• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "source/fuzz/transformation_outline_function.h"
16 
17 #include <set>
18 
19 #include "source/fuzz/fuzzer_util.h"
20 
21 namespace spvtools {
22 namespace fuzz {
23 
TransformationOutlineFunction(protobufs::TransformationOutlineFunction message)24 TransformationOutlineFunction::TransformationOutlineFunction(
25     protobufs::TransformationOutlineFunction message)
26     : message_(std::move(message)) {}
27 
TransformationOutlineFunction(uint32_t entry_block,uint32_t exit_block,uint32_t new_function_struct_return_type_id,uint32_t new_function_type_id,uint32_t new_function_id,uint32_t new_function_region_entry_block,uint32_t new_caller_result_id,uint32_t new_callee_result_id,const std::map<uint32_t,uint32_t> & input_id_to_fresh_id,const std::map<uint32_t,uint32_t> & output_id_to_fresh_id)28 TransformationOutlineFunction::TransformationOutlineFunction(
29     uint32_t entry_block, uint32_t exit_block,
30     uint32_t new_function_struct_return_type_id, uint32_t new_function_type_id,
31     uint32_t new_function_id, uint32_t new_function_region_entry_block,
32     uint32_t new_caller_result_id, uint32_t new_callee_result_id,
33     const std::map<uint32_t, uint32_t>& input_id_to_fresh_id,
34     const std::map<uint32_t, uint32_t>& output_id_to_fresh_id) {
35   message_.set_entry_block(entry_block);
36   message_.set_exit_block(exit_block);
37   message_.set_new_function_struct_return_type_id(
38       new_function_struct_return_type_id);
39   message_.set_new_function_type_id(new_function_type_id);
40   message_.set_new_function_id(new_function_id);
41   message_.set_new_function_region_entry_block(new_function_region_entry_block);
42   message_.set_new_caller_result_id(new_caller_result_id);
43   message_.set_new_callee_result_id(new_callee_result_id);
44   *message_.mutable_input_id_to_fresh_id() =
45       fuzzerutil::MapToRepeatedUInt32Pair(input_id_to_fresh_id);
46   *message_.mutable_output_id_to_fresh_id() =
47       fuzzerutil::MapToRepeatedUInt32Pair(output_id_to_fresh_id);
48 }
49 
IsApplicable(opt::IRContext * ir_context,const TransformationContext & transformation_context) const50 bool TransformationOutlineFunction::IsApplicable(
51     opt::IRContext* ir_context,
52     const TransformationContext& transformation_context) const {
53   std::set<uint32_t> ids_used_by_this_transformation;
54 
55   // The various new ids used by the transformation must be fresh and distinct.
56 
57   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
58           message_.new_function_struct_return_type_id(), ir_context,
59           &ids_used_by_this_transformation)) {
60     return false;
61   }
62 
63   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
64           message_.new_function_type_id(), ir_context,
65           &ids_used_by_this_transformation)) {
66     return false;
67   }
68 
69   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
70           message_.new_function_id(), ir_context,
71           &ids_used_by_this_transformation)) {
72     return false;
73   }
74 
75   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
76           message_.new_function_region_entry_block(), ir_context,
77           &ids_used_by_this_transformation)) {
78     return false;
79   }
80 
81   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
82           message_.new_caller_result_id(), ir_context,
83           &ids_used_by_this_transformation)) {
84     return false;
85   }
86 
87   if (!CheckIdIsFreshAndNotUsedByThisTransformation(
88           message_.new_callee_result_id(), ir_context,
89           &ids_used_by_this_transformation)) {
90     return false;
91   }
92 
93   for (auto& pair : message_.input_id_to_fresh_id()) {
94     if (!CheckIdIsFreshAndNotUsedByThisTransformation(
95             pair.second(), ir_context, &ids_used_by_this_transformation)) {
96       return false;
97     }
98   }
99 
100   for (auto& pair : message_.output_id_to_fresh_id()) {
101     if (!CheckIdIsFreshAndNotUsedByThisTransformation(
102             pair.second(), ir_context, &ids_used_by_this_transformation)) {
103       return false;
104     }
105   }
106 
107   // The entry and exit block ids must indeed refer to blocks.
108   for (auto block_id : {message_.entry_block(), message_.exit_block()}) {
109     auto block_label = ir_context->get_def_use_mgr()->GetDef(block_id);
110     if (!block_label || block_label->opcode() != SpvOpLabel) {
111       return false;
112     }
113   }
114 
115   auto entry_block = ir_context->cfg()->block(message_.entry_block());
116   auto exit_block = ir_context->cfg()->block(message_.exit_block());
117 
118   // The entry block cannot start with OpVariable - this would mean that
119   // outlining would remove a variable from the function containing the region
120   // being outlined.
121   if (entry_block->begin()->opcode() == SpvOpVariable) {
122     return false;
123   }
124 
125   // For simplicity, we do not allow the entry block to be a loop header.
126   if (entry_block->GetLoopMergeInst()) {
127     return false;
128   }
129 
130   // For simplicity, we do not allow the exit block to be a merge block or
131   // continue target.
132   if (fuzzerutil::IsMergeOrContinue(ir_context, exit_block->id())) {
133     return false;
134   }
135 
136   // The entry block cannot start with OpPhi.  This is to keep the
137   // transformation logic simple.  (Another transformation to split the OpPhis
138   // from a block could be applied to avoid this scenario.)
139   if (entry_block->begin()->opcode() == SpvOpPhi) {
140     return false;
141   }
142 
143   // The block must be in the same function.
144   if (entry_block->GetParent() != exit_block->GetParent()) {
145     return false;
146   }
147 
148   // The entry block must dominate the exit block.
149   auto dominator_analysis =
150       ir_context->GetDominatorAnalysis(entry_block->GetParent());
151   if (!dominator_analysis->Dominates(entry_block, exit_block)) {
152     return false;
153   }
154 
155   // The exit block must post-dominate the entry block.
156   auto postdominator_analysis =
157       ir_context->GetPostDominatorAnalysis(entry_block->GetParent());
158   if (!postdominator_analysis->Dominates(exit_block, entry_block)) {
159     return false;
160   }
161 
162   // Find all the blocks dominated by |message_.entry_block| and post-dominated
163   // by |message_.exit_block|.
164   auto region_set = GetRegionBlocks(
165       ir_context,
166       entry_block = ir_context->cfg()->block(message_.entry_block()),
167       exit_block = ir_context->cfg()->block(message_.exit_block()));
168 
169   // Check whether |region_set| really is a single-entry single-exit region, and
170   // also check whether structured control flow constructs and their merge
171   // and continue constructs are either wholly in or wholly out of the region -
172   // e.g. avoid the situation where the region contains the head of a loop but
173   // not the loop's continue construct.
174   //
175   // This is achieved by going through every block in the function that contains
176   // the region.
177   for (auto& block : *entry_block->GetParent()) {
178     if (&block == exit_block) {
179       // It is OK (and typically expected) for the exit block of the region to
180       // have successors outside the region.
181       //
182       // It is also OK for the exit block to head a selection construct: the
183       // block containing the call to the outlined function will end up heading
184       // this construct if outlining takes place.  However, it is not OK for
185       // the exit block to head a loop construct.
186       if (block.GetLoopMergeInst()) {
187         return false;
188       }
189       continue;
190     }
191 
192     if (region_set.count(&block) != 0) {
193       // The block is in the region and is not the region's exit block.  Let's
194       // see whether all of the block's successors are in the region.  If they
195       // are not, the region is not single-entry single-exit.
196       bool all_successors_in_region = true;
197       block.WhileEachSuccessorLabel([&all_successors_in_region, ir_context,
198                                      &region_set](uint32_t successor) -> bool {
199         if (region_set.count(ir_context->cfg()->block(successor)) == 0) {
200           all_successors_in_region = false;
201           return false;
202         }
203         return true;
204       });
205       if (!all_successors_in_region) {
206         return false;
207       }
208     }
209 
210     if (auto merge = block.GetMergeInst()) {
211       // The block is a loop or selection header -- the header and its
212       // associated merge block had better both be in the region or both be
213       // outside the region.
214       auto merge_block =
215           ir_context->cfg()->block(merge->GetSingleWordOperand(0));
216       if (region_set.count(&block) != region_set.count(merge_block)) {
217         return false;
218       }
219     }
220 
221     if (auto loop_merge = block.GetLoopMergeInst()) {
222       // Similar to the above, but for the continue target of a loop.
223       auto continue_target =
224           ir_context->cfg()->block(loop_merge->GetSingleWordOperand(1));
225       if (continue_target != exit_block &&
226           region_set.count(&block) != region_set.count(continue_target)) {
227         return false;
228       }
229     }
230   }
231 
232   // For each region input id, i.e. every id defined outside the region but
233   // used inside the region, ...
234   auto input_id_to_fresh_id_map =
235       fuzzerutil::RepeatedUInt32PairToMap(message_.input_id_to_fresh_id());
236   for (auto id : GetRegionInputIds(ir_context, region_set, exit_block)) {
237     // There needs to be a corresponding fresh id to be used as a function
238     // parameter, or overflow ids need to be available.
239     if (input_id_to_fresh_id_map.count(id) == 0 &&
240         !transformation_context.GetOverflowIdSource()->HasOverflowIds()) {
241       return false;
242     }
243     // Furthermore, if the input id has pointer type it must be an OpVariable
244     // or OpFunctionParameter.
245     auto input_id_inst = ir_context->get_def_use_mgr()->GetDef(id);
246     if (ir_context->get_def_use_mgr()
247             ->GetDef(input_id_inst->type_id())
248             ->opcode() == SpvOpTypePointer) {
249       switch (input_id_inst->opcode()) {
250         case SpvOpFunctionParameter:
251         case SpvOpVariable:
252           // These are OK.
253           break;
254         default:
255           // Anything else is not OK.
256           return false;
257       }
258     }
259   }
260 
261   // For each region output id -- i.e. every id defined inside the region but
262   // used outside the region, ...
263   auto output_id_to_fresh_id_map =
264       fuzzerutil::RepeatedUInt32PairToMap(message_.output_id_to_fresh_id());
265   for (auto id : GetRegionOutputIds(ir_context, region_set, exit_block)) {
266     if (
267         // ... there needs to be a corresponding fresh id that can hold the
268         // value for this id computed in the outlined function (or overflow ids
269         // must be available), and ...
270         (output_id_to_fresh_id_map.count(id) == 0 &&
271          !transformation_context.GetOverflowIdSource()->HasOverflowIds())
272         // ... the output id must not have pointer type (to avoid creating a
273         // struct with pointer members to pass data out of the outlined
274         // function)
275         || ir_context->get_def_use_mgr()
276                    ->GetDef(fuzzerutil::GetTypeId(ir_context, id))
277                    ->opcode() == SpvOpTypePointer) {
278       return false;
279     }
280   }
281 
282   return true;
283 }
284 
Apply(opt::IRContext * ir_context,TransformationContext * transformation_context) const285 void TransformationOutlineFunction::Apply(
286     opt::IRContext* ir_context,
287     TransformationContext* transformation_context) const {
288   // The entry block for the region before outlining.
289   auto original_region_entry_block =
290       ir_context->cfg()->block(message_.entry_block());
291 
292   // The exit block for the region before outlining.
293   auto original_region_exit_block =
294       ir_context->cfg()->block(message_.exit_block());
295 
296   // The single-entry single-exit region defined by |message_.entry_block| and
297   // |message_.exit_block|.
298   std::set<opt::BasicBlock*> region_blocks = GetRegionBlocks(
299       ir_context, original_region_entry_block, original_region_exit_block);
300 
301   // Input and output ids for the region being outlined.
302   std::vector<uint32_t> region_input_ids =
303       GetRegionInputIds(ir_context, region_blocks, original_region_exit_block);
304   std::vector<uint32_t> region_output_ids =
305       GetRegionOutputIds(ir_context, region_blocks, original_region_exit_block);
306 
307   // Maps from input and output ids to fresh ids.
308   auto input_id_to_fresh_id_map =
309       fuzzerutil::RepeatedUInt32PairToMap(message_.input_id_to_fresh_id());
310   auto output_id_to_fresh_id_map =
311       fuzzerutil::RepeatedUInt32PairToMap(message_.output_id_to_fresh_id());
312 
313   // Use overflow ids to augment these maps at any locations where fresh ids are
314   // required but not provided.
315   for (uint32_t id : region_input_ids) {
316     if (input_id_to_fresh_id_map.count(id) == 0) {
317       input_id_to_fresh_id_map.insert(
318           {id,
319            transformation_context->GetOverflowIdSource()->GetNextOverflowId()});
320     }
321   }
322   for (uint32_t id : region_output_ids) {
323     if (output_id_to_fresh_id_map.count(id) == 0) {
324       output_id_to_fresh_id_map.insert(
325           {id,
326            transformation_context->GetOverflowIdSource()->GetNextOverflowId()});
327     }
328   }
329 
330   UpdateModuleIdBoundForFreshIds(ir_context, input_id_to_fresh_id_map,
331                                  output_id_to_fresh_id_map);
332 
333   // Construct a map that associates each output id with its type id.
334   std::map<uint32_t, uint32_t> output_id_to_type_id;
335   for (uint32_t output_id : region_output_ids) {
336     output_id_to_type_id[output_id] =
337         ir_context->get_def_use_mgr()->GetDef(output_id)->type_id();
338   }
339 
340   // The region will be collapsed to a single block that calls a function
341   // containing the outlined region.  This block needs to end with whatever
342   // the exit block of the region ended with before outlining.  We thus clone
343   // the terminator of the region's exit block, and the merge instruction for
344   // the block if there is one, so that we can append them to the end of the
345   // collapsed block later.
346   std::unique_ptr<opt::Instruction> cloned_exit_block_terminator =
347       std::unique_ptr<opt::Instruction>(
348           original_region_exit_block->terminator()->Clone(ir_context));
349   std::unique_ptr<opt::Instruction> cloned_exit_block_merge =
350       original_region_exit_block->GetMergeInst()
351           ? std::unique_ptr<opt::Instruction>(
352                 original_region_exit_block->GetMergeInst()->Clone(ir_context))
353           : nullptr;
354 
355   // Make a function prototype for the outlined function, which involves
356   // figuring out its required type.
357   std::unique_ptr<opt::Function> outlined_function = PrepareFunctionPrototype(
358       region_input_ids, region_output_ids, input_id_to_fresh_id_map, ir_context,
359       transformation_context);
360 
361   // Adapt the region to be outlined so that its input ids are replaced with the
362   // ids of the outlined function's input parameters, and so that output ids
363   // are similarly remapped.
364   RemapInputAndOutputIdsInRegion(
365       ir_context, *original_region_exit_block, region_blocks, region_input_ids,
366       region_output_ids, input_id_to_fresh_id_map, output_id_to_fresh_id_map);
367 
368   // Fill out the body of the outlined function according to the region that is
369   // being outlined.
370   PopulateOutlinedFunction(
371       *original_region_entry_block, *original_region_exit_block, region_blocks,
372       region_output_ids, output_id_to_type_id, output_id_to_fresh_id_map,
373       ir_context, outlined_function.get());
374 
375   // Collapse the region that has been outlined into a function down to a single
376   // block that calls said function.
377   ShrinkOriginalRegion(
378       ir_context, region_blocks, region_input_ids, region_output_ids,
379       output_id_to_type_id, outlined_function->type_id(),
380       std::move(cloned_exit_block_merge),
381       std::move(cloned_exit_block_terminator), original_region_entry_block);
382 
383   // Add the outlined function to the module.
384   const auto* outlined_function_ptr = outlined_function.get();
385   ir_context->module()->AddFunction(std::move(outlined_function));
386 
387   // Major surgery has been conducted on the module, so invalidate all analyses.
388   ir_context->InvalidateAnalysesExceptFor(
389       opt::IRContext::Analysis::kAnalysisNone);
390 
391   // If the original function was livesafe, the new function should also be
392   // livesafe.
393   if (transformation_context->GetFactManager()->FunctionIsLivesafe(
394           original_region_entry_block->GetParent()->result_id())) {
395     transformation_context->GetFactManager()->AddFactFunctionIsLivesafe(
396         message_.new_function_id());
397   }
398 
399   // Record the fact that all blocks in the outlined region are dead if the
400   // first block is dead.
401   if (transformation_context->GetFactManager()->BlockIsDead(
402           original_region_entry_block->id())) {
403     transformation_context->GetFactManager()->AddFactBlockIsDead(
404         outlined_function_ptr->entry()->id());
405   }
406 }
407 
ToMessage() const408 protobufs::Transformation TransformationOutlineFunction::ToMessage() const {
409   protobufs::Transformation result;
410   *result.mutable_outline_function() = message_;
411   return result;
412 }
413 
GetRegionInputIds(opt::IRContext * ir_context,const std::set<opt::BasicBlock * > & region_set,opt::BasicBlock * region_exit_block)414 std::vector<uint32_t> TransformationOutlineFunction::GetRegionInputIds(
415     opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_set,
416     opt::BasicBlock* region_exit_block) {
417   std::vector<uint32_t> result;
418 
419   auto enclosing_function = region_exit_block->GetParent();
420 
421   // Consider each parameter of the function containing the region.
422   enclosing_function->ForEachParam(
423       [ir_context, &region_set, &result](opt::Instruction* function_parameter) {
424         // Consider every use of the parameter.
425         ir_context->get_def_use_mgr()->WhileEachUse(
426             function_parameter,
427             [ir_context, function_parameter, &region_set, &result](
428                 opt::Instruction* use, uint32_t /*unused*/) {
429               // Get the block, if any, in which the parameter is used.
430               auto use_block = ir_context->get_instr_block(use);
431               // If the use is in a block that lies within the region, the
432               // parameter is an input id for the region.
433               if (use_block && region_set.count(use_block) != 0) {
434                 result.push_back(function_parameter->result_id());
435                 return false;
436               }
437               return true;
438             });
439       });
440 
441   // Consider all definitions in the function that might turn out to be input
442   // ids.
443   for (auto& block : *enclosing_function) {
444     std::vector<opt::Instruction*> candidate_input_ids_for_block;
445     if (region_set.count(&block) == 0) {
446       // All instructions in blocks outside the region are candidate's for
447       // generating input ids.
448       for (auto& inst : block) {
449         candidate_input_ids_for_block.push_back(&inst);
450       }
451     } else {
452       // Blocks in the region cannot generate input ids.
453       continue;
454     }
455 
456     // Consider each candidate input id to check whether it is used in the
457     // region.
458     for (auto& inst : candidate_input_ids_for_block) {
459       ir_context->get_def_use_mgr()->WhileEachUse(
460           inst,
461           [ir_context, &inst, region_exit_block, &region_set, &result](
462               opt::Instruction* use, uint32_t /*unused*/) -> bool {
463             // Find the block in which this id use occurs, recording the id as
464             // an input id if the block is outside the region, with some
465             // exceptions detailed below.
466             auto use_block = ir_context->get_instr_block(use);
467 
468             if (!use_block) {
469               // There might be no containing block, e.g. if the use is in a
470               // decoration.
471               return true;
472             }
473 
474             if (region_set.count(use_block) == 0) {
475               // The use is not in the region: this does not make it an input
476               // id.
477               return true;
478             }
479 
480             if (use_block == region_exit_block && use->IsBlockTerminator()) {
481               // We do not regard uses in the exit block terminator as input
482               // ids, as this terminator does not get outlined.
483               return true;
484             }
485 
486             result.push_back(inst->result_id());
487             return false;
488           });
489     }
490   }
491   return result;
492 }
493 
GetRegionOutputIds(opt::IRContext * ir_context,const std::set<opt::BasicBlock * > & region_set,opt::BasicBlock * region_exit_block)494 std::vector<uint32_t> TransformationOutlineFunction::GetRegionOutputIds(
495     opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_set,
496     opt::BasicBlock* region_exit_block) {
497   std::vector<uint32_t> result;
498 
499   // Consider each block in the function containing the region.
500   for (auto& block : *region_exit_block->GetParent()) {
501     if (region_set.count(&block) == 0) {
502       // Skip blocks that are not in the region.
503       continue;
504     }
505     // Consider each use of each instruction defined in the block.
506     for (auto& inst : block) {
507       ir_context->get_def_use_mgr()->WhileEachUse(
508           &inst,
509           [&region_set, ir_context, &inst, region_exit_block, &result](
510               opt::Instruction* use, uint32_t /*unused*/) -> bool {
511             // Find the block in which this id use occurs, recording the id as
512             // an output id if the block is outside the region, with some
513             // exceptions detailed below.
514             auto use_block = ir_context->get_instr_block(use);
515 
516             if (!use_block) {
517               // There might be no containing block, e.g. if the use is in a
518               // decoration.
519               return true;
520             }
521 
522             if (region_set.count(use_block) != 0) {
523               // The use is in the region.
524               if (use_block != region_exit_block || !use->IsBlockTerminator()) {
525                 // Furthermore, the use is not in the terminator of the region's
526                 // exit block.
527                 return true;
528               }
529             }
530 
531             result.push_back(inst.result_id());
532             return false;
533           });
534     }
535   }
536   return result;
537 }
538 
GetRegionBlocks(opt::IRContext * ir_context,opt::BasicBlock * entry_block,opt::BasicBlock * exit_block)539 std::set<opt::BasicBlock*> TransformationOutlineFunction::GetRegionBlocks(
540     opt::IRContext* ir_context, opt::BasicBlock* entry_block,
541     opt::BasicBlock* exit_block) {
542   auto enclosing_function = entry_block->GetParent();
543   auto dominator_analysis =
544       ir_context->GetDominatorAnalysis(enclosing_function);
545   auto postdominator_analysis =
546       ir_context->GetPostDominatorAnalysis(enclosing_function);
547 
548   std::set<opt::BasicBlock*> result;
549   for (auto& block : *enclosing_function) {
550     if (dominator_analysis->Dominates(entry_block, &block) &&
551         postdominator_analysis->Dominates(exit_block, &block)) {
552       result.insert(&block);
553     }
554   }
555   return result;
556 }
557 
558 std::unique_ptr<opt::Function>
PrepareFunctionPrototype(const std::vector<uint32_t> & region_input_ids,const std::vector<uint32_t> & region_output_ids,const std::map<uint32_t,uint32_t> & input_id_to_fresh_id_map,opt::IRContext * ir_context,TransformationContext * transformation_context) const559 TransformationOutlineFunction::PrepareFunctionPrototype(
560     const std::vector<uint32_t>& region_input_ids,
561     const std::vector<uint32_t>& region_output_ids,
562     const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
563     opt::IRContext* ir_context,
564     TransformationContext* transformation_context) const {
565   uint32_t return_type_id = 0;
566   uint32_t function_type_id = 0;
567 
568   // First, try to find an existing function type that is suitable.  This is
569   // only possible if the region generates no output ids; if it generates output
570   // ids we are going to make a new struct for those, and since that struct does
571   // not exist there cannot already be a function type with this struct as its
572   // return type.
573   if (region_output_ids.empty()) {
574     std::vector<uint32_t> return_and_parameter_types;
575     opt::analysis::Void void_type;
576     return_type_id = ir_context->get_type_mgr()->GetId(&void_type);
577     return_and_parameter_types.push_back(return_type_id);
578     for (auto id : region_input_ids) {
579       return_and_parameter_types.push_back(
580           ir_context->get_def_use_mgr()->GetDef(id)->type_id());
581     }
582     function_type_id =
583         fuzzerutil::FindFunctionType(ir_context, return_and_parameter_types);
584   }
585 
586   // If no existing function type was found, we need to create one.
587   if (function_type_id == 0) {
588     assert(
589         ((return_type_id == 0) == !region_output_ids.empty()) &&
590         "We should only have set the return type if there are no output ids.");
591     // If the region generates output ids, we need to make a struct with one
592     // field per output id.
593     if (!region_output_ids.empty()) {
594       opt::Instruction::OperandList struct_member_types;
595       for (uint32_t output_id : region_output_ids) {
596         auto output_id_type =
597             ir_context->get_def_use_mgr()->GetDef(output_id)->type_id();
598         if (ir_context->get_def_use_mgr()->GetDef(output_id_type)->opcode() ==
599             SpvOpTypeVoid) {
600           // We cannot add a void field to a struct.  We instead use OpUndef to
601           // handle void output ids.
602           continue;
603         }
604         struct_member_types.push_back({SPV_OPERAND_TYPE_ID, {output_id_type}});
605       }
606       // Add a new struct type to the module.
607       ir_context->module()->AddType(MakeUnique<opt::Instruction>(
608           ir_context, SpvOpTypeStruct, 0,
609           message_.new_function_struct_return_type_id(),
610           std::move(struct_member_types)));
611       // The return type for the function is the newly-created struct.
612       return_type_id = message_.new_function_struct_return_type_id();
613     }
614     assert(
615         return_type_id != 0 &&
616         "We should either have a void return type, or have created a struct.");
617 
618     // The region's input ids dictate the parameter types to the function.
619     opt::Instruction::OperandList function_type_operands;
620     function_type_operands.push_back({SPV_OPERAND_TYPE_ID, {return_type_id}});
621     for (auto id : region_input_ids) {
622       function_type_operands.push_back(
623           {SPV_OPERAND_TYPE_ID,
624            {ir_context->get_def_use_mgr()->GetDef(id)->type_id()}});
625     }
626     // Add a new function type to the module, and record that this is the type
627     // id for the new function.
628     ir_context->module()->AddType(MakeUnique<opt::Instruction>(
629         ir_context, SpvOpTypeFunction, 0, message_.new_function_type_id(),
630         function_type_operands));
631     function_type_id = message_.new_function_type_id();
632   }
633 
634   // Create a new function with |message_.new_function_id| as the function id,
635   // and the return type and function type prepared above.
636   std::unique_ptr<opt::Function> outlined_function =
637       MakeUnique<opt::Function>(MakeUnique<opt::Instruction>(
638           ir_context, SpvOpFunction, return_type_id, message_.new_function_id(),
639           opt::Instruction::OperandList(
640               {{spv_operand_type_t ::SPV_OPERAND_TYPE_LITERAL_INTEGER,
641                 {SpvFunctionControlMaskNone}},
642                {spv_operand_type_t::SPV_OPERAND_TYPE_ID,
643                 {function_type_id}}})));
644 
645   // Add one parameter to the function for each input id, using the fresh ids
646   // provided in |input_id_to_fresh_id_map|, or overflow ids if needed.
647   for (auto id : region_input_ids) {
648     uint32_t fresh_id = input_id_to_fresh_id_map.at(id);
649     outlined_function->AddParameter(MakeUnique<opt::Instruction>(
650         ir_context, SpvOpFunctionParameter,
651         ir_context->get_def_use_mgr()->GetDef(id)->type_id(), fresh_id,
652         opt::Instruction::OperandList()));
653 
654     // Analyse the use of the new parameter instruction.
655     outlined_function->ForEachParam(
656         [fresh_id, ir_context](opt::Instruction* inst) {
657           if (inst->result_id() == fresh_id) {
658             ir_context->AnalyzeDefUse(inst);
659           }
660         });
661 
662     // If the input id is an irrelevant-valued variable, the same should be true
663     // of the corresponding parameter.
664     if (transformation_context->GetFactManager()->PointeeValueIsIrrelevant(
665             id)) {
666       transformation_context->GetFactManager()
667           ->AddFactValueOfPointeeIsIrrelevant(input_id_to_fresh_id_map.at(id));
668     }
669   }
670 
671   return outlined_function;
672 }
673 
UpdateModuleIdBoundForFreshIds(opt::IRContext * ir_context,const std::map<uint32_t,uint32_t> & input_id_to_fresh_id_map,const std::map<uint32_t,uint32_t> & output_id_to_fresh_id_map) const674 void TransformationOutlineFunction::UpdateModuleIdBoundForFreshIds(
675     opt::IRContext* ir_context,
676     const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
677     const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map) const {
678   // Enlarge the module's id bound as needed to accommodate the various fresh
679   // ids associated with the transformation.
680   fuzzerutil::UpdateModuleIdBound(
681       ir_context, message_.new_function_struct_return_type_id());
682   fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_function_type_id());
683   fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_function_id());
684   fuzzerutil::UpdateModuleIdBound(ir_context,
685                                   message_.new_function_region_entry_block());
686   fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_caller_result_id());
687   fuzzerutil::UpdateModuleIdBound(ir_context, message_.new_callee_result_id());
688 
689   for (auto& entry : input_id_to_fresh_id_map) {
690     fuzzerutil::UpdateModuleIdBound(ir_context, entry.second);
691   }
692 
693   for (auto& entry : output_id_to_fresh_id_map) {
694     fuzzerutil::UpdateModuleIdBound(ir_context, entry.second);
695   }
696 }
697 
RemapInputAndOutputIdsInRegion(opt::IRContext * ir_context,const opt::BasicBlock & original_region_exit_block,const std::set<opt::BasicBlock * > & region_blocks,const std::vector<uint32_t> & region_input_ids,const std::vector<uint32_t> & region_output_ids,const std::map<uint32_t,uint32_t> & input_id_to_fresh_id_map,const std::map<uint32_t,uint32_t> & output_id_to_fresh_id_map) const698 void TransformationOutlineFunction::RemapInputAndOutputIdsInRegion(
699     opt::IRContext* ir_context,
700     const opt::BasicBlock& original_region_exit_block,
701     const std::set<opt::BasicBlock*>& region_blocks,
702     const std::vector<uint32_t>& region_input_ids,
703     const std::vector<uint32_t>& region_output_ids,
704     const std::map<uint32_t, uint32_t>& input_id_to_fresh_id_map,
705     const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map) const {
706   // Change all uses of input ids inside the region to the corresponding fresh
707   // ids that will ultimately be parameters of the outlined function.
708   // This is done by considering each region input id in turn.
709   for (uint32_t id : region_input_ids) {
710     // We then consider each use of the input id.
711     ir_context->get_def_use_mgr()->ForEachUse(
712         id, [ir_context, id, &input_id_to_fresh_id_map, region_blocks](
713                 opt::Instruction* use, uint32_t operand_index) {
714           // Find the block in which this use of the input id occurs.
715           opt::BasicBlock* use_block = ir_context->get_instr_block(use);
716           // We want to rewrite the use id if its block occurs in the outlined
717           // region.
718           if (region_blocks.count(use_block) != 0) {
719             // Rewrite this use of the input id.
720             use->SetOperand(operand_index, {input_id_to_fresh_id_map.at(id)});
721           }
722         });
723   }
724 
725   // Change each definition of a region output id to define the corresponding
726   // fresh ids that will store intermediate value for the output ids.  Also
727   // change all uses of the output id located in the outlined region.
728   // This is done by considering each region output id in turn.
729   for (uint32_t id : region_output_ids) {
730     // First consider each use of the output id and update the relevant uses.
731     ir_context->get_def_use_mgr()->ForEachUse(
732         id, [ir_context, &original_region_exit_block, id,
733              &output_id_to_fresh_id_map,
734              region_blocks](opt::Instruction* use, uint32_t operand_index) {
735           // Find the block in which this use of the output id occurs.
736           auto use_block = ir_context->get_instr_block(use);
737           // We want to rewrite the use id if its block occurs in the outlined
738           // region, with one exception: the terminator of the exit block of
739           // the region is going to remain in the original function, so if the
740           // use appears in such a terminator instruction we leave it alone.
741           if (
742               // The block is in the region ...
743               region_blocks.count(use_block) != 0 &&
744               // ... and the use is not in the terminator instruction of the
745               // region's exit block.
746               !(use_block == &original_region_exit_block &&
747                 use->IsBlockTerminator())) {
748             // Rewrite this use of the output id.
749             use->SetOperand(operand_index, {output_id_to_fresh_id_map.at(id)});
750           }
751         });
752 
753     // Now change the instruction that defines the output id so that it instead
754     // defines the corresponding fresh id.  We do this after changing all the
755     // uses so that the definition of the original id is still registered when
756     // we analyse its uses.
757     ir_context->get_def_use_mgr()->GetDef(id)->SetResultId(
758         output_id_to_fresh_id_map.at(id));
759   }
760 }
761 
PopulateOutlinedFunction(const opt::BasicBlock & original_region_entry_block,const opt::BasicBlock & original_region_exit_block,const std::set<opt::BasicBlock * > & region_blocks,const std::vector<uint32_t> & region_output_ids,const std::map<uint32_t,uint32_t> & output_id_to_type_id,const std::map<uint32_t,uint32_t> & output_id_to_fresh_id_map,opt::IRContext * ir_context,opt::Function * outlined_function) const762 void TransformationOutlineFunction::PopulateOutlinedFunction(
763     const opt::BasicBlock& original_region_entry_block,
764     const opt::BasicBlock& original_region_exit_block,
765     const std::set<opt::BasicBlock*>& region_blocks,
766     const std::vector<uint32_t>& region_output_ids,
767     const std::map<uint32_t, uint32_t>& output_id_to_type_id,
768     const std::map<uint32_t, uint32_t>& output_id_to_fresh_id_map,
769     opt::IRContext* ir_context, opt::Function* outlined_function) const {
770   // When we create the exit block for the outlined region, we use this pointer
771   // to track of it so that we can manipulate it later.
772   opt::BasicBlock* outlined_region_exit_block = nullptr;
773 
774   // The region entry block in the new function is identical to the entry block
775   // of the region being outlined, except that it has
776   // |message_.new_function_region_entry_block| as its id.
777   std::unique_ptr<opt::BasicBlock> outlined_region_entry_block =
778       MakeUnique<opt::BasicBlock>(MakeUnique<opt::Instruction>(
779           ir_context, SpvOpLabel, 0, message_.new_function_region_entry_block(),
780           opt::Instruction::OperandList()));
781 
782   if (&original_region_entry_block == &original_region_exit_block) {
783     outlined_region_exit_block = outlined_region_entry_block.get();
784   }
785 
786   for (auto& inst : original_region_entry_block) {
787     outlined_region_entry_block->AddInstruction(
788         std::unique_ptr<opt::Instruction>(inst.Clone(ir_context)));
789   }
790   outlined_function->AddBasicBlock(std::move(outlined_region_entry_block));
791 
792   // We now go through the single-entry single-exit region defined by the entry
793   // and exit blocks, adding clones of all blocks to the new function.
794 
795   // Consider every block in the enclosing function.
796   auto enclosing_function = original_region_entry_block.GetParent();
797   for (auto block_it = enclosing_function->begin();
798        block_it != enclosing_function->end();) {
799     // Skip the region's entry block - we already dealt with it above.
800     if (region_blocks.count(&*block_it) == 0 ||
801         &*block_it == &original_region_entry_block) {
802       ++block_it;
803       continue;
804     }
805     // Clone the block so that it can be added to the new function.
806     auto cloned_block =
807         std::unique_ptr<opt::BasicBlock>(block_it->Clone(ir_context));
808 
809     // If this is the region's exit block, then the cloned block is the outlined
810     // region's exit block.
811     if (&*block_it == &original_region_exit_block) {
812       assert(outlined_region_exit_block == nullptr &&
813              "We should not yet have encountered the exit block.");
814       outlined_region_exit_block = cloned_block.get();
815     }
816 
817     // Redirect any OpPhi operands whose predecessors are the original region
818     // entry block to become the new function entry block.
819     cloned_block->ForEachPhiInst([this](opt::Instruction* phi_inst) {
820       for (uint32_t predecessor_index = 1;
821            predecessor_index < phi_inst->NumInOperands();
822            predecessor_index += 2) {
823         if (phi_inst->GetSingleWordInOperand(predecessor_index) ==
824             message_.entry_block()) {
825           phi_inst->SetInOperand(predecessor_index,
826                                  {message_.new_function_region_entry_block()});
827         }
828       }
829     });
830 
831     outlined_function->AddBasicBlock(std::move(cloned_block));
832     block_it = block_it.Erase();
833   }
834   assert(outlined_region_exit_block != nullptr &&
835          "We should have encountered the region's exit block when iterating "
836          "through the function");
837 
838   // We now need to adapt the exit block for the region - in the new function -
839   // so that it ends with a return.
840 
841   // We first eliminate the merge instruction (if any) and the terminator for
842   // the cloned exit block.
843   for (auto inst_it = outlined_region_exit_block->begin();
844        inst_it != outlined_region_exit_block->end();) {
845     if (inst_it->opcode() == SpvOpLoopMerge ||
846         inst_it->opcode() == SpvOpSelectionMerge) {
847       inst_it = inst_it.Erase();
848     } else if (inst_it->IsBlockTerminator()) {
849       inst_it = inst_it.Erase();
850     } else {
851       ++inst_it;
852     }
853   }
854 
855   // We now add either OpReturn or OpReturnValue as the cloned exit block's
856   // terminator.
857   if (region_output_ids.empty()) {
858     // The case where there are no region output ids is simple: we just add
859     // OpReturn.
860     outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
861         ir_context, SpvOpReturn, 0, 0, opt::Instruction::OperandList()));
862   } else {
863     // In the case where there are output ids, we add an OpCompositeConstruct
864     // instruction to pack all the non-void output values into a struct, and
865     // then an OpReturnValue instruction to return this struct.
866     opt::Instruction::OperandList struct_member_operands;
867     for (uint32_t id : region_output_ids) {
868       if (ir_context->get_def_use_mgr()
869               ->GetDef(output_id_to_type_id.at(id))
870               ->opcode() != SpvOpTypeVoid) {
871         struct_member_operands.push_back(
872             {SPV_OPERAND_TYPE_ID, {output_id_to_fresh_id_map.at(id)}});
873       }
874     }
875     outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
876         ir_context, SpvOpCompositeConstruct,
877         message_.new_function_struct_return_type_id(),
878         message_.new_callee_result_id(), struct_member_operands));
879     outlined_region_exit_block->AddInstruction(MakeUnique<opt::Instruction>(
880         ir_context, SpvOpReturnValue, 0, 0,
881         opt::Instruction::OperandList(
882             {{SPV_OPERAND_TYPE_ID, {message_.new_callee_result_id()}}})));
883   }
884 
885   outlined_function->SetFunctionEnd(MakeUnique<opt::Instruction>(
886       ir_context, SpvOpFunctionEnd, 0, 0, opt::Instruction::OperandList()));
887 }
888 
ShrinkOriginalRegion(opt::IRContext * ir_context,const std::set<opt::BasicBlock * > & region_blocks,const std::vector<uint32_t> & region_input_ids,const std::vector<uint32_t> & region_output_ids,const std::map<uint32_t,uint32_t> & output_id_to_type_id,uint32_t return_type_id,std::unique_ptr<opt::Instruction> cloned_exit_block_merge,std::unique_ptr<opt::Instruction> cloned_exit_block_terminator,opt::BasicBlock * original_region_entry_block) const889 void TransformationOutlineFunction::ShrinkOriginalRegion(
890     opt::IRContext* ir_context, const std::set<opt::BasicBlock*>& region_blocks,
891     const std::vector<uint32_t>& region_input_ids,
892     const std::vector<uint32_t>& region_output_ids,
893     const std::map<uint32_t, uint32_t>& output_id_to_type_id,
894     uint32_t return_type_id,
895     std::unique_ptr<opt::Instruction> cloned_exit_block_merge,
896     std::unique_ptr<opt::Instruction> cloned_exit_block_terminator,
897     opt::BasicBlock* original_region_entry_block) const {
898   // Erase all blocks from the original function that are in the outlined
899   // region, except for the region's entry block.
900   //
901   // In the process, identify all references to the exit block of the region,
902   // as merge blocks, continue targets, or OpPhi predecessors, and rewrite them
903   // to refer to the region entry block (the single block to which we are
904   // shrinking the region).
905   auto enclosing_function = original_region_entry_block->GetParent();
906   for (auto block_it = enclosing_function->begin();
907        block_it != enclosing_function->end();) {
908     if (&*block_it == original_region_entry_block) {
909       ++block_it;
910     } else if (region_blocks.count(&*block_it) == 0) {
911       // The block is not in the region.  Check whether it has the last block
912       // of the region as an OpPhi predecessor, and if so change the
913       // predecessor to be the first block of the region (i.e. the block
914       // containing the call to what was outlined).
915       assert(block_it->MergeBlockIdIfAny() != message_.exit_block() &&
916              "Outlined region must not end with a merge block");
917       assert(block_it->ContinueBlockIdIfAny() != message_.exit_block() &&
918              "Outlined region must not end with a continue target");
919       block_it->ForEachPhiInst([this](opt::Instruction* phi_inst) {
920         for (uint32_t predecessor_index = 1;
921              predecessor_index < phi_inst->NumInOperands();
922              predecessor_index += 2) {
923           if (phi_inst->GetSingleWordInOperand(predecessor_index) ==
924               message_.exit_block()) {
925             phi_inst->SetInOperand(predecessor_index, {message_.entry_block()});
926           }
927         }
928       });
929       ++block_it;
930     } else {
931       // The block is in the region and is not the region's entry block: kill
932       // it.
933       block_it = block_it.Erase();
934     }
935   }
936 
937   // Now erase all instructions from the region's entry block, as they have
938   // been outlined.
939   for (auto inst_it = original_region_entry_block->begin();
940        inst_it != original_region_entry_block->end();) {
941     inst_it = inst_it.Erase();
942   }
943 
944   // Now we add a call to the outlined function to the region's entry block.
945   opt::Instruction::OperandList function_call_operands;
946   function_call_operands.push_back(
947       {SPV_OPERAND_TYPE_ID, {message_.new_function_id()}});
948   // The function parameters are the region input ids.
949   for (auto input_id : region_input_ids) {
950     function_call_operands.push_back({SPV_OPERAND_TYPE_ID, {input_id}});
951   }
952 
953   original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
954       ir_context, SpvOpFunctionCall, return_type_id,
955       message_.new_caller_result_id(), function_call_operands));
956 
957   // If there are output ids, the function call will return a struct.  For each
958   // output id, we add an extract operation to pull the appropriate struct
959   // member out into an output id.  The exception is for output ids with void
960   // type.  There are no struct entries for these, so we use an OpUndef of void
961   // type instead.
962   uint32_t struct_member_index = 0;
963   for (uint32_t output_id : region_output_ids) {
964     uint32_t output_type_id = output_id_to_type_id.at(output_id);
965     if (ir_context->get_def_use_mgr()->GetDef(output_type_id)->opcode() ==
966         SpvOpTypeVoid) {
967       original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
968           ir_context, SpvOpUndef, output_type_id, output_id,
969           opt::Instruction::OperandList()));
970       // struct_member_index is not incremented since there was no struct member
971       // associated with this void-typed output id.
972     } else {
973       original_region_entry_block->AddInstruction(MakeUnique<opt::Instruction>(
974           ir_context, SpvOpCompositeExtract, output_type_id, output_id,
975           opt::Instruction::OperandList(
976               {{SPV_OPERAND_TYPE_ID, {message_.new_caller_result_id()}},
977                {SPV_OPERAND_TYPE_LITERAL_INTEGER, {struct_member_index}}})));
978       struct_member_index++;
979     }
980   }
981 
982   // Finally, we terminate the block with the merge instruction (if any) that
983   // used to belong to the region's exit block, and the terminator that used
984   // to belong to the region's exit block.
985   if (cloned_exit_block_merge != nullptr) {
986     original_region_entry_block->AddInstruction(
987         std::move(cloned_exit_block_merge));
988   }
989   original_region_entry_block->AddInstruction(
990       std::move(cloned_exit_block_terminator));
991 }
992 
GetFreshIds() const993 std::unordered_set<uint32_t> TransformationOutlineFunction::GetFreshIds()
994     const {
995   std::unordered_set<uint32_t> result = {
996       message_.new_function_struct_return_type_id(),
997       message_.new_function_type_id(),
998       message_.new_function_id(),
999       message_.new_function_region_entry_block(),
1000       message_.new_caller_result_id(),
1001       message_.new_callee_result_id()};
1002   for (auto& pair : message_.input_id_to_fresh_id()) {
1003     result.insert(pair.second());
1004   }
1005   for (auto& pair : message_.output_id_to_fresh_id()) {
1006     result.insert(pair.second());
1007   }
1008   return result;
1009 }
1010 
1011 }  // namespace fuzz
1012 }  // namespace spvtools
1013