/third_party/mindspore/tests/st/networks/models/ |
D | resnetv1_5.py | 37 def conv3x3(in_channels, out_channels, stride=1, padding=0): argument 39 weight_shape = (out_channels, in_channels, 3, 3) 41 return nn.Conv2d(in_channels, out_channels, 45 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 47 weight_shape = (out_channels, in_channels, 1, 1) 49 return nn.Conv2d(in_channels, out_channels, 53 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 55 weight_shape = (out_channels, in_channels, 7, 7) 57 return nn.Conv2d(in_channels, out_channels, 61 def bn_with_initialize(out_channels): argument [all …]
|
/third_party/mindspore/tests/st/mem_reuse/ |
D | resnet.py | 42 def conv3x3(in_channels, out_channels, stride=1, padding=0): argument 44 weight_shape = (out_channels, in_channels, 3, 3) 46 return nn.Conv2d(in_channels, out_channels, 50 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 52 weight_shape = (out_channels, in_channels, 1, 1) 54 return nn.Conv2d(in_channels, out_channels, 58 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 60 weight_shape = (out_channels, in_channels, 7, 7) 62 return nn.Conv2d(in_channels, out_channels, 66 def bn_with_initialize(out_channels): argument [all …]
|
/third_party/mindspore/tests/st/tbe_networks/ |
D | resnet.py | 32 def conv3x3(in_channels, out_channels, stride=1, padding=0): argument 34 return nn.Conv2d(in_channels, out_channels, 39 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 41 return nn.Conv2d(in_channels, out_channels, 46 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 48 return nn.Conv2d(in_channels, out_channels, 53 def bn_with_initialize(out_channels): argument 54 shape = (out_channels) 58 bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init='Uniform', 63 def bn_with_initialize_last(out_channels): argument [all …]
|
/third_party/mindspore/tests/st/export_and_load/ |
D | test_resnet_air.py | 55 def conv3x3(in_channels, out_channels, stride=1, padding=1): argument 57 weight_shape = (out_channels, in_channels, 3, 3) 59 return Conv2d(in_channels, out_channels, 63 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 65 weight_shape = (out_channels, in_channels, 1, 1) 67 return Conv2d(in_channels, out_channels, 71 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 73 weight_shape = (out_channels, in_channels, 7, 7) 75 return Conv2d(in_channels, out_channels, 79 def bn_with_initialize(out_channels): argument [all …]
|
/third_party/mindspore/tests/ut/python/exec/ |
D | resnet_example.py | 26 def conv3x3(in_channels, out_channels, stride=1, padding=1): argument 28 weight = Tensor(np.ones([out_channels, in_channels, 3, 3]).astype(np.float32) * 0.01) 29 return nn.Conv2d(in_channels, out_channels, 33 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 35 weight = Tensor(np.ones([out_channels, in_channels, 1, 1]).astype(np.float32) * 0.01) 36 return nn.Conv2d(in_channels, out_channels, 40 def bn_with_initialize(out_channels): argument 41 shape = (out_channels) 46 return nn.BatchNorm2d(num_features=out_channels, 61 out_channels, argument [all …]
|
/third_party/mindspore/tests/st/networks/ |
D | test_gpu_resnet.py | 61 def conv3x3(in_channels, out_channels, stride=1, padding=1): argument 63 weight_shape = (out_channels, in_channels, 3, 3) 65 return Conv2d(in_channels, out_channels, 69 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 71 weight_shape = (out_channels, in_channels, 1, 1) 73 return Conv2d(in_channels, out_channels, 77 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 79 weight_shape = (out_channels, in_channels, 7, 7) 81 return Conv2d(in_channels, out_channels, 85 def bn_with_initialize(out_channels): argument [all …]
|
/third_party/mindspore/tests/st/pynative/ |
D | test_pynative_resnet50_gpu.py | 55 def conv3x3(in_channels, out_channels, stride=1, padding=0): argument 57 return nn.Conv2d(in_channels, out_channels, 62 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 64 return nn.Conv2d(in_channels, out_channels, 69 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 71 return nn.Conv2d(in_channels, out_channels, 76 def bn_with_initialize(out_channels): argument 77 shape = (out_channels) 81 bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init='Uniform', 86 def bn_with_initialize_last(out_channels): argument [all …]
|
D | test_pynative_resnet50_ascend.py | 93 def conv3x3(in_channels, out_channels, stride=1, padding=0): argument 95 return nn.Conv2d(in_channels, out_channels, 100 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 102 return nn.Conv2d(in_channels, out_channels, 107 def conv7x7(in_channels, out_channels, stride=1, padding=0): argument 109 return nn.Conv2d(in_channels, out_channels, 114 def bn_with_initialize(out_channels): argument 115 shape = (out_channels) 119 bn = nn.BatchNorm2d(out_channels, momentum=0.99, eps=0.00001, gamma_init='Uniform', 124 def bn_with_initialize_last(out_channels): argument [all …]
|
/third_party/mindspore/tests/st/model_zoo_tests/yolov3_darknet53/src/ |
D | darknet.py | 21 out_channels, argument 31 out_channels, 37 nn.BatchNorm2d(out_channels, momentum=0.1), 59 out_channels): argument 62 out_chls = out_channels//2 64 self.conv2 = conv_block(out_chls, out_channels, kernel_size=3, stride=1) 101 out_channels, argument 105 self.outchannel = out_channels[-1] 108 if not len(layer_nums) == len(in_channels) == len(out_channels) == 5: 115 out_channels[0], [all …]
|
/third_party/mindspore/tests/ut/python/model/ |
D | res18_example.py | 27 def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'): argument 29 return nn.Conv2d(in_channels, out_channels, 33 def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'): argument 35 return nn.Conv2d(in_channels, out_channels, 47 out_channels, argument 52 out_chls = out_channels // self.expansion 59 self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) 60 self.bn3 = nn.BatchNorm2d(out_channels) 65 self.conv_down_sample = conv1x1(in_channels, out_channels, 67 self.bn_down_sample = nn.BatchNorm2d(out_channels) [all …]
|
/third_party/mindspore/tests/perf_test/ |
D | resnet_example.py | 24 def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'): argument 26 return nn.Conv2d(in_channels, out_channels, 30 def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'): argument 32 return nn.Conv2d(in_channels, out_channels, 44 out_channels, argument 49 out_chls = out_channels // self.expansion 56 self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) 57 self.bn3 = nn.BatchNorm2d(out_channels) 62 self.conv_down_sample = conv1x1(in_channels, out_channels, 64 self.bn_down_sample = nn.BatchNorm2d(out_channels) [all …]
|
/third_party/mindspore/tests/ut/python/communication/ |
D | test_data_parallel_resnet.py | 29 def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'): argument 31 return nn.Conv2d(in_channels, out_channels, 35 def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'): argument 37 return nn.Conv2d(in_channels, out_channels, 49 out_channels, argument 54 out_chls = out_channels // self.expansion 61 self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) 62 self.bn3 = nn.BatchNorm2d(out_channels) 67 self.conv_down_sample = conv1x1(in_channels, out_channels, 69 self.bn_down_sample = nn.BatchNorm2d(out_channels) [all …]
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_operator_model_parallel.py | 104 def conv3x3(in_channels, out_channels, stride=1): argument 106 weight_shape = (out_channels, in_channels, 3, 3) 108 conv = Conv2d(in_channels, out_channels, 115 def conv1x1(in_channels, out_channels, stride=1): argument 117 weight_shape = (out_channels, in_channels, 1, 1) 119 conv = Conv2d(in_channels, out_channels, 126 def conv7x7(in_channels, out_channels, stride=1): argument 128 weight_shape = (out_channels, in_channels, 7, 7) 130 conv = Conv2d(in_channels, out_channels, 147 def bn_with_initialize(out_channels): argument [all …]
|
D | test_auto_parallel_resnet_sharding_propagation2.py | 46 def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 49 return nn.Conv2d(in_channels, out_channels, 53 def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 56 return nn.Conv2d(in_channels, out_channels, 60 def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 63 return nn.Conv2d(in_channels, out_channels, 77 out_channels, argument 82 out_chls = out_channels // self.expansion 89 self.conv3 = _conv1x1(out_chls, out_channels, stride=1) 90 self.bn3 = _fused_bn(out_channels, momentum=momentum) [all …]
|
D | test_auto_parallel_resnet_sharding_propagation.py | 47 def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 50 return nn.Conv2d(in_channels, out_channels, 54 def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 57 return nn.Conv2d(in_channels, out_channels, 61 def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 64 return nn.Conv2d(in_channels, out_channels, 78 out_channels, argument 83 out_chls = out_channels // self.expansion 90 self.conv3 = _conv1x1(out_chls, out_channels, stride=1) 91 self.bn3 = _fused_bn(out_channels, momentum=momentum) [all …]
|
/third_party/mindspore/mindspore/nn/layer/ |
D | conv.py | 38 out_channels, argument 53 … self.out_channels = Validator.check_positive_int(out_channels, 'out_channels', self.cls_name) 91 if out_channels % group != 0: 95 shape = [in_channels, out_channels // group, *kernel_size] 97 … shape = [out_channels, *kernel_size, in_channels // group] if self.format == "NHWC" else \ 98 [out_channels, in_channels // group, *kernel_size] 102 self.bias = Parameter(initializer(self.bias_init, [out_channels]), name='bias') 225 out_channels, argument 243 out_channels, 254 self.conv2d = P.Conv2D(out_channel=self.out_channels, [all …]
|
/third_party/mindspore/tests/st/auto_parallel/ |
D | resnet50_expand_loss.py | 45 def _conv3x3(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 47 return nn.Conv2d(in_channels, out_channels, 51 def _conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 53 return nn.Conv2d(in_channels, out_channels, 57 def _conv7x7(in_channels, out_channels, stride=1, padding=0, pad_mode='same'): argument 59 return nn.Conv2d(in_channels, out_channels, 72 out_channels, argument 77 self.conv1 = _conv3x3(in_channels, out_channels, stride=stride) 78 self.bn1 = _fused_bn(out_channels, momentum=momentum) 79 self.conv2 = _conv3x3(out_channels, out_channels) [all …]
|
/third_party/gstreamer/gstplugins_base/gst-libs/gst/audio/ |
D | audio-channel-mixer.c | 63 gint out_channels; member 109 gint in_channels, GstAudioChannelPosition * in_position, gint out_channels, in gst_audio_channel_mixer_fill_identical() argument 117 for (co = 0; co < out_channels; co++) { in gst_audio_channel_mixer_fill_identical() 139 GstAudioChannelPosition * in_position, gint out_channels, in gst_audio_channel_mixer_fill_compatible() argument 181 for (n = 0; n < out_channels; n++) { in gst_audio_channel_mixer_fill_compatible() 369 GstAudioChannelPosition * in_position, gint out_channels, in gst_audio_channel_mixer_fill_others() argument 399 gst_audio_channel_mixer_detect_pos (out_channels, out_position, in gst_audio_channel_mixer_fill_others() 570 gint out_channels) in gst_audio_channel_mixer_fill_normalize() argument 575 for (j = 0; j < out_channels; j++) { in gst_audio_channel_mixer_fill_normalize() 590 for (j = 0; j < out_channels; j++) { in gst_audio_channel_mixer_fill_normalize() [all …]
|
/third_party/mindspore/mindspore/lite/examples/export_models/models/ |
D | NetworkInNetwork.py | 31 … nn.Conv2d(in_channels=num_channel, out_channels=192, kernel_size=5, stride=1, has_bias=False), 33 nn.Conv2d(in_channels=192, out_channels=160, kernel_size=1, stride=1, has_bias=True), 35 nn.Conv2d(in_channels=160, out_channels=96, kernel_size=1, stride=1, has_bias=True), 42 nn.Conv2d(in_channels=96, out_channels=192, kernel_size=5, stride=1, has_bias=False), 44 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 46 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 53 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=3, stride=1, has_bias=False), 55 nn.Conv2d(in_channels=192, out_channels=192, kernel_size=1, stride=1, has_bias=True), 57 … nn.Conv2d(in_channels=192, out_channels=num_classes, kernel_size=1, stride=1, has_bias=True), 69 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
/third_party/ffmpeg/libavresample/ |
D | audio_mix.c | 40 int out_channels; member 63 int out_channels, int ptr_align, int samples_align, in ff_audio_mix_set_func() argument 68 (out_channels == am->out_matrix_channels || out_channels == 0)) { in ff_audio_mix_set_func() 81 if (out_channels) in ff_audio_mix_set_func() 83 in_channels, out_channels); in ff_audio_mix_set_func() 87 } else if (out_channels) { in ff_audio_mix_set_func() 89 out_channels); in ff_audio_mix_set_func() 335 am->out_channels); in mix_function_init() 364 am->out_channels = avr->out_channels; in ff_audio_mix_alloc() 373 double *matrix_dbl = av_mallocz(avr->out_channels * avr->in_channels * in ff_audio_mix_alloc() [all …]
|
/third_party/mindspore/tests/st/networks/models/deeplabv3/src/backbone/ |
D | resnet_deeplab.py | 124 out_channels, argument 154 out_channels=out_channels, 158 in_channels = out_channels 300 out_channels, argument 306 mid_channels = out_channels // expansion 334 out_channels, 337 self.bn3 = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) 338 if in_channels != out_channels: 340 out_channels, 343 bn = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) [all …]
|
/third_party/mindspore/tests/st/fl/cross_silo_faster_rcnn/src/FasterRcnn/ |
D | resnet.py | 29 def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): argument 31 shape = (out_channels, in_channels, kernel_size, kernel_size) 33 return nn.Conv2d(in_channels, out_channels, 74 out_channels, argument 78 if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: 95 out_channel=out_channels[0], 102 out_channel=out_channels[1], 109 out_channel=out_channels[2], 116 out_channel=out_channels[3], 190 out_channels, argument [all …]
|
D | resnet50v1.py | 29 def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'): argument 31 shape = (out_channels, in_channels, kernel_size, kernel_size) 33 return nn.Conv2d(in_channels, out_channels, 74 out_channels, argument 78 if not len(layer_nums) == len(in_channels) == len(out_channels) == 4: 95 out_channel=out_channels[0], 102 out_channel=out_channels[1], 109 out_channel=out_channels[2], 116 out_channel=out_channels[3], 190 out_channels, argument [all …]
|
/third_party/mindspore/tests/st/gnn/ |
D | aggregator.py | 71 out_channels, argument 77 self.out_channels = Validator.check_positive_int(out_channels) 81 if weight_init.ndim != 2 or weight_init.shape[0] != out_channels or \ 85 … self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight") 89 if bias_init.ndim != 1 or bias_init.shape[0] != out_channels: 92 self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias") 103 output = F.reshape(output, (tensor_shape[0], tensor_shape[1], self.out_channels)) 107 s = 'in_channels={}, out_channels={}'.format(self.in_channels, self.out_channels) 270 out_channels=self.out_channel, 275 out_channels=1) [all …]
|
/third_party/mindspore/tests/ut/python/transform/ |
D | test_transform.py | 32 def conv3x3(in_channels, out_channels, stride=1, padding=1): argument 34 weight = Tensor(np.ones([out_channels, in_channels, 3, 3]).astype(np.float32)) 35 return nn.Conv2d(in_channels, out_channels, 40 def conv1x1(in_channels, out_channels, stride=1, padding=0): argument 42 weight = Tensor(np.ones([out_channels, in_channels, 1, 1]).astype(np.float32)) 43 return nn.Conv2d(in_channels, out_channels, 56 out_channels, argument 61 out_chls = out_channels // self.expansion 68 self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0) 69 self.bn3 = nn.BatchNorm2d(out_channels) [all …]
|