• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_ir.h"
26 
27 #include "util/memstream.h"
28 
29 #include <array>
30 #include <map>
31 #include <set>
32 #include <vector>
33 
34 namespace aco {
35 
36 static void
aco_log(Program * program,enum radv_compiler_debug_level level,const char * prefix,const char * file,unsigned line,const char * fmt,va_list args)37 aco_log(Program* program, enum radv_compiler_debug_level level, const char* prefix,
38         const char* file, unsigned line, const char* fmt, va_list args)
39 {
40    char* msg;
41 
42    if (program->debug.shorten_messages) {
43       msg = ralloc_vasprintf(NULL, fmt, args);
44    } else {
45       msg = ralloc_strdup(NULL, prefix);
46       ralloc_asprintf_append(&msg, "    In file %s:%u\n", file, line);
47       ralloc_asprintf_append(&msg, "    ");
48       ralloc_vasprintf_append(&msg, fmt, args);
49    }
50 
51    if (program->debug.func)
52       program->debug.func(program->debug.private_data, level, msg);
53 
54    fprintf(program->debug.output, "%s\n", msg);
55 
56    ralloc_free(msg);
57 }
58 
59 void
_aco_perfwarn(Program * program,const char * file,unsigned line,const char * fmt,...)60 _aco_perfwarn(Program* program, const char* file, unsigned line, const char* fmt, ...)
61 {
62    va_list args;
63 
64    va_start(args, fmt);
65    aco_log(program, RADV_COMPILER_DEBUG_LEVEL_PERFWARN, "ACO PERFWARN:\n", file, line, fmt, args);
66    va_end(args);
67 }
68 
69 void
_aco_err(Program * program,const char * file,unsigned line,const char * fmt,...)70 _aco_err(Program* program, const char* file, unsigned line, const char* fmt, ...)
71 {
72    va_list args;
73 
74    va_start(args, fmt);
75    aco_log(program, RADV_COMPILER_DEBUG_LEVEL_ERROR, "ACO ERROR:\n", file, line, fmt, args);
76    va_end(args);
77 }
78 
79 bool
validate_ir(Program * program)80 validate_ir(Program* program)
81 {
82    bool is_valid = true;
83    auto check = [&program, &is_valid](bool success, const char* msg,
84                                       aco::Instruction* instr) -> void
85    {
86       if (!success) {
87          char* out;
88          size_t outsize;
89          struct u_memstream mem;
90          u_memstream_open(&mem, &out, &outsize);
91          FILE* const memf = u_memstream_get(&mem);
92 
93          fprintf(memf, "%s: ", msg);
94          aco_print_instr(instr, memf);
95          u_memstream_close(&mem);
96 
97          aco_err(program, "%s", out);
98          free(out);
99 
100          is_valid = false;
101       }
102    };
103 
104    auto check_block = [&program, &is_valid](bool success, const char* msg,
105                                             aco::Block* block) -> void
106    {
107       if (!success) {
108          aco_err(program, "%s: BB%u", msg, block->index);
109          is_valid = false;
110       }
111    };
112 
113    for (Block& block : program->blocks) {
114       for (aco_ptr<Instruction>& instr : block.instructions) {
115 
116          /* check base format */
117          Format base_format = instr->format;
118          base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::SDWA);
119          base_format = (Format)((uint32_t)base_format & ~(uint32_t)Format::DPP);
120          if ((uint32_t)base_format & (uint32_t)Format::VOP1)
121             base_format = Format::VOP1;
122          else if ((uint32_t)base_format & (uint32_t)Format::VOP2)
123             base_format = Format::VOP2;
124          else if ((uint32_t)base_format & (uint32_t)Format::VOPC)
125             base_format = Format::VOPC;
126          else if ((uint32_t)base_format & (uint32_t)Format::VINTRP) {
127             if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
128                 instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
129                 instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
130                 instr->opcode == aco_opcode::v_interp_p2_f16) {
131                /* v_interp_*_fp16 are considered VINTRP by the compiler but
132                 * they are emitted as VOP3.
133                 */
134                base_format = Format::VOP3;
135             } else {
136                base_format = Format::VINTRP;
137             }
138          }
139          check(base_format == instr_info.format[(int)instr->opcode],
140                "Wrong base format for instruction", instr.get());
141 
142          /* check VOP3 modifiers */
143          if (instr->isVOP3() && instr->format != Format::VOP3) {
144             check(base_format == Format::VOP2 || base_format == Format::VOP1 ||
145                      base_format == Format::VOPC || base_format == Format::VINTRP,
146                   "Format cannot have VOP3/VOP3B applied", instr.get());
147          }
148 
149          /* check SDWA */
150          if (instr->isSDWA()) {
151             check(base_format == Format::VOP2 || base_format == Format::VOP1 ||
152                      base_format == Format::VOPC,
153                   "Format cannot have SDWA applied", instr.get());
154 
155             check(program->chip_class >= GFX8, "SDWA is GFX8+ only", instr.get());
156 
157             SDWA_instruction& sdwa = instr->sdwa();
158             check(sdwa.omod == 0 || program->chip_class >= GFX9,
159                   "SDWA omod only supported on GFX9+", instr.get());
160             if (base_format == Format::VOPC) {
161                check(sdwa.clamp == false || program->chip_class == GFX8,
162                      "SDWA VOPC clamp only supported on GFX8", instr.get());
163                check((instr->definitions[0].isFixed() && instr->definitions[0].physReg() == vcc) ||
164                         program->chip_class >= GFX9,
165                      "SDWA+VOPC definition must be fixed to vcc on GFX8", instr.get());
166             } else {
167                const Definition& def = instr->definitions[0];
168                check(def.bytes() <= 4, "SDWA definitions must not be larger than 4 bytes",
169                      instr.get());
170                check(def.bytes() >= sdwa.dst_sel.size() + sdwa.dst_sel.offset(),
171                      "SDWA definition selection size must be at most definition size", instr.get());
172                check(
173                   sdwa.dst_sel.size() == 1 || sdwa.dst_sel.size() == 2 || sdwa.dst_sel.size() == 4,
174                   "SDWA definition selection size must be 1, 2 or 4 bytes", instr.get());
175                check(sdwa.dst_sel.offset() % sdwa.dst_sel.size() == 0, "Invalid selection offset",
176                      instr.get());
177                check(def.bytes() == 4 || def.bytes() == sdwa.dst_sel.size(),
178                      "SDWA dst_sel size must be definition size for subdword definitions",
179                      instr.get());
180                check(def.bytes() == 4 || sdwa.dst_sel.offset() == 0,
181                      "SDWA dst_sel offset must be 0 for subdword definitions", instr.get());
182             }
183 
184             for (unsigned i = 0; i < std::min<unsigned>(2, instr->operands.size()); i++) {
185                const Operand& op = instr->operands[i];
186                check(op.bytes() <= 4, "SDWA operands must not be larger than 4 bytes", instr.get());
187                check(op.bytes() >= sdwa.sel[i].size() + sdwa.sel[i].offset(),
188                      "SDWA operand selection size must be at most operand size", instr.get());
189                check(sdwa.sel[i].size() == 1 || sdwa.sel[i].size() == 2 || sdwa.sel[i].size() == 4,
190                      "SDWA operand selection size must be 1, 2 or 4 bytes", instr.get());
191                check(sdwa.sel[i].offset() % sdwa.sel[i].size() == 0, "Invalid selection offset",
192                      instr.get());
193             }
194             if (instr->operands.size() >= 3) {
195                check(instr->operands[2].isFixed() && instr->operands[2].physReg() == vcc,
196                      "3rd operand must be fixed to vcc with SDWA", instr.get());
197             }
198             if (instr->definitions.size() >= 2) {
199                check(instr->definitions[1].isFixed() && instr->definitions[1].physReg() == vcc,
200                      "2nd definition must be fixed to vcc with SDWA", instr.get());
201             }
202 
203             const bool sdwa_opcodes =
204                instr->opcode != aco_opcode::v_fmac_f32 && instr->opcode != aco_opcode::v_fmac_f16 &&
205                instr->opcode != aco_opcode::v_fmamk_f32 &&
206                instr->opcode != aco_opcode::v_fmaak_f32 &&
207                instr->opcode != aco_opcode::v_fmamk_f16 &&
208                instr->opcode != aco_opcode::v_fmaak_f16 &&
209                instr->opcode != aco_opcode::v_madmk_f32 &&
210                instr->opcode != aco_opcode::v_madak_f32 &&
211                instr->opcode != aco_opcode::v_madmk_f16 &&
212                instr->opcode != aco_opcode::v_madak_f16 &&
213                instr->opcode != aco_opcode::v_readfirstlane_b32 &&
214                instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32;
215 
216             const bool feature_mac =
217                program->chip_class == GFX8 &&
218                (instr->opcode == aco_opcode::v_mac_f32 && instr->opcode == aco_opcode::v_mac_f16);
219 
220             check(sdwa_opcodes || feature_mac, "SDWA can't be used with this opcode", instr.get());
221          }
222 
223          /* check opsel */
224          if (instr->isVOP3()) {
225             VOP3_instruction& vop3 = instr->vop3();
226             check(vop3.opsel == 0 || program->chip_class >= GFX9,
227                   "Opsel is only supported on GFX9+", instr.get());
228 
229             for (unsigned i = 0; i < 3; i++) {
230                if (i >= instr->operands.size() ||
231                    (instr->operands[i].hasRegClass() &&
232                     instr->operands[i].regClass().is_subdword() && !instr->operands[i].isFixed()))
233                   check((vop3.opsel & (1 << i)) == 0, "Unexpected opsel for operand", instr.get());
234             }
235             if (instr->definitions[0].regClass().is_subdword() && !instr->definitions[0].isFixed())
236                check((vop3.opsel & (1 << 3)) == 0, "Unexpected opsel for sub-dword definition",
237                      instr.get());
238          }
239 
240          /* check for undefs */
241          for (unsigned i = 0; i < instr->operands.size(); i++) {
242             if (instr->operands[i].isUndefined()) {
243                bool flat = instr->isFlatLike();
244                bool can_be_undef = is_phi(instr) || instr->isEXP() || instr->isReduction() ||
245                                    instr->opcode == aco_opcode::p_create_vector ||
246                                    (flat && i == 1) || (instr->isMIMG() && (i == 1 || i == 2)) ||
247                                    ((instr->isMUBUF() || instr->isMTBUF()) && i == 1);
248                check(can_be_undef, "Undefs can only be used in certain operands", instr.get());
249             } else {
250                check(instr->operands[i].isFixed() || instr->operands[i].isTemp() ||
251                         instr->operands[i].isConstant(),
252                      "Uninitialized Operand", instr.get());
253             }
254          }
255 
256          /* check subdword definitions */
257          for (unsigned i = 0; i < instr->definitions.size(); i++) {
258             if (instr->definitions[i].regClass().is_subdword())
259                check(instr->isPseudo() || instr->definitions[i].bytes() <= 4,
260                      "Only Pseudo instructions can write subdword registers larger than 4 bytes",
261                      instr.get());
262          }
263 
264          if (instr->isSALU() || instr->isVALU()) {
265             /* check literals */
266             Operand literal(s1);
267             for (unsigned i = 0; i < instr->operands.size(); i++) {
268                Operand op = instr->operands[i];
269                if (!op.isLiteral())
270                   continue;
271 
272                check(!instr->isDPP() && !instr->isSDWA() &&
273                         (!instr->isVOP3() || program->chip_class >= GFX10) &&
274                         (!instr->isVOP3P() || program->chip_class >= GFX10),
275                      "Literal applied on wrong instruction format", instr.get());
276 
277                check(literal.isUndefined() || (literal.size() == op.size() &&
278                                                literal.constantValue() == op.constantValue()),
279                      "Only 1 Literal allowed", instr.get());
280                literal = op;
281                check(instr->isSALU() || instr->isVOP3() || instr->isVOP3P() || i == 0 || i == 2,
282                      "Wrong source position for Literal argument", instr.get());
283             }
284 
285             /* check num sgprs for VALU */
286             if (instr->isVALU()) {
287                bool is_shift64 = instr->opcode == aco_opcode::v_lshlrev_b64 ||
288                                  instr->opcode == aco_opcode::v_lshrrev_b64 ||
289                                  instr->opcode == aco_opcode::v_ashrrev_i64;
290                unsigned const_bus_limit = 1;
291                if (program->chip_class >= GFX10 && !is_shift64)
292                   const_bus_limit = 2;
293 
294                uint32_t scalar_mask = instr->isVOP3() || instr->isVOP3P() ? 0x7 : 0x5;
295                if (instr->isSDWA())
296                   scalar_mask = program->chip_class >= GFX9 ? 0x7 : 0x4;
297                else if (instr->isDPP())
298                   scalar_mask = 0x4;
299 
300                if (instr->isVOPC() || instr->opcode == aco_opcode::v_readfirstlane_b32 ||
301                    instr->opcode == aco_opcode::v_readlane_b32 ||
302                    instr->opcode == aco_opcode::v_readlane_b32_e64) {
303                   check(instr->definitions[0].getTemp().type() == RegType::sgpr,
304                         "Wrong Definition type for VALU instruction", instr.get());
305                } else {
306                   check(instr->definitions[0].getTemp().type() == RegType::vgpr,
307                         "Wrong Definition type for VALU instruction", instr.get());
308                }
309 
310                unsigned num_sgprs = 0;
311                unsigned sgpr[] = {0, 0};
312                for (unsigned i = 0; i < instr->operands.size(); i++) {
313                   Operand op = instr->operands[i];
314                   if (instr->opcode == aco_opcode::v_readfirstlane_b32 ||
315                       instr->opcode == aco_opcode::v_readlane_b32 ||
316                       instr->opcode == aco_opcode::v_readlane_b32_e64) {
317                      check(i != 1 || (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
318                               op.isConstant(),
319                            "Must be a SGPR or a constant", instr.get());
320                      check(i == 1 || (op.isTemp() && op.regClass().type() == RegType::vgpr &&
321                                       op.bytes() <= 4),
322                            "Wrong Operand type for VALU instruction", instr.get());
323                      continue;
324                   }
325                   if (instr->opcode == aco_opcode::v_permlane16_b32 ||
326                       instr->opcode == aco_opcode::v_permlanex16_b32) {
327                      check(i != 0 || (op.isTemp() && op.regClass().type() == RegType::vgpr),
328                            "Operand 0 of v_permlane must be VGPR", instr.get());
329                      check(i == 0 || (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
330                               op.isConstant(),
331                            "Lane select operands of v_permlane must be SGPR or constant",
332                            instr.get());
333                   }
334 
335                   if (instr->opcode == aco_opcode::v_writelane_b32 ||
336                       instr->opcode == aco_opcode::v_writelane_b32_e64) {
337                      check(i != 2 || (op.isTemp() && op.regClass().type() == RegType::vgpr &&
338                                       op.bytes() <= 4),
339                            "Wrong Operand type for VALU instruction", instr.get());
340                      check(i == 2 || (op.isTemp() && op.regClass().type() == RegType::sgpr) ||
341                               op.isConstant(),
342                            "Must be a SGPR or a constant", instr.get());
343                      continue;
344                   }
345                   if (op.isTemp() && instr->operands[i].regClass().type() == RegType::sgpr) {
346                      check(scalar_mask & (1 << i), "Wrong source position for SGPR argument",
347                            instr.get());
348 
349                      if (op.tempId() != sgpr[0] && op.tempId() != sgpr[1]) {
350                         if (num_sgprs < 2)
351                            sgpr[num_sgprs++] = op.tempId();
352                      }
353                   }
354 
355                   if (op.isConstant() && !op.isLiteral())
356                      check(scalar_mask & (1 << i), "Wrong source position for constant argument",
357                            instr.get());
358                }
359                check(num_sgprs + (literal.isUndefined() ? 0 : 1) <= const_bus_limit,
360                      "Too many SGPRs/literals", instr.get());
361             }
362 
363             if (instr->isSOP1() || instr->isSOP2()) {
364                check(instr->definitions[0].getTemp().type() == RegType::sgpr,
365                      "Wrong Definition type for SALU instruction", instr.get());
366                for (const Operand& op : instr->operands) {
367                   check(op.isConstant() || op.regClass().type() <= RegType::sgpr,
368                         "Wrong Operand type for SALU instruction", instr.get());
369                }
370             }
371          }
372 
373          switch (instr->format) {
374          case Format::PSEUDO: {
375             if (instr->opcode == aco_opcode::p_create_vector) {
376                unsigned size = 0;
377                for (const Operand& op : instr->operands) {
378                   check(op.bytes() < 4 || size % 4 == 0, "Operand is not aligned", instr.get());
379                   size += op.bytes();
380                }
381                check(size == instr->definitions[0].bytes(),
382                      "Definition size does not match operand sizes", instr.get());
383                if (instr->definitions[0].getTemp().type() == RegType::sgpr) {
384                   for (const Operand& op : instr->operands) {
385                      check(op.isConstant() || op.regClass().type() == RegType::sgpr,
386                            "Wrong Operand type for scalar vector", instr.get());
387                   }
388                }
389             } else if (instr->opcode == aco_opcode::p_extract_vector) {
390                check((instr->operands[0].isTemp()) && instr->operands[1].isConstant(),
391                      "Wrong Operand types", instr.get());
392                check((instr->operands[1].constantValue() + 1) * instr->definitions[0].bytes() <=
393                         instr->operands[0].bytes(),
394                      "Index out of range", instr.get());
395                check(instr->definitions[0].getTemp().type() == RegType::vgpr ||
396                         instr->operands[0].regClass().type() == RegType::sgpr,
397                      "Cannot extract SGPR value from VGPR vector", instr.get());
398                check(program->chip_class >= GFX9 ||
399                         !instr->definitions[0].regClass().is_subdword() ||
400                         instr->operands[0].regClass().type() == RegType::vgpr,
401                      "Cannot extract subdword from SGPR before GFX9+", instr.get());
402             } else if (instr->opcode == aco_opcode::p_split_vector) {
403                check(instr->operands[0].isTemp(), "Operand must be a temporary", instr.get());
404                unsigned size = 0;
405                for (const Definition& def : instr->definitions) {
406                   size += def.bytes();
407                }
408                check(size == instr->operands[0].bytes(),
409                      "Operand size does not match definition sizes", instr.get());
410                if (instr->operands[0].getTemp().type() == RegType::vgpr) {
411                   for (const Definition& def : instr->definitions)
412                      check(def.regClass().type() == RegType::vgpr,
413                            "Wrong Definition type for VGPR split_vector", instr.get());
414                } else {
415                   for (const Definition& def : instr->definitions)
416                      check(program->chip_class >= GFX9 || !def.regClass().is_subdword(),
417                            "Cannot split SGPR into subdword VGPRs before GFX9+", instr.get());
418                }
419             } else if (instr->opcode == aco_opcode::p_parallelcopy) {
420                check(instr->definitions.size() == instr->operands.size(),
421                      "Number of Operands does not match number of Definitions", instr.get());
422                for (unsigned i = 0; i < instr->operands.size(); i++) {
423                   check(instr->definitions[i].bytes() == instr->operands[i].bytes(),
424                         "Operand and Definition size must match", instr.get());
425                   if (instr->operands[i].isTemp()) {
426                      check((instr->definitions[i].getTemp().type() ==
427                             instr->operands[i].regClass().type()) ||
428                               (instr->definitions[i].getTemp().type() == RegType::vgpr &&
429                                instr->operands[i].regClass().type() == RegType::sgpr),
430                            "Operand and Definition types do not match", instr.get());
431                      check(instr->definitions[i].regClass().is_linear_vgpr() ==
432                               instr->operands[i].regClass().is_linear_vgpr(),
433                            "Operand and Definition types do not match", instr.get());
434                   } else {
435                      check(!instr->definitions[i].regClass().is_linear_vgpr(),
436                            "Can only copy linear VGPRs into linear VGPRs, not constant/undef",
437                            instr.get());
438                   }
439                }
440             } else if (instr->opcode == aco_opcode::p_phi) {
441                check(instr->operands.size() == block.logical_preds.size(),
442                      "Number of Operands does not match number of predecessors", instr.get());
443                check(instr->definitions[0].getTemp().type() == RegType::vgpr,
444                      "Logical Phi Definition must be vgpr", instr.get());
445                for (const Operand& op : instr->operands)
446                   check(instr->definitions[0].size() == op.size(),
447                         "Operand sizes must match Definition size", instr.get());
448             } else if (instr->opcode == aco_opcode::p_linear_phi) {
449                for (const Operand& op : instr->operands) {
450                   check(!op.isTemp() || op.getTemp().is_linear(), "Wrong Operand type",
451                         instr.get());
452                   check(instr->definitions[0].size() == op.size(),
453                         "Operand sizes must match Definition size", instr.get());
454                }
455                check(instr->operands.size() == block.linear_preds.size(),
456                      "Number of Operands does not match number of predecessors", instr.get());
457             } else if (instr->opcode == aco_opcode::p_extract ||
458                        instr->opcode == aco_opcode::p_insert) {
459                check(instr->operands[0].isTemp(), "Data operand must be temporary", instr.get());
460                check(instr->operands[1].isConstant(), "Index must be constant", instr.get());
461                if (instr->opcode == aco_opcode::p_extract)
462                   check(instr->operands[3].isConstant(), "Sign-extend flag must be constant",
463                         instr.get());
464 
465                check(instr->definitions[0].getTemp().type() != RegType::sgpr ||
466                         instr->operands[0].getTemp().type() == RegType::sgpr,
467                      "Can't extract/insert VGPR to SGPR", instr.get());
468 
469                if (instr->opcode == aco_opcode::p_insert)
470                   check(instr->operands[0].bytes() == instr->definitions[0].bytes(),
471                         "Sizes of p_insert data operand and definition must match", instr.get());
472 
473                if (instr->definitions[0].getTemp().type() == RegType::sgpr)
474                   check(instr->definitions.size() >= 2 && instr->definitions[1].isFixed() &&
475                            instr->definitions[1].physReg() == scc,
476                         "SGPR extract/insert needs an SCC definition", instr.get());
477 
478                unsigned data_bits = instr->operands[0].getTemp().bytes() * 8u;
479                unsigned op_bits = instr->operands[2].constantValue();
480 
481                if (instr->opcode == aco_opcode::p_insert) {
482                   check(op_bits == 8 || op_bits == 16, "Size must be 8 or 16", instr.get());
483                   check(op_bits < data_bits, "Size must be smaller than source", instr.get());
484                } else if (instr->opcode == aco_opcode::p_extract) {
485                   check(op_bits == 8 || op_bits == 16 || op_bits == 32,
486                         "Size must be 8 or 16 or 32", instr.get());
487                   check(data_bits >= op_bits, "Can't extract more bits than what the data has.",
488                         instr.get());
489                }
490 
491                unsigned comp = data_bits / MAX2(op_bits, 1);
492                check(instr->operands[1].constantValue() < comp, "Index must be in-bounds",
493                      instr.get());
494             }
495             break;
496          }
497          case Format::PSEUDO_REDUCTION: {
498             for (const Operand& op : instr->operands)
499                check(op.regClass().type() == RegType::vgpr,
500                      "All operands of PSEUDO_REDUCTION instructions must be in VGPRs.",
501                      instr.get());
502 
503             if (instr->opcode == aco_opcode::p_reduce &&
504                 instr->reduction().cluster_size == program->wave_size)
505                check(instr->definitions[0].regClass().type() == RegType::sgpr ||
506                         program->wave_size == 32,
507                      "The result of unclustered reductions must go into an SGPR.", instr.get());
508             else
509                check(instr->definitions[0].regClass().type() == RegType::vgpr,
510                      "The result of scans and clustered reductions must go into a VGPR.",
511                      instr.get());
512 
513             break;
514          }
515          case Format::SMEM: {
516             if (instr->operands.size() >= 1)
517                check((instr->operands[0].isFixed() && !instr->operands[0].isConstant()) ||
518                         (instr->operands[0].isTemp() &&
519                          instr->operands[0].regClass().type() == RegType::sgpr),
520                      "SMEM operands must be sgpr", instr.get());
521             if (instr->operands.size() >= 2)
522                check(instr->operands[1].isConstant() ||
523                         (instr->operands[1].isTemp() &&
524                          instr->operands[1].regClass().type() == RegType::sgpr),
525                      "SMEM offset must be constant or sgpr", instr.get());
526             if (!instr->definitions.empty())
527                check(instr->definitions[0].getTemp().type() == RegType::sgpr,
528                      "SMEM result must be sgpr", instr.get());
529             break;
530          }
531          case Format::MTBUF:
532          case Format::MUBUF: {
533             check(instr->operands.size() > 1, "VMEM instructions must have at least one operand",
534                   instr.get());
535             check(instr->operands[1].hasRegClass() &&
536                      instr->operands[1].regClass().type() == RegType::vgpr,
537                   "VADDR must be in vgpr for VMEM instructions", instr.get());
538             check(
539                instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::sgpr,
540                "VMEM resource constant must be sgpr", instr.get());
541             check(instr->operands.size() < 4 ||
542                      (instr->operands[3].isTemp() &&
543                       instr->operands[3].regClass().type() == RegType::vgpr),
544                   "VMEM write data must be vgpr", instr.get());
545             break;
546          }
547          case Format::MIMG: {
548             check(instr->operands.size() >= 4, "MIMG instructions must have at least 4 operands",
549                   instr.get());
550             check(instr->operands[0].hasRegClass() &&
551                      (instr->operands[0].regClass() == s4 || instr->operands[0].regClass() == s8),
552                   "MIMG operands[0] (resource constant) must be in 4 or 8 SGPRs", instr.get());
553             if (instr->operands[1].hasRegClass())
554                check(instr->operands[1].regClass() == s4,
555                      "MIMG operands[1] (sampler constant) must be 4 SGPRs", instr.get());
556             if (!instr->operands[2].isUndefined()) {
557                bool is_cmpswap = instr->opcode == aco_opcode::image_atomic_cmpswap ||
558                                  instr->opcode == aco_opcode::image_atomic_fcmpswap;
559                check(instr->definitions.empty() ||
560                         (instr->definitions[0].regClass() == instr->operands[2].regClass() ||
561                          is_cmpswap),
562                      "MIMG operands[2] (VDATA) must be the same as definitions[0] for atomics and "
563                      "TFE/LWE loads",
564                      instr.get());
565             }
566             check(instr->operands.size() == 4 || program->chip_class >= GFX10,
567                   "NSA is only supported on GFX10+", instr.get());
568             for (unsigned i = 3; i < instr->operands.size(); i++) {
569                if (instr->operands.size() == 4) {
570                   check(instr->operands[i].hasRegClass() &&
571                            instr->operands[i].regClass().type() == RegType::vgpr,
572                         "MIMG operands[3] (VADDR) must be VGPR", instr.get());
573                } else {
574                   check(instr->operands[i].regClass() == v1, "MIMG VADDR must be v1 if NSA is used",
575                         instr.get());
576                }
577             }
578             check(instr->definitions.empty() ||
579                      (instr->definitions[0].isTemp() &&
580                       instr->definitions[0].regClass().type() == RegType::vgpr),
581                   "MIMG definitions[0] (VDATA) must be VGPR", instr.get());
582             break;
583          }
584          case Format::DS: {
585             for (const Operand& op : instr->operands) {
586                check((op.isTemp() && op.regClass().type() == RegType::vgpr) || op.physReg() == m0,
587                      "Only VGPRs are valid DS instruction operands", instr.get());
588             }
589             if (!instr->definitions.empty())
590                check(instr->definitions[0].getTemp().type() == RegType::vgpr,
591                      "DS instruction must return VGPR", instr.get());
592             break;
593          }
594          case Format::EXP: {
595             for (unsigned i = 0; i < 4; i++)
596                check(instr->operands[i].hasRegClass() &&
597                         instr->operands[i].regClass().type() == RegType::vgpr,
598                      "Only VGPRs are valid Export arguments", instr.get());
599             break;
600          }
601          case Format::FLAT:
602             check(instr->operands[1].isUndefined(), "Flat instructions don't support SADDR",
603                   instr.get());
604             FALLTHROUGH;
605          case Format::GLOBAL:
606          case Format::SCRATCH: {
607             check(
608                instr->operands[0].isTemp() && instr->operands[0].regClass().type() == RegType::vgpr,
609                "FLAT/GLOBAL/SCRATCH address must be vgpr", instr.get());
610             check(instr->operands[1].hasRegClass() &&
611                      instr->operands[1].regClass().type() == RegType::sgpr,
612                   "FLAT/GLOBAL/SCRATCH sgpr address must be undefined or sgpr", instr.get());
613             if (!instr->definitions.empty())
614                check(instr->definitions[0].getTemp().type() == RegType::vgpr,
615                      "FLAT/GLOBAL/SCRATCH result must be vgpr", instr.get());
616             else
617                check(instr->operands[2].regClass().type() == RegType::vgpr,
618                      "FLAT/GLOBAL/SCRATCH data must be vgpr", instr.get());
619             break;
620          }
621          default: break;
622          }
623       }
624    }
625 
626    /* validate CFG */
627    for (unsigned i = 0; i < program->blocks.size(); i++) {
628       Block& block = program->blocks[i];
629       check_block(block.index == i, "block.index must match actual index", &block);
630 
631       /* predecessors/successors should be sorted */
632       for (unsigned j = 0; j + 1 < block.linear_preds.size(); j++)
633          check_block(block.linear_preds[j] < block.linear_preds[j + 1],
634                      "linear predecessors must be sorted", &block);
635       for (unsigned j = 0; j + 1 < block.logical_preds.size(); j++)
636          check_block(block.logical_preds[j] < block.logical_preds[j + 1],
637                      "logical predecessors must be sorted", &block);
638       for (unsigned j = 0; j + 1 < block.linear_succs.size(); j++)
639          check_block(block.linear_succs[j] < block.linear_succs[j + 1],
640                      "linear successors must be sorted", &block);
641       for (unsigned j = 0; j + 1 < block.logical_succs.size(); j++)
642          check_block(block.logical_succs[j] < block.logical_succs[j + 1],
643                      "logical successors must be sorted", &block);
644 
645       /* critical edges are not allowed */
646       if (block.linear_preds.size() > 1) {
647          for (unsigned pred : block.linear_preds)
648             check_block(program->blocks[pred].linear_succs.size() == 1,
649                         "linear critical edges are not allowed", &program->blocks[pred]);
650          for (unsigned pred : block.logical_preds)
651             check_block(program->blocks[pred].logical_succs.size() == 1,
652                         "logical critical edges are not allowed", &program->blocks[pred]);
653       }
654    }
655 
656    return is_valid;
657 }
658 
659 /* RA validation */
660 namespace {
661 
662 struct Location {
Locationaco::__anon5a96589d0311::Location663    Location() : block(NULL), instr(NULL) {}
664 
665    Block* block;
666    Instruction* instr; // NULL if it's the block's live-in
667 };
668 
669 struct Assignment {
670    Location defloc;
671    Location firstloc;
672    PhysReg reg;
673 };
674 
675 bool
ra_fail(Program * program,Location loc,Location loc2,const char * fmt,...)676 ra_fail(Program* program, Location loc, Location loc2, const char* fmt, ...)
677 {
678    va_list args;
679    va_start(args, fmt);
680    char msg[1024];
681    vsprintf(msg, fmt, args);
682    va_end(args);
683 
684    char* out;
685    size_t outsize;
686    struct u_memstream mem;
687    u_memstream_open(&mem, &out, &outsize);
688    FILE* const memf = u_memstream_get(&mem);
689 
690    fprintf(memf, "RA error found at instruction in BB%d:\n", loc.block->index);
691    if (loc.instr) {
692       aco_print_instr(loc.instr, memf);
693       fprintf(memf, "\n%s", msg);
694    } else {
695       fprintf(memf, "%s", msg);
696    }
697    if (loc2.block) {
698       fprintf(memf, " in BB%d:\n", loc2.block->index);
699       aco_print_instr(loc2.instr, memf);
700    }
701    fprintf(memf, "\n\n");
702    u_memstream_close(&mem);
703 
704    aco_err(program, "%s", out);
705    free(out);
706 
707    return true;
708 }
709 
710 bool
validate_subdword_operand(chip_class chip,const aco_ptr<Instruction> & instr,unsigned index)711 validate_subdword_operand(chip_class chip, const aco_ptr<Instruction>& instr, unsigned index)
712 {
713    Operand op = instr->operands[index];
714    unsigned byte = op.physReg().byte();
715 
716    if (instr->opcode == aco_opcode::p_as_uniform)
717       return byte == 0;
718    if (instr->isPseudo() && chip >= GFX8)
719       return true;
720    if (instr->isSDWA())
721       return byte + instr->sdwa().sel[index].offset() + instr->sdwa().sel[index].size() <= 4 &&
722              byte % instr->sdwa().sel[index].size() == 0;
723    if (byte == 2 && can_use_opsel(chip, instr->opcode, index, 1))
724       return true;
725 
726    switch (instr->opcode) {
727    case aco_opcode::v_cvt_f32_ubyte1:
728       if (byte == 1)
729          return true;
730       break;
731    case aco_opcode::v_cvt_f32_ubyte2:
732       if (byte == 2)
733          return true;
734       break;
735    case aco_opcode::v_cvt_f32_ubyte3:
736       if (byte == 3)
737          return true;
738       break;
739    case aco_opcode::ds_write_b8_d16_hi:
740    case aco_opcode::ds_write_b16_d16_hi:
741       if (byte == 2 && index == 1)
742          return true;
743       break;
744    case aco_opcode::buffer_store_byte_d16_hi:
745    case aco_opcode::buffer_store_short_d16_hi:
746       if (byte == 2 && index == 3)
747          return true;
748       break;
749    case aco_opcode::flat_store_byte_d16_hi:
750    case aco_opcode::flat_store_short_d16_hi:
751    case aco_opcode::scratch_store_byte_d16_hi:
752    case aco_opcode::scratch_store_short_d16_hi:
753    case aco_opcode::global_store_byte_d16_hi:
754    case aco_opcode::global_store_short_d16_hi:
755       if (byte == 2 && index == 2)
756          return true;
757       break;
758    default: break;
759    }
760 
761    return byte == 0;
762 }
763 
764 bool
validate_subdword_definition(chip_class chip,const aco_ptr<Instruction> & instr)765 validate_subdword_definition(chip_class chip, const aco_ptr<Instruction>& instr)
766 {
767    Definition def = instr->definitions[0];
768    unsigned byte = def.physReg().byte();
769 
770    if (instr->isPseudo() && chip >= GFX8)
771       return true;
772    if (instr->isSDWA())
773       return byte + instr->sdwa().dst_sel.offset() + instr->sdwa().dst_sel.size() <= 4 &&
774              byte % instr->sdwa().dst_sel.size() == 0;
775    if (byte == 2 && can_use_opsel(chip, instr->opcode, -1, 1))
776       return true;
777 
778    switch (instr->opcode) {
779    case aco_opcode::buffer_load_ubyte_d16_hi:
780    case aco_opcode::buffer_load_short_d16_hi:
781    case aco_opcode::flat_load_ubyte_d16_hi:
782    case aco_opcode::flat_load_short_d16_hi:
783    case aco_opcode::scratch_load_ubyte_d16_hi:
784    case aco_opcode::scratch_load_short_d16_hi:
785    case aco_opcode::global_load_ubyte_d16_hi:
786    case aco_opcode::global_load_short_d16_hi:
787    case aco_opcode::ds_read_u8_d16_hi:
788    case aco_opcode::ds_read_u16_d16_hi: return byte == 2;
789    default: break;
790    }
791 
792    return byte == 0;
793 }
794 
795 unsigned
get_subdword_bytes_written(Program * program,const aco_ptr<Instruction> & instr,unsigned index)796 get_subdword_bytes_written(Program* program, const aco_ptr<Instruction>& instr, unsigned index)
797 {
798    chip_class chip = program->chip_class;
799    Definition def = instr->definitions[index];
800 
801    if (instr->isPseudo())
802       return chip >= GFX8 ? def.bytes() : def.size() * 4u;
803    if (instr->isVALU()) {
804       assert(def.bytes() <= 2);
805       if (instr->isSDWA())
806          return instr->sdwa().dst_sel.size();
807 
808       if (instr_is_16bit(chip, instr->opcode))
809          return 2;
810 
811       return 4;
812    }
813 
814    switch (instr->opcode) {
815    case aco_opcode::buffer_load_ubyte_d16:
816    case aco_opcode::buffer_load_short_d16:
817    case aco_opcode::flat_load_ubyte_d16:
818    case aco_opcode::flat_load_short_d16:
819    case aco_opcode::scratch_load_ubyte_d16:
820    case aco_opcode::scratch_load_short_d16:
821    case aco_opcode::global_load_ubyte_d16:
822    case aco_opcode::global_load_short_d16:
823    case aco_opcode::ds_read_u8_d16:
824    case aco_opcode::ds_read_u16_d16:
825    case aco_opcode::buffer_load_ubyte_d16_hi:
826    case aco_opcode::buffer_load_short_d16_hi:
827    case aco_opcode::flat_load_ubyte_d16_hi:
828    case aco_opcode::flat_load_short_d16_hi:
829    case aco_opcode::scratch_load_ubyte_d16_hi:
830    case aco_opcode::scratch_load_short_d16_hi:
831    case aco_opcode::global_load_ubyte_d16_hi:
832    case aco_opcode::global_load_short_d16_hi:
833    case aco_opcode::ds_read_u8_d16_hi:
834    case aco_opcode::ds_read_u16_d16_hi: return program->dev.sram_ecc_enabled ? 4 : 2;
835    default: return def.size() * 4;
836    }
837 }
838 
839 } /* end namespace */
840 
841 bool
validate_ra(Program * program)842 validate_ra(Program* program)
843 {
844    if (!(debug_flags & DEBUG_VALIDATE_RA))
845       return false;
846 
847    bool err = false;
848    aco::live live_vars = aco::live_var_analysis(program);
849    std::vector<std::vector<Temp>> phi_sgpr_ops(program->blocks.size());
850    uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->num_waves);
851 
852    std::map<unsigned, Assignment> assignments;
853    for (Block& block : program->blocks) {
854       Location loc;
855       loc.block = &block;
856       for (aco_ptr<Instruction>& instr : block.instructions) {
857          if (instr->opcode == aco_opcode::p_phi) {
858             for (unsigned i = 0; i < instr->operands.size(); i++) {
859                if (instr->operands[i].isTemp() &&
860                    instr->operands[i].getTemp().type() == RegType::sgpr &&
861                    instr->operands[i].isFirstKill())
862                   phi_sgpr_ops[block.logical_preds[i]].emplace_back(instr->operands[i].getTemp());
863             }
864          }
865 
866          loc.instr = instr.get();
867          for (unsigned i = 0; i < instr->operands.size(); i++) {
868             Operand& op = instr->operands[i];
869             if (!op.isTemp())
870                continue;
871             if (!op.isFixed())
872                err |= ra_fail(program, loc, Location(), "Operand %d is not assigned a register", i);
873             if (assignments.count(op.tempId()) && assignments[op.tempId()].reg != op.physReg())
874                err |=
875                   ra_fail(program, loc, assignments.at(op.tempId()).firstloc,
876                           "Operand %d has an inconsistent register assignment with instruction", i);
877             if ((op.getTemp().type() == RegType::vgpr &&
878                  op.physReg().reg_b + op.bytes() > (256 + program->config->num_vgprs) * 4) ||
879                 (op.getTemp().type() == RegType::sgpr &&
880                  op.physReg() + op.size() > program->config->num_sgprs &&
881                  op.physReg() < sgpr_limit))
882                err |= ra_fail(program, loc, assignments.at(op.tempId()).firstloc,
883                               "Operand %d has an out-of-bounds register assignment", i);
884             if (op.physReg() == vcc && !program->needs_vcc)
885                err |= ra_fail(program, loc, Location(),
886                               "Operand %d fixed to vcc but needs_vcc=false", i);
887             if (op.regClass().is_subdword() &&
888                 !validate_subdword_operand(program->chip_class, instr, i))
889                err |= ra_fail(program, loc, Location(), "Operand %d not aligned correctly", i);
890             if (!assignments[op.tempId()].firstloc.block)
891                assignments[op.tempId()].firstloc = loc;
892             if (!assignments[op.tempId()].defloc.block)
893                assignments[op.tempId()].reg = op.physReg();
894          }
895 
896          for (unsigned i = 0; i < instr->definitions.size(); i++) {
897             Definition& def = instr->definitions[i];
898             if (!def.isTemp())
899                continue;
900             if (!def.isFixed())
901                err |=
902                   ra_fail(program, loc, Location(), "Definition %d is not assigned a register", i);
903             if (assignments[def.tempId()].defloc.block)
904                err |= ra_fail(program, loc, assignments.at(def.tempId()).defloc,
905                               "Temporary %%%d also defined by instruction", def.tempId());
906             if ((def.getTemp().type() == RegType::vgpr &&
907                  def.physReg().reg_b + def.bytes() > (256 + program->config->num_vgprs) * 4) ||
908                 (def.getTemp().type() == RegType::sgpr &&
909                  def.physReg() + def.size() > program->config->num_sgprs &&
910                  def.physReg() < sgpr_limit))
911                err |= ra_fail(program, loc, assignments.at(def.tempId()).firstloc,
912                               "Definition %d has an out-of-bounds register assignment", i);
913             if (def.physReg() == vcc && !program->needs_vcc)
914                err |= ra_fail(program, loc, Location(),
915                               "Definition %d fixed to vcc but needs_vcc=false", i);
916             if (def.regClass().is_subdword() &&
917                 !validate_subdword_definition(program->chip_class, instr))
918                err |= ra_fail(program, loc, Location(), "Definition %d not aligned correctly", i);
919             if (!assignments[def.tempId()].firstloc.block)
920                assignments[def.tempId()].firstloc = loc;
921             assignments[def.tempId()].defloc = loc;
922             assignments[def.tempId()].reg = def.physReg();
923          }
924       }
925    }
926 
927    for (Block& block : program->blocks) {
928       Location loc;
929       loc.block = &block;
930 
931       std::array<unsigned, 2048> regs; /* register file in bytes */
932       regs.fill(0);
933 
934       std::set<Temp> live;
935       for (unsigned id : live_vars.live_out[block.index])
936          live.insert(Temp(id, program->temp_rc[id]));
937       /* remove killed p_phi sgpr operands */
938       for (Temp tmp : phi_sgpr_ops[block.index])
939          live.erase(tmp);
940 
941       /* check live out */
942       for (Temp tmp : live) {
943          PhysReg reg = assignments.at(tmp.id()).reg;
944          for (unsigned i = 0; i < tmp.bytes(); i++) {
945             if (regs[reg.reg_b + i]) {
946                err |= ra_fail(program, loc, Location(),
947                               "Assignment of element %d of %%%d already taken by %%%d in live-out",
948                               i, tmp.id(), regs[reg.reg_b + i]);
949             }
950             regs[reg.reg_b + i] = tmp.id();
951          }
952       }
953       regs.fill(0);
954 
955       for (auto it = block.instructions.rbegin(); it != block.instructions.rend(); ++it) {
956          aco_ptr<Instruction>& instr = *it;
957 
958          /* check killed p_phi sgpr operands */
959          if (instr->opcode == aco_opcode::p_logical_end) {
960             for (Temp tmp : phi_sgpr_ops[block.index]) {
961                PhysReg reg = assignments.at(tmp.id()).reg;
962                for (unsigned i = 0; i < tmp.bytes(); i++) {
963                   if (regs[reg.reg_b + i])
964                      err |= ra_fail(
965                         program, loc, Location(),
966                         "Assignment of element %d of %%%d already taken by %%%d in live-out", i,
967                         tmp.id(), regs[reg.reg_b + i]);
968                }
969                live.emplace(tmp);
970             }
971          }
972 
973          for (const Definition& def : instr->definitions) {
974             if (!def.isTemp())
975                continue;
976             live.erase(def.getTemp());
977          }
978 
979          /* don't count phi operands as live-in, since they are actually
980           * killed when they are copied at the predecessor */
981          if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
982             for (const Operand& op : instr->operands) {
983                if (!op.isTemp())
984                   continue;
985                live.insert(op.getTemp());
986             }
987          }
988       }
989 
990       for (Temp tmp : live) {
991          PhysReg reg = assignments.at(tmp.id()).reg;
992          for (unsigned i = 0; i < tmp.bytes(); i++)
993             regs[reg.reg_b + i] = tmp.id();
994       }
995 
996       for (aco_ptr<Instruction>& instr : block.instructions) {
997          loc.instr = instr.get();
998 
999          /* remove killed p_phi operands from regs */
1000          if (instr->opcode == aco_opcode::p_logical_end) {
1001             for (Temp tmp : phi_sgpr_ops[block.index]) {
1002                PhysReg reg = assignments.at(tmp.id()).reg;
1003                for (unsigned i = 0; i < tmp.bytes(); i++)
1004                   regs[reg.reg_b + i] = 0;
1005             }
1006          }
1007 
1008          if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
1009             for (const Operand& op : instr->operands) {
1010                if (!op.isTemp())
1011                   continue;
1012                if (op.isFirstKillBeforeDef()) {
1013                   for (unsigned j = 0; j < op.getTemp().bytes(); j++)
1014                      regs[op.physReg().reg_b + j] = 0;
1015                }
1016             }
1017          }
1018 
1019          for (unsigned i = 0; i < instr->definitions.size(); i++) {
1020             Definition& def = instr->definitions[i];
1021             if (!def.isTemp())
1022                continue;
1023             Temp tmp = def.getTemp();
1024             PhysReg reg = assignments.at(tmp.id()).reg;
1025             for (unsigned j = 0; j < tmp.bytes(); j++) {
1026                if (regs[reg.reg_b + j])
1027                   err |= ra_fail(
1028                      program, loc, assignments.at(regs[reg.reg_b + j]).defloc,
1029                      "Assignment of element %d of %%%d already taken by %%%d from instruction", i,
1030                      tmp.id(), regs[reg.reg_b + j]);
1031                regs[reg.reg_b + j] = tmp.id();
1032             }
1033             if (def.regClass().is_subdword() && def.bytes() < 4) {
1034                unsigned written = get_subdword_bytes_written(program, instr, i);
1035                /* If written=4, the instruction still might write the upper half. In that case, it's
1036                 * the lower half that isn't preserved */
1037                for (unsigned j = reg.byte() & ~(written - 1); j < written; j++) {
1038                   unsigned written_reg = reg.reg() * 4u + j;
1039                   if (regs[written_reg] && regs[written_reg] != def.tempId())
1040                      err |= ra_fail(program, loc, assignments.at(regs[written_reg]).defloc,
1041                                     "Assignment of element %d of %%%d overwrites the full register "
1042                                     "taken by %%%d from instruction",
1043                                     i, tmp.id(), regs[written_reg]);
1044                }
1045             }
1046          }
1047 
1048          for (const Definition& def : instr->definitions) {
1049             if (!def.isTemp())
1050                continue;
1051             if (def.isKill()) {
1052                for (unsigned j = 0; j < def.getTemp().bytes(); j++)
1053                   regs[def.physReg().reg_b + j] = 0;
1054             }
1055          }
1056 
1057          if (instr->opcode != aco_opcode::p_phi && instr->opcode != aco_opcode::p_linear_phi) {
1058             for (const Operand& op : instr->operands) {
1059                if (!op.isTemp())
1060                   continue;
1061                if (op.isLateKill() && op.isFirstKill()) {
1062                   for (unsigned j = 0; j < op.getTemp().bytes(); j++)
1063                      regs[op.physReg().reg_b + j] = 0;
1064                }
1065             }
1066          }
1067       }
1068    }
1069 
1070    return err;
1071 }
1072 } // namespace aco
1073