• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15"""Recall."""
16import sys
17
18import numpy as np
19
20from mindspore._checkparam import Validator as validator
21from .metric import EvaluationBase, rearrange_inputs
22
23
24class Recall(EvaluationBase):
25    r"""
26    Calculates recall for classification and multilabel data.
27
28    The recall class creates two local variables, :math:`\text{true_positive}` and :math:`\text{false_negative}`,
29    that are used to compute the recall. This value is ultimately returned as the recall, an idempotent operation
30    that simply divides :math:`\text{true_positive}` by the sum of :math:`\text{true_positive}` and
31    :math:`\text{false_negative}`.
32
33    .. math::
34        \text{recall} = \frac{\text{true_positive}}{\text{true_positive} + \text{false_negative}}
35
36    Note:
37        In the multi-label cases, the elements of :math:`y` and :math:`y_{pred}` must be 0 or 1.
38
39    Args:
40        eval_type (str): The metric to calculate the recall over a dataset, for classification or
41                         multilabel. Default: 'classification'.
42
43    Examples:
44        >>> import numpy as np
45        >>> from mindspore import nn, Tensor
46        >>>
47        >>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
48        >>> y = Tensor(np.array([1, 0, 1]))
49        >>> metric = nn.Recall('classification')
50        >>> metric.clear()
51        >>> metric.update(x, y)
52        >>> recall = metric.eval()
53        >>> print(recall)
54        [1. 0.5]
55    """
56    def __init__(self, eval_type='classification'):
57        super(Recall, self).__init__(eval_type)
58        self.eps = sys.float_info.min
59        self.clear()
60
61    def clear(self):
62        """Clears the internal evaluation result."""
63        self._class_num = 0
64        if self._type == "multilabel":
65            self._true_positives = np.empty(0)
66            self._actual_positives = np.empty(0)
67            self._true_positives_average = 0
68            self._actual_positives_average = 0
69        else:
70            self._true_positives = 0
71            self._actual_positives = 0
72
73    @rearrange_inputs
74    def update(self, *inputs):
75        """
76        Updates the internal evaluation result with `y_pred` and `y`.
77
78        Args:
79            inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
80                For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
81                of floating numbers in range :math:`[0, 1]`
82                and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
83                is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
84                encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
85                For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
86                values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
87                are both :math:`(N, C)`.
88
89
90        Raises:
91            ValueError: If the number of input is not 2.
92        """
93        if len(inputs) != 2:
94            raise ValueError('The recall needs 2 inputs (y_pred, y), but got {}'.format(len(inputs)))
95        y_pred = self._convert_data(inputs[0])
96        y = self._convert_data(inputs[1])
97        if self._type == 'classification' and y_pred.ndim == y.ndim and self._check_onehot_data(y):
98            y = y.argmax(axis=1)
99        self._check_shape(y_pred, y)
100        self._check_value(y_pred, y)
101
102        if self._class_num == 0:
103            self._class_num = y_pred.shape[1]
104        elif y_pred.shape[1] != self._class_num:
105            raise ValueError('The class number does not match, the last input data contains {} classes, '
106                             'but the current data contains {} classes'.format(self._class_num, y_pred.shape[1]))
107
108        class_num = self._class_num
109        if self._type == "classification":
110            if y.max() + 1 > class_num:
111                raise ValueError('y_pred contains {} classes less than y contains {} classes.'.
112                                 format(class_num, y.max() + 1))
113            y = np.eye(class_num)[y.reshape(-1)]
114            indices = y_pred.argmax(axis=1).reshape(-1)
115            y_pred = np.eye(class_num)[indices]
116        elif self._type == "multilabel":
117            y_pred = y_pred.swapaxes(1, 0).reshape(class_num, -1)
118            y = y.swapaxes(1, 0).reshape(class_num, -1)
119
120        actual_positives = y.sum(axis=0)
121        true_positives = (y * y_pred).sum(axis=0)
122
123        if self._type == "multilabel":
124            self._true_positives_average += np.sum(true_positives / (actual_positives + self.eps))
125            self._actual_positives_average += len(actual_positives)
126            self._true_positives = np.concatenate((self._true_positives, true_positives), axis=0)
127            self._actual_positives = np.concatenate((self._actual_positives, actual_positives), axis=0)
128        else:
129            self._true_positives += true_positives
130            self._actual_positives += actual_positives
131
132    def eval(self, average=False):
133        """
134        Computes the recall.
135
136        Args:
137            average (bool): Specify whether calculate the average recall. Default value is False.
138
139        Returns:
140            Float, the computed result.
141        """
142        if self._class_num == 0:
143            raise RuntimeError('The input number of samples can not be 0.')
144
145        validator.check_value_type("average", average, [bool], self.__class__.__name__)
146        result = self._true_positives / (self._actual_positives + self.eps)
147
148        if average:
149            if self._type == "multilabel":
150                result = self._true_positives_average / (self._actual_positives_average + self.eps)
151            return result.mean()
152        return result
153