1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15""" test_bprop """ 16import numpy as np 17 18import mindspore.nn as nn 19from mindspore import context 20from mindspore.common import Tensor 21from mindspore.common.api import ms_function 22from mindspore.common.parameter import Parameter 23from mindspore.ops import operations as P 24from ....mindspore_test_framework.utils.bprop_util import bprop 25 26 27def setup_module(): 28 context.set_context(mode=context.PYNATIVE_MODE) 29 30 31class Net(nn.Cell): 32 """ Net definition """ 33 34 def __init__(self): 35 super(Net, self).__init__() 36 self.matmul = P.MatMul() 37 self.z = Parameter(Tensor(np.array([1.0], np.float32)), name='z') 38 39 @ms_function 40 def construct(self, x, y): 41 x = x * self.z 42 out = self.matmul(x, y) 43 return x, out 44 45 46def test_bprop_no_sens(): 47 grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), 48 Tensor(np.ones([3, 2]).astype(np.float32)), wrt=['inputs']) 49 print(grads) 50 51 52def test_bprop_sens(): 53 grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), 54 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 55 Tensor(np.ones([2, 2]).astype(np.float32))), wrt=['inputs']) 56 print(grads) 57 58 59def test_bprop_first_only(): 60 grads = bprop(Net(), Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), 61 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 62 Tensor(np.ones([2, 2]).astype(np.float32)))) 63 print(grads) 64 65 66def test_bprop_wrt_params(): 67 net = Net() 68 grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), 69 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 70 Tensor(np.ones([2, 2]).astype(np.float32))), 71 wrt=['params'], 72 params=net.trainable_params()) 73 print(grads) 74 75 76def test_bprop_wrt_params_no_sens(): 77 net = Net() 78 grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), 79 wrt=['params'], 80 params=net.trainable_params()) 81 print(grads) 82 83 84def test_bprop_wrt_inputs_and_params(): 85 net = Net() 86 grads = bprop(net, Tensor(np.ones([2, 3]).astype(np.float32)), Tensor(np.ones([3, 2]).astype(np.float32)), 87 grads_wrt_outputs=(Tensor(np.ones([2, 3]).astype(np.float32)), 88 Tensor(np.ones([2, 2]).astype(np.float32))), 89 wrt=['inputs', 'params'], 90 params=net.trainable_params()) 91 print(grads) 92