1# Copyright 2020-2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# =========================================================================== 15"""generate json desc for softmax""" 16from mindspore._extends.graph_kernel.model.model import DataFormat as DF 17from ._utils import Expander, ExpanderInfoValidator as VLD 18from ._utils import infer_shape_from_fractalnz, get_reduced_ori_shape, to_frac_z_axis 19 20 21@VLD.add_format(DF.FRAC_NZ) 22@VLD.add_format(DF.DEFAULT) 23@VLD.check_attrs('axis') 24class Softmax(Expander): 25 """Softmax expander""" 26 27 def _expand(self, graph_builder): 28 input_x = self.inputs[0] 29 processor = self.processor 30 axis = self.attrs['axis'] 31 32 ori_shape = input_x.shape 33 if input_x.data_format == DF.FRAC_NZ: 34 ori_shape = infer_shape_from_fractalnz(input_x.shape) 35 36 for i, _ in enumerate(list(axis)): 37 if axis[i] < 0: 38 axis[i] += len(ori_shape) 39 40 ori_reduced_shape = get_reduced_ori_shape(ori_shape, axis) 41 42 if input_x.data_format == DF.FRAC_NZ: 43 axis = to_frac_z_axis(ori_shape, axis) 44 45 ori_dtype = input_x.dtype 46 if ori_dtype != "float16" and processor == "aicore": 47 input_x_f16 = graph_builder.emit('Cast', [input_x], attrs={'dst_type': 'float16'}) 48 max_x_f16 = graph_builder.emit('ReduceMax', [input_x_f16], attrs={'reduce_axis': axis, 'keep_dims': True}) 49 max_x = graph_builder.emit('Cast', [max_x_f16], attrs={'dst_type': ori_dtype}) 50 else: 51 max_x = graph_builder.emit('ReduceMax', [input_x], attrs={'reduce_axis': axis, 'keep_dims': True}) 52 53 if ori_dtype == "float16" and processor == "aicore": 54 max_x = graph_builder.emit('Cast', [max_x], attrs={'dst_type': "float32"}) 55 input_x = graph_builder.emit('Cast', [input_x], attrs={'dst_type': "float32"}) 56 57 if input_x.data_format == DF.FRAC_NZ: 58 max_x = graph_builder.emit('Reshape', [max_x], attrs={'shape': ori_reduced_shape}) 59 data_sub = graph_builder.emit('Sub', [input_x, max_x]) 60 data_exp = graph_builder.emit('Exp', [data_sub]) 61 data_expsum = graph_builder.emit('ReduceSum', [data_exp], attrs={'reduce_axis': axis, 'keep_dims': True}) 62 if input_x.data_format == DF.FRAC_NZ: 63 data_expsum = graph_builder.emit('Reshape', [data_expsum], attrs={'shape': ori_reduced_shape}) 64 result = graph_builder.emit('RealDiv', [data_exp, data_expsum]) 65 if ori_dtype == "float16" and processor == "aicore": 66 result = graph_builder.emit('Cast', [result], attrs={'dst_type': ori_dtype}) 67 68 return result 69