/third_party/mindspore/mindspore/nn/optim/ |
D | ftrl.py | 29 def _tensor_run_opt_with_sparse(opt, spars_opt, push, pull, l1, l2, lr_power, learning_rate, linear, argument 46 def _tensor_run_opt(opt, spars_opt, push, pull, l1, l2, lr_power, learning_rate, linear, argument 52 success = F.depend(success, pull(push((gradient, learning_rate, l1, l2, lr_power), 55 …success = F.depend(success, opt(weight, moment, linear, gradient, learning_rate, l1, l2, lr_power)) 59 def _check_param(initial_accum, lr_power, l1, l2, use_locking, prim_name=None): argument 64 validator.check_value_type("lr_power", lr_power, [float], prim_name) 65 validator.check_number("lr_power", lr_power, 0.0, Rel.LE, prim_name) 197 … def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0, argument 202 _check_param(initial_accum, lr_power, l1, l2, use_locking, self.cls_name) 208 self.lr_power = lr_power [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/ |
D | sparse_apply_ftrl_cpu_kernel.cc | 36 const auto lr_power = input_params->lr_power_; in ComputeFtrl() local 51 if (lr_power == -0.5) { in ComputeFtrl() 55 y = std::pow(accum_new, -lr_power); in ComputeFtrl() 56 linear[j] += summed_grad - (y - std::pow(accum[j], -lr_power)) / lr * var[j]; in ComputeFtrl()
|
/third_party/mindspore/tests/st/ops/ascend/test_aicpu_ops/ |
D | test_fused_sparse_ftrl.py | 28 lr_power = -0.5 variable 33 self.fused_sparse_ftrl = P.FusedSparseFtrl(lr=0.1, l1=0.0, l2=0.0, lr_power=-0.5)
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/ascend/mindir/ |
D | optimizer_unify_output.cc | 72 VarPtr lr_power = std::make_shared<Var>(); in DefinePattern() local 74 VectorRef pattern({prim::kPrimApplyFtrl, var, accum, linear, grad, lr, l1, l2, lr_power, u}); in DefinePattern()
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_sparse_apply_ftrl_op.py | 29 …self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5, use_locking=Fa… 42 …self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5, use_locking=Fa…
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_sparse_apply_ftrl_op.py | 29 self.sparse_apply_ftrl = P.FusedSparseFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5)
|
/third_party/mindspore/tests/st/auto_monad/ |
D | test_effect_optimizer.py | 261 def construct(self, grad, lr, l1, l2, lr_power): argument 263 grad, lr, l1, l2, lr_power) 281 lr_power = Tensor(-0.5, mstype.float32) 282 new_var, new_accum, new_linear = net(grad, lr, l1, l2, lr_power) 500 lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) 659 lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) 691 lr=0.01, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5)
|
/third_party/mindspore/mindspore/ccsrc/transform/graph_ir/op_declare/ |
D | nn_training_ops_declare.cc | 183 {"lr_power", ATTR_DESC(lr_power, AnyTraits<float>())}}; 200 {7, INPUT_DESC(l2)}, {8, INPUT_DESC(lr_power)}};
|
/third_party/mindspore/tests/ut/python/ops/ |
D | test_dynamic_shape.py | 65 self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
|
D | test_ops.py | 608 self.lr_power = -0.5 614 … self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2, self.lr_power) 621 self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5) 634 …arse_apply_ftrl_v2 = P.SparseApplyFtrlV2(lr=0.001, l1=0.0, l2=0.0, l2_shrinkage=0.0, lr_power=-0.5)
|
/third_party/mindspore/mindspore/ops/operations/ |
D | nn_ops.py | 5207 def __init__(self, lr, l1, l2, lr_power, use_locking=False): argument 5216 validator.check_value_type("lr_power", lr_power, [float], self.name) 5220 self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) 7109 def __init__(self, lr, l1, l2, lr_power, use_locking=False): argument 7114 validator.check_value_type("lr_power", lr_power, [float], self.name) 7118 self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) 7218 def __init__(self, lr, l1, l2, l2_shrinkage, lr_power, use_locking=False): argument 7223 validator.check_value_type("lr_power", lr_power, [float], self.name) 7227 self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name)
|
/third_party/mindspore/config/ |
D | op_info.config | 56 …me": "l1", "type": "float"}, {"name": "l2", "type": "float"}, {"name": "lr_power", "type": "float"… 166 …false, "param_type": "required", "shape": "all"}, {"index": 7, "name": "lr_power", "need_compile":… 177 …, "param_type": "required", "type": "float", "value": "all"}, {"name": "lr_power", "param_type": "… 299 …, "param_type": "required", "type": "float", "value": "all"}, {"name": "lr_power", "param_type": "… 300 …, "param_type": "required", "type": "float", "value": "all"}, {"name": "lr_power", "param_type": "…
|