/third_party/mindspore/tests/ut/python/parallel/ |
D | test_allreduce_fusion.py | 53 def __init__(self, has_bias=True, activation='relu'): argument 55 self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 56 self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 57 self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 58 self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 69 def __init__(self, has_bias=True, activation='relu'): argument 71 self.fc1 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 72 self.fc2 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 73 self.fc3 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) 74 self.fc4 = nn.Dense(128, 128, has_bias=has_bias, activation=activation) [all …]
|
/third_party/mindspore/tests/ut/python/nn/ |
D | test_lstm.py | 27 def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional): argument 32 has_bias=has_bias, 43 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=False), 47 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=False), 51 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=False, bidirectional=True), 55 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=False, bidirectional=True), 59 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False), 63 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=False), 67 'cell': LstmTestNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=True), 71 'cell': LstmTestNet(10, 12, 2, has_bias=False, batch_first=True, bidirectional=True),
|
D | test_conv.py | 40 has_bias=True, argument 52 has_bias, 68 net = Net(3, 64, 4, has_bias=False, weight_init='normal') 74 net = Net(3, 64, (3, 5), has_bias=False, weight_init='normal') 80 net = Net(3, 64, (3, 5), pad_mode="same", padding=0, has_bias=False, weight_init='normal') 86 net = Net(3, 64, (3, 5), pad_mode="valid", padding=0, has_bias=False, weight_init='normal') 92 net = Net(3, 64, (3, 5), pad_mode="pad", padding=1, has_bias=False, weight_init='normal') 138 has_bias=False, argument 150 has_bias, 165 net = NetConv2dTranspose(3, 64, 4, has_bias=True, weight_init='normal') [all …]
|
D | test_dense.py | 97 has_bias=True, argument 104 has_bias, 130 net = Net(64, 8, weight=weight, has_bias=False) 135 net_train = Net(64, 8, weight=weight, has_bias=False) 160 net = Net(128, 10, has_bias=False) 165 net_train = Net(128, 10, has_bias=False)
|
/third_party/mindspore/tests/st/ops/ascend/ |
D | test_lstm_op.py | 41 … def __init__(self, input_s, hidden_s, num_layers, has_bias, batch_first, bidirectional, dropout): argument 43 ….lstm = nn.LSTM(input_size=input_s, hidden_size=hidden_s, num_layers=num_layers, has_bias=has_bias, 51 def __init__(self, num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional): argument 53 self.has_bias = has_bias 72 if self.has_bias: 83 np.float16) if self.has_bias else b0 97 has_bias = True 102 fact = LSTMWeightBias(num_layers, has_bias, input_s, num_directions, hidden_s, bidirectional) 111 …net = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_first=Fal… 119 …net_pynative = LSTM(input_s=input_s, hidden_s=16, num_layers=num_layers, has_bias=has_bias, batch_… [all …]
|
D | test_gru_op.py | 40 …def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional, drop… argument 42 … = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, 50 … def __init__(self, num_layers, has_bias, input_size, num_directions, hidden_size, bidirectional): argument 52 self.has_bias = has_bias 77 if self.has_bias: 98 has_bias = True 103 … fact = GRUWeightBias(num_layers, has_bias, input_size, num_directions, hidden_size, bidirectional) 111 …net = GRU(input_size=input_size, hidden_size=16, num_layers=num_layers, has_bias=has_bias, batch_f… 121 …net_pynative = GRU(input_size=input_size, hidden_size=16, num_layers=num_layers, has_bias=has_bias, 139 has_bias = True [all …]
|
D | test_rnn_op.py | 40 …def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional, drop… argument 42 … = nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, 50 … def __init__(self, num_layers, has_bias, input_size, num_directions, hidden_size, bidirectional): argument 52 self.has_bias = has_bias 77 if self.has_bias: 98 has_bias = True 103 … fact = RNNWeightBias(num_layers, has_bias, input_size, num_directions, hidden_size, bidirectional) 111 …net = RNN(input_size=input_size, hidden_size=16, num_layers=num_layers, has_bias=has_bias, batch_f… 121 …net_pynative = RNN(input_size=input_size, hidden_size=16, num_layers=num_layers, has_bias=has_bias, 139 has_bias = True [all …]
|
/third_party/mindspore/mindspore/nn/probability/bnn_layers/ |
D | dense_variational.py | 37 has_bias=True, argument 45 self.has_bias = Validator.check_bool(has_bias) 51 if self.has_bias: 74 if self.has_bias: 84 self.weight_posterior.untransformed_std, self.has_bias) 85 if self.has_bias: 104 if self.has_bias: 184 has_bias=True, argument 193 has_bias=has_bias, 278 has_bias=True, argument [all …]
|
D | conv_variational.py | 39 has_bias=False, argument 56 has_bias, 73 self.has_bias = has_bias 82 if self.has_bias: 104 if self.has_bias: 114 self.has_bias) 115 if self.has_bias: 127 if self.has_bias: 242 has_bias=False, argument 256 has_bias=has_bias,
|
/third_party/mindspore/mindspore/lite/examples/export_models/models/ |
D | NetworkInNetwork.py | 31 … nn.Conv2d(in_channels=num_channel, out_channels=192, kernel_size=5, stride=1, has_bias=False), 33 nn.Conv2d(in_channels=192, out_channels=160, kernel_size=1, stride=1, has_bias=True), 35 nn.Conv2d(in_channels=160, out_channels=96, kernel_size=1, stride=1, has_bias=True), 42 nn.Conv2d(in_channels=96, out_channels=192, kernel_size=5, stride=1, has_bias=False), 44 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 46 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 53 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=3, stride=1, has_bias=False), 55 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 57 … nn.Conv2d(in_channels=192, out_channels=num_classes, kernel_size=1, stride=1, has_bias=True),
|
D | mini_alexnet.py | 21 def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid", has_bias=Tr… argument 23 has_bias=has_bias, pad_mode=pad_mode) 26 def fc_with_initialize(input_channels, out_channels, has_bias=True): argument 27 return nn.Dense(input_channels, out_channels, has_bias=has_bias) 36 self.conv1 = conv(channel, 12, 11, stride=2, pad_mode="same", has_bias=True) 37 self.conv2 = conv(12, 20, 3, pad_mode="same", has_bias=True)
|
D | effnet.py | 73 …onv_reduce = nn.Conv2d(in_channels=channel, out_channels=reduced_chs, kernel_size=1, has_bias=True, 76 …onv_expand = nn.Conv2d(in_channels=reduced_chs, out_channels=channel, kernel_size=1, has_bias=True) 99 pad_mode="pad", padding=1, has_bias=False, group=in_chs) 109 …= nn.Conv2d(in_channels=in_chs, out_channels=out_chs, kernel_size=1, stride=stride, has_bias=False) 134 has_bias=False, pad_mode='pad'), 143 has_bias=False), 160 …v_pw = nn.Conv2d(in_channels=in_chs, out_channels=mid_chs, kernel_size=1, stride=1, has_bias=False) 167 … padding=padding, has_bias=False, group=mid_chs, pad_mode='same') 170 padding=padding, has_bias=False, group=mid_chs, pad_mode='pad') 181 …pwl = nn.Conv2d(in_channels=mid_chs, out_channels=out_chs, kernel_size=1, stride=1, has_bias=False) [all …]
|
D | emoji_model.py | 48 has_bias=True) 51 has_bias=True) 54 has_bias=True) 57 has_bias=True) 61 has_bias=True)
|
/third_party/mindspore/tests/st/gnn/ |
D | aggregator.py | 74 has_bias=True): argument 78 self.has_bias = Validator.check_bool(has_bias) 87 if self.has_bias: 101 if self.has_bias: 108 if self.has_bias: 109 s += ', has_bias={}'.format(self.has_bias) 145 has_bias=True, argument 155 self.has_bias = has_bias 160 has_bias=self.has_bias) 201 has_bias=True, argument [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_lstm_op.py | 40 has_bias=True, argument 62 has_bias=has_bias, 72 if has_bias: 102 …def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropo… argument 109 self.lstm = StackLSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) 160 has_bias = True 166 net = LstmNet(batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) 205 …def __init__(self, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, dropo… argument 212 …StackLSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, has_bias=has_bias, 242 bias_size = 0 if not has_bias else num_directions * hidden_size * 4 [all …]
|
/third_party/mindspore/mindspore/nn/layer/ |
D | conv.py | 45 has_bias, argument 81 self.has_bias = has_bias 101 if Validator.check_bool(has_bias, "has_bias", self.cls_name): 232 has_bias=False, argument 250 has_bias, 267 if self.has_bias: 284 self.has_bias, 398 has_bias=False, argument 432 has_bias, 455 if self.has_bias: [all …]
|
D | combined.py | 107 has_bias=False, argument 127 has_bias=has_bias, 206 has_bias=True, argument 220 has_bias)
|
/third_party/mindspore/mindspore/train/train_thor/ |
D | convert_utils.py | 50 has_bias=subcell.has_bias, 60 has_bias=subcell.has_bias, 64 if subcell.has_bias: 105 has_bias = subcell.has_bias 110 has_bias=has_bias, weight_init=weight)
|
/third_party/mindspore/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/ |
D | scale_int8.cc | 33 const std::vector<int> &out_shape, int8_t *output_data, int axis, bool has_bias); 67 … const std::vector<int> &out_shape, int8_t *output_data, int axis, bool has_bias) { in Prepare() argument 80 if (has_bias) { in Prepare() 109 bool has_bias = true; in TEST_F() local 121 has_bias); in TEST_F() 135 bool has_bias = true; in TEST_F() local 147 has_bias); in TEST_F() 161 bool has_bias = false; in TEST_F() local 173 has_bias); in TEST_F()
|
/third_party/mindspore/mindspore/core/ops/fusion/ |
D | full_connection.cc | 23 void FullConnection::set_has_bias(const bool has_bias) { (void)this->AddAttr(kHasBias, MakeValue(ha… in set_has_bias() argument 54 void FullConnection::Init(const bool has_bias, const int64_t axis, const bool use_axis, in Init() argument 56 this->set_has_bias(has_bias); in Init() 72 auto has_bias = GetValue<bool>(primitive->GetAttr(kHasBias)); in FullConnectionInfer() local 75 if (has_bias) { in FullConnectionInfer() 97 if (has_bias) { in FullConnectionInfer()
|
/third_party/mindspore/tests/ut/python/pynative_mode/ge/ops/ |
D | test_conv.py | 29 stride=1, padding=0, has_bias=False, bias=None): argument 36 stride=1, padding=0, has_bias=False, bias=None): argument 43 has_bias=has_bias, 50 net = Net(weight, in_channel, out_channel, kernel_size, stride, padding, has_bias, bias)
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_lstm_op.py | 32 …def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirection… argument 39 self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) 118 has_bias = True 126 …net = LstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional, d… 164 …def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirection… argument 171 self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) 268 has_bias = True 276 …net = BiLstmNet(seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirectional,… 321 …def __init__(self, seq_len, batch_size, input_size, hidden_size, num_layers, has_bias, bidirection… argument 328 self.lstm = P.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout) [all …]
|
/third_party/mindspore/tests/ut/cpp/ops/ |
D | test_ops_full_connection.cc | 36 bool has_bias = false; in TEST_F() local 39 op->Init(has_bias, axis, use_axis, NO_ACTIVATION); in TEST_F() 66 bool has_bias = true; in TEST_F() local 69 op->Init(has_bias, axis, use_axis, NO_ACTIVATION); in TEST_F() 97 bool has_bias = false; in TEST_F() local 100 op->Init(has_bias, axis, use_axis, NO_ACTIVATION); in TEST_F()
|
/third_party/mindspore/mindspore/lite/examples/transfer_learning/model/ |
D | effnet.py | 68 … in_channels=channel, out_channels=reduced_chs, kernel_size=1, has_bias=True, weight_init=weight) 71 in_channels=reduced_chs, out_channels=channel, kernel_size=1, has_bias=True) 97 … stride=stride, pad_mode="pad", padding=1, has_bias=False, group=in_chs) 107 in_channels=in_chs, out_channels=out_chs, kernel_size=1, stride=stride, has_bias=False) 130 padding=1, weight_init=weight, has_bias=False, pad_mode='pad'), 139 stride=1, padding=0, weight_init=weight, has_bias=False), 157 in_channels=in_chs, out_channels=mid_chs, kernel_size=1, stride=1, has_bias=False) 162 … stride=stride, padding=padding, has_bias=False, group=mid_chs, pad_mode='same') 165 … stride=stride, padding=padding, has_bias=False, group=mid_chs, pad_mode='pad') 177 in_channels=mid_chs, out_channels=out_chs, kernel_size=1, stride=1, has_bias=False) [all …]
|
/third_party/mindspore/mindspore/boost/ |
D | less_batch_normalization.py | 61 has_bias=True): argument 69 self.has_bias = has_bias 70 if self.has_bias: 79 if self.has_bias:
|