• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  Copyright John Maddock 2018.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #include <map>
7 #include <boost/config.hpp>
8 #include <boost/multiprecision/cpp_bin_float.hpp>
9 #ifdef BOOST_HAS_FLOAT128
10 #include <boost/multiprecision/float128.hpp>
11 #endif
12 #include <boost/svg_plot/svg_2d_plot.hpp>
13 
14 template <class Real>
interval_from_range(Real x)15 Real interval_from_range(Real x)
16 {
17    BOOST_MATH_STD_USING
18    Real l = floor(log10(x));
19    l = pow(10, l);
20    if (x / l < 2)
21       l /= 10;
22    return l;
23 }
24 
25 
normalise_filename(std::string name)26 std::string normalise_filename(std::string name)
27 {
28    for(std::string::size_type i = 0; i < name.size(); ++i)
29    {
30       if (!std::isalnum(name[i]))
31          name[i] = '_';
32       else
33          name[i] = std::tolower(name[i]);
34    }
35    return name;
36 }
37 
38 template <class F, class Real>
plot_errors_1d(F f,Real start,Real end,unsigned points,const char * function_name,Real max_y_scale=(std::numeric_limits<Real>::max)(),unsigned num_bins=200)39 void plot_errors_1d(F f, Real start, Real end, unsigned points, const char* function_name, Real max_y_scale = (std::numeric_limits<Real>::max)(), unsigned num_bins = 200)
40 {
41    BOOST_MATH_STD_USING
42    std::cout << "Generating points for " << function_name << std::endl;
43    Real pos = start;
44    Real interval = (end - start) / points;
45 
46    std::map<Real, Real> points_upper, points_lower;
47 
48    Real max_distance(0), min_distance(0), max_error(0), max_error_location(0);
49 
50    constexpr unsigned limb_bits = (sizeof(boost::multiprecision::limb_type) * CHAR_BIT);
51    constexpr unsigned mp_digits = (((std::numeric_limits<Real>::digits * 2) / limb_bits + ((std::numeric_limits<Real>::digits * 2) % limb_bits ? 1 : 0))) * limb_bits;
52 
53    typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<mp_digits, boost::multiprecision::backends::digit_base_2> > mp_type;
54 
55    while (pos <= end)
56    {
57       try
58       {
59          Real found_value = f(pos);
60          Real exact_value = static_cast<Real>(f(mp_type(pos)));
61          Real distance = boost::math::sign(found_value - exact_value) * boost::math::epsilon_difference(found_value, exact_value);
62          Real bin = start + ((end - start) / num_bins) * boost::math::itrunc(num_bins * (pos - start) / (end - start));
63          if (points_lower.find(bin) == points_lower.end())
64             points_lower[bin] = 0;
65          if (points_upper.find(bin) == points_upper.end())
66             points_upper[bin] = 0;
67          if (distance > 0)
68          {
69             if (points_upper[bin] < distance)
70                points_upper[bin] = (std::min)(distance, max_y_scale);
71          }
72          else
73          {
74             if (points_lower[bin] > distance)
75                points_lower[bin] = (std::max)(distance, -max_y_scale);
76          }
77          if (max_distance < distance)
78             max_distance = (std::min)(distance, max_y_scale);
79          if (min_distance > distance)
80             min_distance = (std::max)(distance, -max_y_scale);
81          if (fabs(distance) > max_error)
82          {
83             max_error = fabs(distance);
84             max_error_location = pos;
85          }
86          pos += interval;
87       }
88       catch (const std::exception& e)
89       {
90          std::cout << "Found exception at point " << pos << " : " << e.what() << std::endl;
91          pos += interval;
92       }
93    }
94 
95    std::cout << "Max error was " << std::setprecision(3) << max_error << " at location " << std::setprecision(std::numeric_limits<Real>::max_digits10) << max_error_location << std::endl;
96 
97    boost::svg::svg_2d_plot plot;
98    Real x_start(start), x_end(end);
99    if (end - start > 3)
100    {
101       x_start = floor(start);
102       x_end = ceil(end);
103    }
104    if (min_distance == 0)
105       min_distance = -1;
106    if (max_distance == 0)
107       max_distance = 1;
108 
109 
110    plot.title(std::string("Errors in ") + function_name).x_range((double)x_start, (double)x_end).image_x_size(700).legend_border_color(boost::svg::lightgray).plot_border_color(boost::svg::lightgray).background_border_color(boost::svg::lightgray)
111       .y_range((int)floor(min_distance), (int)ceil(max_distance)).x_label("x").y_major_interval((double)interval_from_range(max_distance) * 2).x_major_interval((double)interval_from_range(end - start)).legend_on(true).plot_window_on(true).legend_on(false);
112    plot.plot(points_upper).stroke_color(boost::svg::green).fill_color(boost::svg::green).size(1).line_on(true).area_fill(boost::svg::green);
113    plot.plot(points_lower).stroke_color(boost::svg::green).fill_color(boost::svg::green).size(1).line_on(true).area_fill(boost::svg::green);
114 
115    plot.write(normalise_filename(function_name) + ".svg");
116 
117 }
118 
119 #include <boost/math/special_functions.hpp>
120 
121 struct digamma_func
122 {
123    template <class T>
operator ()digamma_func124    T operator()(T x)
125    {
126       return boost::math::digamma(x);
127    }
128 };
129 
130 struct tgamma_func
131 {
132    template <class T>
operator ()tgamma_func133    T operator()(T x)
134    {
135       return boost::math::tgamma(x);
136    }
137 };
138 
139 struct lgamma_func
140 {
141    template <class T>
operator ()lgamma_func142    T operator()(T x)
143    {
144       return boost::math::lgamma(x);
145    }
146 };
147 
148 struct trigamma_func
149 {
150    template <class T>
operator ()trigamma_func151    T operator()(T x)
152    {
153       return boost::math::tgamma(x);
154    }
155 };
156 
157 struct erf_func
158 {
159    template <class T>
operator ()erf_func160    T operator()(T x)
161    {
162       return boost::math::erf(x);
163    }
164 };
165 
166 struct erfc_func
167 {
168    template <class T>
operator ()erfc_func169    T operator()(T x)
170    {
171       return boost::math::erfc(x);
172    }
173 };
174 
175 struct j0_func
176 {
177    template <class T>
operator ()j0_func178    T operator()(T x)
179    {
180       return boost::math::cyl_bessel_j(0, x);
181    }
182 };
183 
184 struct j1_func
185 {
186    template <class T>
operator ()j1_func187    T operator()(T x)
188    {
189       return boost::math::cyl_bessel_j(1, x);
190    }
191 };
192 
193 struct y0_func
194 {
195    template <class T>
operator ()y0_func196    T operator()(T x)
197    {
198       return boost::math::cyl_neumann(0, x);
199    }
200 };
201 
202 struct y1_func
203 {
204    template <class T>
operator ()y1_func205    T operator()(T x)
206    {
207       return boost::math::cyl_neumann(1, x);
208    }
209 };
210 
211 struct i0_func
212 {
213    template <class T>
operator ()i0_func214    T operator()(T x)
215    {
216       return boost::math::cyl_bessel_i(0, x);
217    }
218 };
219 
220 struct i1_func
221 {
222    template <class T>
operator ()i1_func223    T operator()(T x)
224    {
225       return boost::math::cyl_bessel_i(1, x);
226    }
227 };
228 
229 struct k0_func
230 {
231    template <class T>
operator ()k0_func232    T operator()(T x)
233    {
234       return boost::math::cyl_bessel_k(0, x);
235    }
236 };
237 
238 struct k1_func
239 {
240    template <class T>
operator ()k1_func241    T operator()(T x)
242    {
243       return boost::math::cyl_bessel_k(1, x);
244    }
245 };
246 
247 struct ai_func
248 {
249    template <class T>
operator ()ai_func250    T operator()(T x)
251    {
252       return boost::math::airy_ai(x);
253    }
254 };
255 
256 struct aip_func
257 {
258    template <class T>
operator ()aip_func259    T operator()(T x)
260    {
261       return boost::math::airy_ai_prime(x);
262    }
263 };
264 
265 struct bi_func
266 {
267    template <class T>
operator ()bi_func268    T operator()(T x)
269    {
270       return boost::math::airy_bi(x);
271    }
272 };
273 
274 struct bip_func
275 {
276    template <class T>
operator ()bip_func277    T operator()(T x)
278    {
279       return boost::math::airy_bi_prime(x);
280    }
281 };
282 
283 struct ellint_1_func
284 {
285    template <class T>
operator ()ellint_1_func286    T operator()(T x)
287    {
288       return boost::math::ellint_1(x);
289    }
290 };
291 
292 struct ellint_2_func
293 {
294    template <class T>
operator ()ellint_2_func295    T operator()(T x)
296    {
297       return boost::math::ellint_2(x);
298    }
299 };
300 
301 struct ellint_d_func
302 {
303    template <class T>
operator ()ellint_d_func304    T operator()(T x)
305    {
306       return boost::math::ellint_d(x);
307    }
308 };
309 
310 struct zeta_func
311 {
312    template <class T>
operator ()zeta_func313    T operator()(T x)
314    {
315       return boost::math::zeta(x);
316    }
317 };
318 
319 struct ei_func
320 {
321    template <class T>
operator ()ei_func322    T operator()(T x)
323    {
324       return boost::math::expint(x);
325    }
326 };
327 
main()328 int main()
329 {
330    plot_errors_1d(digamma_func(), 1e-200, 10.0, 10000, "digamma, double");
331    plot_errors_1d(tgamma_func(), 1e-200, 150.0, 10000, "tgamma, double");
332    plot_errors_1d(lgamma_func(), 1e-200, 1000.0, 10000, "lgamma, double");
333    plot_errors_1d(trigamma_func(), 1e-200, 10.0, 10000, "trigamma, double");
334    plot_errors_1d(erf_func(), -5.0, 5.0, 10000, "erf, double");
335    plot_errors_1d(erfc_func(), -5.0, 30.0, 10000, "erfc, double");
336    plot_errors_1d(j0_func(), 0.0, 50.0, 10000, "j0, double", 50.0);
337    plot_errors_1d(j1_func(), 0.0, 50.0, 10000, "j1, double", 50.0);
338    plot_errors_1d(y0_func(), 1e-100, 50.0, 10000, "y0, double", 50.0);
339    plot_errors_1d(y1_func(), 1e-100, 50.0, 10000, "y1, double", 50.0);
340    plot_errors_1d(i0_func(), 0.0, 50.0, 10000, "i0, double");
341    plot_errors_1d(i1_func(), 0.0, 50.0, 10000, "i1, double");
342    plot_errors_1d(k0_func(), 1e-100, 50.0, 10000, "k0, double");
343    plot_errors_1d(k1_func(), 1e-100, 50.0, 10000, "k1, double");
344    plot_errors_1d(ai_func(), -20.0, 20.0, 10000, "Ai, double", 100.0);
345    plot_errors_1d(bi_func(), -20.0, 20.0, 10000, "Bi, double", 100.0);
346    plot_errors_1d(aip_func(), -20.0, 20.0, 10000, "Ai Prime, double", 100.0);
347    plot_errors_1d(bip_func(), -20.0, 20.0, 10000, "Bi Prime, double", 100.0);
348 
349    plot_errors_1d(ellint_1_func(), -1.0, 1.0, 10000, "Elliptic Integral K, double");
350    plot_errors_1d(ellint_2_func(), -1.0, 1.0, 10000, "Elliptic Integral E, double");
351    plot_errors_1d(ellint_d_func(), -1.0, 1.0, 10000, "Elliptic Integral D, double");
352 
353    plot_errors_1d(zeta_func(), -20.0, 20.0, 10000, "Zeta, double");
354    plot_errors_1d(ei_func(), -20.0, 20.0, 10000, "Exponential Integral Ei, double");
355 
356 #if LDBL_MANT_DIG == 64
357    plot_errors_1d(digamma_func(), 1e-200L, 10.0L, 10000, "digamma, 80-bit long double");
358    plot_errors_1d(tgamma_func(), 1e-200L, 150.0L, 10000, "tgamma, 80-bit long double");
359    plot_errors_1d(lgamma_func(), 1e-200L, 1000.0L, 10000, "lgamma, 80-bit long double");
360    plot_errors_1d(trigamma_func(), 1e-200L, 10.0L, 10000, "trigamma, 80-bit long double");
361    plot_errors_1d(erf_func(), -5.0L, 5.0L, 10000, "erf, 80-bit long double");
362    plot_errors_1d(erfc_func(), -5.0L, 120.0L, 10000, "erfc, 80-bit long double");
363    plot_errors_1d(j0_func(), 0.0L, 50.0L, 10000, "j0, 80 bit long double", 50.0L);
364    plot_errors_1d(j1_func(), 0.0L, 50.0L, 10000, "j1, 80 bit long double", 50.0L);
365    plot_errors_1d(y0_func(), 1e-100L, 50.0L, 10000, "y0, 80 bit long double", 50.0L);
366    plot_errors_1d(y1_func(), 1e-100L, 50.0L, 10000, "y1, 80 bit long double", 50.0L);
367    plot_errors_1d(i0_func(), 0.0L, 50.0L, 10000, "i0, 80 bit long double");
368    plot_errors_1d(i1_func(), 0.0L, 50.0L, 10000, "i1, 80 bit long double");
369    plot_errors_1d(k0_func(), 1e-100L, 50.0L, 10000, "k0, 80 bit long double");
370    plot_errors_1d(k1_func(), 1e-100L, 50.0L, 10000, "k1, 80 bit long double");
371    plot_errors_1d(ai_func(), -20.0L, 20.0L, 10000, "Ai, 80 bit long double", 100.0L);
372    plot_errors_1d(bi_func(), -20.0L, 20.0L, 10000, "Bi, 80 bit long double", 100.0L);
373    plot_errors_1d(aip_func(), -20.0L, 20.0L, 10000, "Ai Prime, 80 bit long double", 100.0L);
374    plot_errors_1d(bip_func(), -20.0L, 20.0L, 10000, "Bi Prime, 80 bit long double", 100.0L);
375 
376    plot_errors_1d(ellint_1_func(), -1.0L, 1.0L, 10000, "Elliptic Integral K, 80 bit long double");
377    plot_errors_1d(ellint_2_func(), -1.0L, 1.0L, 10000, "Elliptic Integral E, 80 bit long double");
378    plot_errors_1d(ellint_d_func(), -1.0L, 1.0L, 10000, "Elliptic Integral D, 80 bit long double");
379 
380    plot_errors_1d(zeta_func(), -20.0L, 20.0L, 10000, "Zeta, 80 bit long double");
381    plot_errors_1d(ei_func(), -20.0L, 20.0L, 10000, "Exponential Integral Ei, 80 bit long double");
382 #endif
383 #ifdef BOOST_HAS_FLOAT128
384    plot_errors_1d(digamma_func(), boost::multiprecision::float128(1e-200), boost::multiprecision::float128(10.0), 10000, "digamma, __float128");
385    plot_errors_1d(tgamma_func(), boost::multiprecision::float128(1e-200), boost::multiprecision::float128(150.0), 10000, "tgamma, __float128");
386    plot_errors_1d(lgamma_func(), boost::multiprecision::float128(1e-200), boost::multiprecision::float128(1000.0), 10000, "lgamma, __float128");
387    plot_errors_1d(trigamma_func(), boost::multiprecision::float128(1e-200), boost::multiprecision::float128(10.0), 10000, "trigamma, __float128");
388    plot_errors_1d(erf_func(), -boost::multiprecision::float128(5.0), boost::multiprecision::float128(5.0), 10000, "erf, __float128");
389    plot_errors_1d(erfc_func(), -boost::multiprecision::float128(5.0), boost::multiprecision::float128(120.0), 10000, "erfc, __float128");
390    plot_errors_1d(j0_func(), boost::multiprecision::float128(0.0), boost::multiprecision::float128(50.0), 10000, "j0, __float128", boost::multiprecision::float128(50.0));
391    plot_errors_1d(j1_func(), boost::multiprecision::float128(0.0), boost::multiprecision::float128(50.0), 10000, "j1, __float128", boost::multiprecision::float128(50.0));
392    plot_errors_1d(y0_func(), boost::multiprecision::float128(1e-100), boost::multiprecision::float128(50.0), 10000, "y0, __float128", boost::multiprecision::float128(50.0));
393    plot_errors_1d(y1_func(), boost::multiprecision::float128(1e-100), boost::multiprecision::float128(50.0), 10000, "y1, __float128", boost::multiprecision::float128(50.0));
394    plot_errors_1d(i0_func(), boost::multiprecision::float128(0.0), boost::multiprecision::float128(50.0), 10000, "i0, __float128");
395    plot_errors_1d(i1_func(), boost::multiprecision::float128(0.0), boost::multiprecision::float128(50.0), 10000, "i1, __float128");
396    plot_errors_1d(k0_func(), boost::multiprecision::float128(1e-100), boost::multiprecision::float128(50.0), 10000, "k0, __float128");
397    plot_errors_1d(k1_func(), boost::multiprecision::float128(1e-100), boost::multiprecision::float128(50.0), 10000, "k1, __float128");
398    plot_errors_1d(ai_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Ai, __float128", boost::multiprecision::float128(100.0));
399    plot_errors_1d(bi_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Bi, __float128", boost::multiprecision::float128(100.0));
400    plot_errors_1d(aip_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Ai Prime, __float128", boost::multiprecision::float128(100.0));
401    plot_errors_1d(bip_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Bi Prime, __float128", boost::multiprecision::float128(100.0));
402 
403    plot_errors_1d(ellint_1_func(), -boost::multiprecision::float128(1.0), boost::multiprecision::float128(1.0), 10000, "Elliptic Integral K, __float128");
404    plot_errors_1d(ellint_2_func(), -boost::multiprecision::float128(1.0), boost::multiprecision::float128(1.0), 10000, "Elliptic Integral E, __float128");
405    plot_errors_1d(ellint_d_func(), -boost::multiprecision::float128(1.0), boost::multiprecision::float128(1.0), 10000, "Elliptic Integral D, __float128");
406 
407    plot_errors_1d(zeta_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Zeta, __float128");
408    plot_errors_1d(ei_func(), -boost::multiprecision::float128(20.0), boost::multiprecision::float128(20.0), 10000, "Exponential Integral Ei, __float128");
409 #endif
410    return 0;
411 }
412