• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "bench/Benchmark.h"
9 #include "include/private/GrTypesPriv.h"
10 #include "include/utils/SkRandom.h"
11 #include "src/gpu/GrMemoryPool.h"
12 
13 #include <type_traits>
14 
15 namespace {
16 
17 // sizeof is a multiple of GrMemoryPool::kAlignment for 4, 8, or 16 byte alignment
18 struct alignas(GrMemoryPool::kAlignment) Aligned {
19     char buf[32];
20 };
21 static_assert(sizeof(Aligned) == 32);
22 static_assert(sizeof(Aligned) % GrMemoryPool::kAlignment == 0);
23 
24 // sizeof is not a multiple of GrMemoryPool::kAlignment (will not be a multiple of max_align_t
25 // if it's 4, 8, or 16, as desired).
26 struct alignas(2) Unaligned {
27     char buf[30];
28 };
29 static_assert(sizeof(Unaligned) == 30);
30 static_assert(sizeof(Unaligned) % GrMemoryPool::kAlignment != 0);
31 
32 // When max_align_t == 16, 8, or 4 the padded Unaligned will also be 32
33 static_assert(SkAlignTo(sizeof(Unaligned), GrMemoryPool::kAlignment) == sizeof(Aligned));
34 
35 // All benchmarks create and delete the same number of objects. The key difference is the order
36 // of operations, the size of the objects being allocated, and the size of the pool.
37 typedef void (*RunBenchProc)(GrMemoryPool*, int);
38 
39 }  // namespace
40 
41 // N objects are created, and then destroyed in reverse order (fully unwinding the cursor within
42 // each block of the memory pool).
43 template <typename T>
run_stack(GrMemoryPool * pool,int loops)44 static void run_stack(GrMemoryPool* pool, int loops) {
45     static const int kMaxObjects = 4 * (1 << 10);
46     T* objs[kMaxObjects];
47     for (int i = 0; i < loops; ++i) {
48         // Push N objects into the pool (or heap if pool is null)
49         for (int j = 0; j < kMaxObjects; ++j) {
50             objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
51         }
52         // Pop N objects off in LIFO order
53         for (int j = kMaxObjects - 1; j >= 0; --j) {
54             if (pool) {
55                 pool->release(objs[j]);
56             } else {
57                 delete objs[j];
58             }
59         }
60 
61         // Everything has been cleaned up for the next loop
62     }
63 }
64 
65 // N objects are created, and then destroyed in creation order (is not able to unwind the cursor
66 // within each block, but can reclaim the block once everything is destroyed).
67 template <typename T>
run_queue(GrMemoryPool * pool,int loops)68 static void run_queue(GrMemoryPool* pool, int loops) {
69     static const int kMaxObjects = 4 * (1 << 10);
70     T* objs[kMaxObjects];
71     for (int i = 0; i < loops; ++i) {
72         // Push N objects into the pool (or heap if pool is null)
73         for (int j = 0; j < kMaxObjects; ++j) {
74             objs[j] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
75         }
76         // Pop N objects off in FIFO order
77         for (int j = 0; j < kMaxObjects; ++j) {
78             if (pool) {
79                 pool->release(objs[j]);
80             } else {
81                 delete objs[j];
82             }
83         }
84 
85         // Everything has been cleaned up for the next loop
86     }
87 }
88 
89 // N objects are created and immediately destroyed, so space at the start of the pool should be
90 // immediately reclaimed.
91 template <typename T>
run_pushpop(GrMemoryPool * pool,int loops)92 static void run_pushpop(GrMemoryPool* pool, int loops) {
93     static const int kMaxObjects = 4 * (1 << 10);
94     T* objs[kMaxObjects];
95     for (int i = 0; i < loops; ++i) {
96         // Push N objects into the pool (or heap if pool is null)
97         for (int j = 0; j < kMaxObjects; ++j) {
98             if (pool) {
99                 objs[j] = (T*) pool->allocate(sizeof(T));
100                 pool->release(objs[j]);
101             } else {
102                 objs[j] = new T;
103                 delete objs[j];
104             }
105         }
106 
107         // Everything has been cleaned up for the next loop
108     }
109 }
110 
111 // N object creations and destructions are invoked in random order.
112 template <typename T>
run_random(GrMemoryPool * pool,int loops)113 static void run_random(GrMemoryPool* pool, int loops) {
114     static const int kMaxObjects = 4 * (1 << 10);
115     T* objs[kMaxObjects];
116     for (int i = 0; i < kMaxObjects; ++i) {
117         objs[i] = nullptr;
118     }
119 
120     auto del = [&](int j) {
121         // Delete
122         if (pool) {
123             pool->release(objs[j]);
124         } else {
125             delete objs[j];
126         }
127         objs[j] = nullptr;
128     };
129 
130     SkRandom r;
131     for (int i = 0; i < loops; ++i) {
132         // Execute 2*kMaxObjects operations, which should average to N create and N destroy,
133         // followed by a small number of remaining deletions.
134         for (int j = 0; j < 2 * kMaxObjects; ++j) {
135             int k = r.nextRangeU(0, kMaxObjects-1);
136             if (objs[k]) {
137                 del(k);
138             } else {
139                 // Create
140                 objs[k] = pool ? (T*) pool->allocate(sizeof(T)) : new T;
141             }
142         }
143 
144         // Ensure everything is null for the next loop
145         for (int j = 0; j < kMaxObjects; ++j) {
146             if (objs[j]) {
147                 del(j);
148             }
149         }
150     }
151 }
152 
153 ///////////////////////////////////////////////////////////////////////////////////////////////////
154 
155 class GrMemoryPoolBench : public Benchmark {
156 public:
GrMemoryPoolBench(const char * name,RunBenchProc proc,int poolSize)157     GrMemoryPoolBench(const char* name, RunBenchProc proc, int poolSize)
158             : fPoolSize(poolSize)
159             , fProc(proc) {
160         fName.printf("grmemorypool_%s", name);
161     }
162 
isSuitableFor(Backend backend)163     bool isSuitableFor(Backend backend) override {
164         return backend == kNonRendering_Backend;
165     }
166 
167 protected:
onGetName()168     const char* onGetName() override {
169         return fName.c_str();
170     }
171 
onDraw(int loops,SkCanvas *)172     void onDraw(int loops, SkCanvas*) override {
173         std::unique_ptr<GrMemoryPool> pool;
174         if (fPoolSize > 0) {
175             pool = GrMemoryPool::Make(fPoolSize, fPoolSize);
176         } // else keep it null to test regular new/delete performance
177 
178         fProc(pool.get(), loops);
179     }
180 
181     SkString     fName;
182     int          fPoolSize;
183     RunBenchProc fProc;
184 
185     using INHERITED = Benchmark;
186 };
187 
188 ///////////////////////////////////////////////////////////////////////////////////////////////////
189 
190 static const int kLargePool = 10 * (1 << 10);
191 static const int kSmallPool = GrMemoryPool::kMinAllocationSize;
192 
193 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_lg",      run_stack<Aligned>,     kLargePool); )
194 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_sm",      run_stack<Aligned>,     kSmallPool); )
195 DEF_BENCH( return new GrMemoryPoolBench("stack_aligned_ref",     run_stack<Aligned>,     0); )
196 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_lg",    run_stack<Unaligned>,   kLargePool); )
197 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_sm",    run_stack<Unaligned>,   kSmallPool); )
198 DEF_BENCH( return new GrMemoryPoolBench("stack_unaligned_ref",   run_stack<Unaligned>,   0); )
199 
200 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_lg",      run_queue<Aligned>,     kLargePool); )
201 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_sm",      run_queue<Aligned>,     kSmallPool); )
202 DEF_BENCH( return new GrMemoryPoolBench("queue_aligned_ref",     run_queue<Aligned>,     0); )
203 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_lg",    run_queue<Unaligned>,   kLargePool); )
204 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_sm",    run_queue<Unaligned>,   kSmallPool); )
205 DEF_BENCH( return new GrMemoryPoolBench("queue_unaligned_ref",   run_queue<Unaligned>,   0); )
206 
207 DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_lg",    run_pushpop<Aligned>,   kLargePool); )
208 DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_sm",    run_pushpop<Aligned>,   kSmallPool); )
209 // DEF_BENCH( return new GrMemoryPoolBench("pushpop_aligned_ref",   run_pushpop<Aligned>,   0); )
210 DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_lg",  run_pushpop<Unaligned>, kLargePool); )
211 DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_sm",  run_pushpop<Unaligned>, kSmallPool); )
212 // DEF_BENCH( return new GrMemoryPoolBench("pushpop_unaligned_ref", run_pushpop<Unaligned>, 0); )
213 // pushpop_x_ref are not meaningful because the compiler completely optimizes away new T; delete *.
214 
215 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_lg",     run_random<Aligned>,    kLargePool); )
216 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_sm",     run_random<Aligned>,    kSmallPool); )
217 DEF_BENCH( return new GrMemoryPoolBench("random_aligned_ref",    run_random<Aligned>,    0); )
218 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_lg",   run_random<Unaligned>,  kLargePool); )
219 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_sm",   run_random<Unaligned>,  kSmallPool); )
220 DEF_BENCH( return new GrMemoryPoolBench("random_unaligned_ref",  run_random<Unaligned>,  0); )
221