• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.dataset as ds
20import mindspore.dataset.audio.transforms as a_c_trans
21
22
23def count_unequal_element(data_expected, data_me, rtol, atol):
24    assert data_expected.shape == data_me.shape
25    total_count = len(data_expected.flatten())
26    error = np.abs(data_expected - data_me)
27    greater = np.greater(error, atol + np.abs(data_expected) * rtol)
28    loss_count = np.count_nonzero(greater)
29    assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
30        data_expected[greater], data_me[greater], error[greater])
31
32
33def test_func_angle_001():
34    """
35    Eager Test
36    """
37    arr = np.array([[73.04, -13.00], [57.49, 13.20], [-57.64, 6.51], [-52.25, 30.67], [-30.11, -18.34],
38                    [-63.32, 99.33], [95.82, -24.76]], dtype=np.double)
39    expected = np.array([-0.17614017, 0.22569334, 3.02912684, 2.6107975, -2.59450886, 2.13831337, -0.25286988],
40                        dtype=np.double)
41    angle_op = a_c_trans.Angle()
42    output = angle_op(arr)
43    count_unequal_element(expected, output, 0.0001, 0.0001)
44
45
46def test_func_angle_002():
47    """
48    Pipeline Test
49    """
50    np.random.seed(6)
51    arr = np.array([[[84.25, -85.92], [-92.23, 23.06], [-7.33, -44.17], [-62.95, -14.73]],
52                    [[93.09, 38.18], [-81.94, 71.34], [71.33, -39.00], [95.25, -32.94]]], dtype=np.double)
53    expected = np.array([[-0.79521156, 2.89658848, -1.73524737, -2.91173309],
54                         [0.3892177, 2.42523905, -0.50034807, -0.33295219]], dtype=np.double)
55    label = np.random.sample((2, 4, 1))
56    data = (arr, label)
57    dataset = ds.NumpySlicesDataset(data, column_names=["col1", "col2"], shuffle=False)
58    angle_op = a_c_trans.Angle()
59    dataset = dataset.map(operations=angle_op, input_columns=["col1"])
60    for item1, item2 in zip(dataset.create_dict_iterator(output_numpy=True), expected):
61        count_unequal_element(item2, item1['col1'], 0.0001, 0.0001)
62
63
64def test_func_angle_003():
65    """
66    Pipeline Error Test
67    """
68    np.random.seed(78)
69    arr = np.array([["11", "22"], ["33", "44"], ["55", "66"], ["77", "88"]])
70    label = np.random.sample((4, 1))
71    data = (arr, label)
72    dataset = ds.NumpySlicesDataset(data, column_names=["col1", 'col2'], shuffle=False)
73    angle_op = a_c_trans.Angle()
74    dataset = dataset.map(operations=angle_op, input_columns=["col1"])
75    num_itr = 0
76    with pytest.raises(RuntimeError, match="input tensor type should be int, float or double"):
77        for _ in dataset.create_dict_iterator(output_numpy=True):
78            num_itr += 1
79
80
81if __name__ == "__main__":
82    test_func_angle_001()
83    test_func_angle_002()
84    test_func_angle_003()
85