Searched refs:airy_ai (Results 1 – 12 of 12) sorted by relevance
18 check_result<float>(boost::math::airy_ai<float>(f)); in compile_and_link_test()19 check_result<double>(boost::math::airy_ai<double>(d)); in compile_and_link_test()21 check_result<long double>(boost::math::airy_ai<long double>(l)); in compile_and_link_test()
321 boost::math::airy_ai(v1); in instantiate()535 boost::math::airy_ai(v1 * 1); in instantiate()717 boost::math::airy_ai(v1, pol); in instantiate()936 test::airy_ai(i); in instantiate()1454 test::airy_ai(i); in instantiate_mixed()
53 BOOST_CHECK_CLOSE_FRACTION(data[i][1], boost::math::airy_ai(data[i][0]), tol); in test_airy()
21 ``__sf_result`` airy_ai(T x);24 ``__sf_result`` airy_ai(T x, const Policy&);45 [graph airy_ai]66 [equation airy_ai]
266 inline typename tools::promote_args<T>::type airy_ai(T x, const Policy&) in airy_ai() function282 inline typename tools::promote_args<T>::type airy_ai(T x) in airy_ai() function284 return airy_ai(x, policies::policy<>()); in airy_ai()
806 typename tools::promote_args<T>::type airy_ai(T x, const Policy&);809 typename tools::promote_args<T>::type airy_ai(T x);1646 inline typename boost::math::tools::promote_args<T>::type airy_ai(T x)\1647 { return boost::math::airy_ai(x, Policy()); }\
84 boost::math::airy_ai(v1); in test_extra()
252 return boost::math::airy_ai(x); in operator ()()
704 f = boost::math::airy_ai; in main()
415 …template tools::promote_args<BOOST_MATH_TEST_TYPE>::type airy_ai(BOOST_MATH_TEST_TYPE x, const pol…416 template tools::promote_args<BOOST_MATH_TEST_TYPE>::type airy_ai(BOOST_MATH_TEST_TYPE x);
251 [def __airy_ai [link math_toolkit.airy.ai airy_ai]]
1195 The quadrature is used to calculate the `airy_ai(x)` function for real-valued `x` on the positive a…1204 The quadrature integral representaion of `airy_ai(x)` used in this example can be found in:1214 This Gauss-Laguerre quadrature is designed for `airy_ai(x)` with real-valued `x >= 1`.1216 The example uses Gauss-Laguerre quadrature integration to compute `airy_ai(x / 7)` 1233 at larger real values because the slope derivative of `airy_ai(x)` gets more