• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkBitmapProcState_opts_DEFINED
9 #define SkBitmapProcState_opts_DEFINED
10 
11 #include "include/private/SkVx.h"
12 #include "src/core/SkBitmapProcState.h"
13 #include "src/core/SkMSAN.h"
14 
15 // SkBitmapProcState optimized Shader, Sample, or Matrix procs.
16 //
17 // Only S32_alpha_D32_filter_DX exploits instructions beyond
18 // our common baseline SSE2/NEON instruction sets, so that's
19 // all that lives here.
20 //
21 // The rest are scattershot at the moment but I want to get them
22 // all migrated to be normal code inside SkBitmapProcState.cpp.
23 
24 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
25     #include <immintrin.h>
26 #elif defined(SK_ARM_HAS_NEON)
27     #include <arm_neon.h>
28 #endif
29 
30 namespace SK_OPTS_NS {
31 
32 // This same basic packing scheme is used throughout the file.
33 template <typename U32, typename Out>
decode_packed_coordinates_and_weight(U32 packed,Out * v0,Out * v1,Out * w)34 static void decode_packed_coordinates_and_weight(U32 packed, Out* v0, Out* v1, Out* w) {
35     *v0 = (packed >> 18);       // Integer coordinate x0 or y0.
36     *v1 = (packed & 0x3fff);    // Integer coordinate x1 or y1.
37     *w  = (packed >> 14) & 0xf; // Lerp weight for v1; weight for v0 is 16-w.
38 }
39 
40 #if 1 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
41     /*not static*/ inline
S32_alpha_D32_filter_DX(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)42     void S32_alpha_D32_filter_DX(const SkBitmapProcState& s,
43                                  const uint32_t* xy, int count, uint32_t* colors) {
44         SkASSERT(count > 0 && colors != nullptr);
45         SkASSERT(s.fBilerp);
46         SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
47         SkASSERT(s.fAlphaScale <= 256);
48 
49         // In a _DX variant only X varies; all samples share y0/y1 coordinates and wy weight.
50         int y0, y1, wy;
51         decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
52 
53         const uint32_t* row0 = s.fPixmap.addr32(0,y0);
54         const uint32_t* row1 = s.fPixmap.addr32(0,y1);
55 
56         auto bilerp = [&](skvx::Vec<8,uint32_t> packed_x_coordinates) -> skvx::Vec<8,uint32_t> {
57             // Decode up to 8 output pixels' x-coordinates and weights.
58             skvx::Vec<8,uint32_t> x0,x1,wx;
59             decode_packed_coordinates_and_weight(packed_x_coordinates, &x0, &x1, &wx);
60 
61             // Splat wx to each color channel.
62             wx = (wx <<  0)
63                | (wx <<  8)
64                | (wx << 16)
65                | (wx << 24);
66 
67             auto gather = [](const uint32_t* ptr, skvx::Vec<8,uint32_t> ix) {
68             #if 1
69                 // Drop into AVX2 intrinsics for vpgatherdd.
70                 return skvx::bit_pun<skvx::Vec<8,uint32_t>>(
71                         _mm256_i32gather_epi32((const int*)ptr, skvx::bit_pun<__m256i>(ix), 4));
72             #else
73                 // Portable version... sometimes I don't trust vpgatherdd.
74                 return skvx::Vec<8,uint32_t>{
75                     ptr[ix[0]], ptr[ix[1]], ptr[ix[2]], ptr[ix[3]],
76                     ptr[ix[4]], ptr[ix[5]], ptr[ix[6]], ptr[ix[7]],
77                 };
78             #endif
79             };
80 
81             // Gather the 32 32-bit pixels that we'll bilerp into our 8 output pixels.
82             skvx::Vec<8,uint32_t> tl = gather(row0, x0), tr = gather(row0, x1),
83                                   bl = gather(row1, x0), br = gather(row1, x1);
84 
85         #if 1
86             // We'll use _mm256_maddubs_epi16() to lerp much like in the SSSE3 code.
87             auto lerp_x = [&](skvx::Vec<8,uint32_t> L, skvx::Vec<8,uint32_t> R) {
88                 __m256i l = skvx::bit_pun<__m256i>(L),
89                         r = skvx::bit_pun<__m256i>(R),
90                        wr = skvx::bit_pun<__m256i>(wx),
91                        wl = _mm256_sub_epi8(_mm256_set1_epi8(16), wr);
92 
93                 // Interlace l,r bytewise and line them up with their weights, then lerp.
94                 __m256i lo = _mm256_maddubs_epi16(_mm256_unpacklo_epi8( l, r),
95                                                   _mm256_unpacklo_epi8(wl,wr));
96                 __m256i hi = _mm256_maddubs_epi16(_mm256_unpackhi_epi8( l, r),
97                                                   _mm256_unpackhi_epi8(wl,wr));
98 
99                 // Those _mm256_unpack??_epi8() calls left us in a bit of an odd order:
100                 //
101                 //    if   l = a b c d | e f g h
102                 //   and   r = A B C D | E F G H
103                 //
104                 // then   lo = a A b B | e E f F   (low  half of each input)
105                 //  and   hi = c C d D | g G h H   (high half of each input)
106                 //
107                 // To get everything back in original order we need to transpose that.
108                 __m256i abcd = _mm256_permute2x128_si256(lo, hi, 0x20),
109                         efgh = _mm256_permute2x128_si256(lo, hi, 0x31);
110 
111                 return skvx::join(skvx::bit_pun<skvx::Vec<16,uint16_t>>(abcd),
112                                   skvx::bit_pun<skvx::Vec<16,uint16_t>>(efgh));
113             };
114 
115             skvx::Vec<32, uint16_t> top = lerp_x(tl, tr),
116                                     bot = lerp_x(bl, br),
117                                     sum = 16*top + (bot-top)*wy;
118         #else
119             // Treat 32-bit pixels as 4 8-bit values, and expand to 16-bit for room to multiply.
120             auto to_16x4 = [](auto v) -> skvx::Vec<32, uint16_t> {
121                 return skvx::cast<uint16_t>(skvx::bit_pun<skvx::Vec<32, uint8_t>>(v));
122             };
123 
124             // Sum up weighted sample pixels.  The naive, redundant math would be,
125             //
126             //   sum = tl * (16-wy) * (16-wx)
127             //       + bl * (   wy) * (16-wx)
128             //       + tr * (16-wy) * (   wx)
129             //       + br * (   wy) * (   wx)
130             //
131             // But we refactor to eliminate a bunch of those common factors.
132             auto lerp = [](auto lo, auto hi, auto w) {
133                 return 16*lo + (hi-lo)*w;
134             };
135             skvx::Vec<32, uint16_t> sum = lerp(lerp(to_16x4(tl), to_16x4(bl), wy),
136                                                lerp(to_16x4(tr), to_16x4(br), wy), to_16x4(wx));
137         #endif
138 
139             // Get back to [0,255] by dividing by maximum weight 16x16 = 256.
140             sum >>= 8;
141 
142             // Scale by alpha if needed.
143             if(s.fAlphaScale < 256) {
144                 sum *= s.fAlphaScale;
145                 sum >>= 8;
146             }
147 
148             // Pack back to 8-bit channels, undoing to_16x4().
149             return skvx::bit_pun<skvx::Vec<8,uint32_t>>(skvx::cast<uint8_t>(sum));
150         };
151 
152         while (count >= 8) {
153             bilerp(skvx::Vec<8,uint32_t>::Load(xy)).store(colors);
154             xy     += 8;
155             colors += 8;
156             count  -= 8;
157         }
158         if (count > 0) {
159             __m256i active = skvx::bit_pun<__m256i>( count > skvx::Vec<8,int>{0,1,2,3, 4,5,6,7} ),
160                     coords = _mm256_maskload_epi32((const int*)xy, active),
161                     pixels;
162 
163             bilerp(skvx::bit_pun<skvx::Vec<8,uint32_t>>(coords)).store(&pixels);
164             _mm256_maskstore_epi32((int*)colors, active, pixels);
165 
166             sk_msan_mark_initialized(colors, colors+count,
167                                      "MSAN still doesn't understand AVX2 mask loads and stores.");
168         }
169     }
170 
171 #elif 1 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
172 
173     /*not static*/ inline
S32_alpha_D32_filter_DX(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)174     void S32_alpha_D32_filter_DX(const SkBitmapProcState& s,
175                                  const uint32_t* xy, int count, uint32_t* colors) {
176         SkASSERT(count > 0 && colors != nullptr);
177         SkASSERT(s.fBilerp);
178         SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
179         SkASSERT(s.fAlphaScale <= 256);
180 
181         // interpolate_in_x() is the crux of the SSSE3 implementation,
182         // interpolating in X for up to two output pixels (A and B) using _mm_maddubs_epi16().
183         auto interpolate_in_x = [](uint32_t A0, uint32_t A1,
184                                    uint32_t B0, uint32_t B1,
185                                    __m128i interlaced_x_weights) {
186             // _mm_maddubs_epi16() is a little idiosyncratic, but great as the core of a lerp.
187             //
188             // It takes two arguments interlaced byte-wise:
189             //    - first  arg: [ l,r, ... 7 more pairs of unsigned 8-bit values ...]
190             //    - second arg: [ w,W, ... 7 more pairs of   signed 8-bit values ...]
191             // and returns 8 signed 16-bit values: [ l*w + r*W, ... 7 more ... ].
192             //
193             // That's why we go to all this trouble to make interlaced_x_weights,
194             // and here we're about to interlace A0 with A1 and B0 with B1 to match.
195             //
196             // Our interlaced_x_weights are all in [0,16], and so we need not worry about
197             // the signedness of that input nor about the signedness of the output.
198 
199             __m128i interlaced_A = _mm_unpacklo_epi8(_mm_cvtsi32_si128(A0), _mm_cvtsi32_si128(A1)),
200                     interlaced_B = _mm_unpacklo_epi8(_mm_cvtsi32_si128(B0), _mm_cvtsi32_si128(B1));
201 
202             return _mm_maddubs_epi16(_mm_unpacklo_epi64(interlaced_A, interlaced_B),
203                                      interlaced_x_weights);
204         };
205 
206         // Interpolate {A0..A3} --> output pixel A, and {B0..B3} --> output pixel B.
207         // Returns two pixels, with each color channel in a 16-bit lane of the __m128i.
208         auto interpolate_in_x_and_y = [&](uint32_t A0, uint32_t A1,
209                                           uint32_t A2, uint32_t A3,
210                                           uint32_t B0, uint32_t B1,
211                                           uint32_t B2, uint32_t B3,
212                                           __m128i interlaced_x_weights,
213                                           int wy) {
214             // Interpolate each row in X, leaving 16-bit lanes scaled by interlaced_x_weights.
215             __m128i top = interpolate_in_x(A0,A1, B0,B1, interlaced_x_weights),
216                     bot = interpolate_in_x(A2,A3, B2,B3, interlaced_x_weights);
217 
218             // Interpolate in Y.  As in the SSE2 code, we calculate top*(16-wy) + bot*wy
219             // as 16*top + (bot-top)*wy to save a multiply.
220             __m128i px = _mm_add_epi16(_mm_slli_epi16(top, 4),
221                                        _mm_mullo_epi16(_mm_sub_epi16(bot, top),
222                                                        _mm_set1_epi16(wy)));
223 
224             // Scale down by total max weight 16x16 = 256.
225             px = _mm_srli_epi16(px, 8);
226 
227             // Scale by alpha if needed.
228             if (s.fAlphaScale < 256) {
229                 px = _mm_srli_epi16(_mm_mullo_epi16(px, _mm_set1_epi16(s.fAlphaScale)), 8);
230             }
231             return px;
232         };
233 
234         // We're in _DX mode here, so we're only varying in X.
235         // That means the first entry of xy is our constant pair of Y coordinates and weight in Y.
236         // All the other entries in xy will be pairs of X coordinates and the X weight.
237         int y0, y1, wy;
238         decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
239 
240         auto row0 = (const uint32_t*)((const uint8_t*)s.fPixmap.addr() + y0 * s.fPixmap.rowBytes()),
241              row1 = (const uint32_t*)((const uint8_t*)s.fPixmap.addr() + y1 * s.fPixmap.rowBytes());
242 
243         while (count >= 4) {
244             // We can really get going, loading 4 X-pairs at a time to produce 4 output pixels.
245             int x0[4],
246                 x1[4];
247             __m128i wx;
248 
249             // decode_packed_coordinates_and_weight(), 4x.
250             __m128i packed = _mm_loadu_si128((const __m128i*)xy);
251             _mm_storeu_si128((__m128i*)x0, _mm_srli_epi32(packed, 18));
252             _mm_storeu_si128((__m128i*)x1, _mm_and_si128 (packed, _mm_set1_epi32(0x3fff)));
253             wx = _mm_and_si128(_mm_srli_epi32(packed, 14), _mm_set1_epi32(0xf));  // [0,15]
254 
255             // Splat each x weight 4x (for each color channel) as wr for pixels on the right at x1,
256             // and sixteen minus that as wl for pixels on the left at x0.
257             __m128i wr = _mm_shuffle_epi8(wx, _mm_setr_epi8(0,0,0,0,4,4,4,4,8,8,8,8,12,12,12,12)),
258                     wl = _mm_sub_epi8(_mm_set1_epi8(16), wr);
259 
260             // We need to interlace wl and wr for _mm_maddubs_epi16().
261             __m128i interlaced_x_weights_AB = _mm_unpacklo_epi8(wl,wr),
262                     interlaced_x_weights_CD = _mm_unpackhi_epi8(wl,wr);
263 
264             enum { A,B,C,D };
265 
266             // interpolate_in_x_and_y() can produce two output pixels (A and B) at a time
267             // from eight input pixels {A0..A3} and {B0..B3}, arranged in a 2x2 grid for each.
268             __m128i AB = interpolate_in_x_and_y(row0[x0[A]], row0[x1[A]],
269                                                 row1[x0[A]], row1[x1[A]],
270                                                 row0[x0[B]], row0[x1[B]],
271                                                 row1[x0[B]], row1[x1[B]],
272                                                 interlaced_x_weights_AB, wy);
273 
274             // Once more with the other half of the x-weights for two more pixels C,D.
275             __m128i CD = interpolate_in_x_and_y(row0[x0[C]], row0[x1[C]],
276                                                 row1[x0[C]], row1[x1[C]],
277                                                 row0[x0[D]], row0[x1[D]],
278                                                 row1[x0[D]], row1[x1[D]],
279                                                 interlaced_x_weights_CD, wy);
280 
281             // Scale by alpha, pack back together to 8-bit lanes, and write out four pixels!
282             _mm_storeu_si128((__m128i*)colors, _mm_packus_epi16(AB, CD));
283             xy     += 4;
284             colors += 4;
285             count  -= 4;
286         }
287 
288         while (count --> 0) {
289             // This is exactly the same flow as the count >= 4 loop above, but writing one pixel.
290             int x0, x1, wx;
291             decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
292 
293             // As above, splat out wx four times as wr, and sixteen minus that as wl.
294             __m128i wr = _mm_set1_epi8(wx),     // This splats it out 16 times, but that's fine.
295                     wl = _mm_sub_epi8(_mm_set1_epi8(16), wr);
296 
297             __m128i interlaced_x_weights = _mm_unpacklo_epi8(wl, wr);
298 
299             __m128i A = interpolate_in_x_and_y(row0[x0], row0[x1],
300                                                row1[x0], row1[x1],
301                                                       0,        0,
302                                                       0,        0,
303                                                interlaced_x_weights, wy);
304 
305             *colors++ = _mm_cvtsi128_si32(_mm_packus_epi16(A, _mm_setzero_si128()));
306         }
307     }
308 
309 
310 #elif 1 && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
311 
312     /*not static*/ inline
S32_alpha_D32_filter_DX(const SkBitmapProcState & s,const uint32_t * xy,int count,uint32_t * colors)313     void S32_alpha_D32_filter_DX(const SkBitmapProcState& s,
314                                  const uint32_t* xy, int count, uint32_t* colors) {
315         SkASSERT(count > 0 && colors != nullptr);
316         SkASSERT(s.fBilerp);
317         SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
318         SkASSERT(s.fAlphaScale <= 256);
319 
320         int y0, y1, wy;
321         decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
322 
323         auto row0 = (const uint32_t*)( (const char*)s.fPixmap.addr() + y0 * s.fPixmap.rowBytes() ),
324              row1 = (const uint32_t*)( (const char*)s.fPixmap.addr() + y1 * s.fPixmap.rowBytes() );
325 
326         // We'll put one pixel in the low 4 16-bit lanes to line up with wy,
327         // and another in the upper 4 16-bit lanes to line up with 16 - wy.
328         const __m128i allY = _mm_unpacklo_epi64(_mm_set1_epi16(   wy),   // Bottom pixel goes here.
329                                                 _mm_set1_epi16(16-wy));  // Top pixel goes here.
330 
331         while (count --> 0) {
332             int x0, x1, wx;
333             decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
334 
335             // Load the 4 pixels we're interpolating, in this grid:
336             //    | tl  tr |
337             //    | bl  br |
338             const __m128i tl = _mm_cvtsi32_si128(row0[x0]), tr = _mm_cvtsi32_si128(row0[x1]),
339                           bl = _mm_cvtsi32_si128(row1[x0]), br = _mm_cvtsi32_si128(row1[x1]);
340 
341             // We want to calculate a sum of 4 pixels weighted in two directions:
342             //
343             //  sum = tl * (16-wy) * (16-wx)
344             //      + bl * (   wy) * (16-wx)
345             //      + tr * (16-wy) * (   wx)
346             //      + br * (   wy) * (   wx)
347             //
348             // (Notice top --> 16-wy, bottom --> wy, left --> 16-wx, right --> wx.)
349             //
350             // We've already prepared allY as a vector containing [wy, 16-wy] as a way
351             // to apply those y-direction weights.  So we'll start on the x-direction
352             // first, grouping into left and right halves, lined up with allY:
353             //
354             //     L = [bl, tl]
355             //     R = [br, tr]
356             //
357             //   sum = horizontalSum( allY * (L*(16-wx) + R*wx) )
358             //
359             // Rewriting that one more step, we can replace a multiply with a shift:
360             //
361             //   sum = horizontalSum( allY * (16*L + (R-L)*wx) )
362             //
363             // That's how we'll actually do this math.
364 
365             __m128i L = _mm_unpacklo_epi8(_mm_unpacklo_epi32(bl, tl), _mm_setzero_si128()),
366                     R = _mm_unpacklo_epi8(_mm_unpacklo_epi32(br, tr), _mm_setzero_si128());
367 
368             __m128i inner = _mm_add_epi16(_mm_slli_epi16(L, 4),
369                                           _mm_mullo_epi16(_mm_sub_epi16(R,L), _mm_set1_epi16(wx)));
370 
371             __m128i sum_in_x = _mm_mullo_epi16(inner, allY);
372 
373             // sum = horizontalSum( ... )
374             __m128i sum = _mm_add_epi16(sum_in_x, _mm_srli_si128(sum_in_x, 8));
375 
376             // Get back to [0,255] by dividing by maximum weight 16x16 = 256.
377             sum = _mm_srli_epi16(sum, 8);
378 
379             if (s.fAlphaScale < 256) {
380                 // Scale by alpha, which is in [0,256].
381                 sum = _mm_mullo_epi16(sum, _mm_set1_epi16(s.fAlphaScale));
382                 sum = _mm_srli_epi16(sum, 8);
383             }
384 
385             // Pack back into 8-bit values and store.
386             *colors++ = _mm_cvtsi128_si32(_mm_packus_epi16(sum, _mm_setzero_si128()));
387         }
388     }
389 
390 #else
391 
392     // The NEON code only actually differs from the portable code in the
393     // filtering step after we've loaded all four pixels we want to bilerp.
394 
395     #if defined(SK_ARM_HAS_NEON)
filter_and_scale_by_alpha(unsigned x,unsigned y,SkPMColor a00,SkPMColor a01,SkPMColor a10,SkPMColor a11,SkPMColor * dst,uint16_t scale)396         static void filter_and_scale_by_alpha(unsigned x, unsigned y,
397                                               SkPMColor a00, SkPMColor a01,
398                                               SkPMColor a10, SkPMColor a11,
399                                               SkPMColor *dst,
400                                               uint16_t scale) {
401             uint8x8_t vy, vconst16_8, v16_y, vres;
402             uint16x4_t vx, vconst16_16, v16_x, tmp, vscale;
403             uint32x2_t va0, va1;
404             uint16x8_t tmp1, tmp2;
405 
406             vy = vdup_n_u8(y);                // duplicate y into vy
407             vconst16_8 = vmov_n_u8(16);       // set up constant in vconst16_8
408             v16_y = vsub_u8(vconst16_8, vy);  // v16_y = 16-y
409 
410             va0 = vdup_n_u32(a00);            // duplicate a00
411             va1 = vdup_n_u32(a10);            // duplicate a10
412             va0 = vset_lane_u32(a01, va0, 1); // set top to a01
413             va1 = vset_lane_u32(a11, va1, 1); // set top to a11
414 
415             tmp1 = vmull_u8(vreinterpret_u8_u32(va0), v16_y); // tmp1 = [a01|a00] * (16-y)
416             tmp2 = vmull_u8(vreinterpret_u8_u32(va1), vy);    // tmp2 = [a11|a10] * y
417 
418             vx = vdup_n_u16(x);                // duplicate x into vx
419             vconst16_16 = vmov_n_u16(16);      // set up constant in vconst16_16
420             v16_x = vsub_u16(vconst16_16, vx); // v16_x = 16-x
421 
422             tmp = vmul_u16(vget_high_u16(tmp1), vx);        // tmp  = a01 * x
423             tmp = vmla_u16(tmp, vget_high_u16(tmp2), vx);   // tmp += a11 * x
424             tmp = vmla_u16(tmp, vget_low_u16(tmp1), v16_x); // tmp += a00 * (16-x)
425             tmp = vmla_u16(tmp, vget_low_u16(tmp2), v16_x); // tmp += a10 * (16-x)
426 
427             if (scale < 256) {
428                 vscale = vdup_n_u16(scale);        // duplicate scale
429                 tmp = vshr_n_u16(tmp, 8);          // shift down result by 8
430                 tmp = vmul_u16(tmp, vscale);       // multiply result by scale
431             }
432 
433             vres = vshrn_n_u16(vcombine_u16(tmp, vcreate_u16((uint64_t)0)), 8); // shift down result by 8
434             vst1_lane_u32(dst, vreinterpret_u32_u8(vres), 0);         // store result
435         }
436     #else
filter_and_scale_by_alpha(unsigned x,unsigned y,SkPMColor a00,SkPMColor a01,SkPMColor a10,SkPMColor a11,SkPMColor * dstColor,unsigned alphaScale)437         static void filter_and_scale_by_alpha(unsigned x, unsigned y,
438                                               SkPMColor a00, SkPMColor a01,
439                                               SkPMColor a10, SkPMColor a11,
440                                               SkPMColor* dstColor,
441                                               unsigned alphaScale) {
442             SkASSERT((unsigned)x <= 0xF);
443             SkASSERT((unsigned)y <= 0xF);
444             SkASSERT(alphaScale <= 256);
445 
446             int xy = x * y;
447             const uint32_t mask = 0xFF00FF;
448 
449             int scale = 256 - 16*y - 16*x + xy;
450             uint32_t lo = (a00 & mask) * scale;
451             uint32_t hi = ((a00 >> 8) & mask) * scale;
452 
453             scale = 16*x - xy;
454             lo += (a01 & mask) * scale;
455             hi += ((a01 >> 8) & mask) * scale;
456 
457             scale = 16*y - xy;
458             lo += (a10 & mask) * scale;
459             hi += ((a10 >> 8) & mask) * scale;
460 
461             lo += (a11 & mask) * xy;
462             hi += ((a11 >> 8) & mask) * xy;
463 
464             if (alphaScale < 256) {
465                 lo = ((lo >> 8) & mask) * alphaScale;
466                 hi = ((hi >> 8) & mask) * alphaScale;
467             }
468 
469             *dstColor = ((lo >> 8) & mask) | (hi & ~mask);
470         }
471     #endif
472 
473 
474     /*not static*/ inline
S32_alpha_D32_filter_DX(const SkBitmapProcState & s,const uint32_t * xy,int count,SkPMColor * colors)475     void S32_alpha_D32_filter_DX(const SkBitmapProcState& s,
476                                  const uint32_t* xy, int count, SkPMColor* colors) {
477         SkASSERT(count > 0 && colors != nullptr);
478         SkASSERT(s.fBilerp);
479         SkASSERT(4 == s.fPixmap.info().bytesPerPixel());
480         SkASSERT(s.fAlphaScale <= 256);
481 
482         int y0, y1, wy;
483         decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
484 
485         auto row0 = (const uint32_t*)( (const char*)s.fPixmap.addr() + y0 * s.fPixmap.rowBytes() ),
486              row1 = (const uint32_t*)( (const char*)s.fPixmap.addr() + y1 * s.fPixmap.rowBytes() );
487 
488         while (count --> 0) {
489             int x0, x1, wx;
490             decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
491 
492             filter_and_scale_by_alpha(wx, wy,
493                                       row0[x0], row0[x1],
494                                       row1[x0], row1[x1],
495                                       colors++,
496                                       s.fAlphaScale);
497         }
498     }
499 
500 #endif
501 
502 #if defined(SK_ARM_HAS_NEON)
503     /*not static*/ inline
S32_alpha_D32_filter_DXDY(const SkBitmapProcState & s,const uint32_t * xy,int count,SkPMColor * colors)504     void S32_alpha_D32_filter_DXDY(const SkBitmapProcState& s,
505                                    const uint32_t* xy, int count, SkPMColor* colors) {
506         SkASSERT(count > 0 && colors != nullptr);
507         SkASSERT(s.fBilerp);
508         SkASSERT(4 == s.fPixmap.info().bytesPerPixel());
509         SkASSERT(s.fAlphaScale <= 256);
510 
511         auto src = (const char*)s.fPixmap.addr();
512         size_t rb = s.fPixmap.rowBytes();
513 
514         while (count --> 0) {
515             int y0, y1, wy,
516                 x0, x1, wx;
517             decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
518             decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
519 
520             auto row0 = (const uint32_t*)(src + y0*rb),
521                  row1 = (const uint32_t*)(src + y1*rb);
522 
523             filter_and_scale_by_alpha(wx, wy,
524                                       row0[x0], row0[x1],
525                                       row1[x0], row1[x1],
526                                       colors++,
527                                       s.fAlphaScale);
528         }
529     }
530 #else
531     // It's not yet clear whether it's worthwhile specializing for SSE2/SSSE3/AVX2.
532     constexpr static void (*S32_alpha_D32_filter_DXDY)(const SkBitmapProcState&,
533                                                        const uint32_t*, int, SkPMColor*) = nullptr;
534 #endif
535 
536 }  // namespace SK_OPTS_NS
537 
538 #endif
539