• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1[section:inverse_chi_squared_dist Inverse Chi Squared Distribution]
2
3``#include <boost/math/distributions/inverse_chi_squared.hpp>``
4
5   namespace boost{ namespace math{
6
7   template <class RealType = double,
8             class ``__Policy``   = ``__policy_class`` >
9   class inverse_chi_squared_distribution
10   {
11   public:
12      typedef RealType value_type;
13      typedef Policy   policy_type;
14
15      inverse_chi_squared_distribution(RealType df = 1); // Not explicitly scaled, default 1/df.
16      inverse_chi_squared_distribution(RealType df, RealType scale = 1/df);  // Scaled.
17
18      RealType degrees_of_freedom()const; // Default 1.
19      RealType scale()const; // Optional scale [xi] (variance), default 1/degrees_of_freedom.
20   };
21
22   }} // namespace boost // namespace math
23
24The inverse chi squared distribution is a continuous probability distribution
25of the *reciprocal* of a variable distributed according to the chi squared distribution.
26
27The sources below give confusingly different formulae
28using different symbols for the distribution pdf,
29but they are all the same, or related by a change of variable, or choice of scale.
30
31Two constructors are available to implement both the scaled and (implicitly) unscaled versions.
32
33The main version has an explicit scale parameter which implements the
34[@http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution scaled inverse chi_squared distribution].
35
36A second version has an implicit scale = 1/degrees of freedom and gives the 1st definition in the
37[@http://en.wikipedia.org/wiki/Inverse-chi-square_distribution Wikipedia inverse chi_squared distribution].
38The 2nd Wikipedia inverse chi_squared distribution definition can be implemented
39by  explicitly specifying a scale = 1.
40
41Both definitions are also available in __Mathematica and in __R (geoR) with default scale = 1/degrees of freedom.
42
43See
44
45* Inverse chi_squared distribution [@http://en.wikipedia.org/wiki/Inverse-chi-square_distribution]
46* Scaled inverse chi_squared distribution[@http://en.wikipedia.org/wiki/Scaled-inverse-chi-square_distribution]
47* R inverse chi_squared distribution functions [@http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/geoR/html/InvChisquare.html R ]
48* Inverse chi_squared distribution functions [@http://mathworld.wolfram.com/InverseChi-SquaredDistribution.html Weisstein, Eric W. "Inverse Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource.]
49* Inverse chi_squared distribution reference [@http://reference.wolfram.com/mathematica/ref/InverseChiSquareDistribution.html Weisstein, Eric W. "Inverse Chi-Squared Distribution reference." From Wolfram Mathematica.]
50
51The inverse_chi_squared distribution is used in
52[@http://en.wikipedia.org/wiki/Bayesian_statistics Bayesian statistics]:
53the scaled inverse chi-square is conjugate prior for the normal distribution
54with known mean, model parameter [sigma][pow2] (variance).
55
56See [@http://en.wikipedia.org/wiki/Conjugate_prior conjugate priors including a table of distributions and their priors.]
57
58See also __inverse_gamma_distrib and __chi_squared_distrib.
59
60The inverse_chi_squared distribution is a special case of a inverse_gamma distribution
61with [nu] (degrees_of_freedom) shape ([alpha]) and scale ([beta]) where
62
63[expression [alpha]= [nu] /2 and [beta] = [frac12]]
64
65[note This distribution *does* provide the typedef:
66
67``typedef inverse_chi_squared_distribution<double> inverse_chi_squared;``
68
69If you want a `double` precision inverse_chi_squared distribution you can use
70
71``boost::math::inverse_chi_squared_distribution<>``
72
73or you can write `inverse_chi_squared my_invchisqr(2, 3);`]
74
75For degrees of freedom parameter [nu],
76the (*unscaled*) inverse chi_squared distribution is defined by the probability density function (PDF):
77
78[expression f(x;[nu]) = 2[super -[nu]/2] x[super -[nu]/2-1] e[super -1/2x] / [Gamma]([nu]/2)]
79
80and Cumulative Density Function (CDF)
81
82[expression F(x;[nu]) = [Gamma]([nu]/2, 1/2x) / [Gamma]([nu]/2)]
83
84For degrees of freedom parameter [nu] and scale parameter [xi],
85the *scaled* inverse chi_squared distribution is defined by the probability density function (PDF):
86
87[expression f(x;[nu], [xi]) = ([xi][nu]/2)[super [nu]/2] e[super -[nu][xi]/2x] x[super -1-[nu]/2] / [Gamma]([nu]/2)]
88
89and Cumulative Density Function (CDF)
90
91[expression  F(x;[nu], [xi]) = [Gamma]([nu]/2, [nu][xi]/2x) / [Gamma]([nu]/2)]
92
93The following graphs illustrate how the PDF and CDF of the inverse chi_squared distribution
94varies for a few values of parameters [nu] and [xi]:
95
96[graph inverse_chi_squared_pdf]  [/.png or .svg]
97
98[graph inverse_chi_squared_cdf]
99
100[h4 Member Functions]
101
102   inverse_chi_squared_distribution(RealType df = 1); // Implicitly scaled 1/df.
103   inverse_chi_squared_distribution(RealType df = 1, RealType scale); // Explicitly scaled.
104
105Constructs an inverse chi_squared distribution with [nu] degrees of freedom ['df],
106and scale ['scale] with default value 1\/df.
107
108Requires that the degrees of freedom [nu] parameter is greater than zero, otherwise calls
109__domain_error.
110
111   RealType degrees_of_freedom()const;
112
113Returns the degrees_of_freedom [nu] parameter of this distribution.
114
115   RealType scale()const;
116
117Returns the scale [xi] parameter of this distribution.
118
119[h4 Non-member Accessors]
120
121All the [link math_toolkit.dist_ref.nmp usual non-member accessor functions] that are generic to all
122distributions are supported: __usual_accessors.
123
124The domain of the random variate is \[0,+[infin]\].
125[note Unlike some definitions, this implementation supports a random variate
126equal to zero as a special case, returning zero for both pdf and cdf.]
127
128[h4 Accuracy]
129
130The inverse gamma distribution is implemented in terms of the
131incomplete gamma functions like the __inverse_gamma_distrib that use
132__gamma_p and __gamma_q and their inverses __gamma_p_inv and __gamma_q_inv:
133refer to the accuracy data for those functions for more information.
134But in general, gamma (and thus inverse gamma) results are often accurate to a few epsilon,
135>14 decimal digits accuracy for 64-bit double.
136unless iteration is involved, as for the estimation of degrees of freedom.
137
138[h4 Implementation]
139
140In the following table [nu] is the degrees of freedom parameter and
141[xi] is the scale parameter of the distribution,
142/x/ is the random variate, /p/ is the probability and /q = 1-p/ its complement.
143Parameters [alpha] for shape and [beta] for scale
144are used for the inverse gamma function: [alpha] = [nu]/2 and [beta] = [nu] * [xi]/2.
145
146[table
147[[Function][Implementation Notes]]
148[[pdf][Using the relation: pdf = __gamma_p_derivative([alpha], [beta]/ x, [beta]) / x * x ]]
149[[cdf][Using the relation: p = __gamma_q([alpha], [beta] / x) ]]
150[[cdf complement][Using the relation: q = __gamma_p([alpha], [beta] / x) ]]
151[[quantile][Using the relation: x = [beta]/ __gamma_q_inv([alpha], p) ]]
152[[quantile from the complement][Using the relation: x = [alpha]/ __gamma_p_inv([alpha], q) ]]
153[[mode][[nu] * [xi] / ([nu] + 2) ]]
154[[median][no closed form analytic equation is known, but is evaluated as quantile(0.5)]]
155[[mean][[nu][xi] / ([nu] - 2) for [nu] > 2, else a __domain_error]]
156[[variance][2 [nu][pow2] [xi][pow2] / (([nu] -2)[pow2] ([nu] -4)) for [nu] >4, else a __domain_error]]
157[[skewness][4 [sqrt]2 [sqrt]([nu]-4) /([nu]-6) for [nu] >6, else a __domain_error ]]
158[[kurtosis_excess][12 * (5[nu] - 22) / (([nu] - 6) * ([nu] - 8)) for [nu] >8, else a __domain_error]]
159[[kurtosis][3 + 12 * (5[nu] - 22) / (([nu] - 6) * ([nu]-8)) for [nu] >8, else a __domain_error]]
160] [/table]
161
162[h4 References]
163
164# Bayesian Data Analysis, Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin,
165ISBN-13: 978-1584883883, Chapman & Hall; 2 edition (29 July 2003).
166
167# Bayesian Computation with R, Jim Albert, ISBN-13: 978-0387922973, Springer; 2nd ed. edition (10 Jun 2009)
168
169[endsect] [/section:inverse_chi_squared_dist Inverse chi_squared Distribution]
170
171[/
172  Copyright 2010 John Maddock and Paul A. Bristow.
173  Distributed under the Boost Software License, Version 1.0.
174  (See accompanying file LICENSE_1_0.txt or copy at
175  http://www.boost.org/LICENSE_1_0.txt).
176]