.0), b), ('fmul', a, b)),
346   (('fdot3', ('vec3', a, b,   0.0), c), ('fdot2', ('vec2', a, b), c)),
347
348   (('fdot2', ('vec2', a, 0.0), b), ('fmul', a, b)),
349   (('fdot2', a, 1.0), ('fadd', 'a.x', 'a.y')),
350
351   # Lower fdot to fsum when it is available
352   (('fdot2', a, b), ('fsum2', ('fmul', a, b)), 'options->lower_fdot'),
353   (('fdot3', a, b), ('fsum3', ('fmul', a, b)), 'options->lower_fdot'),
354   (('fdot4', a, b), ('fsum4', ('fmul', a, b)), 'options->lower_fdot'),
355   (('fsum2', a), ('fadd', 'a.x', 'a.y'), 'options->lower_fdot'),
356
357   # If x >= 0 and x <= 1: fsat(1 - x) == 1 - fsat(x) trivially
358   # If x < 0: 1 - fsat(x) => 1 - 0 => 1 and fsat(1 - x) => fsat(> 1) => 1
359   # If x > 1: 1 - fsat(x) => 1 - 1 => 0 and fsat(1 - x) => fsat(< 0) => 0
360   (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
361
362   # (a * #b + #c) << #d
363   # ((a * #b) << #d) + (#c << #d)
364   # (a * (#b << #d)) + (#c << #d)
365   (('ishl', ('iadd', ('imul', a, '#b'), '#c'), '#d'),
366    ('iadd', ('imul', a, ('ishl', b, d)), ('ishl', c, d))),
367
368   # (a * #b) << #c
369   # a * (#b << #c)
370   (('ishl', ('imul', a, '#b'), '#c'), ('imul', a, ('ishl', b, c))),
371])
372
373# Care must be taken here.  Shifts in NIR uses only the lower log2(bitsize)
374# bits of the second source.  These replacements must correctly handle the
375# case where (b % bitsize) + (c % bitsize) >= bitsize.
376for s in [8, 16, 32, 64]:
377   mask = (1 << s) - 1
378
379   ishl = "ishl@{}".format(s)
380   ishr = "ishr@{}".format(s)
381   ushr = "ushr@{}".format(s)
382
383   in_bounds = ('ult', ('iadd', ('iand', b, mask), ('iand', c, mask)), s)
384
385   optimizations.extend([
386       ((ishl, (ishl, a, '#b'), '#c'), ('bcsel', in_bounds, (ishl, a, ('iadd', b, c)), 0)),
387       ((ushr, (ushr, a, '#b'), '#c'), ('bcsel', in_bounds, (ushr, a, ('iadd', b, c)), 0)),
388
389       # To get get -1 for large shifts of negative values, ishr must instead
390       # clamp the shift count to the maximum value.
391       ((ishr, (ishr, a, '#b'), '#c'),
392        (ishr, a, ('imin', ('iadd', ('iand', b, mask), ('iand', c, mask)), s - 1))),
393   ])
394
395# Optimize a pattern of address calculation created by DXVK where the offset is
396# divided by 4 and then multipled by 4. This can be turned into an iand and the
397# additions before can be reassociated to CSE the iand instruction.
398
399for size, mask in ((8, 0xff), (16, 0xffff), (32, 0xffffffff), (64, 0xffffffffffffffff)):
400    a_sz = 'a@{}'.format(size)
401
402    optimizations.extend([
403       # 'a >> #b << #b' -> 'a & ~((1 << #b) - 1)'
404       (('ishl', ('ushr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))),
405       (('ishl', ('ishr', a_sz, '#b'), b), ('iand', a, ('ishl', mask, b))),
406
407       # This does not trivially work with ishr.
408       (('ushr', ('ishl', a_sz, '#b'), b), ('iand', a, ('ushr', mask, b))),
409    ])
410
411for log2 in range(1, 7): # powers of two from 2 to 64
412   v = 1 << log2
413   mask = 0xffffffff & ~(v - 1)
414   b_is_multiple = '#b(is_unsigned_multiple_of_{})'.format(v)
415
416   optimizations.extend([
417       # Reassociate for improved CSE
418       (('iand@32', ('iadd@32', a, b_is_multiple), mask), ('iadd', ('iand', a, mask), b)),
419   ])
420
421# To save space in the state tables, reduce to the set that is known to help.
422# Previously, this was range(1, 32).  In addition, a couple rules inside the
423# loop are commented out.  Revisit someday, probably after mesa/#2635 has some
424# resolution.
425for i in [1, 2, 16, 24]:
426    lo_mask = 0xffffffff >> i
427    hi_mask = (0xffffffff << i) & 0xffffffff
428
429    optimizations.extend([
430        # This pattern seems to only help in the soft-fp64 code.
431        (('ishl@32', ('iand', 'a@32', lo_mask), i), ('ishl', a, i)),
432#        (('ushr@32', ('iand', 'a@32', hi_mask), i), ('ushr', a, i)),
433#        (('ishr@32', ('iand', 'a@32', hi_mask), i), ('ishr', a, i)),
434
435        (('iand', ('ishl', 'a@32', i), hi_mask), ('ishl', a, i)),
436        (('iand', ('ushr', 'a@32', i), lo_mask), ('ushr', a, i)),
437#        (('iand', ('ishr', 'a@32', i), lo_mask), ('ushr', a, i)), # Yes, ushr is correct
438    ])
439
440optimizations.extend([
441   # This is common for address calculations.  Reassociating may enable the
442   # 'a<<c' to be CSE'd.  It also helps architectures that have an ISHLADD
443   # instruction or a constant offset field for in load / store instructions.
444   (('ishl', ('iadd', a, '#b'), '#c'), ('iadd', ('ishl', a, c), ('ishl', b, c))),
445
446   # (a + #b) * #c => (a * #c) + (#b * #c)
447   (('imul', ('iadd(is_used_once)', a, '#b'), '#c'), ('iadd', ('imul', a, c), ('imul', b, c))),
448   (('~fmul', ('fadd(is_used_once)', a, '#b'), '#c'), ('fadd', ('fmul', a, c), ('fmul', b, c)),
449    '!options->avoid_ternary_with_two_constants'),
450
451   # ((a + #b) + c) * #d => ((a + c) * #d) + (#b * #d)
452   (('imul', ('iadd(is_used_once)', ('iadd(is_used_once)', a, '#b'), c), '#d'),
453    ('iadd', ('imul', ('iadd', a, c), d), ('imul', b, d))),
454   (('ishl', ('iadd(is_used_once)', ('iadd(is_used_once)', a, '#b'), c), '#d'),
455    ('iadd', ('ishl', ('iadd', a, c), d), ('ishl', b, d))),
456
457   # Comparison simplifications
458   (('inot', ('flt(is_used_once)', 'a(is_a_number)', 'b(is_a_number)')), ('fge', a, b)),
459   (('inot', ('fge(is_used_once)', 'a(is_a_number)', 'b(is_a_number)')), ('flt', a, b)),
460   (('inot', ('feq(is_used_once)', a, b)), ('fneu', a, b)),
461   (('inot', ('fneu(is_used_once)', a, b)), ('feq', a, b)),
462   (('inot', ('ilt(is_used_once)', a, b)), ('ige', a, b)),
463   (('inot', ('ult(is_used_once)', a, b)), ('uge', a, b)),
464   (('inot', ('ige(is_used_once)', a, b)), ('ilt', a, b)),
465   (('inot', ('uge(is_used_once)', a, b)), ('ult', a, b)),
466   (('inot', ('ieq(is_used_once)', a, b)), ('ine', a, b)),
467   (('inot', ('ine(is_used_once)', a, b)), ('ieq', a, b)),
468
469   (('iand', ('feq', a, b), ('fneu', a, b)), False),
470   (('iand', ('flt', a, b), ('flt', b, a)), False),
471   (('iand', ('ieq', a, b), ('ine', a, b)), False),
472   (('iand', ('ilt', a, b), ('ilt', b, a)), False),
473   (('iand', ('ult', a, b), ('ult', b, a)), False),
474
475   # This helps some shaders because, after some optimizations, they end up
476   # with patterns like (-a < -b) || (b < a).  In an ideal world, this sort of
477   # matching would be handled by CSE.
478   (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
479   (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
480   (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
481   (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)),
482   (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
483   (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
484   (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
485   (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
486   (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)),
487   (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
488
489   # b < fsat(NaN) -> b < 0 -> false, and b < Nan -> false.
490   (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
491
492   # fsat(NaN) >= b -> 0 >= b -> false, and NaN >= b -> false.
493   (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
494
495   # b == fsat(NaN) -> b == 0 -> false, and b == NaN -> false.
496   (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
497
498   # b != fsat(NaN) -> b != 0 -> true, and b != NaN -> true.
499   (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)),
500
501   # fsat(NaN) >= 1 -> 0 >= 1 -> false, and NaN >= 1 -> false.
502   (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
503
504   # 0 < fsat(NaN) -> 0 < 0 -> false, and 0 < NaN -> false.
505   (('flt', 0.0, ('fsat(is_used_once)', a)), ('flt', 0.0, a)),
506
507   # 0.0 >= b2f(a)
508   # b2f(a) <= 0.0
509   # b2f(a) == 0.0 because b2f(a) can only be 0 or 1
510   # inot(a)
511   (('fge', 0.0, ('b2f', 'a@1')), ('inot', a)),
512
513   (('fge', ('fneg', ('b2f', 'a@1')), 0.0), ('inot', a)),
514
515   (('fneu', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('ior', a, b)),
516   (('fneu', ('bcsel', a, 1.0, ('b2f', 'b@1'))   , 0.0), ('ior', a, b)),
517   (('fneu', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))),      ('ior', a, b)),
518   (('fneu', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('iand', a, b)),
519   (('fneu', ('bcsel', a, ('b2f', 'b@1'), 0.0)   , 0.0), ('iand', a, b)),
520   (('fneu', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ixor', a, b)),
521   (('fneu',          ('b2f', 'a@1') ,          ('b2f', 'b@1') ),      ('ixor', a, b)),
522   (('fneu', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))),      ('ixor', a, b)),
523   (('feq', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('ior', a, b))),
524   (('feq', ('bcsel', a, 1.0, ('b2f', 'b@1'))   , 0.0), ('inot', ('ior', a, b))),
525   (('feq', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))),      ('inot', ('ior', a, b))),
526   (('feq', ('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), 0.0), ('inot', ('iand', a, b))),
527   (('feq', ('bcsel', a, ('b2f', 'b@1'), 0.0)   , 0.0), ('inot', ('iand', a, b))),
528   (('feq', ('fadd', ('b2f', 'a@1'), ('fneg', ('b2f', 'b@1'))), 0.0), ('ieq', a, b)),
529   (('feq',          ('b2f', 'a@1') ,          ('b2f', 'b@1') ),      ('ieq', a, b)),
530   (('feq', ('fneg', ('b2f', 'a@1')), ('fneg', ('b2f', 'b@1'))),      ('ieq', a, b)),
531
532   # -(b2f(a) + b2f(b)) < 0
533   # 0 < b2f(a) + b2f(b)
534   # 0 != b2f(a) + b2f(b)       b2f must be 0 or 1, so the sum is non-negative
535   # a || b
536   (('flt', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('ior', a, b)),
537   (('flt', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('ior', a, b)),
538
539   # -(b2f(a) + b2f(b)) >= 0
540   # 0 >= b2f(a) + b2f(b)
541   # 0 == b2f(a) + b2f(b)       b2f must be 0 or 1, so the sum is non-negative
542   # !(a || b)
543   (('fge', ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), 0.0), ('inot', ('ior', a, b))),
544   (('fge', 0.0, ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('inot', ('ior', a, b))),
545
546   (('flt', a, ('fneg', a)), ('flt', a, 0.0)),
547   (('fge', a, ('fneg', a)), ('fge', a, 0.0)),
548
549   # Some optimizations (below) convert things like (a < b || c < b) into
550   # (min(a, c) < b).  However, this interfers with the previous optimizations
551   # that try to remove comparisons with negated sums of b2f.  This just
552   # breaks that apart.
553   (('flt', ('fmin', c, ('fneg', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1')))), 0.0),
554    ('ior', ('flt', c, 0.0), ('ior', a, b))),
555
556   (('~flt', ('fadd', a, b), a), ('flt', b, 0.0)),
557   (('~fge', ('fadd', a, b), a), ('fge', b, 0.0)),
558   (('~feq', ('fadd', a, b), a), ('feq', b, 0.0)),
559   (('~fneu', ('fadd', a, b), a), ('fneu', b, 0.0)),
560   (('~flt',                        ('fadd(is_used_once)', a, '#b'),  '#c'), ('flt', a, ('fadd', c, ('fneg', b)))),
561   (('~flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('flt', ('fneg', ('fadd', c, b)), a)),
562   (('~fge',                        ('fadd(is_used_once)', a, '#b'),  '#c'), ('fge', a, ('fadd', c, ('fneg', b)))),
563   (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fge', ('fneg', ('fadd', c, b)), a)),
564   (('~feq',                        ('fadd(is_used_once)', a, '#b'),  '#c'), ('feq', a, ('fadd', c, ('fneg', b)))),
565   (('~feq', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('feq', ('fneg', ('fadd', c, b)), a)),
566   (('~fneu',                        ('fadd(is_used_once)', a, '#b'),  '#c'), ('fneu', a, ('fadd', c, ('fneg', b)))),
567   (('~fneu', ('fneg(is_used_once)', ('fadd(is_used_once)', a, '#b')), '#c'), ('fneu', ('fneg', ('fadd', c, b)), a)),
568
569   # Cannot remove the addition from ilt or ige due to overflow.
570   (('ieq', ('iadd', a, b), a), ('ieq', b, 0)),
571   (('ine', ('iadd', a, b), a), ('ine', b, 0)),
572
573   (('feq', ('b2f', 'a@1'), 0.0), ('inot', a)),
574   (('fneu', ('b2f', 'a@1'), 0.0), a),
575   (('ieq', ('b2i', 'a@1'), 0),   ('inot', a)),
576   (('ine', ('b2i', 'a@1'), 0),   a),
577
578   (('fneu', ('u2f', a), 0.0), ('ine', a, 0)),
579   (('feq', ('u2f', a), 0.0), ('ieq', a, 0)),
580   (('fge', ('u2f', a), 0.0), True),
581   (('fge', 0.0, ('u2f', a)), ('uge', 0, a)),    # ieq instead?
582   (('flt', ('u2f', a), 0.0), False),
583   (('flt', 0.0, ('u2f', a)), ('ult', 0, a)),    # ine instead?
584   (('fneu', ('i2f', a), 0.0), ('ine', a, 0)),
585   (('feq', ('i2f', a), 0.0), ('ieq', a, 0)),
586   (('fge', ('i2f', a), 0.0), ('ige', a, 0)),
587   (('fge', 0.0, ('i2f', a)), ('ige', 0, a)),
588   (('flt', ('i2f', a), 0.0), ('ilt', a, 0)),
589   (('flt', 0.0, ('i2f', a)), ('ilt', 0, a)),
590
591   # 0.0 < fabs(a)
592   # fabs(a) > 0.0
593   # fabs(a) != 0.0 because fabs(a) must be >= 0
594   # a != 0.0
595   (('~flt', 0.0, ('fabs', a)), ('fneu', a, 0.0)),
596
597   # -fabs(a) < 0.0
598   # fabs(a) > 0.0
599   (('~flt', ('fneg', ('fabs', a)), 0.0), ('fneu', a, 0.0)),
600
601   # 0.0 >= fabs(a)
602   # 0.0 == fabs(a)   because fabs(a) must be >= 0
603   # 0.0 == a
604   (('fge', 0.0, ('fabs', a)), ('feq', a, 0.0)),
605
606   # -fabs(a) >= 0.0
607   # 0.0 >= fabs(a)
608   (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
609
610   # (a >= 0.0) && (a <= 1.0) -> fsat(a) == a
611   #
612   # This should be NaN safe.
613   #
614   # NaN >= 0 && 1 >= NaN -> false && false -> false
615   #
616   # vs.
617   #
618   # NaN == fsat(NaN) -> NaN == 0 -> false
619   (('iand', ('fge', a, 0.0), ('fge', 1.0, a)), ('feq', a, ('fsat', a)), '!options->lower_fsat'),
620
621   # Note: fmin(-a, -b) == -fmax(a, b)
622   (('fmax',                        ('b2f(is_used_once)', 'a@1'),           ('b2f', 'b@1')),           ('b2f', ('ior', a, b))),
623   (('fmax', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('iand', a, b)))),
624   (('fmin',                        ('b2f(is_used_once)', 'a@1'),           ('b2f', 'b@1')),           ('b2f', ('iand', a, b))),
625   (('fmin', ('fneg(is_used_once)', ('b2f(is_used_once)', 'a@1')), ('fneg', ('b2f', 'b@1'))), ('fneg', ('b2f', ('ior', a, b)))),
626
627   # fmin(b2f(a), b)
628   # bcsel(a, fmin(b2f(a), b), fmin(b2f(a), b))
629   # bcsel(a, fmin(b2f(True), b), fmin(b2f(False), b))
630   # bcsel(a, fmin(1.0, b), fmin(0.0, b))
631   #
632   # Since b is a constant, constant folding will eliminate the fmin and the
633   # fmax.  If b is > 1.0, the bcsel will be replaced with a b2f.
634   (('fmin', ('b2f', 'a@1'), '#b'), ('bcsel', a, ('fmin', b, 1.0), ('fmin', b, 0.0))),
635
636   (('flt', ('fadd(is_used_once)', a, ('fneg', b)), 0.0), ('flt', a, b)),
637
638   (('fge', ('fneg', ('fabs', a)), 0.0), ('feq', a, 0.0)),
639   (('~bcsel', ('flt', b, a), b, a), ('fmin', a, b)),
640   (('~bcsel', ('flt', a, b), b, a), ('fmax', a, b)),
641   (('~bcsel', ('fge', a, b), b, a), ('fmin', a, b)),
642   (('~bcsel', ('fge', b, a), b, a), ('fmax', a, b)),
643   (('bcsel', ('i2b', a), b, c), ('bcsel', ('ine', a, 0), b, c)),
644   (('bcsel', ('inot', a), b, c), ('bcsel', a, c, b)),
645   (('bcsel', a, ('bcsel', a, b, c), d), ('bcsel', a, b, d)),
646   (('bcsel', a, b, ('bcsel', a, c, d)), ('bcsel', a, b, d)),
647   (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
648   (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, c, 'e')), ('bcsel', b, c, ('bcsel', a, d, 'e'))),
649   (('bcsel', a, ('bcsel', b, c, d), ('bcsel(is_used_once)', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
650   (('bcsel', a, ('bcsel(is_used_once)', b, c, d), ('bcsel', b, 'e', d)), ('bcsel', b, ('bcsel', a, c, 'e'), d)),
651   (('bcsel', a, True, b), ('ior', a, b)),
652   (('bcsel', a, a, b), ('ior', a, b)),
653   (('bcsel', a, b, False), ('iand', a, b)),
654   (('bcsel', a, b, a), ('iand', a, b)),
655   (('~fmin', a, a), a),
656   (('~fmax', a, a), a),
657   (('imin', a, a), a),
658   (('imax', a, a), a),
659   (('umin', a, a), a),
660   (('umin', a, 0), 0),
661   (('umin', a, -1), a),
662   (('umax', a, a), a),
663   (('umax', a, 0), a),
664   (('umax', a, -1), -1),
665   (('fmax', ('fmax', a, b), b), ('fmax', a, b)),
666   (('umax', ('umax', a, b), b), ('umax', a, b)),
667   (('imax', ('imax', a, b), b), ('imax', a, b)),
668   (('fmin', ('fmin', a, b), b), ('fmin', a, b)),
669   (('umin', ('umin', a, b), b), ('umin', a, b)),
670   (('imin', ('imin', a, b), b), ('imin', a, b)),
671   (('fmax', ('fmax', ('fmax', a, b), c), a), ('fmax', ('fmax', a, b), c)),
672   (('umax', ('umax', ('umax', a, b), c), a), ('umax', ('umax', a, b), c)),
673   (('imax', ('imax', ('imax', a, b), c), a), ('imax', ('imax', a, b), c)),
674   (('fmin', ('fmin', ('fmin', a, b), c), a), ('fmin', ('fmin', a, b), c)),
675   (('umin', ('umin', ('umin', a, b), c), a), ('umin', ('umin', a, b), c)),
676   (('imin', ('imin', ('imin', a, b), c), a), ('imin', ('imin', a, b), c)),
677])
678
679for N in [8, 16, 32, 64]:
680    b2iN = 'b2i{0}'.format(N)
681    optimizations.extend([
682        (('ieq', (b2iN, 'a@1'), (b2iN, 'b@1')), ('ieq', a, b)),
683        (('ine', (b2iN, 'a@1'), (b2iN, 'b@1')), ('ine', a, b)),
684    ])
685
686for N in [16, 32, 64]:
687    b2fN = 'b2f{0}'.format(N)
688    optimizations.extend([
689        (('feq', (b2fN, 'a@1'), (b2fN, 'b@1')), ('ieq', a, b)),
690        (('fneu', (b2fN, 'a@1'), (b2fN, 'b@1')), ('ine', a, b)),
691    ])
692
693# Integer sizes
694for s in [8, 16, 32, 64]:
695    optimizations.extend([
696       (('iand@{}'.format(s), a, ('inot', ('ishr', a, s - 1))), ('imax', a, 0)),
697
698       # Simplify logic to detect sign of an integer.
699       (('ieq', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 0),            ('ige', a, 0)),
700       (('ine', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 1 << (s - 1)), ('ige', a, 0)),
701       (('ine', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 0),            ('ilt', a, 0)),
702       (('ieq', ('iand', 'a@{}'.format(s), 1 << (s - 1)), 1 << (s - 1)), ('ilt', a, 0)),
703       (('ine', ('ushr', 'a@{}'.format(s), s - 1), 0), ('ilt', a, 0)),
704       (('ieq', ('ushr', 'a@{}'.format(s), s - 1), 0), ('ige', a, 0)),
705       (('ieq', ('ushr', 'a@{}'.format(s), s - 1), 1), ('ilt', a, 0)),
706       (('ine', ('ushr', 'a@{}'.format(s), s - 1), 1), ('ige', a, 0)),
707       (('ine', ('ishr', 'a@{}'.format(s), s - 1), 0), ('ilt', a, 0)),
708       (('ieq', ('ishr', 'a@{}'.format(s), s - 1), 0), ('ige', a, 0)),
709       (('ieq', ('ishr', 'a@{}'.format(s), s - 1), -1), ('ilt', a, 0)),
710       (('ine', ('ishr', 'a@{}'.format(s), s - 1), -1), ('ige', a, 0)),
711    ])
712
713optimizations.extend([
714   (('fmin', a, ('fneg', a)), ('fneg', ('fabs', a))),
715   (('imin', a, ('ineg', a)), ('ineg', ('iabs', a))),
716   (('fmin', a, ('fneg', ('fabs', a))), ('fneg', ('fabs', a))),
717   (('imin', a, ('ineg', ('iabs', a))), ('ineg', ('iabs', a))),
718   (('~fmin', a, ('fabs', a)), a),
719   (('imin', a, ('iabs', a)), a),
720   (('~fmax', a, ('fneg', ('fabs', a))), a),
721   (('imax', a, ('ineg', ('iabs', a))), a),
722   (('fmax', a, ('fabs', a)), ('fabs', a)),
723   (('imax', a, ('iabs', a)), ('iabs', a)),
724   (('fmax', a, ('fneg', a)), ('fabs', a)),
725   (('imax', a, ('ineg', a)), ('iabs', a), '!options->lower_iabs'),
726   (('~fmax', ('fabs', a), 0.0), ('fabs', a)),
727   (('fmin', ('fmax', a, 0.0), 1.0), ('fsat', a), '!options->lower_fsat'),
728   # fmax(fmin(a, 1.0), 0.0) is inexact because it returns 1.0 on NaN, while
729   # fsat(a) returns 0.0.
730   (('~fmax', ('fmin', a, 1.0), 0.0), ('fsat', a), '!options->lower_fsat'),
731   # fmin(fmax(a, -1.0), 0.0) is inexact because it returns -1.0 on NaN, while
732   # fneg(fsat(fneg(a))) returns -0.0 on NaN.
733   (('~fmin', ('fmax', a, -1.0),  0.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
734   # fmax(fmin(a, 0.0), -1.0) is inexact because it returns 0.0 on NaN, while
735   # fneg(fsat(fneg(a))) returns -0.0 on NaN. This only matters if
736   # SignedZeroInfNanPreserve is set, but we don't currently have any way of
737   # representing this in the optimizations other than the usual ~.
738   (('~fmax', ('fmin', a,  0.0), -1.0), ('fneg', ('fsat', ('fneg', a))), '!options->lower_fsat'),
739   # fsat(fsign(NaN)) = fsat(0) = 0, and b2f(0 < NaN) = b2f(False) = 0. Mark
740   # the new comparison precise to prevent it being changed to 'a != 0'.
741   (('fsat', ('fsign', a)), ('b2f', ('!flt', 0.0, a))),
742   (('fsat', ('b2f', a)), ('b2f', a)),
743   (('fsat', a), ('fmin', ('fmax', a, 0.0), 1.0), 'options->lower_fsat'),
744   (('fsat', ('fsat', a)), ('fsat', a)),
745   (('fsat', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fsat', ('fadd', ('fneg', a), ('fneg', b))), '!options->lower_fsat'),
746   (('fsat', ('fneg(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fneg', a), b)), '!options->lower_fsat'),
747   (('fsat', ('fabs(is_used_once)', ('fmul(is_used_once)', a, b))), ('fsat', ('fmul', ('fabs', a), ('fabs', b))), '!options->lower_fsat'),
748   (('fmin', ('fmax', ('fmin', ('fmax', a, b), c), b), c), ('fmin', ('fmax', a, b), c)),
749   (('imin', ('imax', ('imin', ('imax', a, b), c), b), c), ('imin', ('imax', a, b), c)),
750   (('umin', ('umax', ('umin', ('umax', a, b), c), b), c), ('umin', ('umax', a, b), c)),
751   # Both the left and right patterns are "b" when isnan(a), so this is exact.
752   (('fmax', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmax', a, b))),
753   # The left pattern is 0.0 when isnan(a) (because fmin(fsat(NaN), b) ->
754   # fmin(0.0, b)) while the right one is "b", so this optimization is inexact.
755   (('~fmin', ('fsat', a), '#b(is_zero_to_one)'), ('fsat', ('fmin', a, b))),
756
757   # max(-min(b, a), b) -> max(abs(b), -a)
758   # min(-max(b, a), b) -> min(-abs(b), -a)
759   (('fmax', ('fneg', ('fmin', b, a)), b), ('fmax', ('fabs', b), ('fneg', a))),
760   (('fmin', ('fneg', ('fmax', b, a)), b), ('fmin', ('fneg', ('fabs', b)), ('fneg', a))),
761
762   # If a in [0,b] then b-a is also in [0,b].  Since b in [0,1], max(b-a, 0) =
763   # fsat(b-a).
764   #
765   # If a > b, then b-a < 0 and max(b-a, 0) = fsat(b-a) = 0
766   #
767   # This should be NaN safe since max(NaN, 0) = fsat(NaN) = 0.
768   (('fmax', ('fadd(is_used_once)', ('fneg', 'a(is_not_negative)'), '#b(is_zero_to_one)'), 0.0),
769    ('fsat', ('fadd', ('fneg',  a), b)), '!options->lower_fsat'),
770
771   (('extract_u8', ('imin', ('imax', a, 0), 0xff), 0), ('imin', ('imax', a, 0), 0xff)),
772
773   # The ior versions are exact because fmin and fmax will always pick a
774   # non-NaN value, if one exists.  Therefore (a < NaN) || (a < c) == a <
775   # fmax(NaN, c) == a < c.  Mark the fmin or fmax in the replacement as exact
776   # to prevent other optimizations from ruining the "NaN clensing" property
777   # of the fmin or fmax.
778   (('ior', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('!fmax', b, c))),
779   (('ior', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('!fmin', a, b), c)),
780   (('ior', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('!fmin', b, c))),
781   (('ior', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('!fmax', a, b), c)),
782   (('ior', ('flt', a, '#b'), ('flt', a, '#c')), ('flt', a, ('!fmax', b, c))),
783   (('ior', ('flt', '#a', c), ('flt', '#b', c)), ('flt', ('!fmin', a, b), c)),
784   (('ior', ('fge', a, '#b'), ('fge', a, '#c')), ('fge', a, ('!fmin', b, c))),
785   (('ior', ('fge', '#a', c), ('fge', '#b', c)), ('fge', ('!fmax', a, b), c)),
786   (('~iand', ('flt(is_used_once)', a, b), ('flt', a, c)), ('flt', a, ('fmin', b, c))),
787   (('~iand', ('flt(is_used_once)', a, c), ('flt', b, c)), ('flt', ('fmax', a, b), c)),
788   (('~iand', ('fge(is_used_once)', a, b), ('fge', a, c)), ('fge', a, ('fmax', b, c))),
789   (('~iand', ('fge(is_used_once)', a, c), ('fge', b, c)), ('fge', ('fmin', a, b), c)),
790   (('iand', ('flt', a, '#b(is_a_number)'), ('flt', a, '#c(is_a_number)')), ('flt', a, ('fmin', b, c))),
791   (('iand', ('flt', '#a(is_a_number)', c), ('flt', '#b(is_a_number)', c)), ('flt', ('fmax', a, b), c)),
792   (('iand', ('fge', a, '#b(is_a_number)'), ('fge', a, '#c(is_a_number)')), ('fge', a, ('fmax', b, c))),
793   (('iand', ('fge', '#a(is_a_number)', c), ('fge', '#b(is_a_number)', c)), ('fge', ('fmin', a, b), c)),
794
795   (('ior', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imax', b, c))),
796   (('ior', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imin', a, b), c)),
797   (('ior', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imin', b, c))),
798   (('ior', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imax', a, b), c)),
799   (('ior', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umax', b, c))),
800   (('ior', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umin', a, b), c)),
801   (('ior', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umin', b, c))),
802   (('ior', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umax', a, b), c)),
803   (('iand', ('ilt(is_used_once)', a, b), ('ilt', a, c)), ('ilt', a, ('imin', b, c))),
804   (('iand', ('ilt(is_used_once)', a, c), ('ilt', b, c)), ('ilt', ('imax', a, b), c)),
805   (('iand', ('ige(is_used_once)', a, b), ('ige', a, c)), ('ige', a, ('imax', b, c))),
806   (('iand', ('ige(is_used_once)', a, c), ('ige', b, c)), ('ige', ('imin', a, b), c)),
807   (('iand', ('ult(is_used_once)', a, b), ('ult', a, c)), ('ult', a, ('umin', b, c))),
808   (('iand', ('ult(is_used_once)', a, c), ('ult', b, c)), ('ult', ('umax', a, b), c)),
809   (('iand', ('uge(is_used_once)', a, b), ('uge', a, c)), ('uge', a, ('umax', b, c))),
810   (('iand', ('uge(is_used_once)', a, c), ('uge', b, c)), ('uge', ('umin', a, b), c)),
811
812   # A number of shaders contain a pattern like a.x < 0.0 || a.x > 1.0 || a.y
813   # < 0.0, || a.y > 1.0 || ...  These patterns rearrange and replace in a
814   # single step.  Doing just the replacement can lead to an infinite loop as
815   # the pattern is repeatedly applied to the result of the previous
816   # application of the pattern.
817   (('ior', ('ior(is_used_once)', ('flt(is_used_once)', a, c), d), ('flt', b, c)), ('ior', ('flt', ('!fmin', a, b), c), d)),
818   (('ior', ('ior(is_used_once)', ('flt', a, c), d), ('flt(is_used_once)', b, c)), ('ior', ('flt', ('!fmin', a, b), c), d)),
819   (('ior', ('ior(is_used_once)', ('flt(is_used_once)', a, b), d), ('flt', a, c)), ('ior', ('flt', a, ('!fmax', b, c)), d)),
820   (('ior', ('ior(is_used_once)', ('flt', a, b), d), ('flt(is_used_once)', a, c)), ('ior', ('flt', a, ('!fmax', b, c)), d)),
821
822   # This is how SpvOpFOrdNotEqual might be implemented.  If both values are
823   # numbers, then it can be replaced with fneu.
824   (('ior', ('flt', 'a(is_a_number)', 'b(is_a_number)'), ('flt', b, a)), ('fneu', a, b)),
825])
826
827# Float sizes
828for s in [16, 32, 64]:
829    optimizations.extend([
830       # These derive from the previous patterns with the application of b < 0 <=>
831       # 0 < -b.  The transformation should be applied if either comparison is
832       # used once as this ensures that the number of comparisons will not
833       # increase.  The sources to the ior and iand are not symmetric, so the
834       # rules have to be duplicated to get this behavior.
835       (('ior', ('flt(is_used_once)', 0.0, 'a@{}'.format(s)), ('flt', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
836       (('ior', ('flt', 0.0, 'a@{}'.format(s)), ('flt(is_used_once)', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmax', a, ('fneg', b)))),
837       (('ior', ('fge(is_used_once)', 0.0, 'a@{}'.format(s)), ('fge', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
838       (('ior', ('fge', 0.0, 'a@{}'.format(s)), ('fge(is_used_once)', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmin', a, ('fneg', b)))),
839       (('~iand', ('flt(is_used_once)', 0.0, 'a@{}'.format(s)), ('flt', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
840       (('~iand', ('flt', 0.0, 'a@{}'.format(s)), ('flt(is_used_once)', 'b@{}'.format(s), 0.0)), ('flt', 0.0, ('fmin', a, ('fneg', b)))),
841       (('~iand', ('fge(is_used_once)', 0.0, 'a@{}'.format(s)), ('fge', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
842       (('~iand', ('fge', 0.0, 'a@{}'.format(s)), ('fge(is_used_once)', 'b@{}'.format(s), 0.0)), ('fge', 0.0, ('fmax', a, ('fneg', b)))),
843
844       # The (i2f32, ...) part is an open-coded fsign.  When that is combined
845       # with the bcsel, it's basically copysign(1.0, a).  There are some
846       # behavior differences between this pattern and copysign w.r.t. ±0 and
847       # NaN.  copysign(x, y) blindly takes the sign bit from y and applies it
848       # to x, regardless of whether either or both values are NaN.
849       #
850       # If a != a: bcsel(False, 1.0, i2f(b2i(False) - b2i(False))) = 0,
851       #            int(NaN >= 0.0) - int(NaN < 0.0) = 0 - 0 = 0
852       # If a == ±0: bcsel(True, 1.0, ...) = 1.0,
853       #            int(±0.0 >= 0.0) - int(±0.0 < 0.0) = 1 - 0 = 1
854       #
855       # For all other values of 'a', the original and replacement behave as
856       # copysign.
857       #
858       # Marking the replacement comparisons as precise prevents any future
859       # optimizations from replacing either of the comparisons with the
860       # logical-not of the other.
861       #
862       # Note: Use b2i32 in the replacement because some platforms that
863       # support fp16 don't support int16.
864       (('bcsel@{}'.format(s), ('feq', a, 0.0), 1.0, ('i2f{}'.format(s), ('iadd', ('b2i{}'.format(s), ('flt', 0.0, 'a@{}'.format(s))), ('ineg', ('b2i{}'.format(s), ('flt', 'a@{}'.format(s), 0.0)))))),
865        ('i2f{}'.format(s), ('iadd', ('b2i32', ('!fge', a, 0.0)), ('ineg', ('b2i32', ('!flt', a, 0.0)))))),
866
867       (('bcsel', a, ('b2f(is_used_once)', 'b@{}'.format(s)), ('b2f', 'c@{}'.format(s))), ('b2f', ('bcsel', a, b, c))),
868
869       # The C spec says, "If the value of the integral part cannot be represented
870       # by the integer type, the behavior is undefined."  "Undefined" can mean
871       # "the conversion doesn't happen at all."
872       (('~i2f{}'.format(s), ('f2i', 'a@{}'.format(s))), ('ftrunc', a)),
873
874       # Ironically, mark these as imprecise because removing the conversions may
875       # preserve more precision than doing the conversions (e.g.,
876       # uint(float(0x81818181u)) == 0x81818200).
877       (('~f2i{}'.format(s), ('i2f', 'a@{}'.format(s))), a),
878       (('~f2i{}'.format(s), ('u2f', 'a@{}'.format(s))), a),
879       (('~f2u{}'.format(s), ('i2f', 'a@{}'.format(s))), a),
880       (('~f2u{}'.format(s), ('u2f', 'a@{}'.format(s))), a),
881
882       (('fadd', ('b2f{}'.format(s), ('flt', 0.0, 'a@{}'.format(s))), ('fneg', ('b2f{}'.format(s), ('flt', 'a@{}'.format(s), 0.0)))), ('fsign', a), '!options->lower_fsign'),
883       (('iadd', ('b2i{}'.format(s), ('flt', 0, 'a@{}'.format(s))), ('ineg', ('b2i{}'.format(s), ('flt', 'a@{}'.format(s), 0)))), ('f2i{}'.format(s), ('fsign', a)), '!options->lower_fsign'),
884    ])
885
886    # float? -> float? -> floatS ==> float? -> floatS
887    (('~f2f{}'.format(s), ('f2f', a)), ('f2f{}'.format(s), a)),
888
889    # int? -> float? -> floatS ==> int? -> floatS
890    (('~f2f{}'.format(s), ('u2f', a)), ('u2f{}'.format(s), a)),
891    (('~f2f{}'.format(s), ('i2f', a)), ('i2f{}'.format(s), a)),
892
893    # float? -> float? -> intS ==> float? -> intS
894    (('~f2u{}'.format(s), ('f2f', a)), ('f2u{}'.format(s), a)),
895    (('~f2i{}'.format(s), ('f2f', a)), ('f2i{}'.format(s), a)),
896
897    for B in [32, 64]:
898        if s < B:
899            optimizations.extend([
900               # S = smaller, B = bigger
901               # typeS -> typeB -> typeS ==> identity
902               (('f2f{}'.format(s), ('f2f{}'.format(B), 'a@{}'.format(s))), a),
903               (('i2i{}'.format(s), ('i2i{}'.format(B), 'a@{}'.format(s))), a),
904               (('u2u{}'.format(s), ('u2u{}'.format(B), 'a@{}'.format(s))), a),
905
906               # bool1 -> typeB -> typeS ==> bool1 -> typeS
907               (('f2f{}'.format(s), ('b2f{}'.format(B), 'a@1')), ('b2f{}'.format(s), a)),
908               (('i2i{}'.format(s), ('b2i{}'.format(B), 'a@1')), ('b2i{}'.format(s), a)),
909               (('u2u{}'.format(s), ('b2i{}'.format(B), 'a@1')), ('b2i{}'.format(s), a)),
910
911               # floatS -> floatB -> intB ==> floatS -> intB
912               (('f2u{}'.format(B), ('f2f{}'.format(B), 'a@{}'.format(s))), ('f2u{}'.format(B), a)),
913               (('f2i{}'.format(B), ('f2f{}'.format(B), 'a@{}'.format(s))), ('f2i{}'.format(B), a)),
914
915               # int? -> floatB -> floatS ==> int? -> floatS
916               (('f2f{}'.format(s), ('u2f{}'.format(B), a)), ('u2f{}'.format(s), a)),
917               (('f2f{}'.format(s), ('i2f{}'.format(B), a)), ('i2f{}'.format(s), a)),
918
919               # intS -> intB -> floatB ==> intS -> floatB
920               (('u2f{}'.format(B), ('u2u{}'.format(B), 'a@{}'.format(s))), ('u2f{}'.format(B), a)),
921               (('i2f{}'.format(B), ('i2i{}'.format(B), 'a@{}'.format(s))), ('i2f{}'.format(B), a)),
922            ])
923
924# mediump variants of the above
925optimizations.extend([
926    # int32 -> float32 -> float16 ==> int32 -> float16
927    (('f2fmp', ('u2f32', 'a@32')), ('u2fmp', a)),
928    (('f2fmp', ('i2f32', 'a@32')), ('i2fmp', a)),
929
930    # float32 -> float16 -> int16 ==> float32 -> int16
931    (('f2u16', ('f2fmp', 'a@32')), ('f2u16', a)),
932    (('f2i16', ('f2fmp', 'a@32')), ('f2i16', a)),
933
934    # float32 -> int32 -> int16 ==> float32 -> int16
935    (('i2imp', ('f2u32', 'a@32')), ('f2ump', a)),
936    (('i2imp', ('f2i32', 'a@32')), ('f2imp', a)),
937
938    # int32 -> int16 -> float16 ==> int32 -> float16
939    (('u2f16', ('i2imp', 'a@32')), ('u2f16', a)),
940    (('i2f16', ('i2imp', 'a@32')), ('i2f16', a)),
941])
942
943# Clean up junk left from 8-bit integer to 16-bit integer lowering.
944optimizations.extend([
945    # The u2u16(u2u8(X)) just masks off the upper 8-bits of X.  This can be
946    # accomplished by mask the upper 8-bit of the immediate operand to the
947    # iand instruction.  Often times, both patterns will end up being applied
948    # to the same original expression tree.
949    (('iand', ('u2u16', ('u2u8', 'a@16')), '#b'),               ('iand', a, ('iand', b, 0xff))),
950    (('u2u16', ('u2u8(is_used_once)', ('iand', 'a@16', '#b'))), ('iand', a, ('iand', b, 0xff))),
951])
952
953for op in ['iand', 'ior', 'ixor']:
954    optimizations.extend([
955        (('u2u8', (op, ('u2u16', ('u2u8', 'a@16')), ('u2u16', ('u2u8', 'b@16')))), ('u2u8', (op, a, b))),
956        (('u2u8', (op, ('u2u16', ('u2u8', 'a@32')), ('u2u16', ('u2u8', 'b@32')))), ('u2u8', (op, a, b))),
957
958        # Undistribute extract from a logic op
959        ((op, ('extract_i8', a, '#b'), ('extract_i8', c, b)), ('extract_i8', (op, a, c), b)),
960        ((op, ('extract_u8', a, '#b'), ('extract_u8', c, b)), ('extract_u8', (op, a, c), b)),
961        ((op, ('extract_i16', a, '#b'), ('extract_i16', c, b)), ('extract_i16', (op, a, c), b)),
962        ((op, ('extract_u16', a, '#b'), ('extract_u16', c, b)), ('extract_u16', (op, a, c), b)),
963
964        # Undistribute shifts from a logic op
965        ((op, ('ushr(is_used_once)', a, '#b'), ('ushr', c, b)), ('ushr', (op, a, c), b)),
966        ((op, ('ishr(is_used_once)', a, '#b'), ('ishr', c, b)), ('ishr', (op, a, c), b)),
967        ((op, ('ishl(is_used_once)', a, '#b'), ('ishl', c, b)), ('ishl', (op, a, c), b)),
968    ])
969
970# Integer sizes
971for s in [8, 16, 32, 64]:
972    optimizations.extend([
973       (('iand', ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('ior', a, b), 0), 'options->lower_umax'),
974       (('ior',  ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('ior', a, b), 0), 'options->lower_umin'),
975       (('iand', ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umax', a, b), 0), '!options->lower_umax'),
976       (('ior',  ('ieq', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umin', a, b), 0), '!options->lower_umin'),
977       (('iand', ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umin', a, b), 0), '!options->lower_umin'),
978       (('ior',  ('ine', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umax', a, b), 0), '!options->lower_umax'),
979
980       # True/False are ~0 and 0 in NIR.  b2i of True is 1, and -1 is ~0 (True).
981       (('ineg', ('b2i{}'.format(s), 'a@{}'.format(s))), a),
982
983       # SM5 32-bit shifts are defined to use the 5 least significant bits (or 4 bits for 16 bits)
984       (('ishl', 'a@{}'.format(s), ('iand', s - 1, b)), ('ishl', a, b)),
985       (('ishr', 'a@{}'.format(s), ('iand', s - 1, b)), ('ishr', a, b)),
986       (('ushr', 'a@{}'.format(s), ('iand', s - 1, b)), ('ushr', a, b)),
987    ])
988
989optimizations.extend([
990   # Common pattern like 'if (i == 0 || i == 1 || ...)'
991   (('ior', ('ieq', a, 0), ('ieq', a, 1)), ('uge', 1, a)),
992   (('ior', ('uge', 1, a), ('ieq', a, 2)), ('uge', 2, a)),
993   (('ior', ('uge', 2, a), ('ieq', a, 3)), ('uge', 3, a)),
994
995   (('ior', a, ('ieq', a, False)), True),
996   (('ior', a, ('inot', a)), -1),
997
998   (('ine', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))), ('ine', a, b)),
999   (('b2i', ('ine', 'a@1', 'b@1')), ('b2i', ('ixor', a, b))),
1000
1001   # This pattern occurs coutresy of __flt64_nonnan in the soft-fp64 code.
1002   # The first part of the iand comes from the !__feq64_nonnan.
1003   #
1004   # The second pattern is a reformulation of the first based on the relation
1005   # (a == 0 || y == 0) <=> umin(a, y) == 0, where b in the first equation
1006   # happens to be y == 0.
1007   (('iand', ('inot', ('iand', ('ior', ('ieq', a, 0),  b), c)), ('ilt', a, 0)),
1008    ('iand', ('inot', ('iand',                         b , c)), ('ilt', a, 0))),
1009   (('iand', ('inot', ('iand', ('ieq', ('umin', a, b), 0), c)), ('ilt', a, 0)),
1010    ('iand', ('inot', ('iand', ('ieq',             b , 0), c)), ('ilt', a, 0))),
1011
1012   # These patterns can result when (a < b || a < c) => (a < min(b, c))
1013   # transformations occur before constant propagation and loop-unrolling.
1014   #
1015   # The flt versions are exact.  If isnan(a), the original pattern is
1016   # trivially false, and the replacements are false too.  If isnan(b):
1017   #
1018   #    a < fmax(NaN, a) => a < a => false vs a < NaN => false
1019   (('flt', a, ('fmax', b, a)), ('flt', a, b)),
1020   (('flt', ('fmin', a, b), a), ('flt', b, a)),
1021   (('~fge', a, ('fmin', b, a)), True),
1022   (('~fge', ('fmax', a, b), a), True),
1023   (('flt', a, ('fmin', b, a)), False),
1024   (('flt', ('fmax', a, b), a), False),
1025   (('~fge', a, ('fmax', b, a)), ('fge', a, b)),
1026   (('~fge', ('fmin', a, b), a), ('fge', b, a)),
1027
1028   (('ilt', a, ('imax', b, a)), ('ilt', a, b)),
1029   (('ilt', ('imin', a, b), a), ('ilt', b, a)),
1030   (('ige', a, ('imin', b, a)), True),
1031   (('ige', ('imax', a, b), a), True),
1032   (('ult', a, ('umax', b, a)), ('ult', a, b)),
1033   (('ult', ('umin', a, b), a), ('ult', b, a)),
1034   (('uge', a, ('umin', b, a)), True),
1035   (('uge', ('umax', a, b), a), True),
1036   (('ilt', a, ('imin', b, a)), False),
1037   (('ilt', ('imax', a, b), a), False),
1038   (('ige', a, ('imax', b, a)), ('ige', a, b)),
1039   (('ige', ('imin', a, b), a), ('ige', b, a)),
1040   (('ult', a, ('umin', b, a)), False),
1041   (('ult', ('umax', a, b), a), False),
1042   (('uge', a, ('umax', b, a)), ('uge', a, b)),
1043   (('uge', ('umin', a, b), a), ('uge', b, a)),
1044   (('ult', a, ('iand', b, a)), False),
1045   (('ult', ('ior', a, b), a), False),
1046   (('uge', a, ('iand', b, a)), True),
1047   (('uge', ('ior', a, b), a), True),
1048
1049   (('ilt', '#a', ('imax', '#b', c)), ('ior', ('ilt', a, b), ('ilt', a, c))),
1050   (('ilt', ('imin', '#a', b), '#c'), ('ior', ('ilt', a, c), ('ilt', b, c))),
1051   (('ige', '#a', ('imin', '#b', c)), ('ior', ('ige', a, b), ('ige', a, c))),
1052   (('ige', ('imax', '#a', b), '#c'), ('ior', ('ige', a, c), ('ige', b, c))),
1053   (('ult', '#a', ('umax', '#b', c)), ('ior', ('ult', a, b), ('ult', a, c))),
1054   (('ult', ('umin', '#a', b), '#c'), ('ior', ('ult', a, c), ('ult', b, c))),
1055   (('uge', '#a', ('umin', '#b', c)), ('ior', ('uge', a, b), ('uge', a, c))),
1056   (('uge', ('umax', '#a', b), '#c'), ('ior', ('uge', a, c), ('uge', b, c))),
1057   (('ilt', '#a', ('imin', '#b', c)), ('iand', ('ilt', a, b), ('ilt', a, c))),
1058   (('ilt', ('imax', '#a', b), '#c'), ('iand', ('ilt', a, c), ('ilt', b, c))),
1059   (('ige', '#a', ('imax', '#b', c)), ('iand', ('ige', a, b), ('ige', a, c))),
1060   (('ige', ('imin', '#a', b), '#c'), ('iand', ('ige', a, c), ('ige', b, c))),
1061   (('ult', '#a', ('umin', '#b', c)), ('iand', ('ult', a, b), ('ult', a, c))),
1062   (('ult', ('umax', '#a', b), '#c'), ('iand', ('ult', a, c), ('ult', b, c))),
1063   (('uge', '#a', ('umax', '#b', c)), ('iand', ('uge', a, b), ('uge', a, c))),
1064   (('uge', ('umin', '#a', b), '#c'), ('iand', ('uge', a, c), ('uge', b, c))),
1065
1066   # Thanks to sign extension, the ishr(a, b) is negative if and only if a is
1067   # negative.
1068   (('bcsel', ('ilt', a, 0), ('ineg', ('ishr', a, b)), ('ishr', a, b)),
1069    ('iabs', ('ishr', a, b))),
1070   (('iabs', ('ishr', ('iabs', a), b)), ('ishr', ('iabs', a), b)),
1071
1072   (('fabs', ('slt', a, b)), ('slt', a, b)),
1073   (('fabs', ('sge', a, b)), ('sge', a, b)),
1074   (('fabs', ('seq', a, b)), ('seq', a, b)),
1075   (('fabs', ('sne', a, b)), ('sne', a, b)),
1076   (('slt', a, b), ('b2f', ('flt', a, b)), 'options->lower_scmp'),
1077   (('sge', a, b), ('b2f', ('fge', a, b)), 'options->lower_scmp'),
1078   (('seq', a, b), ('b2f', ('feq', a, b)), 'options->lower_scmp'),
1079   (('sne', a, b), ('b2f', ('fneu', a, b)), 'options->lower_scmp'),
1080   (('seq', ('seq', a, b), 1.0), ('seq', a, b)),
1081   (('seq', ('sne', a, b), 1.0), ('sne', a, b)),
1082   (('seq', ('slt', a, b), 1.0), ('slt', a, b)),
1083   (('seq', ('sge', a, b), 1.0), ('sge', a, b)),
1084   (('sne', ('seq', a, b), 0.0), ('seq', a, b)),
1085   (('sne', ('sne', a, b), 0.0), ('sne', a, b)),
1086   (('sne', ('slt', a, b), 0.0), ('slt', a, b)),
1087   (('sne', ('sge', a, b), 0.0), ('sge', a, b)),
1088   (('seq', ('seq', a, b), 0.0), ('sne', a, b)),
1089   (('seq', ('sne', a, b), 0.0), ('seq', a, b)),
1090   (('seq', ('slt', a, b), 0.0), ('sge', a, b)),
1091   (('seq', ('sge', a, b), 0.0), ('slt', a, b)),
1092   (('sne', ('seq', a, b), 1.0), ('sne', a, b)),
1093   (('sne', ('sne', a, b), 1.0), ('seq', a, b)),
1094   (('sne', ('slt', a, b), 1.0), ('sge', a, b)),
1095   (('sne', ('sge', a, b), 1.0), ('slt', a, b)),
1096   (('fall_equal2', a, b), ('fmin', ('seq', 'a.x', 'b.x'), ('seq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1097   (('fall_equal3', a, b), ('seq', ('fany_nequal3', a, b), 0.0), 'options->lower_vector_cmp'),
1098   (('fall_equal4', a, b), ('seq', ('fany_nequal4', a, b), 0.0), 'options->lower_vector_cmp'),
1099   (('fany_nequal2', a, b), ('fmax', ('sne', 'a.x', 'b.x'), ('sne', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1100   (('fany_nequal3', a, b), ('fsat', ('fdot3', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
1101   (('fany_nequal4', a, b), ('fsat', ('fdot4', ('sne', a, b), ('sne', a, b))), 'options->lower_vector_cmp'),
1102
1103   (('ball_iequal2', a, b), ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1104   (('ball_iequal3', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('ieq', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
1105   (('ball_iequal4', a, b), ('iand', ('iand', ('ieq', 'a.x', 'b.x'), ('ieq', 'a.y', 'b.y')), ('iand', ('ieq', 'a.z', 'b.z'), ('ieq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
1106
1107   (('bany_inequal2', a, b), ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1108   (('bany_inequal3', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ine', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
1109   (('bany_inequal4', a, b), ('ior', ('ior', ('ine', 'a.x', 'b.x'), ('ine', 'a.y', 'b.y')), ('ior', ('ine', 'a.z', 'b.z'), ('ine', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
1110
1111   (('ball_fequal2', a, b), ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1112   (('ball_fequal3', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('feq', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
1113   (('ball_fequal4', a, b), ('iand', ('iand', ('feq', 'a.x', 'b.x'), ('feq', 'a.y', 'b.y')), ('iand', ('feq', 'a.z', 'b.z'), ('feq', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
1114
1115   (('bany_fnequal2', a, b), ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), 'options->lower_vector_cmp'),
1116   (('bany_fnequal3', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('fneu', 'a.z', 'b.z')), 'options->lower_vector_cmp'),
1117   (('bany_fnequal4', a, b), ('ior', ('ior', ('fneu', 'a.x', 'b.x'), ('fneu', 'a.y', 'b.y')), ('ior', ('fneu', 'a.z', 'b.z'), ('fneu', 'a.w', 'b.w'))), 'options->lower_vector_cmp'),
1118
1119   (('fneu', ('fneg', a), a), ('fneu', a, 0.0)),
1120   (('feq', ('fneg', a), a), ('feq', a, 0.0)),
1121   # Emulating booleans
1122   (('imul', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
1123   (('iand', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('iand', a, b))),
1124   (('ior', ('b2i', 'a@1'), ('b2i', 'b@1')), ('b2i', ('ior', a, b))),
1125   (('fmul', ('b2f', 'a@1'), ('b2f', 'b@1')), ('b2f', ('iand', a, b))),
1126   (('fsat', ('fadd', ('b2f', 'a@1'), ('b2f', 'b@1'))), ('b2f', ('ior', a, b))),
1127   (('iand', 'a@bool16', 1.0), ('b2f', a)),
1128   (('iand', 'a@bool32', 1.0), ('b2f', a)),
1129   (('flt', ('fneg', ('b2f', 'a@1')), 0), a), # Generated by TGSI KILL_IF.
1130   # Comparison with the same args.  Note that these are only done for the
1131   # float versions when the source must be a number.  Generally, NaN cmp NaN
1132   # produces the opposite result of X cmp X.  flt is the outlier.  NaN < NaN
1133   # is false, and, for any number X, X < X is also false.
1134   (('ilt', a, a), False),
1135   (('ige', a, a), True),
1136   (('ieq', a, a), True),
1137   (('ine', a, a), False),
1138   (('ult', a, a), False),
1139   (('uge', a, a), True),
1140   (('flt', a, a), False),
1141   (('fge', 'a(is_a_number)', a), True),
1142   (('feq', 'a(is_a_number)', a), True),
1143   (('fneu', 'a(is_a_number)', a), False),
1144   # Logical and bit operations
1145   (('iand', a, a), a),
1146   (('iand', a, ~0), a),
1147   (('iand', a, 0), 0),
1148   (('ior', a, a), a),
1149   (('ior', a, 0), a),
1150   (('ior', a, True), True),
1151   (('ixor', a, a), 0),
1152   (('ixor', a, 0), a),
1153   (('inot', ('inot', a)), a),
1154   (('ior', ('iand', a, b), b), b),
1155   (('ior', ('ior', a, b), b), ('ior', a, b)),
1156   (('iand', ('ior', a, b), b), b),
1157   (('iand', ('iand', a, b), b), ('iand', a, b)),
1158   # DeMorgan's Laws
1159   (('iand', ('inot', a), ('inot', b)), ('inot', ('ior',  a, b))),
1160   (('ior',  ('inot', a), ('inot', b)), ('inot', ('iand', a, b))),
1161   # Shift optimizations
1162   (('ishl', 0, a), 0),
1163   (('ishl', a, 0), a),
1164   (('ishr', 0, a), 0),
1165   (('ishr', a, 0), a),
1166   (('ushr', 0, a), 0),
1167   (('ushr', a, 0), a),
1168   (('ior', ('ishl@16', a, b), ('ushr@16', a, ('iadd', 16, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
1169   (('ior', ('ishl@16', a, b), ('ushr@16', a, ('isub', 16, b))), ('urol', a, b), '!options->lower_rotate'),
1170   (('ior', ('ishl@32', a, b), ('ushr@32', a, ('iadd', 32, ('ineg', b)))), ('urol', a, b), '!options->lower_rotate'),
1171   (('ior', ('ishl@32', a, b), ('ushr@32', a, ('isub', 32, b))), ('urol', a, b), '!options->lower_rotate'),
1172   (('ior', ('ushr@16', a, b), ('ishl@16', a, ('iadd', 16, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
1173   (('ior', ('ushr@16', a, b), ('ishl@16', a, ('isub', 16, b))), ('uror', a, b), '!options->lower_rotate'),
1174   (('ior', ('ushr@32', a, b), ('ishl@32', a, ('iadd', 32, ('ineg', b)))), ('uror', a, b), '!options->lower_rotate'),
1175   (('ior', ('ushr@32', a, b), ('ishl@32', a, ('isub', 32, b))), ('uror', a, b), '!options->lower_rotate'),
1176   (('urol@16', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 16, b))), 'options->lower_rotate'),
1177   (('urol@32', a, b), ('ior', ('ishl', a, b), ('ushr', a, ('isub', 32, b))), 'options->lower_rotate'),
1178   (('uror@16', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 16, b))), 'options->lower_rotate'),
1179   (('uror@32', a, b), ('ior', ('ushr', a, b), ('ishl', a, ('isub', 32, b))), 'options->lower_rotate'),
1180   # Exponential/logarithmic identities
1181   (('~fexp2', ('flog2', a)), a), # 2^lg2(a) = a
1182   (('~flog2', ('fexp2', a)), a), # lg2(2^a) = a
1183   (('fpow', a, b), ('fexp2', ('fmul', ('flog2', a), b)), 'options->lower_fpow'), # a^b = 2^(lg2(a)*b)
1184   (('~fexp2', ('fmul', ('flog2', a), b)), ('fpow', a, b), '!options->lower_fpow'), # 2^(lg2(a)*b) = a^b
1185   (('~fexp2', ('fadd', ('fmul', ('flog2', a), b), ('fmul', ('flog2', c), d))),
1186    ('~fmul', ('fpow', a, b), ('fpow', c, d)), '!options->lower_fpow'), # 2^(lg2(a) * b + lg2(c) + d) = a^b * c^d
1187   (('~fexp2', ('fmul', ('flog2', a), 0.5)), ('fsqrt', a)),
1188   (('~fexp2', ('fmul', ('flog2', a), 2.0)), ('fmul', a, a)),
1189   (('~fexp2', ('fmul', ('flog2', a), 4.0)), ('fmul', ('fmul', a, a), ('fmul', a, a))),
1190   (('~fpow', a, 1.0), a),
1191   (('~fpow', a, 2.0), ('fmul', a, a)),
1192   (('~fpow', a, 4.0), ('fmul', ('fmul', a, a), ('fmul', a, a))),
1193   (('~fpow', 2.0, a), ('fexp2', a)),
1194   (('~fpow', ('fpow', a, 2.2), 0.454545), a),
1195   (('~fpow', ('fabs', ('fpow', a, 2.2)), 0.454545), ('fabs', a)),
1196   (('~fsqrt', ('fexp2', a)), ('fexp2', ('fmul', 0.5, a))),
1197   (('~frcp', ('fexp2', a)), ('fexp2', ('fneg', a))),
1198   (('~frsq', ('fexp2', a)), ('fexp2', ('fmul', -0.5, a))),
1199   (('~flog2', ('fsqrt', a)), ('fmul', 0.5, ('flog2', a))),
1200   (('~flog2', ('frcp', a)), ('fneg', ('flog2', a))),
1201   (('~flog2', ('frsq', a)), ('fmul', -0.5, ('flog2', a))),
1202   (('~flog2', ('fpow', a, b)), ('fmul', b, ('flog2', a))),
1203   (('~fmul', ('fexp2(is_used_once)', a), ('fexp2(is_used_once)', b)), ('fexp2', ('fadd', a, b))),
1204   (('bcsel', ('flt', a, 0.0), 0.0, ('fsqrt', a)), ('fsqrt', ('fmax', a, 0.0))),
1205   (('~fmul', ('fsqrt', a), ('fsqrt', a)), ('fabs',a)),
1206   # Division and reciprocal
1207   (('~fdiv', 1.0, a), ('frcp', a)),
1208   (('fdiv', a, b), ('fmul', a, ('frcp', b)), 'options->lower_fdiv'),
1209   (('~frcp', ('frcp', a)), a),
1210   (('~frcp', ('fsqrt', a)), ('frsq', a)),
1211   (('fsqrt', a), ('frcp', ('frsq', a)), 'options->lower_fsqrt'),
1212   (('~frcp', ('frsq', a)), ('fsqrt', a), '!options->lower_fsqrt'),
1213   # Trig
1214   (('fsin', a), lowered_sincos(0.5), 'options->lower_sincos'),
1215   (('fcos', a), lowered_sincos(0.75), 'options->lower_sincos'),
1216   # Boolean simplifications
1217   (('i2b16(is_used_by_if)', a), ('ine16', a, 0)),
1218   (('i2b32(is_used_by_if)', a), ('ine32', a, 0)),
1219   (('i2b1(is_used_by_if)', a), ('ine', a, 0)),
1220   (('ieq', a, True), a),
1221   (('ine(is_not_used_by_if)', a, True), ('inot', a)),
1222   (('ine', a, False), a),
1223   (('ieq(is_not_used_by_if)', a, False), ('inot', 'a')),
1224   (('bcsel', a, True, False), a),
1225   (('bcsel', a, False, True), ('inot', a)),
1226   (('bcsel', True, b, c), b),
1227   (('bcsel', False, b, c), c),
1228
1229   (('bcsel@16', a, 1.0, 0.0), ('b2f', a)),
1230   (('bcsel@16', a, 0.0, 1.0), ('b2f', ('inot', a))),
1231   (('bcsel@16', a, -1.0, -0.0), ('fneg', ('b2f', a))),
1232   (('bcsel@16', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
1233   (('bcsel@32', a, 1.0, 0.0), ('b2f', a)),
1234   (('bcsel@32', a, 0.0, 1.0), ('b2f', ('inot', a))),
1235   (('bcsel@32', a, -1.0, -0.0), ('fneg', ('b2f', a))),
1236   (('bcsel@32', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a)))),
1237   (('bcsel@64', a, 1.0, 0.0), ('b2f', a), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'),
1238   (('bcsel@64', a, 0.0, 1.0), ('b2f', ('inot', a)), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'),
1239   (('bcsel@64', a, -1.0, -0.0), ('fneg', ('b2f', a)), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'),
1240   (('bcsel@64', a, -0.0, -1.0), ('fneg', ('b2f', ('inot', a))), '!(options->lower_doubles_options & nir_lower_fp64_full_software)'),
1241
1242   (('bcsel', a, b, b), b),
1243   (('~fcsel', a, b, b), b),
1244
1245   # D3D Boolean emulation
1246   (('bcsel', a, -1, 0), ('ineg', ('b2i', 'a@1'))),
1247   (('bcsel', a, 0, -1), ('ineg', ('b2i', ('inot', a)))),
1248   (('bcsel', a, 1, 0), ('b2i', 'a@1')),
1249   (('bcsel', a, 0, 1), ('b2i', ('inot', a))),
1250   (('iand', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
1251    ('ineg', ('b2i', ('iand', a, b)))),
1252   (('ior', ('ineg', ('b2i','a@1')), ('ineg', ('b2i', 'b@1'))),
1253    ('ineg', ('b2i', ('ior', a, b)))),
1254   (('ieq', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
1255   (('ieq', ('ineg', ('b2i', 'a@1')), -1), a),
1256   (('ine', ('ineg', ('b2i', 'a@1')), 0), a),
1257   (('ine', ('ineg', ('b2i', 'a@1')), -1), ('inot', a)),
1258   (('ige', ('ineg', ('b2i', 'a@1')), 0), ('inot', a)),
1259   (('ilt', ('ineg', ('b2i', 'a@1')), 0), a),
1260   (('ult', 0, ('ineg', ('b2i', 'a@1'))), a),
1261   (('iand', ('ineg', ('b2i', a)), 1.0), ('b2f', a)),
1262   (('iand', ('ineg', ('b2i', a)), 1),   ('b2i', a)),
1263
1264   # With D3D booleans, imax is AND and umax is OR
1265   (('imax', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
1266    ('ineg', ('b2i', ('iand', a, b)))),
1267   (('imin', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
1268    ('ineg', ('b2i', ('ior', a, b)))),
1269   (('umax', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
1270    ('ineg', ('b2i', ('ior', a, b)))),
1271   (('umin', ('ineg', ('b2i', 'a@1')), ('ineg', ('b2i', 'b@1'))),
1272    ('ineg', ('b2i', ('iand', a, b)))),
1273
1274   # Conversions
1275   (('i2b16', ('b2i', 'a@16')), a),
1276   (('i2b32', ('b2i', 'a@32')), a),
1277   (('f2i', ('ftrunc', a)), ('f2i', a)),
1278   (('f2u', ('ftrunc', a)), ('f2u', a)),
1279   (('i2b', ('ineg', a)), ('i2b', a)),
1280   (('i2b', ('iabs', a)), ('i2b', a)),
1281   (('inot', ('f2b1', a)), ('feq', a, 0.0)),
1282
1283   # Conversions from 16 bits to 32 bits and back can always be removed
1284   (('f2fmp', ('f2f32', 'a@16')), a),
1285   (('i2imp', ('i2i32', 'a@16')), a),
1286   (('i2imp', ('u2u32', 'a@16')), a),
1287
1288   (('f2imp', ('f2f32', 'a@16')), ('f2i16', a)),
1289   (('f2ump', ('f2f32', 'a@16')), ('f2u16', a)),
1290   (('i2fmp', ('i2i32', 'a@16')), ('i2f16', a)),
1291   (('u2fmp', ('u2u32', 'a@16')), ('u2f16', a)),
1292
1293   (('f2fmp', ('b2f32', 'a@1')), ('b2f16', a)),
1294   (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
1295   (('i2imp', ('b2i32', 'a@1')), ('b2i16', a)),
1296
1297   (('f2imp', ('b2f32', 'a@1')), ('b2i16', a)),
1298   (('f2ump', ('b2f32', 'a@1')), ('b2i16', a)),
1299   (('i2fmp', ('b2i32', 'a@1')), ('b2f16', a)),
1300   (('u2fmp', ('b2i32', 'a@1')), ('b2f16', a)),
1301
1302   # Conversions to 16 bits would be lossy so they should only be removed if
1303   # the instruction was generated by the precision lowering pass.
1304   (('f2f32', ('f2fmp', 'a@32')), a),
1305   (('i2i32', ('i2imp', 'a@32')), a),
1306   (('u2u32', ('i2imp', 'a@32')), a),
1307
1308   (('i2i32', ('f2imp', 'a@32')), ('f2i32', a)),
1309   (('u2u32', ('f2ump', 'a@32')), ('f2u32', a)),
1310   (('f2f32', ('i2fmp', 'a@32')), ('i2f32', a)),
1311   (('f2f32', ('u2fmp', 'a@32')), ('u2f32', a)),
1312
1313   # Conversions from float32 to float64 and back can be removed as long as
1314   # it doesn't need to be precise, since the conversion may e.g. flush denorms
1315   (('~f2f32', ('f2f64', 'a@32')), a),
1316
1317   (('ffloor', 'a(is_integral)'), a),
1318   (('fceil', 'a(is_integral)'), a),
1319   (('ftrunc', 'a(is_integral)'), a),
1320   # fract(x) = x - floor(x), so fract(NaN) = NaN
1321   (('~ffract', 'a(is_integral)'), 0.0),
1322   (('fabs', 'a(is_not_negative)'), a),
1323   (('iabs', 'a(is_not_negative)'), a),
1324   (('fsat', 'a(is_not_positive)'), 0.0),
1325
1326   (('~fmin', 'a(is_not_negative)', 1.0), ('fsat', a), '!options->lower_fsat'),
1327
1328   # The result of the multiply must be in [-1, 0], so the result of the ffma
1329   # must be in [0, 1].
1330   (('flt', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), False),
1331   (('flt', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), False),
1332   (('fmax', ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0), 0.0), ('fadd', ('fmul', ('fsat', a), ('fneg', ('fsat', a))), 1.0)),
1333   (('fmax', ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0), 0.0), ('fadd', ('fneg', ('fmul', ('fsat', a), ('fsat', a))), 1.0)),
1334
1335   (('fneu', 'a(is_not_zero)', 0.0), True),
1336   (('feq', 'a(is_not_zero)', 0.0), False),
1337
1338   # In this chart, + means value > 0 and - means value < 0.
1339   #
1340   # + >= + -> unknown  0 >= + -> false    - >= + -> false
1341   # + >= 0 -> true     0 >= 0 -> true     - >= 0 -> false
1342   # + >= - -> true     0 >= - -> true     - >= - -> unknown
1343   #
1344   # Using grouping conceptually similar to a Karnaugh map...
1345   #
1346   # (+ >= 0, + >= -, 0 >= 0, 0 >= -) == (is_not_negative >= is_not_positive) -> true
1347   # (0 >= +, - >= +) == (is_not_positive >= gt_zero) -> false
1348   # (- >= +, - >= 0) == (lt_zero >= is_not_negative) -> false
1349   #
1350   # The flt / ilt cases just invert the expected result.
1351   #
1352   # The results expecting true, must be marked imprecise.  The results
1353   # expecting false are fine because NaN compared >= or < anything is false.
1354
1355   (('fge', 'a(is_a_number_not_negative)', 'b(is_a_number_not_positive)'), True),
1356   (('fge', 'a(is_not_positive)',          'b(is_gt_zero)'),               False),
1357   (('fge', 'a(is_lt_zero)',               'b(is_not_negative)'),          False),
1358
1359   (('flt', 'a(is_not_negative)',          'b(is_not_positive)'),          False),
1360   (('flt', 'a(is_a_number_not_positive)', 'b(is_a_number_gt_zero)'),      True),
1361   (('flt', 'a(is_a_number_lt_zero)',      'b(is_a_number_not_negative)'), True),
1362
1363   (('ine', 'a(is_not_zero)', 0), True),
1364   (('ieq', 'a(is_not_zero)', 0), False),
1365
1366   (('ige', 'a(is_not_negative)', 'b(is_not_positive)'), True),
1367   (('ige', 'a(is_not_positive)', 'b(is_gt_zero)'),      False),
1368   (('ige', 'a(is_lt_zero)',      'b(is_not_negative)'), False),
1369
1370   (('ilt', 'a(is_not_negative)', 'b(is_not_positive)'), False),
1371   (('ilt', 'a(is_not_positive)', 'b(is_gt_zero)'),      True),
1372   (('ilt', 'a(is_lt_zero)',      'b(is_not_negative)'), True),
1373
1374   (('ult', 0, 'a(is_gt_zero)'), True),
1375   (('ult', a, 0), False),
1376
1377   # Packing and then unpacking does nothing
1378   (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a),
1379   (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b),
1380   (('unpack_64_2x32', ('pack_64_2x32_split', a, b)), ('vec2', a, b)),
1381   (('unpack_64_2x32', ('pack_64_2x32', a)), a),
1382   (('unpack_double_2x32_dxil', ('pack_double_2x32_dxil', a)), a),
1383   (('pack_64_2x32_split', ('unpack_64_2x32_split_x', a),
1384                           ('unpack_64_2x32_split_y', a)), a),
1385   (('pack_64_2x32', ('vec2', ('unpack_64_2x32_split_x', a),
1386                              ('unpack_64_2x32_split_y', a))), a),
1387   (('pack_64_2x32', ('unpack_64_2x32', a)), a),
1388   (('pack_double_2x32_dxil', ('unpack_double_2x32_dxil', a)), a),
1389
1390   # Comparing two halves of an unpack separately.  While this optimization
1391   # should be correct for non-constant values, it's less obvious that it's
1392   # useful in that case.  For constant values, the pack will fold and we're
1393   # guaranteed to reduce the whole tree to one instruction.
1394   (('iand', ('ieq', ('unpack_32_2x16_split_x', a), '#b'),
1395             ('ieq', ('unpack_32_2x16_split_y', a), '#c')),
1396    ('ieq', a, ('pack_32_2x16_split', b, c))),
1397
1398   # Byte extraction
1399   (('ushr', 'a@16',  8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1400   (('ushr', 'a@32', 24), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1401   (('ushr', 'a@64', 56), ('extract_u8', a, 7), '!options->lower_extract_byte'),
1402   (('ishr', 'a@16',  8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1403   (('ishr', 'a@32', 24), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1404   (('ishr', 'a@64', 56), ('extract_i8', a, 7), '!options->lower_extract_byte'),
1405   (('iand', 0xff, a), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1406
1407   # Common pattern in many Vulkan CTS tests that read 8-bit integers from a
1408   # storage buffer.
1409   (('u2u8', ('extract_u16', a, 1)), ('u2u8', ('extract_u8', a, 2)), '!options->lower_extract_byte'),
1410   (('u2u8', ('ushr', a, 8)), ('u2u8', ('extract_u8', a, 1)), '!options->lower_extract_byte'),
1411
1412   # Common pattern after lowering 8-bit integers to 16-bit.
1413   (('i2i16', ('u2u8', ('extract_u8', a, b))), ('i2i16', ('extract_i8', a, b))),
1414   (('u2u16', ('u2u8', ('extract_u8', a, b))), ('u2u16', ('extract_u8', a, b))),
1415
1416   (('ubfe', a,  0, 8), ('extract_u8', a, 0), '!options->lower_extract_byte'),
1417   (('ubfe', a,  8, 8), ('extract_u8', a, 1), '!options->lower_extract_byte'),
1418   (('ubfe', a, 16, 8), ('extract_u8', a, 2), '!options->lower_extract_byte'),
1419   (('ubfe', a, 24, 8), ('extract_u8', a, 3), '!options->lower_extract_byte'),
1420   (('ibfe', a,  0, 8), ('extract_i8', a, 0), '!options->lower_extract_byte'),
1421   (('ibfe', a,  8, 8), ('extract_i8', a, 1), '!options->lower_extract_byte'),
1422   (('ibfe', a, 16, 8), ('extract_i8', a, 2), '!options->lower_extract_byte'),
1423   (('ibfe', a, 24, 8), ('extract_i8', a, 3), '!options->lower_extract_byte'),
1424
1425   (('extract_u8', ('extract_i8', a, b), 0), ('extract_u8', a, b)),
1426   (('extract_u8', ('extract_u8', a, b), 0), ('extract_u8', a, b)),
1427
1428    # Word extraction
1429   (('ushr', ('ishl', 'a@32', 16), 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1430   (('ushr', 'a@32', 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1431   (('ishr', ('ishl', 'a@32', 16), 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1432   (('ishr', 'a@32', 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1433   (('iand', 0xffff, a), ('extract_u16', a, 0), '!options->lower_extract_word'),
1434
1435   (('ubfe', a,  0, 16), ('extract_u16', a, 0), '!options->lower_extract_word'),
1436   (('ubfe', a, 16, 16), ('extract_u16', a, 1), '!options->lower_extract_word'),
1437   (('ibfe', a,  0, 16), ('extract_i16', a, 0), '!options->lower_extract_word'),
1438   (('ibfe', a, 16, 16), ('extract_i16', a, 1), '!options->lower_extract_word'),
1439
1440   # Packing a u8vec4 to write to an SSBO.
1441   (('ior', ('ishl', ('u2u32', 'a@8'), 24), ('ior', ('ishl', ('u2u32', 'b@8'), 16), ('ior', ('ishl', ('u2u32', 'c@8'), 8), ('u2u32', 'd@8')))),
1442    ('pack_32_4x8', ('vec4', d, c, b, a)), 'options->has_pack_32_4x8'),
1443
1444   (('extract_u16', ('extract_i16', a, b), 0), ('extract_u16', a, b)),
1445   (('extract_u16', ('extract_u16', a, b), 0), ('extract_u16', a, b)),
1446
1447   # Lower pack/unpack
1448   (('pack_64_2x32_split', a, b), ('ior', ('u2u64', a), ('ishl', ('u2u64', b), 32)), 'options->lower_pack_64_2x32_split'),
1449   (('pack_32_2x16_split', a, b), ('ior', ('u2u32', a), ('ishl', ('u2u32', b), 16)), 'options->lower_pack_32_2x16_split'),
1450   (('unpack_64_2x32_split_x', a), ('u2u32', a), 'options->lower_unpack_64_2x32_split'),
1451   (('unpack_64_2x32_split_y', a), ('u2u32', ('ushr', a, 32)), 'options->lower_unpack_64_2x32_split'),
1452   (('unpack_32_2x16_split_x', a), ('u2u16', a), 'options->lower_unpack_32_2x16_split'),
1453   (('unpack_32_2x16_split_y', a), ('u2u16', ('ushr', a, 16)), 'options->lower_unpack_32_2x16_split'),
1454
1455   # Useless masking before unpacking
1456   (('unpack_half_2x16_split_x', ('iand', a, 0xffff)), ('unpack_half_2x16_split_x', a)),
1457   (('unpack_32_2x16_split_x', ('iand', a, 0xffff)), ('unpack_32_2x16_split_x', a)),
1458   (('unpack_64_2x32_split_x', ('iand', a, 0xffffffff)), ('unpack_64_2x32_split_x', a)),
1459   (('unpack_half_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_half_2x16_split_y', a)),
1460   (('unpack_32_2x16_split_y', ('iand', a, 0xffff0000)), ('unpack_32_2x16_split_y', a)),
1461   (('unpack_64_2x32_split_y', ('iand', a, 0xffffffff00000000)), ('unpack_64_2x32_split_y', a)),
1462
1463   (('unpack_half_2x16_split_x', ('extract_u16', a, 0)), ('unpack_half_2x16_split_x', a)),
1464   (('unpack_half_2x16_split_x', ('extract_u16', a, 1)), ('unpack_half_2x16_split_y', a)),
1465   (('unpack_half_2x16_split_x', ('ushr', a, 16)), ('unpack_half_2x16_split_y', a)),
1466   (('unpack_32_2x16_split_x', ('extract_u16', a, 0)), ('unpack_32_2x16_split_x', a)),
1467   (('unpack_32_2x16_split_x', ('extract_u16', a, 1)), ('unpack_32_2x16_split_y', a)),
1468
1469   # Optimize half packing
1470   (('ishl', ('pack_half_2x16', ('vec2', a, 0)), 16), ('pack_half_2x16', ('vec2', 0, a))),
1471   (('ushr', ('pack_half_2x16', ('vec2', 0, a)), 16), ('pack_half_2x16', ('vec2', a, 0))),
1472
1473   (('iadd', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1474    ('pack_half_2x16', ('vec2', a, b))),
1475   (('ior', ('pack_half_2x16', ('vec2', a, 0)), ('pack_half_2x16', ('vec2', 0, b))),
1476    ('pack_half_2x16', ('vec2', a, b))),
1477
1478   (('ishl', ('pack_half_2x16_split', a, 0), 16), ('pack_half_2x16_split', 0, a)),
1479   (('ushr', ('pack_half_2x16_split', 0, a), 16), ('pack_half_2x16_split', a, 0)),
1480   (('extract_u16', ('pack_half_2x16_split', 0, a), 1), ('pack_half_2x16_split', a, 0)),
1481
1482   (('iadd', ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1483   (('ior',  ('pack_half_2x16_split', a, 0), ('pack_half_2x16_split', 0, b)), ('pack_half_2x16_split', a, b)),
1484
1485   (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 0), ('i2i', a)),
1486   (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 1), ('i2i', b)),
1487   (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 2), ('i2i', c)),
1488   (('extract_i8', ('pack_32_4x8_split', a, b, c, d), 3), ('i2i', d)),
1489   (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 0), ('u2u', a)),
1490   (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 1), ('u2u', b)),
1491   (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 2), ('u2u', c)),
1492   (('extract_u8', ('pack_32_4x8_split', a, b, c, d), 3), ('u2u', d)),
1493])
1494
1495# After the ('extract_u8', a, 0) pattern, above, triggers, there will be
1496# patterns like those below.
1497for op in ('ushr', 'ishr'):
1498   optimizations.extend([(('extract_u8', (op, 'a@16',  8),     0), ('extract_u8', a, 1))])
1499   optimizations.extend([(('extract_u8', (op, 'a@32',  8 * i), 0), ('extract_u8', a, i)) for i in range(1, 4)])
1500   optimizations.extend([(('extract_u8', (op, 'a@64',  8 * i), 0), ('extract_u8', a, i)) for i in range(1, 8)])
1501
1502optimizations.extend([(('extract_u8', ('extract_u16', a, 1), 0), ('extract_u8', a, 2))])
1503
1504# After the ('extract_[iu]8', a, 3) patterns, above, trigger, there will be
1505# patterns like those below.
1506for op in ('extract_u8', 'extract_i8'):
1507   optimizations.extend([((op, ('ishl', 'a@16',      8),     1), (op, a, 0))])
1508   optimizations.extend([((op, ('ishl', 'a@32', 24 - 8 * i), 3), (op, a, i)) for i in range(2, -1, -1)])
1509   optimizations.extend([((op, ('ishl', 'a@64', 56 - 8 * i), 7), (op, a, i)) for i in range(6, -1, -1)])
1510
1511optimizations.extend([
1512   # Subtracts
1513   (('ussub_4x8_vc4', a, 0), a),
1514   (('ussub_4x8_vc4', a, ~0), 0),
1515   # Lower all Subtractions first - they can get recombined later
1516   (('fsub', a, b), ('fadd', a, ('fneg', b))),
1517   (('isub', a, b), ('iadd', a, ('ineg', b))),
1518   (('uabs_usub', a, b), ('bcsel', ('ult', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1519   # This is correct.  We don't need isub_sat because the result type is unsigned, so it cannot overflow.
1520   (('uabs_isub', a, b), ('bcsel', ('ilt', a, b), ('ineg', ('isub', a, b)), ('isub', a, b))),
1521
1522   # Propagate negation up multiplication chains
1523   (('fmul(is_used_by_non_fsat)', ('fneg', a), b), ('fneg', ('fmul', a, b))),
1524   (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
1525   (('imul', ('ineg', a), b), ('ineg', ('imul', a, b))),
1526
1527   # Propagate constants up multiplication chains
1528   (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fmul', ('fmul', a, c), b)),
1529   (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('imul', ('imul', a, c), b)),
1530   (('~ffma', ('fmul(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c', d), ('ffma', ('fmul', a, c), b, d)),
1531   # Prefer moving out a multiplication for more MAD/FMA-friendly code
1532   (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_fmul)'), '#c'), ('fadd', ('fadd', a, c), b)),
1533   (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('fadd', ('fadd', a, c), b)),
1534   (('~fadd(is_used_once)', ('ffma(is_used_once)', 'a(is_not_const)', b, 'c(is_not_const)'), '#d'), ('fadd', ('ffma', a, b, d), c)),
1535   (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), '#c'), ('iadd', ('iadd', a, c), b)),
1536
1537   # Reassociate constants in add/mul chains so they can be folded together.
1538   # For now, we mostly only handle cases where the constants are separated by
1539   # a single non-constant.  We could do better eventually.
1540   (('~fmul', '#a', ('fmul', 'b(is_not_const)', '#c')), ('fmul', ('fmul', a, c), b)),
1541   (('~ffma', '#a', ('fmul', 'b(is_not_const)', '#c'), d), ('ffma', ('fmul', a, c), b, d)),
1542   (('imul', '#a', ('imul', 'b(is_not_const)', '#c')), ('imul', ('imul', a, c), b)),
1543   (('~fadd', '#a',          ('fadd', 'b(is_not_const)', '#c')),  ('fadd', ('fadd', a,          c),           b)),
1544   (('~fadd', '#a', ('fneg', ('fadd', 'b(is_not_const)', '#c'))), ('fadd', ('fadd', a, ('fneg', c)), ('fneg', b))),
1545   (('~fadd', '#a',          ('ffma', 'b(is_not_const)', 'c(is_not_const)', '#d')),  ('ffma',          b,  c, ('fadd', a,          d))),
1546   (('~fadd', '#a', ('fneg', ('ffma', 'b(is_not_const)', 'c(is_not_const)', '#d'))), ('ffma', ('fneg', b), c, ('fadd', a, ('fneg', d)))),
1547   (('iadd', '#a', ('iadd', 'b(is_not_const)', '#c')), ('iadd', ('iadd', a, c), b)),
1548   (('iand', '#a', ('iand', 'b(is_not_const)', '#c')), ('iand', ('iand', a, c), b)),
1549   (('ior',  '#a', ('ior',  'b(is_not_const)', '#c')), ('ior',  ('ior',  a, c), b)),
1550   (('ixor', '#a', ('ixor', 'b(is_not_const)', '#c')), ('ixor', ('ixor', a, c), b)),
1551
1552   # Reassociate add chains for more MAD/FMA-friendly code
1553   (('~fadd', ('fadd(is_used_once)', 'a(is_fmul)', 'b(is_fmul)'), 'c(is_not_fmul)'), ('fadd', ('fadd', a, c), b)),
1554
1555   # Drop mul-div by the same value when there's no wrapping.
1556   (('idiv', ('imul(no_signed_wrap)', a, b), b), a),
1557
1558   # By definition...
1559   (('bcsel', ('ige', ('find_lsb', a), 0), ('find_lsb', a), -1), ('find_lsb', a)),
1560   (('bcsel', ('ige', ('ifind_msb', a), 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1561   (('bcsel', ('ige', ('ufind_msb', a), 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1562
1563   (('bcsel', ('ine', a, 0), ('find_lsb', a), -1), ('find_lsb', a)),
1564   (('bcsel', ('ine', a, 0), ('ifind_msb', a), -1), ('ifind_msb', a)),
1565   (('bcsel', ('ine', a, 0), ('ufind_msb', a), -1), ('ufind_msb', a)),
1566
1567   (('bcsel', ('ine', a, -1), ('ifind_msb', a), -1), ('ifind_msb', a)),
1568
1569   (('~fmul', ('bcsel(is_used_once)', c, -1.0, 1.0), b), ('bcsel', c, ('fneg', b), b)),
1570   (('~fmul', ('bcsel(is_used_once)', c, 1.0, -1.0), b), ('bcsel', c, b, ('fneg', b))),
1571   (('~bcsel', ('flt', a, 0.0), ('fneg', a), a), ('fabs', a)),
1572
1573   (('bcsel', a, ('bcsel', b, c, d), d), ('bcsel', ('iand', a, b), c, d)),
1574   (('bcsel', a, b, ('bcsel', c, b, d)), ('bcsel', ('ior', a, c), b, d)),
1575
1576   # Misc. lowering
1577   (('fmod', a, b), ('fsub', a, ('fmul', b, ('ffloor', ('fdiv', a, b)))), 'options->lower_fmod'),
1578   (('frem', a, b), ('fsub', a, ('fmul', b, ('ftrunc', ('fdiv', a, b)))), 'options->lower_fmod'),
1579   (('uadd_carry', a, b), ('b2i', ('ult', ('iadd', a, b), a)), 'options->lower_uadd_carry'),
1580   (('usub_borrow@32', a, b), ('b2i', ('ult', a, b)), 'options->lower_usub_borrow'),
1581
1582   (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1583    ('bcsel', ('ult', 31, 'bits'), 'insert',
1584              ('bfi', ('bfm', 'bits', 'offset'), 'insert', 'base')),
1585    'options->lower_bitfield_insert'),
1586   (('ihadd', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1587   (('uhadd', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1588   (('irhadd', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1589   (('urhadd', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd'),
1590   (('ihadd@64', a, b), ('iadd', ('iand', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1591   (('uhadd@64', a, b), ('iadd', ('iand', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1592   (('irhadd@64', a, b), ('isub', ('ior', a, b), ('ishr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1593   (('urhadd@64', a, b), ('isub', ('ior', a, b), ('ushr', ('ixor', a, b), 1)), 'options->lower_hadd64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1594
1595   (('uadd_sat@64', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_uadd_sat || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1596   (('uadd_sat', a, b), ('bcsel', ('ult', ('iadd', a, b), a), -1, ('iadd', a, b)), 'options->lower_uadd_sat'),
1597   (('usub_sat', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_uadd_sat'),
1598   (('usub_sat@64', a, b), ('bcsel', ('ult', a, b), 0, ('isub', a, b)), 'options->lower_usub_sat64 || (options->lower_int64_options & nir_lower_iadd64) != 0'),
1599
1600   # int64_t sum = a + b;
1601   #
1602   # if (a < 0 && b < 0 && a < sum)
1603   #    sum = INT64_MIN;
1604   # } else if (a >= 0 && b >= 0 && sum < a)
1605   #    sum = INT64_MAX;
1606   # }
1607   #
1608   # A couple optimizations are applied.
1609   #
1610   # 1. a < sum => sum >= 0.  This replacement works because it is known that
1611   #    a < 0 and b < 0, so sum should also be < 0 unless there was
1612   #    underflow.
1613   #
1614   # 2. sum < a => sum < 0.  This replacement works because it is known that
1615   #    a >= 0 and b >= 0, so sum should also be >= 0 unless there was
1616   #    overflow.
1617   #
1618   # 3. Invert the second if-condition and swap the order of parameters for
1619   #    the bcsel. !(a >= 0 && b >= 0 && sum < 0) becomes !(a >= 0) || !(b >=
1620   #    0) || !(sum < 0), and that becomes (a < 0) || (b < 0) || (sum >= 0)
1621   #
1622   # On Intel Gen11, this saves ~11 instructions.
1623   (('iadd_sat@64', a, b), ('bcsel',
1624                            ('iand', ('iand', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1625                            0x8000000000000000,
1626                            ('bcsel',
1627                             ('ior', ('ior', ('ilt', a, 0), ('ilt', b, 0)), ('ige', ('iadd', a, b), 0)),
1628                             ('iadd', a, b),
1629                             0x7fffffffffffffff)),
1630    '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1631
1632   # int64_t sum = a - b;
1633   #
1634   # if (a < 0 && b >= 0 && a < sum)
1635   #    sum = INT64_MIN;
1636   # } else if (a >= 0 && b < 0 && a >= sum)
1637   #    sum = INT64_MAX;
1638   # }
1639   #
1640   # Optimizations similar to the iadd_sat case are applied here.
1641   (('isub_sat@64', a, b), ('bcsel',
1642                            ('iand', ('iand', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1643                            0x8000000000000000,
1644                            ('bcsel',
1645                             ('ior', ('ior', ('ilt', a, 0), ('ige', b, 0)), ('ige', ('isub', a, b), 0)),
1646                             ('isub', a, b),
1647                             0x7fffffffffffffff)),
1648    '(options->lower_int64_options & nir_lower_iadd64) != 0'),
1649
1650   # These are done here instead of in the backend because the int64 lowering
1651   # pass will make a mess of the patterns.  The first patterns are
1652   # conditioned on nir_lower_minmax64 because it was not clear that it was
1653   # always an improvement on platforms that have real int64 support.  No
1654   # shaders in shader-db hit this, so it was hard to say one way or the
1655   # other.
1656   (('ilt', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1657   (('ilt', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ilt', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1658   (('ige', ('imax(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imax', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1659   (('ige', ('imin(is_used_once)', 'a@64', 'b@64'), 0), ('ige', ('imin', ('unpack_64_2x32_split_y', a), ('unpack_64_2x32_split_y', b)), 0), '(options->lower_int64_options & nir_lower_minmax64) != 0'),
1660   (('ilt', 'a@64', 0), ('ilt', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1661   (('ige', 'a@64', 0), ('ige', ('unpack_64_2x32_split_y', a), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1662
1663   (('ine', 'a@64', 0), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1664   (('ieq', 'a@64', 0), ('ieq', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1665   # 0u < uint(a) <=> uint(a) != 0u
1666   (('ult', 0, 'a@64'), ('ine', ('ior', ('unpack_64_2x32_split_x', a), ('unpack_64_2x32_split_y', a)), 0), '(options->lower_int64_options & nir_lower_icmp64) != 0'),
1667
1668   # Alternative lowering that doesn't rely on bfi.
1669   (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1670    ('bcsel', ('ult', 31, 'bits'),
1671     'insert',
1672    (('ior',
1673     ('iand', 'base', ('inot', ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))),
1674     ('iand', ('ishl', 'insert', 'offset'), ('ishl', ('isub', ('ishl', 1, 'bits'), 1), 'offset'))))),
1675    'options->lower_bitfield_insert_to_shifts'),
1676
1677   # Alternative lowering that uses bitfield_select.
1678   (('bitfield_insert', 'base', 'insert', 'offset', 'bits'),
1679    ('bcsel', ('ult', 31, 'bits'), 'insert',
1680              ('bitfield_select', ('bfm', 'bits', 'offset'), ('ishl', 'insert', 'offset'), 'base')),
1681    'options->lower_bitfield_insert_to_bitfield_select'),
1682
1683   (('ibitfield_extract', 'value', 'offset', 'bits'),
1684    ('bcsel', ('ult', 31, 'bits'), 'value',
1685              ('ibfe', 'value', 'offset', 'bits')),
1686    'options->lower_bitfield_extract'),
1687
1688   (('ubitfield_extract', 'value', 'offset', 'bits'),
1689    ('bcsel', ('ult', 31, 'bits'), 'value',
1690              ('ubfe', 'value', 'offset', 'bits')),
1691    'options->lower_bitfield_extract'),
1692
1693   # (src0 & src1) | (~src0 & src2). Constant fold if src2 is 0.
1694   (('bitfield_select', a, b, 0), ('iand', a, b)),
1695   (('bitfield_select', a, ('iand', a, b), c), ('bitfield_select', a, b, c)),
1696
1697   # Note that these opcodes are defined to only use the five least significant bits of 'offset' and 'bits'
1698   (('ubfe', 'value', 'offset', ('iand', 31, 'bits')), ('ubfe', 'value', 'offset', 'bits')),
1699   (('ubfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ubfe', 'value', 'offset', 'bits')),
1700   (('ibfe', 'value', 'offset', ('iand', 31, 'bits')), ('ibfe', 'value', 'offset', 'bits')),
1701   (('ibfe', 'value', ('iand', 31, 'offset'), 'bits'), ('ibfe', 'value', 'offset', 'bits')),
1702   (('bfm', 'bits', ('iand', 31, 'offset')), ('bfm', 'bits', 'offset')),
1703   (('bfm', ('iand', 31, 'bits'), 'offset'), ('bfm', 'bits', 'offset')),
1704
1705   # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
1706   #
1707   #    If bits is zero, the result will be zero.
1708   #
1709   # These patterns prevent other patterns from generating invalid results
1710   # when count is zero.
1711   (('ubfe', a, b, 0), 0),
1712   (('ibfe', a, b, 0), 0),
1713
1714   (('ubfe', a, 0, '#b'), ('iand', a, ('ushr', 0xffffffff, ('ineg', b)))),
1715
1716   (('b2i32', ('i2b', ('ubfe', a, b, 1))), ('ubfe', a, b, 1)),
1717   (('b2i32', ('i2b', ('ibfe', a, b, 1))), ('ubfe', a, b, 1)), # ubfe in the replacement is correct
1718   (('ine', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1719   (('ieq', ('ibfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1720   (('ine', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ine', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1721   (('ieq', ('ubfe(is_used_once)', a, '#b', '#c'), 0), ('ieq', ('iand', a, ('ishl', ('ushr', 0xffffffff, ('ineg', c)), b)), 0)),
1722
1723   (('ibitfield_extract', 'value', 'offset', 'bits'),
1724    ('bcsel', ('ieq', 0, 'bits'),
1725     0,
1726     ('ishr',
1727       ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')),
1728       ('isub', 32, 'bits'))),
1729    'options->lower_bitfield_extract_to_shifts'),
1730
1731   (('ubitfield_extract', 'value', 'offset', 'bits'),
1732    ('iand',
1733     ('ushr', 'value', 'offset'),
1734     ('bcsel', ('ieq', 'bits', 32),
1735      0xffffffff,
1736      ('isub', ('ishl', 1, 'bits'), 1))),
1737    'options->lower_bitfield_extract_to_shifts'),
1738
1739   (('ifind_msb', 'value'),
1740    ('ufind_msb', ('bcsel', ('ilt', 'value', 0), ('inot', 'value'), 'value')),
1741    'options->lower_ifind_msb'),
1742
1743   (('ifind_msb', 'value'),
1744    ('bcsel', ('ige', ('ifind_msb_rev', 'value'), 0),
1745     ('isub', 31, ('ifind_msb_rev', 'value')),
1746     ('ifind_msb_rev', 'value')),
1747    'options->lower_find_msb_to_reverse'),
1748
1749    (('ufind_msb', 'value'),
1750     ('bcsel', ('ige', ('ufind_msb_rev', 'value'), 0),
1751      ('isub', 31, ('ufind_msb_rev', 'value')),
1752      ('ufind_msb_rev', 'value')),
1753     'options->lower_find_msb_to_reverse'),
1754
1755   (('find_lsb', 'value'),
1756    ('ufind_msb', ('iand', 'value', ('ineg', 'value'))),
1757    'options->lower_find_lsb'),
1758
1759   (('extract_i8', a, 'b@32'),
1760    ('ishr', ('ishl', a, ('imul', ('isub', 3, b), 8)), 24),
1761    'options->lower_extract_byte'),
1762
1763   (('extract_u8', a, 'b@32'),
1764    ('iand', ('ushr', a, ('imul', b, 8)), 0xff),
1765    'options->lower_extract_byte'),
1766
1767   (('extract_i16', a, 'b@32'),
1768    ('ishr', ('ishl', a, ('imul', ('isub', 1, b), 16)), 16),
1769    'options->lower_extract_word'),
1770
1771   (('extract_u16', a, 'b@32'),
1772    ('iand', ('ushr', a, ('imul', b, 16)), 0xffff),
1773    'options->lower_extract_word'),
1774
1775    (('pack_unorm_2x16', 'v'),
1776     ('pack_uvec2_to_uint',
1777        ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 65535.0)))),
1778     'options->lower_pack_unorm_2x16'),
1779
1780    (('pack_unorm_4x8', 'v'),
1781     ('pack_uvec4_to_uint',
1782        ('f2u32', ('fround_even', ('fmul', ('fsat', 'v'), 255.0)))),
1783     'options->lower_pack_unorm_4x8'),
1784
1785    (('pack_snorm_2x16', 'v'),
1786     ('pack_uvec2_to_uint',
1787        ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 32767.0)))),
1788     'options->lower_pack_snorm_2x16'),
1789
1790    (('pack_snorm_4x8', 'v'),
1791     ('pack_uvec4_to_uint',
1792        ('f2i32', ('fround_even', ('fmul', ('fmin', 1.0, ('fmax', -1.0, 'v')), 127.0)))),
1793     'options->lower_pack_snorm_4x8'),
1794
1795    (('unpack_unorm_2x16', 'v'),
1796     ('fdiv', ('u2f32', ('vec2', ('extract_u16', 'v', 0),
1797                                  ('extract_u16', 'v', 1))),
1798              65535.0),
1799     'options->lower_unpack_unorm_2x16'),
1800
1801    (('unpack_unorm_4x8', 'v'),
1802     ('fdiv', ('u2f32', ('vec4', ('extract_u8', 'v', 0),
1803                                  ('extract_u8', 'v', 1),
1804                                  ('extract_u8', 'v', 2),
1805                                  ('extract_u8', 'v', 3))),
1806              255.0),
1807     'options->lower_unpack_unorm_4x8'),
1808
1809    (('unpack_snorm_2x16', 'v'),
1810     ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec2', ('extract_i16', 'v', 0),
1811                                                            ('extract_i16', 'v', 1))),
1812                                           32767.0))),
1813     'options->lower_unpack_snorm_2x16'),
1814
1815    (('unpack_snorm_4x8', 'v'),
1816     ('fmin', 1.0, ('fmax', -1.0, ('fdiv', ('i2f', ('vec4', ('extract_i8', 'v', 0),
1817                                                            ('extract_i8', 'v', 1),
1818                                                            ('extract_i8', 'v', 2),
1819                                                            ('extract_i8', 'v', 3))),
1820                                           127.0))),
1821     'options->lower_unpack_snorm_4x8'),
1822
1823   (('pack_half_2x16_split', 'a@32', 'b@32'),
1824    ('ior', ('ishl', ('u2u32', ('f2f16', b)), 16), ('u2u32', ('f2f16', a))),
1825    'options->lower_pack_split'),
1826
1827   (('unpack_half_2x16_split_x', 'a@32'),
1828    ('f2f32', ('u2u16', a)),
1829    'options->lower_pack_split'),
1830
1831   (('unpack_half_2x16_split_y', 'a@32'),
1832    ('f2f32', ('u2u16', ('ushr', a, 16))),
1833    'options->lower_pack_split'),
1834
1835   (('pack_32_2x16_split', 'a@16', 'b@16'),
1836    ('ior', ('ishl', ('u2u32', b), 16), ('u2u32', a)),
1837    'options->lower_pack_split'),
1838
1839   (('unpack_32_2x16_split_x', 'a@32'),
1840    ('u2u16', a),
1841    'options->lower_pack_split'),
1842
1843   (('unpack_32_2x16_split_y', 'a@32'),
1844    ('u2u16', ('ushr', 'a', 16)),
1845    'options->lower_pack_split'),
1846
1847   (('isign', a), ('imin', ('imax', a, -1), 1), 'options->lower_isign'),
1848   (('imin', ('imax', a, -1), 1), ('isign', a), '!options->lower_isign'),
1849   (('imax', ('imin', a, 1), -1), ('isign', a), '!options->lower_isign'),
1850   # float(0 < NaN) - float(NaN < 0) = float(False) - float(False) = 0 - 0 = 0
1851   # Mark the new comparisons precise to prevent them being changed to 'a !=
1852   # 0' or 'a == 0'.
1853   (('fsign', a), ('fsub', ('b2f', ('!flt', 0.0, a)), ('b2f', ('!flt', a, 0.0))), 'options->lower_fsign'),
1854
1855   # Address/offset calculations:
1856   # Drivers supporting imul24 should use the nir_lower_amul() pass, this
1857   # rule converts everyone else to imul:
1858   (('amul', a, b), ('imul', a, b), '!options->has_imul24'),
1859
1860   (('umul24', a, b),
1861    ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)),
1862    '!options->has_umul24'),
1863   (('umad24', a, b, c),
1864    ('iadd', ('imul', ('iand', a, 0xffffff), ('iand', b, 0xffffff)), c),
1865    '!options->has_umad24'),
1866
1867   # Relaxed 24bit ops
1868   (('imul24_relaxed', a, b), ('imul24', a, b), 'options->has_imul24'),
1869   (('imul24_relaxed', a, b), ('imul', a, b), '!options->has_imul24'),
1870   (('umad24_relaxed', a, b, c), ('umad24', a, b, c), 'options->has_umad24'),
1871   (('umad24_relaxed', a, b, c), ('iadd', ('umul24_relaxed', a, b), c), '!options->has_umad24'),
1872   (('umul24_relaxed', a, b), ('umul24', a, b), 'options->has_umul24'),
1873   (('umul24_relaxed', a, b), ('imul', a, b), '!options->has_umul24'),
1874
1875   (('imad24_ir3', a, b, 0), ('imul24', a, b)),
1876   (('imad24_ir3', a, 0, c), (c)),
1877   (('imad24_ir3', a, 1, c), ('iadd', a, c)),
1878
1879   # if first two srcs are const, crack apart the imad so constant folding
1880   # can clean up the imul:
1881   # TODO ffma should probably get a similar rule:
1882   (('imad24_ir3', '#a', '#b', c), ('iadd', ('imul', a, b), c)),
1883
1884   # These will turn 24b address/offset calc back into 32b shifts, but
1885   # it should be safe to get back some of the bits of precision that we
1886   # already decided were no necessary:
1887   (('imul24', a, '#b@32(is_pos_power_of_two)'), ('ishl', a, ('find_lsb', b)), '!options->lower_bitops'),
1888   (('imul24', a, '#b@32(is_neg_power_of_two)'), ('ineg', ('ishl', a, ('find_lsb', ('iabs', b)))), '!options->lower_bitops'),
1889   (('imul24', a, 0), (0)),
1890
1891   (('fcsel', ('slt', 0, a), b, c), ('fcsel_gt', a, b, c), "options->has_fused_comp_and_csel"),
1892   (('fcsel', ('slt', a, 0), b, c), ('fcsel_ge', a, c, b), "options->has_fused_comp_and_csel"),
1893   (('fcsel', ('sge', a, 0), b, c), ('fcsel_ge', a, b, c), "options->has_fused_comp_and_csel"),
1894   (('fcsel', ('sge', 0, a), b, c), ('fcsel_gt', a, c, b), "options->has_fused_comp_and_csel"),
1895
1896   (('bcsel', ('ilt', 0, 'a@32'), 'b@32', 'c@32'), ('i32csel_gt', a, b, c), "options->has_fused_comp_and_csel"),
1897   (('bcsel', ('ilt', 'a@32', 0), 'b@32', 'c@32'), ('i32csel_ge', a, c, b), "options->has_fused_comp_and_csel"),
1898   (('bcsel', ('ige', 'a@32', 0), 'b@32', 'c@32'), ('i32csel_ge', a, b, c), "options->has_fused_comp_and_csel"),
1899   (('bcsel', ('ige', 0, 'a@32'), 'b@32', 'c@32'), ('i32csel_gt', a, c, b), "options->has_fused_comp_and_csel"),
1900
1901   (('bcsel', ('flt', 0, 'a@32'), 'b@32', 'c@32'), ('fcsel_gt', a, b, c), "options->has_fused_comp_and_csel"),
1902   (('bcsel', ('flt', 'a@32', 0), 'b@32', 'c@32'), ('fcsel_ge', a, c, b), "options->has_fused_comp_and_csel"),
1903   (('bcsel', ('fge', 'a@32', 0), 'b@32', 'c@32'), ('fcsel_ge', a, b, c), "options->has_fused_comp_and_csel"),
1904   (('bcsel', ('fge', 0, 'a@32'), 'b@32', 'c@32'), ('fcsel_gt', a, c, b), "options->has_fused_comp_and_csel"),
1905
1906])
1907
1908# bit_size dependent lowerings
1909for bit_size in [8, 16, 32, 64]:
1910   # convenience constants
1911   intmax = (1 << (bit_size - 1)) - 1
1912   intmin = 1 << (bit_size - 1)
1913
1914   optimizations += [
1915      (('iadd_sat@' + str(bit_size), a, b),
1916       ('bcsel', ('ige', b, 1), ('bcsel', ('ilt', ('iadd', a, b), a), intmax, ('iadd', a, b)),
1917                                ('bcsel', ('ilt', a, ('iadd', a, b)), intmin, ('iadd', a, b))), 'options->lower_iadd_sat'),
1918      (('isub_sat@' + str(bit_size), a, b),
1919       ('bcsel', ('ilt', b, 0), ('bcsel', ('ilt', ('isub', a, b), a), intmax, ('isub', a, b)),
1920                                ('bcsel', ('ilt', a, ('isub', a, b)), intmin, ('isub', a, b))), 'options->lower_iadd_sat'),
1921   ]
1922
1923invert = OrderedDict([('feq', 'fneu'), ('fneu', 'feq')])
1924
1925for left, right in itertools.combinations_with_replacement(invert.keys(), 2):
1926   optimizations.append((('inot', ('ior(is_used_once)', (left, a, b), (right, c, d))),
1927                         ('iand', (invert[left], a, b), (invert[right], c, d))))
1928   optimizations.append((('inot', ('iand(is_used_once)', (left, a, b), (right, c, d))),
1929                         ('ior', (invert[left], a, b), (invert[right], c, d))))
1930
1931# Optimize x2bN(b2x(x)) -> x
1932for size in type_sizes('bool'):
1933    aN = 'a@' + str(size)
1934    f2bN = 'f2b' + str(size)
1935    i2bN = 'i2b' + str(size)
1936    optimizations.append(((f2bN, ('b2f', aN)), a))
1937    optimizations.append(((i2bN, ('b2i', aN)), a))
1938
1939# Optimize x2yN(b2x(x)) -> b2y
1940for x, y in itertools.product(['f', 'u', 'i'], ['f', 'u', 'i']):
1941   if x != 'f' and y != 'f' and x != y:
1942      continue
1943
1944   b2x = 'b2f' if x == 'f' else 'b2i'
1945   b2y = 'b2f' if y == 'f' else 'b2i'
1946   x2yN = '{}2{}'.format(x, y)
1947   optimizations.append(((x2yN, (b2x, a)), (b2y, a)))
1948
1949# Optimize away x2xN(a@N)
1950for t in ['int', 'uint', 'float', 'bool']:
1951   for N in type_sizes(t):
1952      x2xN = '{0}2{0}{1}'.format(t[0], N)
1953      aN = 'a@{0}'.format(N)
1954      optimizations.append(((x2xN, aN), a))
1955
1956# Optimize x2xN(y2yM(a@P)) -> y2yN(a) for integers
1957# In particular, we can optimize away everything except upcast of downcast and
1958# upcasts where the type differs from the other cast
1959for N, M in itertools.product(type_sizes('uint'), type_sizes('uint')):
1960   if N < M:
1961      # The outer cast is a down-cast.  It doesn't matter what the size of the
1962      # argument of the inner cast is because we'll never been in the upcast
1963      # of downcast case.  Regardless of types, we'll always end up with y2yN
1964      # in the end.
1965      for x, y in itertools.product(['i', 'u'], ['i', 'u']):
1966         x2xN = '{0}2{0}{1}'.format(x, N)
1967         y2yM = '{0}2{0}{1}'.format(y, M)
1968         y2yN = '{0}2{0}{1}'.format(y, N)
1969         optimizations.append(((x2xN, (y2yM, a)), (y2yN, a)))
1970   elif N > M:
1971      # If the outer cast is an up-cast, we have to be more careful about the
1972      # size of the argument of the inner cast and with types.  In this case,
1973      # the type is always the type of type up-cast which is given by the
1974      # outer cast.
1975      for P in type_sizes('uint'):
1976         # We can't optimize away up-cast of down-cast.
1977         if M < P:
1978            continue
1979
1980         # Because we're doing down-cast of down-cast, the types always have
1981         # to match between the two casts
1982         for x in ['i', 'u']:
1983            x2xN = '{0}2{0}{1}'.format(x, N)
1984            x2xM = '{0}2{0}{1}'.format(x, M)
1985            aP = 'a@{0}'.format(P)
1986            optimizations.append(((x2xN, (x2xM, aP)), (x2xN, a)))
1987   else:
1988      # The N == M case is handled by other optimizations
1989      pass
1990
1991# Downcast operations should be able to see through pack
1992for t in ['i', 'u']:
1993    for N in [8, 16, 32]:
1994        x2xN = '{0}2{0}{1}'.format(t, N)
1995        optimizations += [
1996            ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1997            ((x2xN, ('pack_64_2x32_split', a, b)), (x2xN, a)),
1998        ]
1999
2000# Optimize comparisons with up-casts
2001for t in ['int', 'uint', 'float']:
2002    for N, M in itertools.product(type_sizes(t), repeat=2):
2003        if N == 1 or N >= M:
2004            continue
2005
2006        cond = 'true'
2007        if N == 8:
2008            cond = 'options->support_8bit_alu'
2009        elif N == 16:
2010            cond = 'options->support_16bit_alu'
2011        x2xM = '{0}2{0}{1}'.format(t[0], M)
2012        x2xN = '{0}2{0}{1}'.format(t[0], N)
2013        aN = 'a@' + str(N)
2014        bN = 'b@' + str(N)
2015        xeq = 'feq' if t == 'float' else 'ieq'
2016        xne = 'fneu' if t == 'float' else 'ine'
2017        xge = '{0}ge'.format(t[0])
2018        xlt = '{0}lt'.format(t[0])
2019
2020        # Up-casts are lossless so for correctly signed comparisons of
2021        # up-casted values we can do the comparison at the largest of the two
2022        # original sizes and drop one or both of the casts.  (We have
2023        # optimizations to drop the no-op casts which this may generate.)
2024        for P in type_sizes(t):
2025            if P == 1 or P > N:
2026                continue
2027
2028            bP = 'b@' + str(P)
2029            optimizations += [
2030                ((xeq, (x2xM, aN), (x2xM, bP)), (xeq, a, (x2xN, b)), cond),
2031                ((xne, (x2xM, aN), (x2xM, bP)), (xne, a, (x2xN, b)), cond),
2032                ((xge, (x2xM, aN), (x2xM, bP)), (xge, a, (x2xN, b)), cond),
2033                ((xlt, (x2xM, aN), (x2xM, bP)), (xlt, a, (x2xN, b)), cond),
2034                ((xge, (x2xM, bP), (x2xM, aN)), (xge, (x2xN, b), a), cond),
2035                ((xlt, (x2xM, bP), (x2xM, aN)), (xlt, (x2xN, b), a), cond),
2036            ]
2037
2038        # The next bit doesn't work on floats because the range checks would
2039        # get way too complicated.
2040        if t in ['int', 'uint']:
2041            if t == 'int':
2042                xN_min = -(1 << (N - 1))
2043                xN_max = (1 << (N - 1)) - 1
2044            elif t == 'uint':
2045                xN_min = 0
2046                xN_max = (1 << N) - 1
2047            else:
2048                assert False
2049
2050            # If we're up-casting and comparing to a constant, we can unfold
2051            # the comparison into a comparison with the shrunk down constant
2052            # and a check that the constant fits in the smaller bit size.
2053            optimizations += [
2054                ((xeq, (x2xM, aN), '#b'),
2055                 ('iand', (xeq, a, (x2xN, b)), (xeq, (x2xM, (x2xN, b)), b)), cond),
2056                ((xne, (x2xM, aN), '#b'),
2057                 ('ior', (xne, a, (x2xN, b)), (xne, (x2xM, (x2xN, b)), b)), cond),
2058                ((xlt, (x2xM, aN), '#b'),
2059                 ('iand', (xlt, xN_min, b),
2060                          ('ior', (xlt, xN_max, b), (xlt, a, (x2xN, b)))), cond),
2061                ((xlt, '#a', (x2xM, bN)),
2062                 ('iand', (xlt, a, xN_max),
2063                          ('ior', (xlt, a, xN_min), (xlt, (x2xN, a), b))), cond),
2064                ((xge, (x2xM, aN), '#b'),
2065                 ('iand', (xge, xN_max, b),
2066                          ('ior', (xge, xN_min, b), (xge, a, (x2xN, b)))), cond),
2067                ((xge, '#a', (x2xM, bN)),
2068                 ('iand', (xge, a, xN_min),
2069                          ('ior', (xge, a, xN_max), (xge, (x2xN, a), b))), cond),
2070            ]
2071
2072# Convert masking followed by signed downcast to just unsigned downcast
2073optimizations += [
2074    (('i2i32', ('iand', 'a@64', 0xffffffff)), ('u2u32', a)),
2075    (('i2i16', ('iand', 'a@32', 0xffff)), ('u2u16', a)),
2076    (('i2i16', ('iand', 'a@64', 0xffff)), ('u2u16', a)),
2077    (('i2i8', ('iand', 'a@16', 0xff)), ('u2u8', a)),
2078    (('i2i8', ('iand', 'a@32', 0xff)), ('u2u8', a)),
2079    (('i2i8', ('iand', 'a@64', 0xff)), ('u2u8', a)),
2080]
2081
2082# Some operations such as iadd have the property that the bottom N bits of the
2083# output only depends on the bottom N bits of each of the inputs so we can
2084# remove casts
2085for N in [16, 32]:
2086    for M in [8, 16]:
2087        if M >= N:
2088            continue
2089
2090        aN = 'a@' + str(N)
2091        u2uM = 'u2u{0}'.format(M)
2092        i2iM = 'i2i{0}'.format(M)
2093
2094        for x in ['u', 'i']:
2095            x2xN = '{0}2{0}{1}'.format(x, N)
2096            extract_xM = 'extract_{0}{1}'.format(x, M)
2097
2098            x2xN_M_bits = '{0}(only_lower_{1}_bits_used)'.format(x2xN, M)
2099            extract_xM_M_bits = \
2100                '{0}(only_lower_{1}_bits_used)'.format(extract_xM, M)
2101            optimizations += [
2102                ((x2xN_M_bits, (u2uM, aN)), a),
2103                ((extract_xM_M_bits, aN, 0), a),
2104            ]
2105
2106            bcsel_M_bits = 'bcsel(only_lower_{0}_bits_used)'.format(M)
2107            optimizations += [
2108                ((bcsel_M_bits, c, (x2xN, (u2uM, aN)), b), ('bcsel', c, a, b)),
2109                ((bcsel_M_bits, c, (x2xN, (i2iM, aN)), b), ('bcsel', c, a, b)),
2110                ((bcsel_M_bits, c, (extract_xM, aN, 0), b), ('bcsel', c, a, b)),
2111            ]
2112
2113            for op in ['iadd', 'imul', 'iand', 'ior', 'ixor']:
2114                op_M_bits = '{0}(only_lower_{1}_bits_used)'.format(op, M)
2115                optimizations += [
2116                    ((op_M_bits, (x2xN, (u2uM, aN)), b), (op, a, b)),
2117                    ((op_M_bits, (x2xN, (i2iM, aN)), b), (op, a, b)),
2118                    ((op_M_bits, (extract_xM, aN, 0), b), (op, a, b)),
2119                ]
2120
2121def fexp2i(exp, bits):
2122   # Generate an expression which constructs value 2.0^exp or 0.0.
2123   #
2124   # We assume that exp is already in a valid range:
2125   #
2126   #   * [-15, 15] for 16-bit float
2127   #   * [-127, 127] for 32-bit float
2128   #   * [-1023, 1023] for 16-bit float
2129   #
2130   # If exp is the lowest value in the valid range, a value of 0.0 is
2131   # constructed.  Otherwise, the value 2.0^exp is constructed.
2132   if bits == 16:
2133      return ('i2i16', ('ishl', ('iadd', exp, 15), 10))
2134   elif bits == 32:
2135      return ('ishl', ('iadd', exp, 127), 23)
2136   elif bits == 64:
2137      return ('pack_64_2x32_split', 0, ('ishl', ('iadd', exp, 1023), 20))
2138   else:
2139      assert False
2140
2141def ldexp(f, exp, bits):
2142   # The maximum possible range for a normal exponent is [-126, 127] and,
2143   # throwing in denormals, you get a maximum range of [-149, 127].  This
2144   # means that we can potentially have a swing of +-276.  If you start with
2145   # FLT_MAX, you actually have to do ldexp(FLT_MAX, -278) to get it to flush
2146   # all the way to zero.  The GLSL spec only requires that we handle a subset
2147   # of this range.  From version 4.60 of the spec:
2148   #
2149   #    "If exp is greater than +128 (single-precision) or +1024
2150   #    (double-precision), the value returned is undefined. If exp is less
2151   #    than -126 (single-precision) or -1022 (double-precision), the value
2152   #    returned may be flushed to zero. Additionally, splitting the value
2153   #    into a significand and exponent using frexp() and then reconstructing
2154   #    a floating-point value using ldexp() should yield the original input
2155   #    for zero and all finite non-denormalized values."
2156   #
2157   # The SPIR-V spec has similar language.
2158   #
2159   # In order to handle the maximum value +128 using the fexp2i() helper
2160   # above, we have to split the exponent in half and do two multiply
2161   # operations.
2162   #
2163   # First, we clamp exp to a reasonable range.  Specifically, we clamp to
2164   # twice the full range that is valid for the fexp2i() function above.  If
2165   # exp/2 is the bottom value of that range, the fexp2i() expression will
2166   # yield 0.0f which, when multiplied by f, will flush it to zero which is
2167   # allowed by the GLSL and SPIR-V specs for low exponent values.  If the
2168   # value is clamped from above, then it must have been above the supported
2169   # range of the GLSL built-in and therefore any return value is acceptable.
2170   if bits == 16:
2171      exp = ('imin', ('imax', exp, -30), 30)
2172   elif bits == 32:
2173      exp = ('imin', ('imax', exp, -254), 254)
2174   elif bits == 64:
2175      exp = ('imin', ('imax', exp, -2046), 2046)
2176   else:
2177      assert False
2178
2179   # Now we compute two powers of 2, one for exp/2 and one for exp-exp/2.
2180   # (We use ishr which isn't the same for -1, but the -1 case still works
2181   # since we use exp-exp/2 as the second exponent.)  While the spec
2182   # technically defines ldexp as f * 2.0^exp, simply multiplying once doesn't
2183   # work with denormals and doesn't allow for the full swing in exponents
2184   # that you can get with normalized values.  Instead, we create two powers
2185   # of two and multiply by them each in turn.  That way the effective range
2186   # of our exponent is doubled.
2187   pow2_1 = fexp2i(('ishr', exp, 1), bits)
2188   pow2_2 = fexp2i(('isub', exp, ('ishr', exp, 1)), bits)
2189   return ('fmul', ('fmul', f, pow2_1), pow2_2)
2190
2191optimizations += [
2192   (('ldexp@16', 'x', 'exp'), ldexp('x', 'exp', 16), 'options->lower_ldexp'),
2193   (('ldexp@32', 'x', 'exp'), ldexp('x', 'exp', 32), 'options->lower_ldexp'),
2194   (('ldexp@64', 'x', 'exp'), ldexp('x', 'exp', 64), 'options->lower_ldexp'),
2195]
2196
2197# Unreal Engine 4 demo applications open-codes bitfieldReverse()
2198def bitfield_reverse(u):
2199    step1 = ('ior', ('ishl', u, 16), ('ushr', u, 16))
2200    step2 = ('ior', ('ishl', ('iand', step1, 0x00ff00ff), 8), ('ushr', ('iand', step1, 0xff00ff00), 8))
2201    step3 = ('ior', ('ishl', ('iand', step2, 0x0f0f0f0f), 4), ('ushr', ('iand', step2, 0xf0f0f0f0), 4))
2202    step4 = ('ior', ('ishl', ('iand', step3, 0x33333333), 2), ('ushr', ('iand', step3, 0xcccccccc), 2))
2203    step5 = ('ior(many-comm-expr)', ('ishl', ('iand', step4, 0x55555555), 1), ('ushr', ('iand', step4, 0xaaaaaaaa), 1))
2204
2205    return step5
2206
2207optimizations += [(bitfield_reverse('x@32'), ('bitfield_reverse', 'x'), '!options->lower_bitfield_reverse')]
2208
2209# "all_equal(eq(a, b), vec(~0))" is the same as "all_equal(a, b)"
2210# "any_nequal(neq(a, b), vec(0))" is the same as "any_nequal(a, b)"
2211for ncomp in [2, 3, 4, 8, 16]:
2212   optimizations += [
2213      (('ball_iequal' + str(ncomp), ('ieq', a, b), ~0), ('ball_iequal' + str(ncomp), a, b)),
2214      (('ball_iequal' + str(ncomp), ('feq', a, b), ~0), ('ball_fequal' + str(ncomp), a, b)),
2215      (('bany_inequal' + str(ncomp), ('ine', a, b), 0), ('bany_inequal' + str(ncomp), a, b)),
2216      (('bany_inequal' + str(ncomp), ('fneu', a, b), 0), ('bany_fnequal' + str(ncomp), a, b)),
2217   ]
2218
2219# For any float comparison operation, "cmp", if you have "a == a && a cmp b"
2220# then the "a == a" is redundant because it's equivalent to "a is not NaN"
2221# and, if a is a NaN then the second comparison will fail anyway.
2222for op in ['flt', 'fge', 'feq']:
2223   optimizations += [
2224      (('iand', ('feq', a, a), (op, a, b)), ('!' + op, a, b)),
2225      (('iand', ('feq', a, a), (op, b, a)), ('!' + op, b, a)),
2226   ]
2227
2228# Add optimizations to handle the case where the result of a ternary is
2229# compared to a constant.  This way we can take things like
2230#
2231# (a ? 0 : 1) > 0
2232#
2233# and turn it into
2234#
2235# a ? (0 > 0) : (1 > 0)
2236#
2237# which constant folding will eat for lunch.  The resulting ternary will
2238# further get cleaned up by the boolean reductions above and we will be
2239# left with just the original variable "a".
2240for op in ['feq', 'fneu', 'ieq', 'ine']:
2241   optimizations += [
2242      ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
2243       ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
2244   ]
2245
2246for op in ['flt', 'fge', 'ilt', 'ige', 'ult', 'uge']:
2247   optimizations += [
2248      ((op, ('bcsel', 'a', '#b', '#c'), '#d'),
2249       ('bcsel', 'a', (op, 'b', 'd'), (op, 'c', 'd'))),
2250      ((op, '#d', ('bcsel', a, '#b', '#c')),
2251       ('bcsel', 'a', (op, 'd', 'b'), (op, 'd', 'c'))),
2252   ]
2253
2254
2255# For example, this converts things like
2256#
2257#    1 + mix(0, a - 1, condition)
2258#
2259# into
2260#
2261#    mix(1, (a-1)+1, condition)
2262#
2263# Other optimizations will rearrange the constants.
2264for op in ['fadd', 'fmul', 'iadd', 'imul']:
2265   optimizations += [
2266      ((op, ('bcsel(is_used_once)', a, '#b', c), '#d'), ('bcsel', a, (op, b, d), (op, c, d)))
2267   ]
2268
2269# For derivatives in compute shaders, GLSL_NV_compute_shader_derivatives
2270# states:
2271#
2272#     If neither layout qualifier is specified, derivatives in compute shaders
2273#     return zero, which is consistent with the handling of built-in texture
2274#     functions like texture() in GLSL 4.50 compute shaders.
2275for op in ['fddx', 'fddx_fine', 'fddx_coarse',
2276           'fddy', 'fddy_fine', 'fddy_coarse']:
2277   optimizations += [
2278      ((op, 'a'), 0.0, 'info->stage == MESA_SHADER_COMPUTE && info->cs.derivative_group == DERIVATIVE_GROUP_NONE')
2279]
2280
2281# Some optimizations for ir3-specific instructions.
2282optimizations += [
2283   # 'al * bl': If either 'al' or 'bl' is zero, return zero.
2284   (('umul_low', '#a(is_lower_half_zero)', 'b'), (0)),
2285   # '(ah * bl) << 16 + c': If either 'ah' or 'bl' is zero, return 'c'.
2286   (('imadsh_mix16', '#a@32(is_lower_half_zero)', 'b@32', 'c@32'), ('c')),
2287   (('imadsh_mix16', 'a@32', '#b@32(is_upper_half_zero)', 'c@32'), ('c')),
2288]
2289
2290# These kinds of sequences can occur after nir_opt_peephole_select.
2291#
2292# NOTE: fadd is not handled here because that gets in the way of ffma
2293# generation in the i965 driver.  Instead, fadd and ffma are handled in
2294# late_optimizations.
2295
2296for op in ['flrp']:
2297    optimizations += [
2298        (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2299        (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2300        (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2301        (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2302        (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, e, c, d)), (op, ('bcsel', a, b, e), c, d)),
2303        (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', e, c, d)), (op, ('bcsel', a, b, e), c, d)),
2304    ]
2305
2306for op in ['fmul', 'iadd', 'imul', 'iand', 'ior', 'ixor', 'fmin', 'fmax', 'imin', 'imax', 'umin', 'umax']:
2307    optimizations += [
2308        (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
2309        (('bcsel', a, (op + '(is_used_once)', b, 'c(is_not_const)'), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2310        (('bcsel', a, (op, b, 'c(is_not_const)'), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2311        (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, 'd(is_not_const)')), (op, b, ('bcsel', a, c, d))),
2312    ]
2313
2314for op in ['fpow']:
2315    optimizations += [
2316        (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2317        (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2318        (('bcsel', a, (op + '(is_used_once)', b, c), (op, d, c)), (op, ('bcsel', a, b, d), c)),
2319        (('bcsel', a, (op, b, c), (op + '(is_used_once)', d, c)), (op, ('bcsel', a, b, d), c)),
2320    ]
2321
2322for op in ['frcp', 'frsq', 'fsqrt', 'fexp2', 'flog2', 'fsign', 'fsin', 'fcos', 'fneg', 'fabs', 'fsign']:
2323    optimizations += [
2324        (('bcsel', c, (op + '(is_used_once)', a), (op + '(is_used_once)', b)), (op, ('bcsel', c, a, b))),
2325    ]
2326
2327for op in ['ineg', 'iabs', 'inot', 'isign']:
2328    optimizations += [
2329        ((op, ('bcsel', c, '#a', '#b')), ('bcsel', c, (op, a), (op, b))),
2330    ]
2331
2332optimizations.extend([
2333    (('fisnormal', 'a@32'), ('ult', 0x1ffffff, ('iadd', ('ishl', a, 1), 0x1000000)), 'options->lower_fisnormal')
2334    ])
2335
2336# This section contains optimizations to propagate downsizing conversions of
2337# constructed vectors into vectors of downsized components. Whether this is
2338# useful depends on the SIMD semantics of the backend. On a true SIMD machine,
2339# this reduces the register pressure of the vector itself and often enables the
2340# conversions to be eliminated via other algebraic rules or constant folding.
2341# In the worst case on a SIMD architecture, the propagated conversions may be
2342# revectorized via nir_opt_vectorize so instruction count is minimally
2343# impacted.
2344#
2345# On a machine with SIMD-within-a-register only, this actually
2346# counterintuitively hurts instruction count. These machines are the same that
2347# require vectorize_vec2_16bit, so we predicate the optimizations on that flag
2348# not being set.
2349#
2350# Finally for scalar architectures, there should be no difference in generated
2351# code since it all ends up scalarized at the end, but it might minimally help
2352# compile-times.
2353
2354for i in range(2, 4 + 1):
2355   for T in ('f', 'u', 'i'):
2356      vec_inst = ('vec' + str(i),)
2357
2358      indices = ['a', 'b', 'c', 'd']
2359      suffix_in = tuple((indices[j] + '@32') for j in range(i))
2360
2361      to_16 = '{}2{}16'.format(T, T)
2362      to_mp = '{}2{}mp'.format(T, T)
2363
2364      out_16 = tuple((to_16, indices[j]) for j in range(i))
2365      out_mp = tuple((to_mp, indices[j]) for j in range(i))
2366
2367      optimizations  += [
2368         ((to_16, vec_inst + suffix_in), vec_inst + out_16, '!options->vectorize_vec2_16bit'),
2369      ]
2370      # u2ump doesn't exist, because it's equal to i2imp
2371      if T in ['f', 'i']:
2372          optimizations  += [
2373             ((to_mp, vec_inst + suffix_in), vec_inst + out_mp, '!options->vectorize_vec2_16bit')
2374          ]
2375
2376# This section contains "late" optimizations that should be run before
2377# creating ffmas and calling regular optimizations for the final time.
2378# Optimizations should go here if they help code generation and conflict
2379# with the regular optimizations.
2380before_ffma_optimizations = [
2381   # Propagate constants down multiplication chains
2382   (('~fmul(is_used_once)', ('fmul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fmul', ('fmul', a, c), b)),
2383   (('imul(is_used_once)', ('imul(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('imul', ('imul', a, c), b)),
2384   (('~fadd(is_used_once)', ('fadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('fadd', ('fadd', a, c), b)),
2385   (('iadd(is_used_once)', ('iadd(is_used_once)', 'a(is_not_const)', '#b'), 'c(is_not_const)'), ('iadd', ('iadd', a, c), b)),
2386
2387   (('~fadd', ('fmul', a, b), ('fmul', a, c)), ('fmul', a, ('fadd', b, c))),
2388   (('iadd', ('imul', a, b), ('imul', a, c)), ('imul', a, ('iadd', b, c))),
2389   (('~fadd', ('fneg', a), a), 0.0),
2390   (('iadd', ('ineg', a), a), 0),
2391   (('iadd', ('ineg', a), ('iadd', a, b)), b),
2392   (('iadd', a, ('iadd', ('ineg', a), b)), b),
2393   (('~fadd', ('fneg', a), ('fadd', a, b)), b),
2394   (('~fadd', a, ('fadd', ('fneg', a), b)), b),
2395
2396   (('~flrp', ('fadd(is_used_once)', a, -1.0), ('fadd(is_used_once)', a,  1.0), d), ('fadd', ('flrp', -1.0,  1.0, d), a)),
2397   (('~flrp', ('fadd(is_used_once)', a,  1.0), ('fadd(is_used_once)', a, -1.0), d), ('fadd', ('flrp',  1.0, -1.0, d), a)),
2398   (('~flrp', ('fadd(is_used_once)', a, '#b'), ('fadd(is_used_once)', a, '#c'), d), ('fadd', ('fmul', d, ('fadd', c, ('fneg', b))), ('fadd', a, b))),
2399]
2400
2401# This section contains "late" optimizations that should be run after the
2402# regular optimizations have finished.  Optimizations should go here if
2403# they help code generation but do not necessarily produce code that is
2404# more easily optimizable.
2405late_optimizations = [
2406   # The rearrangements are fine w.r.t. NaN.  However, they produce incorrect
2407   # results if one operand is +Inf and the other is -Inf.
2408   #
2409   # 1. Inf + -Inf = NaN
2410   # 2. ∀x: x + NaN = NaN and x - NaN = NaN
2411   # 3. ∀x: x != NaN = true
2412   # 4. ∀x, ∀ cmp ∈ {<, >, ≤, ≥, =}: x cmp NaN = false
2413   #
2414   #               a=Inf, b=-Inf   a=-Inf, b=Inf    a=NaN    b=NaN
2415   #  (a+b) < 0        false            false       false    false
2416   #      a < -b       false            false       false    false
2417   # -(a+b) < 0        false            false       false    false
2418   #     -a < b        false            false       false    false
2419   #  (a+b) >= 0       false            false       false    false
2420   #      a >= -b      true             true        false    false
2421   # -(a+b) >= 0       false            false       false    false
2422   #     -a >= b       true             true        false    false
2423   #  (a+b) == 0       false            false       false    false
2424   #      a == -b      true             true        false    false
2425   #  (a+b) != 0       true             true        true     true
2426   #      a != -b      false            false       true     true
2427   (('flt',                        ('fadd(is_used_once)', a, b),  0.0), ('flt',          a, ('fneg', b))),
2428   (('flt', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b)), 0.0), ('flt', ('fneg', a),         b)),
2429   (('flt', 0.0,                        ('fadd(is_used_once)', a, b) ), ('flt', ('fneg', a),         b)),
2430   (('flt', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('flt',          a, ('fneg', b))),
2431   (('~fge',                        ('fadd(is_used_once)', a, b),  0.0), ('fge',          a, ('fneg', b))),
2432   (('~fge', ('fneg(is_used_once)', ('fadd(is_used_once)', a, b)), 0.0), ('fge', ('fneg', a),         b)),
2433   (('~fge', 0.0,                        ('fadd(is_used_once)', a, b) ), ('fge', ('fneg', a),         b)),
2434   (('~fge', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', a, b))), ('fge',          a, ('fneg', b))),
2435   (('~feq', ('fadd(is_used_once)', a, b), 0.0), ('feq', a, ('fneg', b))),
2436   (('~fneu', ('fadd(is_used_once)', a, b), 0.0), ('fneu', a, ('fneg', b))),
2437
2438   # If either source must be finite, then the original (a+b) cannot produce
2439   # NaN due to Inf-Inf.  The patterns and the replacements produce the same
2440   # result if b is NaN. Therefore, the replacements are exact.
2441   (('fge',                        ('fadd(is_used_once)', 'a(is_finite)', b),  0.0), ('fge',          a, ('fneg', b))),
2442   (('fge', ('fneg(is_used_once)', ('fadd(is_used_once)', 'a(is_finite)', b)), 0.0), ('fge', ('fneg', a),         b)),
2443   (('fge', 0.0,                        ('fadd(is_used_once)', 'a(is_finite)', b) ), ('fge', ('fneg', a),         b)),
2444   (('fge', 0.0, ('fneg(is_used_once)', ('fadd(is_used_once)', 'a(is_finite)', b))), ('fge',          a, ('fneg', b))),
2445   (('feq',  ('fadd(is_used_once)', 'a(is_finite)', b), 0.0), ('feq',  a, ('fneg', b))),
2446   (('fneu', ('fadd(is_used_once)', 'a(is_finite)', b), 0.0), ('fneu', a, ('fneg', b))),
2447
2448   # This is how SpvOpFOrdNotEqual might be implemented.  Replace it with
2449   # SpvOpLessOrGreater.
2450   (('iand', ('fneu', a, b),   ('iand', ('feq', a, a), ('feq', b, b))), ('ior', ('!flt', a, b), ('!flt', b, a))),
2451   (('iand', ('fneu', a, 0.0),          ('feq', a, a)                ), ('!flt', 0.0, ('fabs', a))),
2452
2453   # This is how SpvOpFUnordEqual might be implemented.  Replace it with
2454   # !SpvOpLessOrGreater.
2455   (('ior', ('feq', a, b),   ('ior', ('fneu', a, a), ('fneu', b, b))), ('inot', ('ior', ('!flt', a, b), ('!flt', b, a)))),
2456   (('ior', ('feq', a, 0.0),         ('fneu', a, a),                ), ('inot', ('!flt', 0.0, ('fabs', a)))),
2457
2458   # nir_lower_to_source_mods will collapse this, but its existence during the
2459   # optimization loop can prevent other optimizations.
2460   (('fneg', ('fneg', a)), a),
2461
2462   # Subtractions get lowered during optimization, so we need to recombine them
2463   (('fadd', a, ('fneg', 'b')), ('fsub', 'a', 'b'), 'options->has_fsub'),
2464   (('fneg', a), ('fmul', a, -1.0), 'options->lower_fneg'),
2465   (('iadd', a, ('ineg', 'b')), ('isub', 'a', 'b'), 'options->has_isub || options->lower_ineg'),
2466   (('ineg', a), ('isub', 0, a), 'options->lower_ineg'),
2467   (('iabs', a), ('imax', a, ('ineg', a)), 'options->lower_iabs'),
2468   (('~fadd@16', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma16'),
2469   (('~fadd@32', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma32'),
2470   (('~fadd@64', ('fmul', a, b), c), ('ffma', a, b, c), 'options->fuse_ffma64'),
2471
2472   (('iadd', ('iadd(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, b, c), 'options->has_iadd3'),
2473   (('iadd', ('isub(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, ('ineg', b), c), 'options->has_iadd3'),
2474   (('isub', ('isub(is_used_once)', 'a(is_not_const)', 'b(is_not_const)'), 'c(is_not_const)'), ('iadd3', a, ('ineg', b), ('ineg', c)), 'options->has_iadd3'),
2475
2476   # These are duplicated from the main optimizations table.  The late
2477   # patterns that rearrange expressions like x - .5 < 0 to x < .5 can create
2478   # new patterns like these.  The patterns that compare with zero are removed
2479   # because they are unlikely to be created in by anything in
2480   # late_optimizations.
2481   (('flt', '#b(is_gt_0_and_lt_1)', ('fsat(is_used_once)', a)), ('flt', b, a)),
2482   (('fge', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fge', a, b)),
2483   (('feq', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('feq', a, b)),
2484   (('fneu', ('fsat(is_used_once)', a), '#b(is_gt_0_and_lt_1)'), ('fneu', a, b)),
2485
2486   (('fge', ('fsat(is_used_once)', a), 1.0), ('fge', a, 1.0)),
2487
2488   (('~fge', ('fmin(is_used_once)', ('fadd(is_used_once)', a, b), ('fadd', c, d)), 0.0), ('iand', ('fge', a, ('fneg', b)), ('fge', c, ('fneg', d)))),
2489
2490   (('flt', ('fneg', a), ('fneg', b)), ('flt', b, a)),
2491   (('fge', ('fneg', a), ('fneg', b)), ('fge', b, a)),
2492   (('feq', ('fneg', a), ('fneg', b)), ('feq', b, a)),
2493   (('fneu', ('fneg', a), ('fneg', b)), ('fneu', b, a)),
2494   (('flt', ('fneg', a), -1.0), ('flt', 1.0, a)),
2495   (('flt', -1.0, ('fneg', a)), ('flt', a, 1.0)),
2496   (('fge', ('fneg', a), -1.0), ('fge', 1.0, a)),
2497   (('fge', -1.0, ('fneg', a)), ('fge', a, 1.0)),
2498   (('fneu', ('fneg', a), -1.0), ('fneu', 1.0, a)),
2499   (('feq', -1.0, ('fneg', a)), ('feq', a, 1.0)),
2500
2501   (('ior', a, a), a),
2502   (('iand', a, a), a),
2503
2504   (('~fadd', ('fneg(is_used_once)', ('fsat(is_used_once)', 'a(is_not_fmul)')), 1.0), ('fsat', ('fadd', 1.0, ('fneg', a)))),
2505
2506   (('fdot2', a, b), ('fdot2_replicated', a, b), 'options->fdot_replicates'),
2507   (('fdot3', a, b), ('fdot3_replicated', a, b), 'options->fdot_replicates'),
2508   (('fdot4', a, b), ('fdot4_replicated', a, b), 'options->fdot_replicates'),
2509   (('fdph', a, b), ('fdph_replicated', a, b), 'options->fdot_replicates'),
2510
2511   (('~flrp', ('fadd(is_used_once)', a, b), ('fadd(is_used_once)', a, c), d), ('fadd', ('flrp', b, c, d), a)),
2512
2513   # A similar operation could apply to any ffma(#a, b, #(-a/2)), but this
2514   # particular operation is common for expanding values stored in a texture
2515   # from [0,1] to [-1,1].
2516   (('~ffma@32', a,  2.0, -1.0), ('flrp', -1.0,  1.0,          a ), '!options->lower_flrp32'),
2517   (('~ffma@32', a, -2.0, -1.0), ('flrp', -1.0,  1.0, ('fneg', a)), '!options->lower_flrp32'),
2518   (('~ffma@32', a, -2.0,  1.0), ('flrp',  1.0, -1.0,          a ), '!options->lower_flrp32'),
2519   (('~ffma@32', a,  2.0,  1.0), ('flrp',  1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
2520   (('~fadd@32', ('fmul(is_used_once)',  2.0, a), -1.0), ('flrp', -1.0,  1.0,          a ), '!options->lower_flrp32'),
2521   (('~fadd@32', ('fmul(is_used_once)', -2.0, a), -1.0), ('flrp', -1.0,  1.0, ('fneg', a)), '!options->lower_flrp32'),
2522   (('~fadd@32', ('fmul(is_used_once)', -2.0, a),  1.0), ('flrp',  1.0, -1.0,          a ), '!options->lower_flrp32'),
2523   (('~fadd@32', ('fmul(is_used_once)',  2.0, a),  1.0), ('flrp',  1.0, -1.0, ('fneg', a)), '!options->lower_flrp32'),
2524
2525    # flrp(a, b, a)
2526    # a*(1-a) + b*a
2527    # a + -a*a + a*b    (1)
2528    # a + a*(b - a)
2529    # Option 1: ffma(a, (b-a), a)
2530    #
2531    # Alternately, after (1):
2532    # a*(1+b) + -a*a
2533    # a*((1+b) + -a)
2534    #
2535    # Let b=1
2536    #
2537    # Option 2: ffma(a, 2, -(a*a))
2538    # Option 3: ffma(a, 2, (-a)*a)
2539    # Option 4: ffma(a, -a, (2*a)
2540    # Option 5: a * (2 - a)
2541    #
2542    # There are a lot of other possible combinations.
2543   (('~ffma@32', ('fadd', b, ('fneg', a)), a, a), ('flrp', a, b, a), '!options->lower_flrp32'),
2544   (('~ffma@32', a, 2.0, ('fneg', ('fmul', a, a))), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
2545   (('~ffma@32', a, 2.0, ('fmul', ('fneg', a), a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
2546   (('~ffma@32', a, ('fneg', a), ('fmul', 2.0, a)), ('flrp', a, 1.0, a), '!options->lower_flrp32'),
2547   (('~fmul@32', a, ('fadd', 2.0, ('fneg', a))),    ('flrp', a, 1.0, a), '!options->lower_flrp32'),
2548
2549   # we do these late so that we don't get in the way of creating ffmas
2550   (('fmin', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmin', a, b))),
2551   (('fmax', ('fadd(is_used_once)', '#c', a), ('fadd(is_used_once)', '#c', b)), ('fadd', c, ('fmax', a, b))),
2552
2553   # Putting this in 'optimizations' interferes with the bcsel(a, op(b, c),
2554   # op(b, d)) => op(b, bcsel(a, c, d)) transformations.  I do not know why.
2555   (('bcsel', ('feq', ('fsqrt', 'a(is_not_negative)'), 0.0), intBitsToFloat(0x7f7fffff), ('frsq', a)),
2556    ('fmin', ('frsq', a), intBitsToFloat(0x7f7fffff))),
2557
2558   # Things that look like DPH in the source shader may get expanded to
2559   # something that looks like dot(v1.xyz, v2.xyz) + v1.w by the time it gets
2560   # to NIR.  After FFMA is generated, this can look like:
2561   #
2562   #    fadd(ffma(v1.z, v2.z, ffma(v1.y, v2.y, fmul(v1.x, v2.x))), v1.w)
2563   #
2564   # Reassociate the last addition into the first multiplication.
2565   #
2566   # Some shaders do not use 'invariant' in vertex and (possibly) geometry
2567   # shader stages on some outputs that are intended to be invariant.  For
2568   # various reasons, this optimization may not be fully applied in all
2569   # shaders used for different rendering passes of the same geometry.  This
2570   # can result in Z-fighting artifacts (at best).  For now, disable this
2571   # optimization in these stages.  See bugzilla #111490.  In tessellation
2572   # stages applications seem to use 'precise' when necessary, so allow the
2573   # optimization in those stages.
2574   (('~fadd', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul(is_used_once)', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)'))), 'g(is_not_const)'),
2575    ('ffma', a, b, ('ffma', c, d, ('ffma', e, 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
2576   (('~fadd', ('ffma(is_used_once)', a, b, ('fmul(is_used_once)', 'c(is_not_const_and_not_fsign)', 'd(is_not_const_and_not_fsign)') ), 'e(is_not_const)'),
2577    ('ffma', a, b, ('ffma', c, d, e)), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
2578   (('~fadd', ('fneg', ('ffma(is_used_once)', a, b, ('ffma', c, d, ('fmul(is_used_once)', 'e(is_not_const_and_not_fsign)', 'f(is_not_const_and_not_fsign)')))), 'g(is_not_const)'),
2579    ('ffma', ('fneg', a), b, ('ffma', ('fneg', c), d, ('ffma', ('fneg', e), 'f', 'g'))), '(info->stage != MESA_SHADER_VERTEX && info->stage != MESA_SHADER_GEOMETRY) && !options->intel_vec4'),
2580
2581   # Section 8.8 (Integer Functions) of the GLSL 4.60 spec says:
2582   #
2583   #    If bits is zero, the result will be zero.
2584   #
2585   # These prevent the next two lowerings generating incorrect results when
2586   # count is zero.
2587   (('ubfe', a, b, 0), 0),
2588   (('ibfe', a, b, 0), 0),
2589
2590   # On Intel GPUs, BFE is a 3-source instruction.  Like all 3-source
2591   # instructions on Intel GPUs, it cannot have an immediate values as
2592   # sources.  There are also limitations on source register strides.  As a
2593   # result, it is very easy for 3-source instruction combined with either
2594   # loads of immediate values or copies from weird register strides to be
2595   # more expensive than the primitive instructions it represents.
2596   (('ubfe', a, '#b', '#c'), ('iand', ('ushr', 0xffffffff, ('ineg', c)), ('ushr', a, b)), 'options->avoid_ternary_with_two_constants'),
2597
2598   # b is the lowest order bit to be extracted and c is the number of bits to
2599   # extract.  The inner shift removes the bits above b + c by shifting left
2600   # 32 - (b + c).  ishl only sees the low 5 bits of the shift count, which is
2601   # -(b + c).  The outer shift moves the bit that was at b to bit zero.
2602   # After the first shift, that bit is now at b + (32 - (b + c)) or 32 - c.
2603   # This means that it must be shifted right by 32 - c or -c bits.
2604   (('ibfe', a, '#b', '#c'), ('ishr', ('ishl', a, ('ineg', ('iadd', b, c))), ('ineg', c)), 'options->avoid_ternary_with_two_constants'),
2605
2606   # Clean up no-op shifts that may result from the bfe lowerings.
2607   (('ishl', a, 0), a),
2608   (('ishl', a, -32), a),
2609   (('ishr', a, 0), a),
2610   (('ishr', a, -32), a),
2611   (('ushr', a, 0), a),
2612
2613   (('extract_i8', ('extract_i8', a, b), 0), ('extract_i8', a, b)),
2614   (('extract_i8', ('extract_u8', a, b), 0), ('extract_i8', a, b)),
2615   (('extract_u8', ('extract_i8', a, b), 0), ('extract_u8', a, b)),
2616   (('extract_u8', ('extract_u8', a, b), 0), ('extract_u8', a, b)),
2617]
2618
2619# A few more extract cases we'd rather leave late
2620for N in [16, 32]:
2621    aN = 'a@{0}'.format(N)
2622    u2uM = 'u2u{0}'.format(M)
2623    i2iM = 'i2i{0}'.format(M)
2624
2625    for x in ['u', 'i']:
2626        x2xN = '{0}2{0}{1}'.format(x, N)
2627        extract_x8 = 'extract_{0}8'.format(x)
2628        extract_x16 = 'extract_{0}16'.format(x)
2629
2630        late_optimizations.extend([
2631            ((x2xN, ('u2u8', aN)), (extract_x8, a, 0), '!options->lower_extract_byte'),
2632            ((x2xN, ('i2i8', aN)), (extract_x8, a, 0), '!options->lower_extract_byte'),
2633        ])
2634
2635        if N > 16:
2636            late_optimizations.extend([
2637                ((x2xN, ('u2u16', aN)), (extract_x16, a, 0), '!options->lower_extract_word'),
2638                ((x2xN, ('i2i16', aN)), (extract_x16, a, 0), '!options->lower_extract_word'),
2639            ])
2640
2641# Byte insertion
2642late_optimizations.extend([(('ishl', ('extract_u8', 'a@32', 0), 8 * i), ('insert_u8', a, i), '!options->lower_insert_byte') for i in range(1, 4)])
2643late_optimizations.extend([(('iand', ('ishl', 'a@32', 8 * i), 0xff << (8 * i)), ('insert_u8', a, i), '!options->lower_insert_byte') for i in range(1, 4)])
2644late_optimizations.append((('ishl', 'a@32', 24), ('insert_u8', a, 3), '!options->lower_insert_byte'))
2645
2646late_optimizations += [
2647   # Word insertion
2648   (('ishl', 'a@32', 16), ('insert_u16', a, 1), '!options->lower_insert_word'),
2649
2650   # Extract and then insert
2651   (('insert_u8', ('extract_u8', 'a', 0), b), ('insert_u8', a, b)),
2652   (('insert_u16', ('extract_u16', 'a', 0), b), ('insert_u16', a, b)),
2653]
2654
2655# Integer sizes
2656for s in [8, 16, 32, 64]:
2657    late_optimizations.extend([
2658        (('iand', ('ine(is_used_once)', 'a@{}'.format(s), 0), ('ine', 'b@{}'.format(s), 0)), ('ine', ('umin', a, b), 0)),
2659        (('ior',  ('ieq(is_used_once)', 'a@{}'.format(s), 0), ('ieq', 'b@{}'.format(s), 0)), ('ieq', ('umin', a, b), 0)),
2660    ])
2661
2662# Float sizes
2663for s in [16, 32, 64]:
2664    late_optimizations.extend([
2665       (('~fadd@{}'.format(s), 1.0, ('fmul(is_used_once)', c , ('fadd', b, -1.0 ))), ('fadd', ('fadd', 1.0, ('fneg', c)), ('fmul', b, c)), 'options->lower_flrp{}'.format(s)),
2666       (('bcsel', a, 0, ('b2f{}'.format(s), ('inot', 'b@bool'))), ('b2f{}'.format(s), ('inot', ('ior', a, b)))),
2667    ])
2668
2669for op in ['fadd']:
2670    late_optimizations += [
2671        (('bcsel', a, (op + '(is_used_once)', b, c), (op, b, d)), (op, b, ('bcsel', a, c, d))),
2672        (('bcsel', a, (op, b, c), (op + '(is_used_once)', b, d)), (op, b, ('bcsel', a, c, d))),
2673    ]
2674
2675for op in ['ffma']:
2676    late_optimizations += [
2677        (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2678        (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, c, e)), (op, b, c, ('bcsel', a, d, e))),
2679
2680        (('bcsel', a, (op + '(is_used_once)', b, c, d), (op, b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2681        (('bcsel', a, (op, b, c, d), (op + '(is_used_once)', b, e, d)), (op, b, ('bcsel', a, c, e), d)),
2682    ]
2683
2684# mediump: If an opcode is surrounded by conversions, remove the conversions.
2685# The rationale is that type conversions + the low precision opcode are more
2686# expensive that the same arithmetic opcode at higher precision.
2687#
2688# This must be done in late optimizations, because we need normal optimizations to
2689# first eliminate temporary up-conversions such as in op1(f2fmp(f2f32(op2()))).
2690#
2691# Unary opcodes
2692for op in ['fabs', 'fceil', 'fcos', 'fddx', 'fddx_coarse', 'fddx_fine', 'fddy',
2693           'fddy_coarse', 'fddy_fine', 'fexp2', 'ffloor', 'ffract', 'flog2', 'fneg',
2694           'frcp', 'fround_even', 'frsq', 'fsat', 'fsign', 'fsin', 'fsqrt']:
2695    late_optimizations += [(('~f2f32', (op, ('f2fmp', a))), (op, a))]
2696
2697# Binary opcodes
2698for op in ['fadd', 'fdiv', 'fmax', 'fmin', 'fmod', 'fmul', 'fpow', 'frem']:
2699    late_optimizations += [(('~f2f32', (op, ('f2fmp', a), ('f2fmp', b))), (op, a, b))]
2700
2701# Ternary opcodes
2702for op in ['ffma', 'flrp']:
2703    late_optimizations += [(('~f2f32', (op, ('f2fmp', a), ('f2fmp', b), ('f2fmp', c))), (op, a, b, c))]
2704
2705# Comparison opcodes
2706for op in ['feq', 'fge', 'flt', 'fneu']:
2707    late_optimizations += [(('~' + op, ('f2fmp', a), ('f2fmp', b)), (op, a, b))]
2708
2709# Do this last, so that the f2fmp patterns above have effect.
2710late_optimizations += [
2711  # Convert *2*mp instructions to concrete *2*16 instructions. At this point
2712  # any conversions that could have been removed will have been removed in
2713  # nir_opt_algebraic so any remaining ones are required.
2714  (('f2fmp', a), ('f2f16', a)),
2715  (('f2imp', a), ('f2i16', a)),
2716  (('f2ump', a), ('f2u16', a)),
2717  (('i2imp', a), ('i2i16', a)),
2718  (('i2fmp', a), ('i2f16', a)),
2719  (('i2imp', a), ('u2u16', a)),
2720  (('u2fmp', a), ('u2f16', a)),
2721  (('fisfinite', a), ('flt', ('fabs', a), float("inf"))),
2722]
2723
2724distribute_src_mods = [
2725   # Try to remove some spurious negations rather than pushing them down.
2726   (('fmul', ('fneg', a), ('fneg', b)), ('fmul', a, b)),
2727   (('ffma', ('fneg', a), ('fneg', b), c), ('ffma', a, b, c)),
2728   (('fdot2_replicated', ('fneg', a), ('fneg', b)), ('fdot2_replicated', a, b)),
2729   (('fdot3_replicated', ('fneg', a), ('fneg', b)), ('fdot3_replicated', a, b)),
2730   (('fdot4_replicated', ('fneg', a), ('fneg', b)), ('fdot4_replicated', a, b)),
2731   (('fneg', ('fneg', a)), a),
2732
2733   (('fneg', ('fmul(is_used_once)', a, b)), ('fmul', ('fneg', a), b)),
2734   (('fabs', ('fmul(is_used_once)', a, b)), ('fmul', ('fabs', a), ('fabs', b))),
2735
2736   (('fneg', ('ffma(is_used_once)', a, b, c)), ('ffma', ('fneg', a), b, ('fneg', c))),
2737   (('fneg', ('flrp(is_used_once)', a, b, c)), ('flrp', ('fneg', a), ('fneg', b), c)),
2738   (('fneg', ('fadd(is_used_once)', a, b)), ('fadd', ('fneg', a), ('fneg', b))),
2739
2740   # Note that fmin <-> fmax.  I don't think there is a way to distribute
2741   # fabs() into fmin or fmax.
2742   (('fneg', ('fmin(is_used_once)', a, b)), ('fmax', ('fneg', a), ('fneg', b))),
2743   (('fneg', ('fmax(is_used_once)', a, b)), ('fmin', ('fneg', a), ('fneg', b))),
2744
2745   (('fneg', ('fdot2_replicated(is_used_once)', a, b)), ('fdot2_replicated', ('fneg', a), b)),
2746   (('fneg', ('fdot3_replicated(is_used_once)', a, b)), ('fdot3_replicated', ('fneg', a), b)),
2747   (('fneg', ('fdot4_replicated(is_used_once)', a, b)), ('fdot4_replicated', ('fneg', a), b)),
2748
2749   # fdph works mostly like fdot, but to get the correct result, the negation
2750   # must be applied to the second source.
2751   (('fneg', ('fdph_replicated(is_used_once)', a, b)), ('fdph_replicated', a, ('fneg', b))),
2752
2753   (('fneg', ('fsign(is_used_once)', a)), ('fsign', ('fneg', a))),
2754   (('fabs', ('fsign(is_used_once)', a)), ('fsign', ('fabs', a))),
2755]
2756
2757print(nir_algebraic.AlgebraicPass("nir_opt_algebraic", optimizations).render())
2758print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_before_ffma",
2759                                  before_ffma_optimizations).render())
2760print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_late",
2761                                  late_optimizations).render())
2762print(nir_algebraic.AlgebraicPass("nir_opt_algebraic_distribute_src_mods",
2763                                  distribute_src_mods).render())
2764