• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkGlyph_DEFINED
9 #define SkGlyph_DEFINED
10 
11 #include "include/core/SkPath.h"
12 #include "include/core/SkTypes.h"
13 #include "include/private/SkChecksum.h"
14 #include "include/private/SkFixed.h"
15 #include "include/private/SkTo.h"
16 #include "include/private/SkVx.h"
17 #include "src/core/SkMask.h"
18 #include "src/core/SkMathPriv.h"
19 
20 class SkArenaAlloc;
21 class SkScalerContext;
22 
23 // A combination of SkGlyphID and sub-pixel position information.
24 struct SkPackedGlyphID {
25     inline static constexpr uint32_t kImpossibleID = ~0u;
26     enum {
27         // Lengths
28         kGlyphIDLen     = 16u,
29         kSubPixelPosLen = 2u,
30 
31         // Bit positions
32         kSubPixelX = 0u,
33         kGlyphID   = kSubPixelPosLen,
34         kSubPixelY = kGlyphIDLen + kSubPixelPosLen,
35         kEndData   = kGlyphIDLen + 2 * kSubPixelPosLen,
36 
37         // Masks
38         kGlyphIDMask     = (1u << kGlyphIDLen) - 1,
39         kSubPixelPosMask = (1u << kSubPixelPosLen) - 1,
40         kMaskAll         = (1u << kEndData) - 1,
41 
42         // Location of sub pixel info in a fixed pointer number.
43         kFixedPointBinaryPointPos = 16u,
44         kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen,
45     };
46 
47     inline static constexpr SkScalar kSubpixelRound =
48             1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1));
49 
50     inline static constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX,
51                                                   kSubPixelPosMask << kSubPixelY};
52 
SkPackedGlyphIDSkPackedGlyphID53     constexpr explicit SkPackedGlyphID(SkGlyphID glyphID)
54             : fID{(uint32_t)glyphID << kGlyphID} { }
55 
SkPackedGlyphIDSkPackedGlyphID56     constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y)
57             : fID {PackIDXY(glyphID, x, y)} { }
58 
SkPackedGlyphIDSkPackedGlyphID59     constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y)
60             : fID {PackIDSubXSubY(glyphID, x, y)} { }
61 
SkPackedGlyphIDSkPackedGlyphID62     SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask)
63         : fID{PackIDSkPoint(glyphID, pt, mask)} { }
64 
SkPackedGlyphIDSkPackedGlyphID65     constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { }
SkPackedGlyphIDSkPackedGlyphID66     constexpr SkPackedGlyphID() : fID{kImpossibleID} {}
67 
68     bool operator==(const SkPackedGlyphID& that) const {
69         return fID == that.fID;
70     }
71     bool operator!=(const SkPackedGlyphID& that) const {
72         return !(*this == that);
73     }
74     bool operator<(SkPackedGlyphID that) const {
75         return this->fID < that.fID;
76     }
77 
glyphIDSkPackedGlyphID78     SkGlyphID glyphID() const {
79         return (fID >> kGlyphID) & kGlyphIDMask;
80     }
81 
valueSkPackedGlyphID82     uint32_t value() const {
83         return fID;
84     }
85 
getSubXFixedSkPackedGlyphID86     SkFixed getSubXFixed() const {
87         return this->subToFixed(kSubPixelX);
88     }
89 
getSubYFixedSkPackedGlyphID90     SkFixed getSubYFixed() const {
91         return this->subToFixed(kSubPixelY);
92     }
93 
hashSkPackedGlyphID94     uint32_t hash() const {
95         return SkChecksum::CheapMix(fID);
96     }
97 
dumpSkPackedGlyphID98     SkString dump() const {
99         SkString str;
100         str.appendf("glyphID: %d, x: %d, y:%d", glyphID(), getSubXFixed(), getSubYFixed());
101         return str;
102     }
103 
104 private:
PackIDSubXSubYSkPackedGlyphID105     static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) {
106         SkASSERT(x < (1u << kSubPixelPosLen));
107         SkASSERT(y < (1u << kSubPixelPosLen));
108 
109         return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID);
110     }
111 
112     // Assumptions: pt is properly rounded. mask is set for the x or y fields.
113     //
114     // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)).
115     // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can
116     // generate a sub-pixel field using:
117     //    sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen)
118     //
119     // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the
120     // sub-pixel field mask.
121     //    int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel)
122     //
123     // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is
124     // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1).
125     // This does not round (floor) properly when converting to integer. Adding one to the range
126     // causes truncation and floor to be the same. Coincidentally, masking to produce the field also
127     // removes the +1.
PackIDSkPointSkPackedGlyphID128     static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) {
129     #if 0
130         // TODO: why does this code not work on GCC 8.3 x86 Debug builds?
131         using namespace skvx;
132         using XY = Vec<2, float>;
133         using SubXY = Vec<2, int>;
134 
135         const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
136                           1.f * (1u << (kSubPixelPosLen + kSubPixelY))};
137         XY pos{pt.x(), pt.y()};
138         XY subPos = (pos - floor(pos)) + 1.0f;
139         SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()};
140     #else
141         const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)),
142                     magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY));
143 
144         float x = pt.x(),
145               y = pt.y();
146         x = (x - floorf(x)) + 1.0f;
147         y = (y - floorf(y)) + 1.0f;
148         int sub[] = {
149             (int)(x * magicX) & mask.x(),
150             (int)(y * magicY) & mask.y(),
151         };
152     #endif
153 
154         SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen));
155         SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen));
156         return (glyphID << kGlyphID) | sub[0] | sub[1];
157     }
158 
PackIDXYSkPackedGlyphID159     static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) {
160         return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y));
161     }
162 
FixedToSubSkPackedGlyphID163     static constexpr uint32_t FixedToSub(SkFixed n) {
164         return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask;
165     }
166 
subToFixedSkPackedGlyphID167     constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const {
168         uint32_t subPixelPosition = (fID >> subPixelPosBit) & kSubPixelPosMask;
169         return subPixelPosition << kFixedPointSubPixelPosBits;
170     }
171 
172     uint32_t fID;
173 };
174 
175 class SkGlyphRect;
176 namespace skglyph {
177 SkGlyphRect rect_union(SkGlyphRect, SkGlyphRect);
178 SkGlyphRect rect_intersection(SkGlyphRect, SkGlyphRect);
179 }  // namespace skglyph
180 
181 // SkGlyphRect encodes rectangles with coordinates on [-32767, 32767]. It is specialized for
182 // rectangle union and intersection operations.
183 class SkGlyphRect {
184 public:
SkGlyphRect(int16_t left,int16_t top,int16_t right,int16_t bottom)185     SkGlyphRect(int16_t left, int16_t top, int16_t right, int16_t bottom)
186             : fRect{left, top, (int16_t)-right, (int16_t)-bottom} {
187         SkDEBUGCODE(const int32_t min = std::numeric_limits<int16_t>::min());
188         SkASSERT(left != min && top != min && right != min && bottom != min);
189     }
empty()190     bool empty() const {
191         return fRect[0] >= -fRect[2] || fRect[1] >= -fRect[3];
192     }
rect()193     SkRect rect() const {
194         return SkRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]);
195     }
iRect()196     SkIRect iRect() const {
197         return SkIRect::MakeLTRB(fRect[0], fRect[1], -fRect[2], -fRect[3]);
198     }
offset(int16_t x,int16_t y)199     SkGlyphRect offset(int16_t x, int16_t y) const {
200         return SkGlyphRect{fRect + Storage{x, y, SkTo<int16_t>(-x), SkTo<int16_t>(-y)}};
201     }
topLeft()202     skvx::Vec<2, int16_t> topLeft() const { return {fRect[0], fRect[1]}; }
203     friend SkGlyphRect skglyph::rect_union(SkGlyphRect, SkGlyphRect);
204     friend SkGlyphRect skglyph::rect_intersection(SkGlyphRect, SkGlyphRect);
205 
206 private:
207     using Storage = skvx::Vec<4, int16_t>;
SkGlyphRect(Storage rect)208     SkGlyphRect(Storage rect) : fRect{rect} { }
209     Storage fRect;
210 };
211 
212 namespace skglyph {
empty_rect()213 inline SkGlyphRect empty_rect() {
214     constexpr int16_t max = std::numeric_limits<int16_t>::max();
215     return {max,  max, -max, -max};
216 }
full_rect()217 inline SkGlyphRect full_rect() {
218     constexpr int16_t max = std::numeric_limits<int16_t>::max();
219     return {-max,  -max, max, max};
220 }
rect_union(SkGlyphRect a,SkGlyphRect b)221 inline SkGlyphRect rect_union(SkGlyphRect a, SkGlyphRect b) {
222     return skvx::min(a.fRect, b.fRect);
223 }
rect_intersection(SkGlyphRect a,SkGlyphRect b)224 inline SkGlyphRect rect_intersection(SkGlyphRect a, SkGlyphRect b) {
225     return skvx::max(a.fRect, b.fRect);
226 }
227 }  // namespace skglyph
228 
229 struct SkGlyphPrototype;
230 
231 class SkGlyph {
232 public:
233     // SkGlyph() is used for testing.
SkGlyph()234     constexpr SkGlyph() : SkGlyph{SkPackedGlyphID()} { }
SkGlyph(SkPackedGlyphID id)235     constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { }
236 
advanceVector()237     SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; }
advanceX()238     SkScalar advanceX() const { return fAdvanceX; }
advanceY()239     SkScalar advanceY() const { return fAdvanceY; }
240 
getGlyphID()241     SkGlyphID getGlyphID() const { return fID.glyphID(); }
getPackedID()242     SkPackedGlyphID getPackedID() const { return fID; }
getSubXFixed()243     SkFixed getSubXFixed() const { return fID.getSubXFixed(); }
getSubYFixed()244     SkFixed getSubYFixed() const { return fID.getSubYFixed(); }
245 
246     size_t rowBytes() const;
247     size_t rowBytesUsingFormat(SkMask::Format format) const;
248 
249     // Call this to set all of the metrics fields to 0 (e.g. if the scaler
250     // encounters an error measuring a glyph). Note: this does not alter the
251     // fImage, fPath, fID, fMaskFormat fields.
252     void zeroMetrics();
253 
254     SkMask mask() const;
255 
256     SkMask mask(SkPoint position) const;
257 
258     // Image
259     // If we haven't already tried to associate an image with this glyph
260     // (i.e. setImageHasBeenCalled() returns false), then use the
261     // SkScalerContext or const void* argument to set the image.
262     bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
263     bool setImage(SkArenaAlloc* alloc, const void* image);
264 
265     // Merge the from glyph into this glyph using alloc to allocate image data. Return the number
266     // of bytes allocated. Copy the width, height, top, left, format, and image into this glyph
267     // making a copy of the image using the alloc.
268     size_t setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from);
269 
270     // Returns true if the image has been set.
setImageHasBeenCalled()271     bool setImageHasBeenCalled() const {
272         return fImage != nullptr || this->isEmpty() || this->imageTooLarge();
273     }
274 
275     // Return a pointer to the path if the image exists, otherwise return nullptr.
image()276     const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; }
277 
278     // Return the size of the image.
279     size_t imageSize() const;
280 
281     // Path
282     // If we haven't already tried to associate a path to this glyph
283     // (i.e. setPathHasBeenCalled() returns false), then use the
284     // SkScalerContext or SkPath argument to try to do so.  N.B. this
285     // may still result in no path being associated with this glyph,
286     // e.g. if you pass a null SkPath or the typeface is bitmap-only.
287     //
288     // This setPath() call is sticky... once you call it, the glyph
289     // stays in its state permanently, ignoring any future calls.
290     //
291     // Returns true if this is the first time you called setPath()
292     // and there actually is a path; call path() to get it.
293     bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext);
294     bool setPath(SkArenaAlloc* alloc, const SkPath* path);
295 
296     // Returns true if that path has been set.
setPathHasBeenCalled()297     bool setPathHasBeenCalled() const { return fPathData != nullptr; }
298 
299     // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the
300     // path was previously set.
301     const SkPath* path() const;
302 
303     // Format
isColor()304     bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; }
maskFormat()305     SkMask::Format maskFormat() const { return fMaskFormat; }
306     size_t formatAlignment() const;
307 
308     // Bounds
maxDimension()309     int maxDimension() const { return std::max(fWidth, fHeight); }
iRect()310     SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); }
rect()311     SkRect rect()   const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight);  }
glyphRect()312     SkGlyphRect glyphRect() const {
313         return {fLeft, fTop,
314                 SkTo<int16_t>(fLeft + fWidth), SkTo<int16_t>(fTop + fHeight)};
315     }
left()316     int left()   const { return fLeft;   }
top()317     int top()    const { return fTop;    }
width()318     int width()  const { return fWidth;  }
height()319     int height() const { return fHeight; }
isEmpty()320     bool isEmpty() const {
321         // fHeight == 0 -> fWidth == 0;
322         SkASSERT(fHeight != 0 || fWidth == 0);
323         return fWidth == 0;
324     }
imageTooLarge()325     bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; }
326 
327     // Make sure that the intercept information is on the glyph and return it, or return it if it
328     // already exists.
329     // * bounds - either end of the gap for the character.
330     // * scale, xPos - information about how wide the gap is.
331     // * array - accumulated gaps for many characters if not null.
332     // * count - the number of gaps.
333     void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos,
334                           SkScalar* array, int* count, SkArenaAlloc* alloc);
335 
336 private:
337     // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have
338     // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The
339     // consumer side has a tighter interface.
340     friend class RandomScalerContext;
341     friend class RemoteStrike;
342     friend class SkScalerContext;
343     friend class SkScalerContextProxy;
344     friend class SkScalerContext_Empty;
345     friend class SkScalerContext_FreeType;
346     friend class SkScalerContext_FreeType_Base;
347     friend class SkScalerContext_DW;
348     friend class SkScalerContext_GDI;
349     friend class SkScalerContext_Mac;
350     friend class SkStrikeClientImpl;
351     friend class SkTestScalerContext;
352     friend class SkTestSVGScalerContext;
353     friend class SkUserScalerContext;
354     friend class TestSVGTypeface;
355     friend class TestTypeface;
356 
357     inline static constexpr uint16_t kMaxGlyphWidth = 1u << 13u;
358 
359     // Support horizontal and vertical skipping strike-through / underlines.
360     // The caller walks the linked list looking for a match. For a horizontal underline,
361     // the fBounds contains the top and bottom of the underline. The fInterval pair contains the
362     // beginning and end of of the intersection of the bounds and the glyph's path.
363     // If interval[0] >= interval[1], no intersection was found.
364     struct Intercept {
365         Intercept* fNext;
366         SkScalar   fBounds[2];    // for horz underlines, the boundaries in Y
367         SkScalar   fInterval[2];  // the outside intersections of the axis and the glyph
368     };
369 
370     struct PathData {
371         Intercept* fIntercept{nullptr};
372         SkPath     fPath;
373         bool       fHasPath{false};
374     };
375 
376     size_t allocImage(SkArenaAlloc* alloc);
377 
378     // path == nullptr indicates that there is no path.
379     void installPath(SkArenaAlloc* alloc, const SkPath* path);
380 
381     // The width and height of the glyph mask.
382     uint16_t  fWidth  = 0,
383               fHeight = 0;
384 
385     // The offset from the glyphs origin on the baseline to the top left of the glyph mask.
386     int16_t   fTop  = 0,
387               fLeft = 0;
388 
389     // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth.
390     void*     fImage    = nullptr;
391 
392     // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr,
393     // else if fPathData is not null, then a path has been requested. The fPath field of fPathData
394     // may still be null after the request meaning that there is no path for this glyph.
395     PathData* fPathData = nullptr;
396 
397     // The advance for this glyph.
398     float     fAdvanceX = 0,
399               fAdvanceY = 0;
400 
401     SkMask::Format fMaskFormat{SkMask::kBW_Format};
402 
403     // Used by the DirectWrite scaler to track state.
404     int8_t    fForceBW = 0;
405 
406     SkPackedGlyphID fID;
407 };
408 
409 #endif
410