1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18import mindspore.context as context 19import mindspore.nn as nn 20from mindspore import Tensor, Parameter 21from mindspore.ops import operations as P 22 23context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 24 25 26class TestScatterAddNet(nn.Cell): 27 def __init__(self, lock, inputx, indices, updates): 28 super(TestScatterAddNet, self).__init__() 29 self.scatter_add = P.ScatterAdd(use_locking=lock) 30 self.inputx = Parameter(inputx, name="inputx") 31 self.indices = Parameter(indices, name="indices") 32 self.updates = Parameter(updates, name="updates") 33 34 def construct(self): 35 out = self.scatter_add(self.inputx, self.indices, self.updates) 36 return out 37 38 39def scatter_add_net(inputx, indices, updates): 40 lock = True 41 net = TestScatterAddNet(lock, inputx, indices, updates) 42 return net() 43 44 45def scatter_add_use_locking_false_net(inputx, indices, updates): 46 lock = False 47 net = TestScatterAddNet(lock, inputx, indices, updates) 48 return net() 49 50 51@pytest.mark.level0 52@pytest.mark.platform_x86_cpu 53@pytest.mark.env_onecard 54def test_scatter_add_small_float32(): 55 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 56 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 57 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 58 output = scatter_add_net(inputx, indices, updates) 59 expected = np.array([[6., 8., 10.], 60 [12., 14., 16.]]) 61 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 62 63 64@pytest.mark.level0 65@pytest.mark.platform_x86_cpu 66@pytest.mark.env_onecard 67def test_scatter_add_input_updated(): 68 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 69 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 70 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 71 lock = True 72 net = TestScatterAddNet(lock, inputx, indices, updates) 73 net() 74 expected = np.array([[6., 8., 10.], 75 [12., 14., 16.]]) 76 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 77 78 79@pytest.mark.level0 80@pytest.mark.platform_x86_cpu 81@pytest.mark.env_onecard 82def test_scatter_add_large_shape_float32(): 83 inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) 84 indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) 85 updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) 86 output = scatter_add_net(inputx, indices, updates) 87 expected = np.array([[[[1., 2., 3., 4.], 88 [5., 6., 7., 8.], 89 [9., 10., 11., 12.]], 90 [[13., 14., 15., 16.], 91 [17., 18., 19., 20.], 92 [21., 22., 23., 24.]]], 93 [[[73., 74., 75., 76.], 94 [77., 78., 79., 80.], 95 [81., 82., 83., 84.]], 96 [[85., 86., 87., 88.], 97 [89., 90., 91., 92.], 98 [93., 94., 95., 96.]]], 99 [[[25., 26., 27., 28.], 100 [29., 30., 31., 32.], 101 [33., 34., 35., 36.]], 102 [[37., 38., 39., 40.], 103 [41., 42., 43., 44.], 104 [45., 46., 47., 48.]]], 105 [[[49., 50., 51., 52.], 106 [53., 54., 55., 56.], 107 [57., 58., 59., 60.]], 108 [[61., 62., 63., 64.], 109 [65., 66., 67., 68.], 110 [69., 70., 71., 72.]]]]) 111 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 112 113 114@pytest.mark.level0 115@pytest.mark.platform_x86_cpu 116@pytest.mark.env_onecard 117def test_scatter_add_small_float32_use_locking_false(): 118 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 119 indices = Tensor(np.array([1, 0]).astype(np.int32)) 120 updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) 121 output = scatter_add_use_locking_false_net(inputx, indices, updates) 122 expected = np.array([[3., 4., 5.], 123 [0., 1., 2.]]) 124 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 125 126 127@pytest.mark.level0 128@pytest.mark.platform_x86_cpu 129@pytest.mark.env_onecard 130def test_scatter_add_input_less_than_1_float32(): 131 inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516], 132 [0.876542, 0.451611, 0.55112], 133 [0.111244, 0.633333, 0.34444]]).astype(np.float32)) 134 indices = Tensor(np.array([[[1, 0, 2], 135 [2, 2, 0]], 136 [[1, 0, 1], 137 [2, 1, 2]]]).astype(np.int32)) 138 updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32)) 139 output = scatter_add_net(inputx, indices, updates) 140 expected = np.array([[141.21414, 144.41515, 147.51517], 141 [208.87654, 212.45161, 216.55112], 142 [257.11124, 262.63333, 267.34442]], dtype=np.float32) 143 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 144 145 146@pytest.mark.level0 147@pytest.mark.platform_x86_cpu 148@pytest.mark.env_onecard 149def test_scatter_add_float16(): 150 inputx = Tensor(np.zeros((2, 3)).astype(np.float16)) 151 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 152 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float16)) 153 output = scatter_add_net(inputx, indices, updates) 154 expected = np.array([[6., 8., 10.], 155 [12., 14., 16.]]) 156 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 157 158 159@pytest.mark.level0 160@pytest.mark.platform_x86_cpu 161@pytest.mark.env_onecard 162def test_scatter_add_large_float16(): 163 inputx = Tensor(np.zeros((2, 3, 4)).astype(np.float16)) 164 indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) 165 updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) 166 output = scatter_add_net(inputx, indices, updates) 167 expected = np.array([[[138., 140., 142., 144.], 168 [146., 148., 150., 152.], 169 [154., 156., 158., 160.]], 170 [[186., 188., 190., 192.], 171 [194., 196., 198., 200.], 172 [202., 204., 206., 208.]]]) 173 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 174 175 176@pytest.mark.level0 177@pytest.mark.platform_x86_cpu 178@pytest.mark.env_onecard 179def test_scatter_add_disordered_float16(): 180 inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16))) 181 indices = Tensor(np.array([[[0, 1, 2], 182 [2, 1, 0]], 183 [[0, 0, 0], 184 [2, 2, 2]]]).astype(np.int32)) 185 updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16)) 186 output = scatter_add_net(inputx, indices, updates) 187 expected = np.array([[464., 468., 472., 476.], 188 [187., 188., 189., 190.], 189 [492., 496., 500., 504.]]) 190 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 191 192 193@pytest.mark.level0 194@pytest.mark.platform_x86_cpu 195@pytest.mark.env_onecard 196def test_scatter_add_large_int32(): 197 inputx = Tensor(np.zeros((2, 3, 4)).astype(np.int32)) 198 indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32)) 199 updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) 200 output = scatter_add_net(inputx, indices, updates) 201 expected = np.array([[[138., 140., 142., 144.], 202 [146., 148., 150., 152.], 203 [154., 156., 158., 160.]], 204 [[186., 188., 190., 192.], 205 [194., 196., 198., 200.], 206 [202., 204., 206., 208.]]]).astype(np.int32) 207 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 208 209 210@pytest.mark.level0 211@pytest.mark.platform_x86_cpu 212@pytest.mark.env_onecard 213def test_scatter_add_disordered_int32(): 214 inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32))) 215 indices = Tensor(np.array([[[0, 1, 2], 216 [2, 1, 0]], 217 [[0, 0, 0], 218 [2, 2, 2]]]).astype(np.int32)) 219 updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32)) 220 output = scatter_add_net(inputx, indices, updates) 221 expected = np.array([[464., 468., 472., 476.], 222 [187., 188., 189., 190.], 223 [492., 496., 500., 504.]]).astype(np.int32) 224 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 225 226 227class TestScatterSubNet(nn.Cell): 228 def __init__(self, lock, inputx, indices, updates): 229 super(TestScatterSubNet, self).__init__() 230 self.scatter_sub = P.ScatterSub(use_locking=lock) 231 self.inputx = Parameter(inputx, name="inputx") 232 self.indices = Parameter(indices, name="indices") 233 self.updates = Parameter(updates, name="updates") 234 235 def construct(self): 236 out = self.scatter_sub(self.inputx, self.indices, self.updates) 237 return out 238 239 240def scatter_sub_net(inputx, indices, updates): 241 lock = True 242 net = TestScatterSubNet(lock, inputx, indices, updates) 243 return net() 244 245 246def scatter_sub_use_locking_false_net(inputx, indices, updates): 247 lock = False 248 net = TestScatterSubNet(lock, inputx, indices, updates) 249 return net() 250 251 252@pytest.mark.level0 253@pytest.mark.platform_x86_cpu 254@pytest.mark.env_onecard 255def test_scatter_sub_input_updated(): 256 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 257 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 258 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 259 lock = True 260 net = TestScatterSubNet(lock, inputx, indices, updates) 261 net() 262 expected = np.array([[-6., -8., -10.], 263 [-12., -14., -16.]]) 264 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 265 266 267@pytest.mark.level0 268@pytest.mark.platform_x86_cpu 269@pytest.mark.env_onecard 270def test_scatter_sub_large_shape_float32(): 271 inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32)) 272 indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32)) 273 updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32)) 274 output = scatter_sub_net(inputx, indices, updates) 275 expected = np.array( 276 [[[[1.0, 0.0, -1.0, -2.0], 277 [-3.0, -4.0, -5.0, -6.0], 278 [-7.0, -8.0, -9.0, -10.0]], 279 [[-11.0, -12.0, -13.0, -14.0], 280 [-15.0, -16.0, -17.0, -18.0], 281 [-19.0, -20.0, -21.0, -22.0]]], 282 [[[-71.0, -72.0, -73.0, -74.0], 283 [-75.0, -76.0, -77.0, -78.0], 284 [-79.0, -80.0, -81.0, -82.0]], 285 [[-83.0, -84.0, -85.0, -86.0], 286 [-87.0, -88.0, -89.0, -90.0], 287 [-91.0, -92.0, -93.0, -94.0]]], 288 [[[-23.0, -24.0, -25.0, -26.0], 289 [-27.0, -28.0, -29.0, -30.0], 290 [-31.0, -32.0, -33.0, -34.0]], 291 [[-35.0, -36.0, -37.0, -38.0], 292 [-39.0, -40.0, -41.0, -42.0], 293 [-43.0, -44.0, -45.0, -46.0]]], 294 [[[-47.0, -48.0, -49.0, -50.0], 295 [-51.0, -52.0, -53.0, -54.0], 296 [-55.0, -56.0, -57.0, -58.0]], 297 [[-59.0, -60.0, -61.0, -62.0], 298 [-63.0, -64.0, -65.0, -66.0], 299 [-67.0, -68.0, -69.0, -70.0]]]]) 300 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 301 302 303@pytest.mark.level0 304@pytest.mark.platform_x86_cpu 305@pytest.mark.env_onecard 306def test_scatter_sub_small_float32_use_locking_false(): 307 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 308 indices = Tensor(np.array([1, 0]).astype(np.int32)) 309 updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32)) 310 output = scatter_sub_use_locking_false_net(inputx, indices, updates) 311 expected = np.array([[-3., -4., -5.], 312 [-0., -1., -2.]]) 313 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 314 315 316class TestScatterMulNet(nn.Cell): 317 def __init__(self, lock, inputx, indices, updates): 318 super(TestScatterMulNet, self).__init__() 319 self.scatter_mul = P.ScatterMul(use_locking=lock) 320 self.inputx = Parameter(inputx, name="inputx") 321 self.indices = Parameter(indices, name="indices") 322 self.updates = Parameter(updates, name="updates") 323 324 def construct(self): 325 out = self.scatter_mul(self.inputx, self.indices, self.updates) 326 return out 327 328 329def scatter_mul_net(inputx, indices, updates): 330 lock = True 331 net = TestScatterMulNet(lock, inputx, indices, updates) 332 return net() 333 334 335def scatter_mul_use_locking_false_net(inputx, indices, updates): 336 lock = False 337 net = TestScatterMulNet(lock, inputx, indices, updates) 338 return net() 339 340 341@pytest.mark.level0 342@pytest.mark.platform_x86_cpu 343@pytest.mark.env_onecard 344def test_scatter_mul_input_updated(): 345 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 346 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 347 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 348 lock = True 349 net = TestScatterMulNet(lock, inputx, indices, updates) 350 net() 351 expected = np.array([[0., 7., 16.], 352 [27., 40., 55.]]) 353 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 354 355 356@pytest.mark.level0 357@pytest.mark.platform_x86_cpu 358@pytest.mark.env_onecard 359def test_scatter_mul_output_updated_float32(): 360 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 361 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 362 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 363 output = scatter_mul_net(inputx, indices, updates) 364 expected = np.array([[0., 7., 16.], 365 [27., 40., 55.]]) 366 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 367 368 369@pytest.mark.level0 370@pytest.mark.platform_x86_cpu 371@pytest.mark.env_onecard 372def test_scatter_mul_small_float32_use_locking_false(): 373 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 374 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 375 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 376 output = scatter_mul_use_locking_false_net(inputx, indices, updates) 377 expected = np.array([[0., 7., 16.], 378 [27., 40., 55.]]) 379 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 380 381 382class TestScatterDivNet(nn.Cell): 383 def __init__(self, lock, inputx, indices, updates): 384 super(TestScatterDivNet, self).__init__() 385 self.scatter_div = P.ScatterDiv(use_locking=lock) 386 self.inputx = Parameter(inputx, name="inputx") 387 self.indices = Parameter(indices, name="indices") 388 self.updates = Parameter(updates, name="updates") 389 390 def construct(self): 391 out = self.scatter_div(self.inputx, self.indices, self.updates) 392 return out 393 394 395def scatter_div_net(inputx, indices, updates): 396 lock = True 397 net = TestScatterDivNet(lock, inputx, indices, updates) 398 return net() 399 400 401def scatter_div_use_locking_false_net(inputx, indices, updates): 402 lock = False 403 net = TestScatterDivNet(lock, inputx, indices, updates) 404 return net() 405 406 407@pytest.mark.level0 408@pytest.mark.platform_x86_cpu 409@pytest.mark.env_onecard 410def test_scatter_div_input_updated(): 411 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 412 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 413 updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) 414 lock = True 415 net = TestScatterDivNet(lock, inputx, indices, updates) 416 net() 417 expected = np.array([[0., 0., 0.], 418 [0., 0., 0.]]) 419 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 420 421 422@pytest.mark.level0 423@pytest.mark.platform_x86_cpu 424@pytest.mark.env_onecard 425def test_scatter_div_output_updated_float32(): 426 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 427 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 428 updates = Tensor(np.arange(1, 13).reshape((2, 2, 3)).astype(np.float32)) 429 output = scatter_div_net(inputx, indices, updates) 430 expected = np.array([[0., 0., 0.], 431 [0., 0., 0.]]) 432 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 433 434 435@pytest.mark.level0 436@pytest.mark.platform_x86_cpu 437@pytest.mark.env_onecard 438def test_scatter_div_small_float32_use_locking_false(): 439 inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) 440 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 441 updates = Tensor(np.ones(12).reshape((2, 2, 3)).astype(np.float32)) 442 output = scatter_div_use_locking_false_net(inputx, indices, updates) 443 expected = np.array([[10., 10., 10.], 444 [10., 10., 10.]]) 445 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 446 447 448class TestScatterMaxNet(nn.Cell): 449 def __init__(self, lock, inputx, indices, updates): 450 super(TestScatterMaxNet, self).__init__() 451 self.scatter_max = P.ScatterMax(use_locking=lock) 452 self.inputx = Parameter(inputx, name="inputx") 453 self.indices = Parameter(indices, name="indices") 454 self.updates = Parameter(updates, name="updates") 455 456 def construct(self): 457 out = self.scatter_max(self.inputx, self.indices, self.updates) 458 return out 459 460 461def scatter_max_net(inputx, indices, updates): 462 lock = True 463 net = TestScatterMaxNet(lock, inputx, indices, updates) 464 return net() 465 466 467def scatter_max_use_locking_false_net(inputx, indices, updates): 468 lock = False 469 net = TestScatterMaxNet(lock, inputx, indices, updates) 470 return net() 471 472 473@pytest.mark.level0 474@pytest.mark.platform_x86_cpu 475@pytest.mark.env_onecard 476def test_scatter_max_input_updated(): 477 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 478 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 479 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 480 lock = True 481 net = TestScatterMaxNet(lock, inputx, indices, updates) 482 net() 483 expected = np.array([[6., 7., 8.], 484 [9., 10., 11.]]) 485 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 486 487 488@pytest.mark.level0 489@pytest.mark.platform_x86_cpu 490@pytest.mark.env_onecard 491def test_scatter_max_output_updated_float32(): 492 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 493 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 494 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 495 output = scatter_max_net(inputx, indices, updates) 496 expected = np.array([[6., 7., 8.], 497 [9., 10., 11.]]) 498 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 499 500 501@pytest.mark.level0 502@pytest.mark.platform_x86_cpu 503@pytest.mark.env_onecard 504def test_scatter_max_small_float32_use_locking_false(): 505 inputx = Tensor(np.ones((2, 3)).astype(np.float32) * 10) 506 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 507 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 508 output = scatter_max_use_locking_false_net(inputx, indices, updates) 509 expected = np.array([[10., 10., 10.], 510 [10., 10., 11.]]) 511 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 512 513 514class TestScatterMinNet(nn.Cell): 515 def __init__(self, lock, inputx, indices, updates): 516 super(TestScatterMinNet, self).__init__() 517 self.scatter_min = P.ScatterMin(use_locking=lock) 518 self.inputx = Parameter(inputx, name="inputx") 519 self.indices = Parameter(indices, name="indices") 520 self.updates = Parameter(updates, name="updates") 521 522 def construct(self): 523 out = self.scatter_min(self.inputx, self.indices, self.updates) 524 return out 525 526 527def scatter_min_net(inputx, indices, updates): 528 lock = True 529 net = TestScatterMinNet(lock, inputx, indices, updates) 530 return net() 531 532 533def scatter_min_use_locking_false_net(inputx, indices, updates): 534 lock = False 535 net = TestScatterMinNet(lock, inputx, indices, updates) 536 return net() 537 538 539@pytest.mark.level0 540@pytest.mark.platform_x86_cpu 541@pytest.mark.env_onecard 542def test_scatter_min_input_updated(): 543 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 544 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 545 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 546 lock = True 547 net = TestScatterMinNet(lock, inputx, indices, updates) 548 net() 549 expected = np.array([[0., 0., 0.], 550 [0., 0., 0.]]) 551 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 552 553 554@pytest.mark.level0 555@pytest.mark.platform_x86_cpu 556@pytest.mark.env_onecard 557def test_scatter_min_output_updated_float32(): 558 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 559 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 560 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 561 output = scatter_min_net(inputx, indices, updates) 562 expected = np.array([[0., 1., 1.], 563 [1., 1., 1.]]) 564 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 565 566 567@pytest.mark.level0 568@pytest.mark.platform_x86_cpu 569@pytest.mark.env_onecard 570def test_scatter_min_small_float32_use_locking_false(): 571 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 572 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 573 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 574 output = scatter_min_use_locking_false_net(inputx, indices, updates) 575 expected = np.array([[0., 1., 1.], 576 [1., 1., 1.]]) 577 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 578 579 580class TestScatterUpdateNet(nn.Cell): 581 def __init__(self, lock, inputx, indices, updates): 582 super(TestScatterUpdateNet, self).__init__() 583 self.scatter_update = P.ScatterUpdate(use_locking=lock) 584 self.inputx = Parameter(inputx, name="inputx") 585 self.indices = Parameter(indices, name="indices") 586 self.updates = Parameter(updates, name="updates") 587 588 def construct(self): 589 out = self.scatter_update(self.inputx, self.indices, self.updates) 590 return out 591 592 593def scatter_update_net(inputx, indices, updates): 594 lock = True 595 net = TestScatterUpdateNet(lock, inputx, indices, updates) 596 return net() 597 598 599def scatter_update_use_locking_false_net(inputx, indices, updates): 600 lock = False 601 net = TestScatterUpdateNet(lock, inputx, indices, updates) 602 return net() 603 604 605@pytest.mark.level0 606@pytest.mark.platform_x86_cpu 607@pytest.mark.env_onecard 608def test_scatter_update_input_updated(): 609 inputx = Tensor(np.zeros((2, 3)).astype(np.float32)) 610 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 611 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 612 lock = True 613 net = TestScatterUpdateNet(lock, inputx, indices, updates) 614 net() 615 expected = np.array([[6., 7., 8.], 616 [9., 10., 11.]]) 617 np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected) 618 619 620@pytest.mark.level0 621@pytest.mark.platform_x86_cpu 622@pytest.mark.env_onecard 623def test_scatter_update_output_updated_float32(): 624 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 625 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 626 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 627 output = scatter_update_net(inputx, indices, updates) 628 expected = np.array([[6., 7., 8.], 629 [9., 10., 11.]]) 630 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 631 632 633@pytest.mark.level0 634@pytest.mark.platform_x86_cpu 635@pytest.mark.env_onecard 636def test_scatter_update_small_float32_use_locking_false(): 637 inputx = Tensor(np.ones((2, 3)).astype(np.float32)) 638 indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32)) 639 updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32)) 640 output = scatter_update_use_locking_false_net(inputx, indices, updates) 641 expected = np.array([[6., 7., 8.], 642 [9., 10., 11.]]) 643 np.testing.assert_array_almost_equal(output.asnumpy(), expected) 644