/third_party/mindspore/tests/st/compile_cache/ |
D | test_ascend_lenet.py | 29 class LeNet(nn.Cell): class 31 super(LeNet, self).__init__() 87 net = LeNet() 93 net1 = LeNet()
|
/third_party/mindspore/tests/st/networks/ |
D | test_cpu_lenet.py | 28 class LeNet(nn.Cell): class 30 super(LeNet, self).__init__() 80 net = LeNet()
|
D | test_network_main.py | 25 from models.lenet import LeNet 59 net = LeNet()
|
D | test_gpu_lenet.py | 90 class LeNet(nn.Cell): class 92 super(LeNet, self).__init__() 135 net = LeNet()
|
/third_party/mindspore/tests/st/recompute/ |
D | test_cpu_lenet_recompute.py | 28 class LeNet(nn.Cell): class 30 super(LeNet, self).__init__() 82 net = LeNet()
|
/third_party/mindspore/tests/st/armour/ |
D | test_pynative_mindarmour.py | 49 class LeNet(nn.Cell): class 61 super(LeNet, self).__init__() 121 net = LeNet() 145 net = LeNet()
|
/third_party/mindspore/tests/st/host_device/ |
D | test_host_device_lenet.py | 28 class LeNet(nn.Cell): class 30 super(LeNet, self).__init__() 88 net = LeNet()
|
/third_party/mindspore/tests/st/pynative/ |
D | test_pynative_lenet.py | 55 class LeNet(nn.Cell): class 67 super(LeNet, self).__init__() 145 net = LeNet() 183 net = LeNet()
|
/third_party/mindspore/tests/st/nccl/ |
D | test_nccl_lenet.py | 36 class LeNet(nn.Cell): class 38 super(LeNet, self).__init__() 82 net = LeNet()
|
/third_party/mindspore/tests/st/networks/models/ |
D | lenet.py | 21 class LeNet(nn.Cell): class 23 super(LeNet, self).__init__()
|
/third_party/mindspore/mindspore/lite/examples/train_lenet/ |
D | README_CN.md | 19 本文主要讲解如何在端侧进行LeNet模型训练。首先在服务器或个人笔记本上进行模型转换;然后在安卓设备上训练模型。LeNet由2层卷积和3层全连接层组成,模型结构简单,因此可以在设备上快速训练。 88 │ ├── lenet_export.py # Python script that exports the LeNet model to .mindir
|
D | README.md | 16 This folder holds code for Training-on-Device of a LeNet model. Part of the code runs on a server u… 20 LeNet is a very simple network which is composed of only 5 layers, 2 of which are convolutional lay… 101 │ ├── lenet_export.py # Python script that exports the LeNet model to .mindir
|
/third_party/mindspore/mindspore/lite/examples/unified_api/ |
D | README_CN.md | 19 本文主要讲解如何在端侧进行LeNet模型训练。首先在服务器或个人笔记本上进行模型转换;然后在安卓设备上训练模型。LeNet由2层卷积和3层全连接层组成,模型结构简单,因此可以在设备上快速训练。 88 │ ├── lenet_export.py # Python script that exports the LeNet model to .mindir
|
D | README.md | 16 This folder holds code for Training-on-Device of a LeNet model. Part of the code runs on a server u… 20 LeNet is a very simple network which is composed of only 5 layers, 2 of which are convolutional lay… 101 │ ├── lenet_export.py # Python script that exports the LeNet model to .mindir
|
/third_party/mindspore/tests/st/nontask_sink/ |
D | test_lenet.py | 54 class LeNet(nn.Cell): class 66 super(LeNet, self).__init__() 136 net = LeNet()
|
/third_party/mindspore/tests/st/pynative/ms_function/ |
D | test_pynative_lenet_ms_function.py | 92 class LeNet(nn.Cell): class 104 super(LeNet, self).__init__() 178 net = LeNet()
|
/third_party/mindspore/tests/ut/python/transform/ |
D | test_transform.py | 119 class LeNet(nn.Cell): class 123 super(LeNet, self).__init__()
|
/third_party/mindspore/tests/perf_test/ |
D | test_lenet.py | 55 net = LeNet(num_class=num_class)
|
/third_party/mindspore/mindspore/lite/examples/transfer_learning/ |
D | README_CN.md | 92 │ ├── transfer_learning_export.py # Python script that exports the LeNet model to .mindir
|
D | README.md | 107 │ ├── transfer_learning_export.py # Python script that exports the LeNet model to .mindir
|
/third_party/mindspore/mindspore/nn/probability/ |
D | README.md | 47 2. Define a Bayesian Neural Network. The bayesian LeNet is used in this example. 255 1. Define a Deep Neural Network. The LeNet is used in this example. 470 …esian LeNet](https://gitee.com/mindspore/mindspore/blob/r1.5/tests/st/probability/bnn_layers/test_…
|
/third_party/mindspore/ |
D | RELEASE.md | 2431 4. Supports networks such as LeNet, Alexnet, Resnet, MobileNetV1/V2/V3, and EffectiveNet, and provi… 3069 - LeNet: classic CNN for image classification, which was proposed by Yann LeCun. 3107 - Supported network type: LeNet 3119 - Supported models: AlexNet, LeNet, and LSTM 3125 - Supported model: LeNet
|