/third_party/boost/libs/random/doc/ |
D | distributions.qbk | 10 this library provides distribution functions which map one distribution 11 (often a uniform distribution provided by some generator) to another. 18 values of the specified distribution or otherwise do not converge 22 [[distribution] [explanation] [example]] 23 [[__uniform_smallint] [discrete uniform distribution on a small set of integers 27 [[__uniform_int_distribution] [discrete uniform distribution on a set of integers; the 31 [[__uniform_01] [continuous uniform distribution on the range [0,1); 34 [[__uniform_real_distribution] [continuous uniform distribution on some range [min, max) of 42 [[distribution] [explanation] [example]] 44 distribution with configurable probability] [all …]
|
/third_party/boost/boost/graph/distributed/adjlist/ |
D | initialize.hpp | 24 vertices_size_type, const base_distribution_type& distribution, in initialize() argument 29 if ((process_id_type)distribution(first->first) == id) { in initialize() 30 vertex_descriptor source(id, distribution.local(first->first)); in initialize() 31 vertex_descriptor target(distribution(first->second), in initialize() 32 distribution.local(first->second)); in initialize() 47 vertices_size_type, const base_distribution_type& distribution, in initialize() argument 52 if (static_cast<process_id_type>(distribution(first->first)) == id) { in initialize() 53 vertex_descriptor source(id, distribution.local(first->first)); in initialize() 54 vertex_descriptor target(distribution(first->second), in initialize() 55 distribution.local(first->second)); in initialize() [all …]
|
/third_party/boost/libs/compute/test/ |
D | test_discrete_distribution.cpp | 42 boost::compute::discrete_distribution<uint_> distribution(weights, weights+2); in BOOST_AUTO_TEST_CASE() local 45 distribution.generate(vec.begin(), vec.end(), engine, queue); in BOOST_AUTO_TEST_CASE() 71 boost::compute::discrete_distribution<uint_> distribution( in BOOST_AUTO_TEST_CASE() local 75 std::vector<double> p = distribution.probabilities(); in BOOST_AUTO_TEST_CASE() 81 BOOST_CHECK_EQUAL((distribution.min)(), uint_(0)); in BOOST_AUTO_TEST_CASE() 82 BOOST_CHECK_EQUAL((distribution.max)(), uint_(3)); in BOOST_AUTO_TEST_CASE() 85 distribution.generate(vec.begin(), vec.end(), engine, queue); in BOOST_AUTO_TEST_CASE() 107 boost::compute::discrete_distribution<uint_> distribution; in BOOST_AUTO_TEST_CASE() local 109 std::vector<double> p = distribution.probabilities(); in BOOST_AUTO_TEST_CASE() 113 distribution.generate(vec.begin(), vec.end(), engine, queue); in BOOST_AUTO_TEST_CASE() [all …]
|
/third_party/grpc/src/python/grpcio_tests/ |
D | commands.py | 105 self.distribution.fetch_build_eggs(self.distribution.install_requires) 106 self.distribution.fetch_build_eggs(self.distribution.tests_require) 136 self.distribution.fetch_build_eggs(self.distribution.install_requires) 137 self.distribution.fetch_build_eggs(self.distribution.tests_require) 168 self.distribution.fetch_build_eggs(self.distribution.install_requires) 169 self.distribution.fetch_build_eggs(self.distribution.tests_require) 291 if self.distribution.install_requires: 292 self.distribution.fetch_build_eggs( 293 self.distribution.install_requires) 294 if self.distribution.tests_require: [all …]
|
/third_party/mindspore/mindspore/nn/probability/distribution/ |
D | transformed_distribution.py | 21 from .distribution import Distribution 85 distribution, argument 94 validator.check_value_type('distribution', distribution, 96 … validator.check_type_name("dtype", distribution.dtype, mstype.float_type, type(self).__name__) 97 super(TransformedDistribution, self).__init__(seed, distribution.dtype, name, param) 100 self._distribution = distribution 104 self._dtype = self.distribution.dtype 105 self._is_scalar_batch = self.distribution.is_scalar_batch and self.bijector.is_scalar_batch 106 self._batch_shape = self.distribution.batch_shape 108 self.default_parameters = self.distribution.default_parameters [all …]
|
D | log_normal.py | 20 import mindspore.nn.probability.distribution as msd 74 super(LogNormal, self).__init__(distribution=msd.Normal(loc, scale, dtype=dtype), 144 var = self.distribution("var", mean=mean, sd=sd) 152 var = self.distribution("var", mean=mean, sd=sd) 160 var = self.distribution("var", mean=mean, sd=sd) 184 cdf = self.distribution("cdf", inverse_value, mean, sd) 203 unadjust_prob = self.distribution("log_prob", inverse_value, mean, sd) 237 return self.distribution("kl_loss", 'Normal', loc_b, scale_b, loc_a, scale_a) 249 org_sample = self.distribution("sample", sample_shape, mean, sd)
|
/third_party/boost/libs/math/doc/distributions/ |
D | non_members.qbk | 73 the defined range for the distribution. 76 normal distribution: 93 the defined range for the distribution. 98 // standard normal distribution object: 104 normal distribution: 115 Returns the __hazard of /x/ and distribution /dist/. 118 the defined range for the distribution. 131 Returns the __chf of /x/ and distribution /dist/. 134 the defined range for the distribution. 146 Returns the mean of the distribution /dist/. [all …]
|
D | triangular.qbk | 21 …wer(lower), m_mode(mode), m_upper(upper) // Default is -1, 0, +1 symmetric triangular distribution. 30 The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution] 32 [@http://en.wikipedia.org/wiki/Probability_distribution probability distribution] 37 The triangular distribution is often used where the distribution is only vaguely known, 38 …ike the [@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution], 41 …//www.worldscibooks.com/mathematics/etextbook/5720/5720_chap1.pdf proxy for the beta distribution.] 42 The distribution is used in business decision making and project planning. 44 The [@http://en.wikipedia.org/wiki/Triangular_distribution triangular distribution] 45 is a distribution with the 57 The triangular distribution may be appropriate when an assumption of a normal distribution [all …]
|
D | inverse_chi_squared.qbk | 24 The inverse chi squared distribution is a continuous probability distribution 25 of the *reciprocal* of a variable distributed according to the chi squared distribution. 28 using different symbols for the distribution pdf, 34 …wikipedia.org/wiki/Scaled-inverse-chi-square_distribution scaled inverse chi_squared distribution]. 37 …/en.wikipedia.org/wiki/Inverse-chi-square_distribution Wikipedia inverse chi_squared distribution]. 38 The 2nd Wikipedia inverse chi_squared distribution definition can be implemented 45 * Inverse chi_squared distribution [@http://en.wikipedia.org/wiki/Inverse-chi-square_distribution] 46 * Scaled inverse chi_squared distribution[@http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_d… 47 * R inverse chi_squared distribution functions [@http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/… 48 * Inverse chi_squared distribution functions [@http://mathworld.wolfram.com/InverseChi-SquaredDistr… [all …]
|
D | inverse_gaussian.qbk | 25 The Inverse Gaussian distribution distribution is a continuous probability distribution. 27 The distribution is also called 'normal-inverse Gaussian distribution', 28 and 'normal Inverse' distribution. 32 The Inverse Gaussian distribution was first studied in relation to Brownian motion. 38 (So ['inverse] in the name may mislead: it does [*not] relate to the inverse of a distribution). 40 The tails of the distribution decrease more slowly than the normal distribution. 42 where numerically large values are more probable than is the case for the normal distribution. 53 [@http://en.wikipedia.org/wiki/Normal-inverse_Gaussian_distribution distribution]. 57 If you want a `double` precision inverse_gaussian distribution you can use 68 the inverse_gaussian distribution is defined by the probability density function (PDF): [all …]
|
D | inverse_gamma.qbk | 23 The inverse_gamma distribution is a continuous probability distribution 24 of the reciprocal of a variable distributed according to the gamma distribution. 26 The inverse_gamma distribution is used in Bayesian statistics. 28 See [@http://en.wikipedia.org/wiki/Inverse-gamma_distribution inverse gamma distribution]. 30 [@http://rss.acs.unt.edu/Rdoc/library/pscl/html/igamma.html R inverse gamma distribution functions]. 32 …ence.wolfram.com/mathematica/ref/InverseGammaDistribution.html Wolfram inverse gamma distribution]. 38 distribution *does* provide the typedef: 42 If you want a `double` precision gamma distribution you can use 57 The following graphs illustrate how the PDF and CDF of the inverse gamma distribution 68 Constructs an inverse gamma distribution with shape [alpha] and scale [beta]. [all …]
|
D | skew_normal.qbk | 24 …RealType shape()const; // The distribution is right skewed if shape > 0 and is left skewed if shap… 25 // The distribution is normal if shape is zero. 30 The skew normal distribution is a variant of the most well known 31 Gaussian statistical distribution. 33 The skew normal distribution with shape zero resembles the 35 hence the latter can be regarded as a special case of the more generic skew normal distribution. 37 If the standard (mean = 0, scale = 1) normal distribution probability density function is 41 and the cumulative distribution function 46 of the [@http://en.wikipedia.org/wiki/Skew_normal_distribution skew normal distribution] 64 where ['T(h,a)] is Owen's T function, and ['[Phi](x)] is the normal distribution. [all …]
|
D | bernoulli.qbk | 26 The Bernoulli distribution is a discrete distribution of the outcome 30 The Bernoulli distribution is the simplest building block 34 The Bernoulli is the binomial distribution (k = 1, p) with only one trial. 39 [@http://en.wikipedia.org/wiki/Cumulative_Distribution_Function Cumulative distribution function] 48 and the [@http://en.wikipedia.org/wiki/Cumulative_Distribution_Function Cumulative distribution fun… 57 bernoulli distribution] with success_fraction /p/. 61 Returns the /success_fraction/ parameter of this distribution. 76 The Bernoulli distribution is implemented with simple arithmetic operators 84 [note The Bernoulli distribution is implemented here as a /strict discrete/ distribution. 86 the binomial distribution with a single trial should be used, for example: [all …]
|
D | uniform.qbk | 20 : m_lower(lower), m_upper(upper) // Default is standard uniform distribution. 28 The uniform distribution, also known as a rectangular distribution, 29 is a probability distribution that has constant probability. 31 …http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 continuous uniform distribution] 32 is a distribution with the 42 The choice of /x = lower/ or /x = upper/ is made because statistical use of this distribution judge… 45 …so a [@http://en.wikipedia.org/wiki/Discrete_uniform_distribution *discrete* uniform distribution]. 72 uniform distribution] with lower /lower/ (a) and upper /upper/ (b). 79 Returns the /lower/ parameter of this distribution. 83 Returns the /upper/ parameter of this distribution. [all …]
|
D | gamma.qbk | 23 The gamma distribution is a continuous probability distribution. 28 When the shape parameter has an integer value, the distribution is the 29 [@http://en.wikipedia.org/wiki/Erlang_distribution Erlang distribution]. 31 integer value > 0, the Erlang distribution is not separately implemented. 35 distribution does not provide the typedef: 39 Instead if you want a double precision gamma distribution you can write 51 distribution can be defined by the PDF: 61 The following two graphs illustrate how the PDF of the gamma distribution 81 Constructs a gamma distribution with shape /shape/ and 89 Returns the /shape/ parameter of this distribution. [all …]
|
D | cauchy.qbk | 24 The [@http://en.wikipedia.org/wiki/Cauchy_distribution Cauchy-Lorentz distribution] 26 It is a [@http://en.wikipedia.org/wiki/Probability_distribution continuous probability distribution] 27 with [@http://en.wikipedia.org/wiki/Probability_distribution probability distribution function PDF] 33 peak of the distribution (the mode of the distribution), 37 distribution. 39 The distribution is important in physics as it is the solution 50 the distribution: 58 Constructs a Cauchy distribution, with location parameter /location/ 67 Returns the location parameter of the distribution. 71 Returns the scale parameter of the distribution. [all …]
|
D | hyperexponential.qbk | 60 …ents a [@http://en.wikipedia.org/wiki/Hyperexponential_distribution hyperexponential distribution]. 62 …yperexponential distribution is a [@http://en.wikipedia.org/wiki/Continuous_probability_distributi… 63 It is also referred to as /mixed exponential distribution/ or parallel /k-phase exponential distrib… 65 A /k/-phase hyperexponential distribution is characterized by two parameters, namely a /phase proba… 67 …robability density function] for random variate /x/ in a hyperexponential distribution is given by: 71 The following graph illustrates the PDF of the hyperexponential distribution with five different pa… 73 …*[alpha]]=(1.0)] and ['[*[lambda]]=(1.0)] (which degenerates to a simple exponential distribution), 81 Also, the following graph illustrates the PDF of the hyperexponential distribution (solid lines) wh… 86 # Exponential distribution with parameter ['[lambda]=0.5], 87 # Exponential distribution with parameter ['[lambda]=1.5]. [all …]
|
D | students_t.qbk | 36 Student's t-distribution is a statistical distribution published by William Gosset in 1908. 47 [@https://en.wikipedia.org/wiki/Student%27s_t-distribution Student's t-distribution] 48 is defined as the distribution of the random 54 The Student's t-distribution takes a single parameter: the number of 56 /one/ then this distribution is the same as the Cauchy-distribution. 58 distribution approaches the normal-distribution. The following graph 67 Constructs a Student's t-distribution with /v/ degrees of freedom. 76 returns the number of degrees of freedom of this distribution. 119 distribution. 123 The normal distribution is implemented in terms of the [all …]
|
D | weibull.qbk | 28 The [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution] 29 is a continuous distribution 37 The Weibull distribution is often used in the field of failure analysis; 56 [@http://en.wikipedia.org/wiki/Weibull_distribution Weibull distribution] appears similar to the 57 [@http://en.wikipedia.org/wiki/Normal_distribution normal distribution]. 58 When ['[alpha]] = 1, the Weibull distribution reduces to the 59 [@http://en.wikipedia.org/wiki/Exponential_distribution exponential distribution]. 71 Weibull distribution] with shape /shape/ and scale /scale/. 78 Returns the /shape/ parameter of this distribution. 82 Returns the /scale/ parameter of this distribution. [all …]
|
D | beta.qbk | 55 [@http://en.wikipedia.org/wiki/Probability_distribution probability distribution function]. 57 The [@http://mathworld.wolfram.com/BetaDistribution.htm beta distribution ] 58 is used as a [@http://en.wikipedia.org/wiki/Prior_distribution prior distribution] 63 …om/calculationcenter/v2/Functions/ListsMatrices/Statistics/BetaDistribution.html beta distribution] 66 How the beta distribution is used for 72 for the [@http://en.wikipedia.org/wiki/Beta_distribution beta distribution] 85 distribution. 90 [@http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29 uniform distribution], 103 Constructs a beta distribution with shape parameters /alpha/ and /beta/. 106 technically the beta distribution is defined for alpha,beta >= 0, but [all …]
|
D | dist_tutorial.qbk | 23 In order to use a distribution /my_distribution/ you will need to include 27 For example, to use the Students-t distribution include either 31 You also need to bring distribution names into scope, 42 Each kind of distribution in this library is a class type - an object, with member functions. 57 * It encapsulates the kind of distribution in the C++ type system; 60 * The distribution objects store any parameters associated with the 61 distribution: for example, the Students-t distribution has a 62 ['degrees of freedom] parameter that controls the shape of the distribution. 66 Although the distribution classes in this library are templates, there 68 distribution [all …]
|
/third_party/gettext/gettext-tools/src/ |
D | format.c | 76 const struct plural_distribution *distribution, in check_msgid_msgstr_format_i() argument 136 || (distribution != NULL in check_msgid_msgstr_format_i() 137 && distribution->often != NULL in check_msgid_msgstr_format_i() 138 && j < distribution->often_length in check_msgid_msgstr_format_i() 139 && distribution->often[j] in check_msgid_msgstr_format_i() 141 && distribution->histogram (distribution, in check_msgid_msgstr_format_i() 178 const struct plural_distribution *distribution, in check_msgid_msgstr_format() argument 195 distribution, in check_msgid_msgstr_format()
|
D | msgl-check.c | 103 struct plural_distribution *distribution) in check_plural_eval() argument 169 distribution->expr = plural_expr; in check_plural_eval() 170 distribution->often = array; in check_plural_eval() 171 distribution->often_length = (array != NULL ? nplurals_value : 0); in check_plural_eval() 172 distribution->histogram = plural_expression_histogram; in check_plural_eval() 298 struct plural_distribution distribution; in check_plural() local 308 distribution.expr = NULL; in check_plural() 309 distribution.often = NULL; in check_plural() 310 distribution.often_length = 0; in check_plural() 311 distribution.histogram = NULL; in check_plural() [all …]
|
/third_party/python/Lib/distutils/command/ |
D | bdist_rpm.py | 205 if not self.distribution.has_ext_modules(): 214 "%s <%s>" % (self.distribution.get_contact(), 215 self.distribution.get_contact_email())) 278 "%s.spec" % self.distribution.get_name()) 289 saved_dist_files = self.distribution.dist_files[:] 296 self.distribution.dist_files = saved_dist_files 365 if self.distribution.has_ext_modules(): 375 self.distribution.dist_files.append( 385 self.distribution.dist_files.append( 397 '%define name ' + self.distribution.get_name(), [all …]
|
/third_party/protobuf/java/core/src/test/java/com/google/protobuf/ |
D | Utf8Utils.java | 159 final int[] distribution = utf8Distribution.getDistribution(); in randomStringsWithDistribution() local 161 distribution[i + 1] += distribution[i]; in randomStringsWithDistribution() 171 codePoint = rnd.nextInt(distribution[3]); in randomStringsWithDistribution() 172 if (codePoint < distribution[0]) { in randomStringsWithDistribution() 175 } else if (codePoint < distribution[1]) { in randomStringsWithDistribution() 178 } else if (codePoint < distribution[2]) { in randomStringsWithDistribution()
|