/third_party/mindspore/tests/ut/python/pynative_mode/ |
D | test_bprop.py | 47 grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), 49 print(grads) 53 …grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.… 56 print(grads) 60 …grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.… 63 print(grads) 68 …grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.fl… 73 print(grads) 78 …grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.fl… 81 print(grads) [all …]
|
/third_party/mindspore/mindspore/nn/optim/ |
D | ada_grad.py | 156 def construct(self, grads): argument 159 grads = self.decay_weight(grads) 160 grads = self.gradients_centralization(grads) 161 grads = self.scale_grad(grads) 165 grads) 168 grads)
|
D | proximal_ada_grad.py | 183 def construct(self, grads): argument 186 grads = self.decay_weight(grads) 187 grads = self.gradients_centralization(grads) 188 grads = self.scale_grad(grads) 189 grads = self._grad_sparse_indices_deduplicate(grads) 193 lr, grads, params, accum) 197 grads, params, accum)
|
D | ftrl.py | 222 def construct(self, grads): argument 226 grads = self.decay_weight(grads) 227 grads = self.gradients_centralization(grads) 228 grads = self.scale_grad(grads) 229 grads = self._grad_sparse_indices_deduplicate(grads) 234 linear, grads, params, moments, self.ps_parameters, self.cache_enable)
|
/third_party/mindspore/tests/st/networks/ |
D | test_cell_bprop.py | 128 grads = grad_all(self.f)(x, y) 129 return out[1][0], grads[1] 140 grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)), 142 assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all() 143 assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all() 169 grads = grad_all(self.f)(x, y) 170 return out[1][0], grads[1] 181 grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)), 183 assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all() 184 assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all() [all …]
|
/third_party/mindspore/mindspore/nn/wrap/ |
D | loss_scale.py | 323 grads = self.grad(self.network, weights)(*inputs, scaling_sens_filled) 324 grads = self.hyper_map(F.partial(_grad_scale, scaling_sens), grads) 326 grads = self.grad_reducer(grads) 329 cond = self.get_overflow_status(status, grads) 333 loss = F.depend(loss, self.optimizer(grads)) 505 grads = self.grad(self.network, weights)(*inputs, scaling_sens_filled) 506 init = F.depend(init, grads) 512 grads = self.grad_reducer(grads) 513 …grads = self.hyper_map(F.partial(shard_grad_scale, scaling_sens * self.degree), grads, self.accu_g… 516 … grads = self.hyper_map(F.partial(grad_scale, scaling_sens * self.degree), grads, accu_grads) [all …]
|
D | cell_wrapper.py | 182 grads = self.grad(self.network_with_loss, weights)(*inputs) 184 grads = self.grad(self.network_with_loss, weights)(*inputs, self.sens) 185 return grads 277 grads = self.grad(self.network, self.weights)(*grad_inputs) 279 grads = self.grad(self.network)(*grad_inputs) 280 return loss, grads 355 grads = self.grad(self.network, self.weights)(*inputs, sens) 356 grads = self.grad_reducer(grads) 357 loss = F.depend(loss, self.optimizer(grads)) 514 grads = self.grad(self.network, weights)(*inputs, sens) [all …]
|
D | grad_reducer.py | 396 def construct(self, grads): argument 408 datatypes = self.map_(F.partial(_get_datatype), grads) 409 grads = self.map_(F.partial(_cast_datatype, mstype.float32), grads) 411 new_grad = grads 415 self.op_list, self.allreduce_filter, grads, self.ps_parameters) 418 self.op_list, self.allreduce_filter, grads) 422 … self.allreduce), self.allreduce_filter, grads, self.ps_parameters) 425 self.allreduce), self.allreduce_filter, grads)
|
/third_party/mindspore/mindspore/boost/ |
D | boost_cell_wrapper.py | 200 grads = self.grad(self.network, self.weights)(*inputs, sens) 201 grads = self.grad_reducer(grads) 203 loss = self.gradient_accumulation_process(loss, grads) 206 loss = F.depend(loss, self.adasum_process(loss, grads)) 208 loss = F.depend(loss, self.optimizer(grads)) 226 def gradient_accumulation_process(self, loss, grads): argument 229 self.grad_accumulation, grads)) 244 def adasum_process(self, loss, grads): argument 246 loss = F.depend(loss, self.optimizer(grads)) 379 grads = self.grad(self.network, weights)(*inputs, scaling_sens_filled) [all …]
|
/third_party/mindspore/tests/ |
D | train_step_wrap.py | 39 grads = self.grad(self.network, weights)(x, label) 40 return self.optimizer(grads) 79 grads = self.grad(self.network, weights)(x, self.sens) 80 return self.optimizer(grads) 99 grads = self.grad(self.network, self.weights)(x, label) 100 return grads
|
/third_party/mindspore/tests/st/networks/models/bert/src/ |
D | bert_for_pre_training.py | 310 grads = self.grad(self.network, weights)(input_ids, 319 grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) 322 grads = self.grad_reducer(grads) 324 self.optimizer(grads) 408 grads = self.grad(self.network, weights)(input_ids, 418 grads = self.grad_reducer(grads) 419 grads = self.hyper_map(F.partial(grad_scale, scaling_sens * self.degree), grads) 420 grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) 421 init = F.depend(init, grads) 435 self.optimizer(grads)
|
/third_party/mindspore/tests/st/ops/ascend/test_tbe_ops/ |
D | test_resize_nearest_neighbor_grad.py | 44 def construct(self, images, grads): argument 45 return self.grad(self.network)(images, grads) 50 grads = np.random.random(size=(32, 3, 2, 2)).astype(np.float32) 52 output = grad(Tensor(image), Tensor(grads))
|
/third_party/mindspore/tests/st/fl/cross_silo_lenet/src/ |
D | cell_wrapper.py | 38 grads = self.grad(self.network, self.weights)(*inputs, sens) 39 grads = self.grad_reducer(grads) 40 loss = self.depend(loss, self.optimizer(grads))
|
/third_party/mindspore/tests/ut/python/nn/ |
D | test_nn_pad.py | 41 def construct(self, x, grads): argument 42 return self.grad(self.network)(x, grads) 49 grads = np.random.random(size=(4, 7)).astype(np.float32) 51 output = grad(Tensor(x), Tensor(grads))
|
/third_party/mindspore/tests/st/fl/albert/src/ |
D | cell_wrapper.py | 120 grads, argument 125 return grads 127 for grad in grads: 260 grads = self.grad(self.network, weights)(input_ids, 266 grads = self.hyper_map(F.partial(clip_grad, self.clip_type, self.clip_value), grads) 267 loss = F.depend(loss, self.optimizer(grads)) 291 grads = self.grad(self.network, weights)(input_ids, 297 grads = self.hyper_map(F.partial(clip_grad, self.clip_type, self.clip_value), grads) 298 self.optimizer(grads)
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32_grad/ |
D | softmax_cross_entropy_with_logits.cc | 32 …ropyWithLogitsCPUKernel::ForwardPostExecute(const float *labels, const float *logits, float *grads, in ForwardPostExecute() argument 35 if (grads != nullptr) { in ForwardPostExecute() 41 grads[i * param_->number_of_classes_ + j] = in ForwardPostExecute() 67 float *grads = nullptr; in Execute() local 69 grads = reinterpret_cast<float *>(out_tensors_.at(1)->data()); in Execute() 78 ForwardPostExecute(labels, losses_, grads, out); in Execute()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/infer/ |
D | softmax_cross_entropy_infer.c | 36 TensorC *grads = outputs[1]; in SoftmaxCrossEntropyInferShape() local 37 SetShapeTensor(grads, in0); in SoftmaxCrossEntropyInferShape() 38 SetDataTypeFormat(grads, in0); in SoftmaxCrossEntropyInferShape()
|
/third_party/mindspore/tests/st/control/inner/ |
D | test_231_while_for_while.py | 55 grads = self.grad(self.forward_net)(*inputs) 56 return grads 74 grads = backward_net(x, y) 75 print("grads:", grads)
|
/third_party/mindspore/mindspore/ccsrc/pybind_api/ir/ |
D | primitive_py.cc | 93 py::tuple grads; in check_bprop_out() local 95 grads = py::make_tuple(grads_obj); in check_bprop_out() 97 grads = py::cast<py::tuple>(grads_obj); in check_bprop_out() 100 if (grads.size() != py_args.size() - filter_args_size) { in check_bprop_out() 101 MS_EXCEPTION(TypeError) << "For user define net bprop, the gradients number: " << grads.size() in check_bprop_out() 105 for (size_t i = 0; i < grads.size(); i++) { in check_bprop_out() 107 if (!py::isinstance<tensor::Tensor>(grads[i])) { in check_bprop_out() 110 … << py::cast<std::string>(grads[i].attr("__class__").attr("__name__")) in check_bprop_out() 111 << ", and the value is " << py::cast<py::str>(grads[i]) << "."; in check_bprop_out() 115 py::object grad_dtype = grads[i].attr("dtype"); in check_bprop_out() [all …]
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_loss_scale.py | 96 grads = self.grad(self.network, weights)(x, self.cast(scaling_sens, mstype.float32)) 98 grads = self.grad_reducer(grads) 99 grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) 100 init = F.depend(init, grads) 109 self.optimizer(grads)
|
/third_party/mindspore/tests/st/auto_monad/ |
D | test_auto_monad_mindtester.py | 201 grads = grad_net(Tensor(x), Tensor(y), Tensor(x), Tensor(input_data)) 202 allclose_nparray(x * 2, grads[0].asnumpy(), 0.0000, 0.0000) 203 allclose_nparray(y * 3, grads[1].asnumpy(), 0.0000, 0.0000) 204 allclose_nparray(x, grads[2].asnumpy(), 0.0000, 0.0000) 205 allclose_nparray(input_data * 5.1, grads[3].asnumpy(), 0.0000, 0.0000) 234 grads = self.grad(x, y) 236 grads = self.grad(x, y) 237 return grads[0] * 2, grads[1] * 2 250 grads = grad_net(input1, input2) 251 allclose_nparray(input1.asnumpy() * 2, grads[1].asnumpy(), 0, 0) [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/nn/ |
D | ctcloss_gpu_kernel.h | 45 grads(nullptr), in CtcLossGpuKernel() 131 grads = GetDeviceAddress<T>(outputs, 1); in LaunchInit() 163 MemsetForWS(label_value_pcr, cum_labels_length, label_squence_length, costs, grads, stream); in LaunchFirstHalf() 214 sequence_length, label_squence_length, cum_labels_length, costs, grads, prob_num, in LaunchSecondHalf() 236 …tForWS(int *label_value_pcr, int *cum_labels_length, int *label_squence_length, T *costs, T *grads, in MemsetForWS() argument 251 …cudaMemsetAsync(grads, static_cast<T>(0), probs_dims_[0] * probs_dims_[1] * probs_dims_[2] * sizeo… in MemsetForWS() 299 T *grads; variable
|
/third_party/mindspore/tests/st/fl/cross_silo_faster_rcnn/src/ |
D | network_define.py | 147 … grads = self.grad(self.network, weights)(x, img_shape, gt_bboxe, gt_label, gt_num, self.sens) 149 grads = self.grad_reducer(grads) 150 return F.depend(loss, self.optimizer(grads))
|
/third_party/mindspore/tests/st/fl/hybrid_lenet/src/ |
D | cell_wrapper.py | 157 grads = self.grad(self.network, weights)(*inputs, sens) 158 grads = self.grad_reducer(grads) 160 loss = F.depend(loss, self.optimizer(grads))
|
/third_party/mindspore/tests/ut/python/ops/ |
D | test_momentum.py | 67 def construct(self, grads): argument 73 grads, weights, moments) 89 grads = grad_by_list(self.network, weights)(x, label) 90 return self.optimizer(grads)
|